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Abstract:  

In the past, many approaches were proposed to perform the task of acoustic emission based source 
identification in fibre-reinforced composites. Almost all identification attempts make use of feature values 
to act as representation of the recorded acoustic emission signals. The typical features are classified in 
two primary categories, one to express the intensity / energy of the signal and one to describe the 
frequency characteristic of the signal. Both categories are used to classify signals into microscopic 
failure mechanisms such as matrix cracking, fibre breakage and many more. To this end, various 
approaches used either energetic or frequency features or a mix of both. This contribution takes a closer 
look at the relationship between acoustic emission signals and their feature values and assesses their 
relation to acoustic emission source mechanics. This provides guidance on the reliability of acoustic 
emission features for source identification procedures and points out some key aspects for successful 
classification attempts. 

1. Introduction 

Failure of composite materials during mechanical loading is a complex phenomenon starting 

on the microscopic level. At exposure to increased load, small flaws start to grow into larger 

ones, escalating over several orders of magnitude, which finally coalescent into macroscopic 

failure. Each microscopic (and macroscopic) crack progression generates acoustic emission 

(AE). The multitude of different cracks occurring in composites have been categorized and 

listed several times (i.e. [1], [2]). In the context of AE, it is most noteworthy that all of these 

different cracks result in detectable AE signals. Among other things, the detectability will 

depend on the distance between source position and the sensor position. One intrinsic 

challenge is to deal with the variety of terminology used in the past to categorize the different 

failure mechanisms in composites. Still there is no consensus on how many different AE source 

mechanisms can be distinguished in a particular test setup. However, in the past decades 

there have been many attempts to distinguish between the different AE source mechanism as 

occurring in composites [3-20]. Basic distinction is made between work that has applied model 

specimens to establish prototype signals for each source type, approaches that are using 

validation of signal classes by microscopic evidence and approaches using numerical or 

analytical modelling to assist in the interpretation. 

The aim of this contribution is to review the reliability of particular AE parameters (features) 

applied to perform source identification in fibre-reinforced composites. 
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2. Experimental 

As described in more detail in [10], [12], a four-point bend test was combined with multi-

resonant type WD sensors to detect the AE generated during damage initiation and 

progression. For acoustic coupling Baysilone silicone grease of medium viscosity was used, 

the mechanical contact was provided by two clamps. To decrease detection of friction noise a 

bandpass ranging from 20 kHz up to 3 MHz was used. The AE waveforms were recorded using 

a PCI-2 data acquisition system with 40 dBAE preamplification and the software AEWin 

(Physical Acoustic Ltd.) with a threshold of 40dBAE and a sampling rate of 10 MS/s. This will 

provide some representative AE data for further discussion and only acoustic emission sources 

located between the two upper supports are considered for the following analysis. 

To analyse the crack formation inside the material, high-resolution computed tomography was 

used. The Nanotom m system (General Electric) was applied with 50 kV tube voltage and 

200 µA tube current using a voxel resolution of 5.2 µm. This provides a way of volumetric 

measurement of the typical crack dimensions found after four-point bending in a composite 

material. 

After extraction of classical signal features out of the first 100 µs after signal arrival (definition 

of features see Appendix C in [2]),  the feature dataset is ready for analysis by pattern 

recognition methods. In figure 1, a typical result from a hierarchical clustering using the 

agglomerative tree linkage [21] is shown for one representative dataset resulting from loading 

the specimens to failure. This statistical data analysis method applies the Ward-algorithm (also 

known as “sort algorithm” or “agglomerative tree linkage”) and groups the AE features 

according to their similarity based on a minimum variance criterion [19], [22]–[25]. High 

numerical values indicate an equal relevance to describe the underlying data structure. In the 

example of figure 1, the feature “energy” and “signal strength” link at a value of approximately 
one, so they essentially provide the same information, i.e. they are highly correlated.  

For composite materials, this feature dendrogram (example see figure 1) often splits in two 

branches that link at relatively low levels. One branch is primarily composed of features related 

to the “energetic quantities”, such as energy, amplitude, signal strength, but it also includes 

features related to the amplitude. One such example is the duration of the signal (louder signals 

take longer to fall below threshold). Similar, the rise time and the counts to peak correlate with 

the strength of the signals as increased amplitudes may cause an earlier onset above threshold 

level. 

The other branch of the feature dendrogram typically holds the features, related to frequency 

information of the AE signals. Besides the obvious frequency measures, this chart reveals the 

high correlation between counts and the average frequency, as the latter is based on the 

former value (see Appendix C in [2] for precise definition). 

