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ABSTRACT

Recognition of emotion in speech usually uses acoustic 
models that ignore the spoken content. Likewise one general 
model per emotion is trained independent of the phonetic 
structure. Given sufficient data, this approach seemingly 
works well enough. Yet, this paper tries to answer the 
question whether acoustic emotion recognition strongly 
depends on phonetic content, and if models tailored for the 
spoken unit can lead to higher accuracies. We therefore 
investigate phoneme-, and word-models by use of a large 
prosodic, spectral, and voice quality feature space and 
Support Vector Machines (SVM). Experiments also take the 
necessity of ASR into account to select appropriate unit-
models. Test-runs on the well-known EMO-DB database 
facing speaker-independence demonstrate superiority of 
word emotion models over today�s common general models 
provided sufficient occurrences in the training corpus. 

Index Terms � Emotion Recognition, Affective 
Speech, Acoustic Modeling, Word Models 

1. INTRODUCTION

Practically every approach to the recognition of emotion in 
speech ignores the spoken content when it comes to acoustic 
modeling [1,2,3,4,5]. A general model is trained for each 
emotion, and applied on test-utterances. While this is a 
common practice, it seems surprising how well this works, 
especially considering that many features highly depend on 
phonetic structure, such as spectral and cepstral features 
which have become very popular recently [1]. This derives 
from the high reduction of information: e.g. rather than 
using the original time-series, higher order statistics, such as 
means, extremes, deviations, etc., are used. This is also 
manifested by works that demonstrated lower performance 
of dynamic modeling, e.g. by HMM, of low-level-
descriptors [3]. Apparently, in current approaches phonetic 
content is over-modeled leading to low generalization 
capability. In this work we applied phoneme and word 
models of emotions for phoneme, word and sentence level 
of analysis.

Yet, the question is if spoken content variance influences 
emotion recognition performance negatively, and if models 

trained specifically on the unit at hand, can help. We aim at 
shedding light on this question by training phoneme-, and 
word emotion models for the recognition of emotion in the 
following. Unit-specific models demand knowledge of the 
phonetic content, opposing �blind� sub-turn entities, as 
introduced in [2,4,5,6,7]. Likewise, recognition of the 
spoken content becomes a necessity, in order to choose the 
correct model each time. Facing real world cases [8], we do 
not report on transcribed content, as e.g. in [1], but do 
incorporate an HMM-based state-of-the-art approach to 
ASR. We report results considering superiority of specific 
models over general models, and combine emotion and 
speech recognition in a real system. 

2. DATABASE

To demonstrate the effectiveness of unit-specific models, 
we decided for the popular studio recorded Berlin 
Emotional Speech Database (EMO-DB) [9], which covers 
the �big six� emotion set (MPEG-4) besides boredom 
instead of surprise, and added neutrality. This database 
contains acted samples. However, to our best knowledge 
this is the only public emotional speech database that 
provides accurate manual syllable boundaries and 
transcription for model training. Further, the spoken content 
is pre-defined, thus providing a high number of repeated 
words in diverse emotions allowing for training of word 
emotion models. In a later application with spontaneous 
data, larger corpora may fulfill the same requirement. 
Finally, these results allow for comparison with the results 
presented in [7] with respect to sub-turn units. 

10 (5f) professional actors speak 10 German emotionally 
undefined sentences. 494 phrases are marked as min. 60% 
natural and min. 80% assignable by 20 subjects. 84.3% 
accuracy is reported for a human perception test. For a 
comparison with spontaneous data refer to [8]. 

3. TOKEN PASSING SCHEME 

To apply grammatical constraints within the token passing 
scheme [12], these grammar rules are compiled into a set of 
linked syntax networks of the form illustrated by Fig(1). 
The nodes of each syntax network are of three types: links, 
terminals and non-terminals. Link nodes are used for storing 
tokens and are the points where recognition decisions are 

                                               



Figure 1. One-pass Viterbi beam search with token passing. 

recorded. Terminal nodes correspond with emotion acoustic 
models and non-terminal nodes refer to separate sub-syntax 
networks representing the right-hand side of the 
corresponding grammar rule. In our case we did not use 
non-terminal nodes. 

The three types of nodes are combined in such a way that 
every arc connects a terminal to a link node, or vice versa. 
Each syntax network has exactly one entry, one exit, and 
zero or more internal link nodes. Every terminal node has 
exactly one arc leading into it, whereas each link node may 
have any number. Link nodes can thus be viewed as filters, 
which remove all but the best (i.e. lowest cost) tokens 
passing through them. The main idea is that tokens 
propagate through the networks. When a token node enters 
a terminal node, it is transferred to the entry node of the 
corresponding emotional state model. 

4. PHONEME EMOTION MODELS 

As a starting point for our experiments we choose 
phonemes, as these should provide the most flexible basis 
for unit-specific models: if emotion recognition is feasible 
on phoneme basis, these units could be most easily re-used 
for any further content, and high numbers of training 
instances could be obtained. 

