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Abstract
Semi-NMF is a matrix factorization technique
that learns a low-dimensional representation of
a dataset that lends itself to a clustering interpre-
tation. It is possible that the mapping between
this new representation and our original features
contains rather complex hierarchical information
with implicit lower-level hidden attributes, that
classical one level clustering methodologies can
not interpret. In this work we propose a novel
model, Deep Semi-NMF, that is able to learn
such hidden representations that allow them-
selves to an interpretation of clustering accord-
ing to different, unknown attributes of a given
dataset. We show that by doing so, our model
is able to learn low-dimensional representations
that are better suited for clustering, outperform-
ing Semi-NMF, but also other NMF variants.

1. Introduction
Matrix factorization is a particularly useful family of tech-
niques in data analysis. In recent years, there has been
a significant amount of research on factorization methods
that focus on particular characteristics of both the data ma-
trix and the resulting factors. Non-negative matrix factor-
ization (NMF), for example, focuses on the decomposition
of non-negative multivariate data matrix X into factors Z
and H that are also non-negative, such that X ≈ ZH .
The application area of the family of NMF algorithms has
grown significantly during the past years. It has been
shown that they can be a successful dimensionality reduc-
tion technique over a variety of areas including, but not lim-
ited to, environmetrics (Paatero & Tapper, 1994), microar-
ray data analysis (Brunet et al., 2004; Devarajan, 2008),
document clustering (Berry & Browne, 2005), face recog-
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nition (Zafeiriou et al., 2006; Kotsia et al., 2007) and more.
What makes NMF algorithms particularly attractive is the
non-negativity constraints imposed on the factors they pro-
duce, allowing for better interpretability. Moreover, it has
been shown that NMF variants (such as the Semi-NMF)
are equivalent to k-means clustering, and that in fact, NMF
variants are expected to perform better than k-means clus-
tering particularly when the data is not distributed in a
spherical manner (Ding et al., 2010; Cing et al., 2005).
Nonlinear extensions of NMF have been also recently stud-
ied (Zafeiriou & Petrou, 2010).

In order to extend the applicability of NMF in cases where
our data matrix H is not strictly non-negative, Ding et al.
(2010) introduced the Semi-NMF, an NMF variant that im-
poses non-negativity constraints only on the second factor
H , but allows mixed signs in both the data matrix X and
the first factor Z. This was motivated from a clustering
perspective, where Z represents cluster centroids, and H
represents soft membership indicators for every data point,
allowing Semi-NMF to learn new lower-dimensional fea-
tures from the data that have a convenient clustering inter-
pretation.

It is possible that the mapping Z between this new repre-
sentation H and our original features X contains rather
complex hierarchical and structural information. Consider
for example the problem of mapping images of faces to
their identities: a face image also contains information
about attributes like pose and expression that can help iden-
tify the person depicted. One could argue that by further
factorizing this mapping Z, in a way that each factor adds
an extra layer of abstraction minimizing the dimension-
ality of the representation, one could automatically learn
such latent attributes and the intermediate hidden represen-
tations that are implied, allowing for a better higher-level
feature representation H , as demonstrated in Figure 1. In
this work, we propose a novel Deep Semi-NMF approach,
which applies the concept of Semi-NMF to a multi-layer
structure that is able to learn hidden representations of the
original data. As Semi-NMF has a close relation to k-
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Figure 1. (a) A Semi-NMF model results in a linear transforma-
tion of the initial input space. (b) Deep Semi-NMF learns a hi-
erarchy of hidden representations that aid in uncovering the final
lower-dimensional representation of the data.

means clustering, by extending the model to a deep one we
allow our model to learn new representations of our orig-
inal data that continue to have a clustering interpretation
according to the different latent attributes of our dataset, as
demonstrated in Figure 2.

Closest to our proposal is recent work that has presented
NMF-variants that factorize X into more than 2 factors.
Specifically, Ahn et al. (2004) have demonstrated the con-
cept of Multi-Layer NMF on a set of facial images and (Lyu
& Wang, 2013; Cichocki & Zdunek, 2006; Song & Lee,
2013) have proposed similar NMF models that can be used
for Blind Source Separation, classification of digit im-
ages (MNIST), and documents. The representations of the
Multi-layer NMF however do not lend themselves to a clus-
tering interpretation, as the representations learned from
our model. Although the Multi-layer NMF is a promis-
ing technique for learning hierarchies of features from data,
we show in this work that our proposed model, the Deep
Semi-NMF outperforms the Multi-layer NMF and, in fact,
all models we compared it with on the task of feature learn-
ing for clustering images of faces.