As this kind of behaviour seems to appear in many AE datasets of composites, this indicates 

that there is a distinct difference in the descriptive capabilities of both branches. Therefore, this 

motivates the organization of this work in two sections, one dealing with a review of “energetic” 
AE features and one dealing with a discussion of “frequency” AE features. 
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Figure 1. Hierarchical clustering of dataset using the Ward-algorithm (agglomerative tree linkage). 

3. Energetic AE signal features 

Several fundamental acoustic emission theories aim to establish a relationship between the 

AE source type, the properties of the fracturing homogeneous isotropic solids and the resulting 

AE signal [2]. Composite materials are, dependent on the observation scale, significantly 

different to that, i.e. they are only homogeneous on the macroscopic scale where they may be 

approximated as homogeneous anisotropic solids. Nevertheless, the key principles of these 

theories are still found to be still valid for composite materials [2]. 

One of the common results of all the theories mentioned above is that they expect a 

proportionality between the size of a crack growth � and the AE signal amplitude ܷ. The theory 

of Lysak would propose ܷ ∝ �ଷ ଶ⁄  for the case of a “crack-through” and  ܷ ∝ � for an internal 

“penny-shaped” crack [22]. Green and Zerna reported a  ܷ ∝ � relationship for a crack-through 

process [26]. Investigations by finite element modeling recently confirmed the relationship ܷ ∝�ଷ ଶ⁄  for a crack-through process in a homogeneous material, while results from internal cracks 

apparently obey the ܷ ∝ � relationship [2].  

The theory of Ohtsu and Ono uses the moment tensor representation for AE sources, which 

generally states ܷ ∝ Δܸ, with Δܸ being the internal volume produced by the crack growth [23], 

[24]. Similar, the theory of Scruby and Wadley would predict the proportionality ܷ ∝ Δܸ, given 

the dynamics of the crack process are unchanged when comparing different crack sizes [2], 

[27], [28].  

3.1. Matrix cracking and interfacial failure 

In a composite, the expected variation of crack sizes for “matrix cracking” ranges from fairly 
small length scales in the order of 1 µm to 10 µm (cf. figure 2a) to reasonably macroscopic 

sizes such as several 100 µm to some 1 mm (cf. figure 2b). In [29] polymer fracture was even 

measured to generate one huge signal for final fracture at several centimetres of length scale. 
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The theories quoted above allow estimating an increase of the corresponding acoustic 

emission signal amplitude by three orders of magnitude. This corresponds to a dynamic range 

of the corresponding AE signal amplitudes of at least 60 dB (1µm to 1mm internal cracks). 

Furthermore, for a typical composite, there is no expectation of distinct crack sizes, as larger 

“matrix cracks” do not necessarily need to grow at once, but may show several intermediate 

rests. This will result in more than one AE signal for one such macroscopic crack. Accordingly, 

the distribution of crack lengths for source types such as “matrix cracking” and “interfacial 
failure” is not discrete. This is different in some cases, when the typical extent is geometrically 

limited in one more directions (e.g. because of ply structure, bundle distances, or other). Thus, 

in [30] it was demonstrated, that the average signal amplitude of matrix cracking is related to 

the thickness of the failing plies. Similar, findings in [31] indicate, that matrix cracking in fibre 

yarns causes characteristic acoustic emission energies.  

 

Figure 2. Computed tomography image of crack network on microscale (a and b) and on macroscale 

(c) taken from damage region of four-point bending sample of [10], [12]. 

Nevertheless, for the majority of composites, there is no general discretization of crack 

dimensions for matrix cracking and interfacial failure, but a homogeneous distribution of crack 

length sizes. Hence, it appears invalid to detect the occurrence of either “matrix cracking” or 
“interfacial failure” based on a particular amplitude range unless the microstructure explicitly 
forces discrete size distributions. 

3.2. Fibre breakage 

Another type of failure mechanism frequently interpreted in terms of its expected AE signal 

amplitude is fibre breakage. Essentially, contradicting proposals have been made that either 

concluded ௙ܷ�௕௘௥ ≫ ܷ௠௔௧௥��  or  ௙ܷ�௕௘௥ < ܷ௠௔௧௥��. 