We use a simple conceptual model of dynamic emotional 
state recognition on phoneme level analysis: the full list of 
41 phonemes as transcribed for EMO-DB [9] is modeled for 
each of the 7 emotions contained, independently. As a result 
7 x 41 = 287 phoneme emotion models are trained. 

Two concepts are tested: first, a time-synchronous one-
pass Viterbi-beam search strategy and token passing [12] 
with direct context free grammar (CFG) are used for 
decoding. Second, a bi-gram language model (LM) is 
applied for emotional continuous speech modeling. To 
apply CFG constraints we used the token passing scheme 
described in sect. 3. 

In the case of emotion recognition via words, as in more 
recent works [1,8], emotional state models included lists of 
all emotional phonetic transcriptions for all words contained 
in the evaluation corpus, that is EMO-DB. We also consider 
the case of emotion recognition via sentences, which is 
more commonly used in earlier works [2,3,4,5,7].  

For the CFG evaluation no prior LM information is used, 
as opposed to the second conception, where bi-gram LM are 
employed for emotion recognition via words. Speech input 
is processed using a 25 msec Hamming window, with a 
frame rate of 5 msec. As in typical ASR tasks, we use a 39 
dimensional feature vector per frame consisting of 12 
MFCC and log frame energy plus speed and acceleration 
regression coefficients. Cepstral Mean Subtraction and 
variance normalization are applied to better deal with 
channel characteristics. 

Emotional phonemes are modeled by training three 
emitting state HMM models in speaker-independent (SI) 
manner using Baum-Welch re-estimation and up to 32 
mixtures, with the named beam search and token passing 
and direct CFG or bi-gram LM of continuous emotional 
speech [10].

Test-runs on EMO-DB for phoneme models are carried 
out in Leave-One-Speaker-Out (LOSO) manner to address 
speaker independence, as required by most applications. 
99.8% sentence speech recognition accuracy can be 
reported for SI acoustic models. This high accuracy justified 
the automatic LM application. Yet, speech recognition 
accuracy on a frame level for phonemes is considerably 
lower at 79.6%.  

In contrast to ASR, partly wrong phoneme models are 
selected for emotion recognition, and errors of emotional 
sentence recognition are highly correlated to erroneous 
recognition of the emotional state of the sentence.   

Level Context Acc. [%] 
sentence - 66.2 

word bi-gram LM 51.0 
word CFG 32.1 

phoneme bi-gram LM 38.8 

Table 1. Accuracies of emotion recognition on sentence-, 
word-, and phoneme-level applying phoneme emotion 
models, dynamic features, HMM, LOSO, on database EMO-
DB.

In tab. 1 results are shown for emotion recognition on a 
sentence-, word-, and phoneme level in diverse 
constellations. Overall, the sentence level protrudes, as 
many errors can be �repaired� on phoneme level. CFG for 
word level analysis shows many insertions, hence low 
accuracy. Bi-gram LM can balance the insertions by LM 
factor, hence higher accuracy. This is also the reason why 
phoneme-level accuracy is only reported with bi-gram LM: 
CFG leads here to too high insertion rates. 

Start

anger

boredom

disgust

joy

fear

neutral

sadness

End



5. WORD EMOTION MODELS 

The larger unit of modeling in the following � words � 
allows for us to shift to the usual acoustic emotion modeling 
by large static feature vectors. In order to represent a typical 
state-of-the-art emotion recognition engine, we use a set of 
1,406 acoustic features basing on 37 Low-Level-Descriptors 
(LLD) as seen in table 2 and their first order delta 
coefficients [8]. These 37x2 LLDs are next smoothed by 
low-pass filtering with an Simple Moving Average filter. 

In contrast to the formerly introduced dynamic modeling, 
such systems derive statistics per speaker turn by a 
projection of each uni-variate time series, respectively LLD, 
X onto a scalar feature x independent of the length of the 
turn. This is realized by use of a functional F, as depicted: 

1:F X x R  (1) 

19 functionals are applied to each contour on the word-
level covering extremes, ranges, positions, first four 
moments and quartiles as also shown in table 2. Note that 
three functionals are related to position, known as duration 
in traditional phonetic terminology, as their physical unit is 
msec. 

Low-Level-Descriptors 
(2x37)

Functionals (19) 

(Delta) Pitch (Delta) Jitter 
(Delta) Energy (Delta) Envelope 
(Delta) Formant 1-5  Amplitude 
(Delta) Formant 1-5   Bandwidth 
(Delta) Formant 1-5   Frequency 
(Delta) MFCC    Coefficient 1-16 
(Delta) HNR (Delta) Shimmer 

Mean, Centroid,Std. Dev. 
Skewness, Kurtosis 
Zero-Crossing-Rate
Quartile 1,2,3 (Q1,2,3) 
Q1 � Min, Q2 - Q1, 
Q3 - Q2,Max - Q3 
Max., Min. Value, Rel. 
Pos.Max., Min. Range 
Pos. 95% Roll-Off-Point 

Table 2. Overview of Low-Level-Descriptors and 
functionals for syllable- and word-level analysis. 