The novelty of this work can be summarized as follows: (1)
we outline a novel deep framework for matrix factorization
suitable for clustering of multimodally distributed objects
such as faces, (2) we present a greedy algorithm to optimize
the factors of the Semi-NMF problem, inspired by recent
advances in deep learning (Hinton & Salakhutdinov, 2006),
and (3) we evaluate the representations learned by different
NMF-variants in terms of clustering performance.

2. Background
In this work, we assume that our data is provided in a ma-
trix form X ∈ Rp×n, i.e., X = [x1,x2, . . . ,xn] is a col-
lection of n data vectors as columns, each with p features.
Matrix factorization aims at finding factors of X that sat-
isfy certain constraints. In Singular Value Decomposition
(SVD) (Golub & Reinsch, 1970), the method that underlies
Principal Component Analysis (PCA) (Wold et al., 1987),
we factorize X into two factors: the loadings or bases
Z ∈ Rp×k and the features or components H ∈ Rk×n,
without imposing any sign restrictions on either our data or
the resulting factors. In Non-negative Matrix Factorization
(NMF) (Lee & Seung, 2001) we assume that all matrices
involved contain only non-negative elements1, so we try to
approximate a factorization X+ ≈ Z+H+.

2.1. Semi-NMF

In turn, Semi-NMF (Ding et al., 2010) relaxes the non-
negativity constrains of NMF and allows the data matrix X
and the loadings matrix Z to have mixed signs, while re-
stricting only the features matrix H to comprise of strictly
non-negative components, thus approximating the follow-
ing factorization:

X± ≈ Z±H+. (1)

This is motivated from a clustering perspective. If we
view Z = [z1, z2, . . . , zk] as the cluster centroids, then
H = [h1,h2, . . . ,hn] can be viewed as the cluster indica-
tors for each datapoint. In fact, if we had a matrix H that
was not only non-negative but also orthogonal, then every
column vector would have only one positive element, mak-
ing Semi-NMF equivalent to k-means. Thus Semi-NMF,
which does not impose an orthogonality constraint on its
features matrix, can be seen as a soft clustering method
where the features matrix describes the compatibility of
each component with a cluster centroid, a base in Z.

2.2. State-of-the-art for learning features for clustering
based on NMF-variants

In this work, we compare our method with, among others,
the state-of-the-art NMF techniques for learning features
for the purpose of clustering. Cai et al. (2011) proposed
a graph-regularized NMF (GNMF) which takes into ac-
count the intrinsic geometric and discriminating structure
of the data space, which is essential to the real-world appli-
cations, especially in the area of clustering. To accomplish
this, GNMF constructs a nearest neighbor graph to model
the manifold structure. By preserving the graph structure,

1When not clear from the context we will use the notation A+

to state that a matrix A contains only non-negative elements. Sim-
ilarly, when not clear, we will use the notation A± to state that A
may contain any real number.
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it allows the learned features to have more discriminating
power than the standard NMF algorithm, in cases that the
data are sampled from a submanifold which lies in a higher
dimensional ambient space. This combines two different
notions, that of NMF and graph Laplacian regularization
algorithms (Belkin & Niyogi, 2001).

Another state-of-the-art matrix factorization technique
would be NeNMF (Guan et al., 2012). NeNMF makes use
of Nesterov’s optimal gradient method to alternatively opti-
mize one factor, with the other fixed. This allows for faster
NMF optimization without time-consuming linesearch pro-
cedure or numerical instability problems that traditional
NMF has. Guan et al. (2012) showed that it outperformed
existing NMF solvers in terms of reconstruction error and
document clustering performance.

3. Deep Semi-NMF
In Semi-NMF the goal is to construct a low-dimensional
representation H+ of our original data X±, with the bases
matrix Z± serving as the mapping between our original
data and its lower-dimensional representation (see Equa-
tion 1). In many cases the data we wish to analyze is often
rather complex and has a collection of distinct, often un-
known, attributes. In this work for example, we deal with
datasets of human faces, where the variability in the data
does not only stem from the difference in the appearance of
the subjects, but also from other attributes, such as the pose
of the head in relation to the camera, or the facial expres-
sion of the subject. In addition faces compromise of mainly
hierarchical features and thus face clustering problems can
be better solved using our deep framework, as each subse-
quent layers can capture the hierarchical structure.