Based on the theories mentioned in section 3.1, the decisive factor for the size of the AE 

amplitude is the Δܸ-value. Due to the fibre diameters, the crack area is well defined for carbon 

fibres (5 µm to 10 µm) or glass fibres (10 µm to 50 µm). For fibres failing under tensile load, 

the additional contribution to Δܸ is the extension along the fibre axis. The amount of this 

extension in load direction relates to two factors, namely (i) the amount of elastic energy stored 

before fibre failure and (ii) the confinement effect of the surrounding fibres and matrix. The first 
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contribution implicitly relates the amount of extension to such factors as the fibres tensile 

strength (or their fracture toughness). Hence, a larger Δܸ expects for a stronger fibre. In 

addition, a stronger AE signal is expected for a 10 µm diameter cracking fibre vs. a 10 µm 

diameter cracking matrix polymer. Assuming typical fibre and matrix failure strength values 

(50 MPa polymer vs. 5 GPa fibre) and applying the theoretical relationships above, for the 

same cross-sectional area this results in 100 times larger AE signal amplitude and 

accordingly ௙ܷ�௕௘௥ < ܷ௠௔௧௥��. Note that this description does not take into account potential 

additional contributions to Δܸ due to matrix cracking and debonding surrounding the fibre 

filament. This might well lead to additional contributions to the fracture surface normal to the 

tensile load (i.e. factor of 2 – 4 as estimated from computed tomography images, cf. figure 3). 

A primary difference to the discussion of amplitude distribution of section 3.1 is the discrete 

size distribution expected for fibre breakage. As demonstrated e.g. by [32] the single filament 

failure initiates long before ultimate failure and does not necessarily result in cascades of fibres 

failing simultaneously. For constant cross-section and constant fibre strength, a discrete AE 

energy release is theoretically expected. However, this discrete energy smoothens out due to 

the cross-section distribution of the fibre filaments and the Weibull strength distribution of the 

filaments. 

Single filament testing sometimes is used to demonstrate that fibre breakage AE signals have 

very strong amplitudes. As sketched in figure 3, the confinement of the failing filament is 

substantially different in single filament testing vs. a real composite. In the case of the free 

filament, the crack faces may move independently in each direction, reaching many millimetres 

or even centimetres. For fibre failure inside a composite material, the surrounding fibres and 

matrix (in case they do not fail simultaneously) confine the movement of the breaking fibre. In 

this case the resulting movement along the axis could be quantified using in-situ computed 

tomography analysis to be less than 5 µm as seen in figure 3-b [33]. Thus, the resulting Δܸ is 

more than three orders of magnitude smaller than for single filament testing. Based on the 

theories stated above this would result in a corresponding reduction of AE signal amplitudes 

of up to 90 dBAE. The same change in energy release was also consistently found in finite 

element modelling for the case of free fibre filaments in [33] and for confined fibres in [2]. 

 

Figure 3. Schematic difference in Δܸ for single filament testing vs. fibres confined within composite 

material (a) and experimental measurement of Δܸ using high-resolution computed tomography at 

0.4 µm voxel size (b). 
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Other indications that fibre breakage signals from composites (confined condition) show 

relatively low amplitudes were recently provided by Lomov et al. and Swolfs et al. [30], [31]. 

They compared theoretical predictions for first fibre filament failure based on classical Weibull 

theory to the corresponding onset of AE signals. Overall, the predicted onset of the weakest 

fibre filaments systematically preceded the measured AE onset. This indicates that the AE 

signals of the weakest fibres possibly fall below the experimentally used detection threshold. 

This was additionally verified by finite element modelling of fibre breakage with varying tensile 

strength following a Weibull-type strength distribution in [2].  

As baseline of all these considerations above, the dominating factors for the AE signal 

amplitude (and hence energy) are the size of the crack as well as the amount of elastic energy 

stored immediately before fracture. 

4. Frequency AE signal features 

In contrast to the energetic AE signal features, there are several established ways to compute 

frequency information to represent the recorded AE signals. The three different features 

“Initiation-“, “Reverberation-“ and “Average-Frequency” are used to provide an estimate of the 
characteristic frequency before and after the peak-maximum and of the complete signal (see 

Appendix C in [2] for precise definition). These features are no exact frequencies since they 

rely on the number of signal threshold crossings, which is a discrete and often error-prone 

count, thus resulting in relatively inaccurate nominal frequencies. 

A significantly better approach is to compute the Fast-Fourier-Transformation (FFT) of the AE 

signal. The “Peak-frequency” �௣௘௔� is the frequency value of maximum intensity in the 

spectrum. The “Frequency Centroid” �௖௘௡௧௥௢�ௗ characterizes the frequency content of an AE 

signal in a similar way as the centre of mass describes the properties of geometric object with 

uniform density. Thus, it is an independent evaluation of the characteristic average frequency 

of the signal and is generally not equal to the “Peak-frequency”. Another means of representing 
the signals frequency spectrum is the definition of different “Partial Power” levels. They 
measure the signals frequency contribution within a given interval and represent the frequency 

distribution of the AE signal by more than only one characteristic value. Hence, they usually 

are defined for subdivisions of a certain frequency range of interest, e.g. 150 kHz intervals 

ranging from �௦௧௔௥௧ = 0 kHz to �௘௡ௗ = 1200 kHz (see Appendix C in [2]). 