For classification we use Support Vector Machines 
(SVM) with linear Kernel and 1-vs.-1 multi-class 
discrimination [11]. One could consider the use of 1-state 
HMM here as well. Yet, SVM have proven the preferred 
choice in many works to best model static acoustic feature 
vectors [1,7,8]. 

The shift to static feature space modeling forces us to use 
two stage processing in the following, as opposed to the 
formerly described phoneme emotion models: words have 
to be recognized by an ASR unit, first.  

Next, the corresponding word emotion models have to be 
selected for emotion recognition. This may lead to a 
downgrade, if word insertions, deletions or substituions 
occur, provided the spoken content does influence emotion 
recognition. Therefore we test emotion recognition in 

matched word condition (picking only the correct word 
model) and in mismatched conditions (using all incorrect 
word models), in contrast to a general model trained on all 
words. Note that for mismatched condition one vs. one 
training and testing of each word vs. each other is 
necessary.

A total of 73 different words are found in EMO-DB. Out 
of these we select only such that have a minimum frequency 
of occurrence of 3 within each emotion (likewise having 50 
plus instances per word) comprising a total of 41 words 
with roughly 200 instances per word. 85.0% accuracy is 
obtained training SI word-models for ASR in a first step in 
LOSO manner with variable state-number and a maximum 
frequency of 9 per model. Only 3 mixtures are optimal due 
to sparse data.

As described, we employ static acoustic features and 
SVM classification for word emotion models after selection 
of according words by ASR. Table 3 visualizes the results 
obtained by two groups of frequency of occurrence in the 
corpus:  

Group 1 (G 1) are high occurrence words that are �worth 
it� � that is their word emotion model outperforms a general 
model. These words (10 in total resembling a fourth of the 
vocabulary) are �abgeben (give away), am (on), auf (on top 
of), besucht (visits), gehen (walk), ich (I), sein (to be), sich 
(oneself), sie (her), sieben (seven)�.

Acc. [%] G 1 G 2 All 
word emotion model 

Matched 57.2 46.9 48.9 
Mismatched 36.7 37.6 37.4 
(training size factor) general emotion model 

1 44.1 42.8 43.1 
5 49.7 48.9 49.1 
10 46.8 52.9 51.7 

all (~100) 50.7 56.7 55.5 

Table 3. Accuracies at word-level for word emotion models 
in matched and mismatched condition compared to general 
models at diverse relative sizes of training corpora. Static 
features, SVM, LOSO, on database EMO-DB. Investigated 
are �worth-it� words (G 1) and �non-worth-it� candidates 
(G 2), as well as all (All) terms. 

In contrast, group 2 (G 2) is �not worth it� due to low 
frequency of occurrence in the corpus. Likewise emotion 
models for these words cannot be trained sufficiently. 

Additionally, results for all words are shown (All). 
Again, we use LOSO evaluation. Note that from now on 
only rates equivalent to CFG are reported, as no combined 
decoding is used due to the two-stage processing. In the 
following, we report results on word level only, which 
represents the actual variations of emotion within a 
sentence.



First, matched vs. mismatched conditions are analyzed: 
spoken content clearly does influence accuracy throughout 
word-model comparison in any case, as can be seen. In fact, 
the length of words and phonetic distance are the main 
influence factors. 

As mis-selection of word emotion models would 
apparently significantly downgrade performance, we next 
address the question how a general model trained on any 
word in the corpus � the common state-of-the-art � would 
perform. We set this in relation to the amount of training 
data available for each word specific emotion model, by 
indicating the relative training size factor by random down-
sampling preserving class-balance. 

As can be seen, a minimum of 5 times as many data is 
needed in average to outperform word emotion models of 
the low occurrence frequency group 2. Further, even using 
the whole corpus, general models could not outperform 
matched word specific emotion models of the �worth it� 
high occurrence frequency group 1. This shows usefulness 
of selection these words. 

6. DISCUSSION

We try to compare  emotion recognition on the phoneme 
and word level. As shown in sect. 3 and 4, and in 
accordance with earlier results [7], larger units seem to be 
beneficial for emotion recognition. However, the introduced 
unit-specific emotion models clearly outperformed common 
general models provided enough training material per unit. 
Sadly however, this is more likely given smaller units.  

In a fully automatic system that recognizes units prior to 
their selection, only word-models seem to be reasonable. 
These should be limited to words having sufficient 
occurrences in the training material, as e.g. function words. 
As we considered a closed vocabulary setting, reliable 
word-spotting will be needed to handle out-of-vocabulary 
(OOV) occurrences with respect to the word emotion model 
inventory.  

Further, acoustic confidences should be integrated to 
select general models in case of low confidence, as wrong 
models tend to downgrade performance. Still, acoustic 
confusions can typically be expected to show similar 
phonetic content, which resulted in a comparably small 
downgrade, herein.  

As a general finding it can be stated that word emotion 
models seem to be worth the extra effort of a previous ASR 
stage and training of word emotion models. 

Future works will deal with use of word emotion models 
on larger and spontaneous corpora, such as AIBO [8], 
OOV-emotion model handling, and optimization by 
integration of acoustic confidences in the selection process. 
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