Another sophisticated approach is to extract the frequency information from time-frequency 

transformations. Using such concepts based on wavelets [34] or kernel convolution procedures 

such as those proposed by Choi and Williams [35] this allows to obtain additional frequency 

features. For the discrete wavelet transformation, the intensity of the decomposition levels has 

been proposed as features to describe the AE signal [36], [37]. 

Similar as for the energetic features, established theories allow raising some expectations for 

the resultant frequency spectrum of a particular source mechanism in a fibre reinforced 

composite. All of the established theories assume a source function, which is due to a rapid 

internal displacement [19], [22]–[24] and has been recently confirmed by fracture mechanics 
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based numerical modelling [33]. Typically, this is a step function as seen exemplarily in figure 

4-a for two typical rise-times. In this simple source representation, the governing factor to judge 

on the source dynamics is the rise-time of the internal displacement. However, the rise-time is 

not identical to the time the crack needs to propagate. In [2], [33] the duration for crack growth 

was found to be substantially shorter than the rise-time of the source function with the 

additional dynamics caused by inertia effects and by the vibration of the crack faces, as well 

as propagating surface waves. Nevertheless, a simple FFT of the two exemplary source 

functions of figure 4-a reveals the corresponding bandwidth of the AE source and is plotted in 

figure 4-b. Naturally, faster internal displacement generates broader bandwidth, i.e. causes 

excitation of higher frequencies. Similar, the slower internal displacement causes reduced 

bandwidth of the source.  

 

Figure 4. Scheme of source function (a) and corresponding spectral bandwidth estimated from -3dB 

drop (b). 

4.1 Dynamics of source mechanisms in composites 

Based on these considerations, the discussion now focuses on the expected dynamics for 

different source mechanisms. In general, the duration for a singular crack event (from initiation 

to rest) links to two factors. This is (i) the ductility/brittleness of the material and (ii) the 

geometry/extension of the crack growth. The first item directly links to the crack propagation 

speed. As has been discussed by Scruby [25], depending on the applied load and the material 

properties, cracks may potentially reach their ultimate propagation speed limit, which is the 

Rayleigh wave speed. The second item relates to the geometric boundary conditions posed 

for the crack growth. At constant speed, larger crack length will need longer to form than 

shorter crack length, hence adding to the overall rise-time of the source. Potentially there is a 

fixed upper limit to this duration of growth, as cracks in composites can be geometrically 

confined due to sizes of the plies or due to the overall dimension of the sample (width, 

thickness, …). 

For failure mechanisms such as matrix cracking or delamination the basic expectation for 

broad crack length distributions has already been discussed in section 3.1. Based on the above 

considerations, this would expect a broad distribution of source rise-times for these cases. 
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Likewise, for discrete crack dimensions as for fibre breakage, a discrete rise-time distribution 

is expected. 

However, reinforcement fibres such as glass or carbon fail more brittle than typical matrix 

polymers and also exhibit up to one order of magnitude higher Rayleigh velocities (e.g. glass 

3000 m/s, carbon 5000 m/s, polymer 500 m/s) as can be calculated from the materials Young’s 
modulus, density and Poisson’s number when using the Bergman approximation [38]. 

Hence, generally the rise-time of the source function is significantly shorter for failure of the 

reinforcement fibres than for a comparable failure size of a matrix polymer. Accordingly, 

nominally larger crack increments as for matrix cracking and interfacial failure will reduce the 

bandwidth further compared to the fibre breakage bandwidth. 

4.2 Transfer of frequency information from source to sensor 

Although, the source dynamics govern the bandwidth of the source and the spectrum itself 

seems to be fairly flat with frequency (cf. figure 4-b), there are several factors which affect the 

propagation of frequency information from source to sensor. One example obtained from FEM 

calculus to demonstrate the severity of these effects shows figure 5. 

 

Figure 5. Transmission characteristics of sensor, material and propagation path and their 

influence on generation of AE signal spectrum in relation to source spectrum. 
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The first non-linear transmission is the formation of guided waves in a typical thin-walled 

composite plate. As discussed in [2], the formation of plate waves comes with particular 

frequency regions, that allow preferential transmission of the signal. Correspondingly, some 

frequency ranges transmit badly, resulting in a significant change of the frequency spectrum. 

The particular frequency values for preferential transmission depend mostly on the thickness 

of the plate and the material properties. This guided wave propagation also leads to formation 

of some of the characteristic peaks in the FFT spectrum of the final AE signal. Another 

important source of non-linear transmission is the sensing system used. Especially for the 

typical commercial sensor systems (resonant or multi-resonant designs), this results in 

additional reduction of bandwidth or may cause characteristic peaks in the frequency 

spectrum, which are owed to the internal sensor resonances (cf. figure 5). 

 

Figure 6. Comparison of frequency representation for four AE signals (a-d) using Peak-

frequency �௣௘௔�, Frequency Centroid �௖௘௡௧௥௢�ௗ and Weighted Peak-Frequency ۃ�௣௘௔�ۄ. 
As seen in figure 5, the frequency information of the AE source maps not well to the acquired 

electrical AE signal. In particular, features such as the “Peak-frequency” usually link either to 

the sensor resonances or to the frequency ranges of preferential transmission of the guided 

waves. Thus, it does not seem appropriate to use such features to distinguish failure 

mechanisms based on their absolute frequency values. Typically, a choice to distinguish a 

mechanism of e.g. ≶ 137 kHz is either due to the sensor used or due to the material 

investigated.  
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To remove the sensor and material bias implicit to the frequency features, the use of relative 

features, such as the “Weighted Peak-Frequency” ۃ�௣௘௔�ۄ or “Partial Powers” was proposed 

[11]. As the aim of all the frequency features is to best represent the frequency spectrum, 

consider the four examples shown in figure 6. Visually, one would state close similarity 

between the spectra of figure 6-a and 6-b and high dissimilarity between spectra of figure 6-c 

and 6-d. Accordingly, frequency parameters should be representative numerical values for this 

observation. Using the �௣௘௔� feature this works well for the bottom case, resulting in a 

difference of 600 kHz. However, the upper case results in a difference of 240 kHz for visually 

similar spectra. Accordingly, absolute values of the �௣௘௔� feature do not suffice in this case.  

The �௖௘௡௧௥௢�ௗ feature is less susceptible to the occurrence of peaks in the spectrum as it is 

obtained from an averaging of the full spectrum. However, the disadvantage of this is the 

reduced sensitivity to relative changes of frequency spectra. Although the example spectra of 

figure 6-a and 6-b are similar, they still do have different weight at low and high frequencies. 

Still the �௖௘௡௧௥௢�ௗ is numerically almost identical for both spectra. This lack of sensitivity of the �௖௘௡௧௥௢�ௗ feature is quite typical as the basic “finger-print” of the spectrum originates to a 

significant extent from constant contributions, such as sensor characteristics and guided wave 

propagation (cf. figure 5). Therefore, the �௖௘௡௧௥௢�ௗ feature by itself is not very useful to capture 

small changes relative to the average frequency content. 

As result of these observations, the combination of both features into the ۃ�௣௘௔�ۄ feature was 

proposed [11]. As square-root combination of both other features, it retains the good 

discriminative capability of the �௣௘௔�, but is also susceptible to small changes in frequency 

spectrum (cf. figure 6-a and 6-b) without being too susceptible to the resonance frequencies 

of AE sensor or the material. 

5. Conclusion 

Based on the presented considerations it hardly seems applicable to perform source 

identification in composite materials based on energetic features unless there is a discrete size 

distribution expected for one mechanism. In specific cases this can be justified (i.e. matrix 

cracks all growing the full height and width within a ply at once). In a general situation, there is 

no expectation for a discrete distribution of AE signal amplitudes for one of the failure 

mechanisms in a composite. Instead, especially for “matrix cracking” and “interfacial failure” a 
wide distribution of AE signal amplitudes is expected, which cover several orders of magnitude. 

Thus, the AE signal amplitude and energetic features should be interpreted more in terms of 

strength or severity of the failure mechanism other than a feature to distinguish failure 

mechanisms. 

In order to perform source identification, frequency features were found to provide better 

discriminative capabilities. The AE signals bandwidth directly relates to the duration of the 

crack growth. In fibre-reinforced composites, the different failure mechanisms show 

characteristic crack durations, which originates from the speed of the crack propagation and 

the typical crack length of the different mechanisms (specifically for fibre breakage). However, 
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the transfer of the information of the source bandwidth to corresponding AE features suffers 

from resonances of the structure and the sensor. To overcome the associated issues in 

evaluation of the frequency spectra the “weighted Peak-Frequency” was proposed. In 

combination with other frequency features such as the “Partial Powers” and multi-variante data 

analysis (e.g. by pattern recognition methods [12]) this appears as best approach to meaningful 

AE source identification in fibre-reinforced composites, as the reliability of a single AE feature 

is not significant enough to allow this complex task. 
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