We propose here the Deep Semi-NMF model, which factor-
izes a given data matrix X into m+ 1 factors, as follows:

X± ≈ Z±1 Z±2 · · ·Z±mH+
m (2)

This formulation, as shown in with respect to Figures 2 and
1 allows for a hierarchy of m layers of implicit representa-
tions of our data that can be given by the following factor-
izations:

H+
m−1 ≈ Z±mH+

m

...

H+
2 ≈ Z±3 · · ·Z±mH+

m

H+
1 ≈ Z±2 · · ·Z±mH+

m

As one can see above, we further restrict these implicit rep-
resentations (H+

1 , . . . ,H
+
m−1) to also be non-negative. By

doing so, every layer of this hierarchy of representations
also lends itself to a clustering interpretation. By examin-
ing Figure 2 one can acquire better intuition of how that

happens. In this case the input to the model, our data X ,
is a collection of face images from different subjects (iden-
tity), expressing a variety of emotions (expressions) taken
from many angles (pose). A Semi-NMF model would find
a representation H of X , which would be useful for per-
forming clustering according to the identity of the subjects,
and Z the mapping between these identities and the face
images. A Deep Semi-NMF model also finds a representa-
tion of our data that has a similar interpretation at the top
layer, its last factor Hm. However, the mapping from iden-
tities to face images is now further analyzed as a product of
three factors Z = Z1Z2Z3, with Z3 corresponding to the
mapping of identities to emotions, Z2Z3 corresponding to
the mapping of identities to poses, and finally Z1Z2Z3 cor-
responding to the mapping of identities to the face images.
That means that, as shown in Figure 2 we are able to de-
compose our data in 3 different ways according to our 3
different attributes:

X± ≈ Z±1 H+
1

X± ≈ Z±1 Z±2 H+
2

X± ≈ Z±1 Z±2 Z±3 H+
3

Our hypothesis is that by further factorizing Z we are able
to construct a deep model that is able to (1) automatically
learn what this latent hierarchy of attributes is; (2) find rep-
resentations of the data that are most suitable for clustering
according to the attribute that corresponds to each layer in
the model; and (3) find a better high-level, final-layer repre-
sentation for clustering according to the attribute with the
lowest variability, in our case the identity of the face de-
picted. In our example in Figure 2 we would expect to find
better features for clustering according to identities H3 by
learning the hidden representations at each layer most suit-
able for each of the attributes in our data, in this example:
H1 ≈ Z2Z3H3 for clustering our original images in terms
of poses and H2 ≈ Z3H3 for clustering the face images
in terms of expressions.

In order to expedite the approximation of the factors in
our model, we pre-train each of the layers to have an ini-
tial approximation of the matrices Zi,Hi as this greatly
improves the training time of the model. This is a tac-
tic that has been employed successfully before (Hinton
& Salakhutdinov, 2006) on deep autoencoder networks.
To perform the pre-training, we first decompose the ini-
tial data matrix X ≈ Z1H1, where Z1 ∈ Rp×k1 and
H1 ∈ R+

0

k1×n. Following this, we decompose the fea-
tures matrix H1 ≈ Z2H2, where Z2 ∈ Rk1×k2 and
H1 ∈ R+

0

k2×n, continuing to do so until we have pre-
trained all of the layers. Afterwards, we can fine-tune the
weights of each layer, by employing alternating minimiza-
tion (with respect to the objective function in Equation 3)
of the two factors in each layer, in order to reduce the to-
tal reconstruction error of the model, according to the cost



A Deep Semi-NMF Model for Learning Hidden Representations

DorothyCharlie

Z1
H1

H2
H3

Z1Z2
Z1Z2Z3

X

Pose
Features

Expression
Features

Identity
Featuresk-means

k-means
k-means

Surprise Neutral Squint0º -30º 30º

Z2

Z3

Figure 2. A Deep Semi-NMF model learns a hierarchical structure of features, with each layer learning a representation suitable for
clustering according to the different attributes of our data. In this simplified, for demonstration purposes, example from the CMU Multi-
PIE database, a Deep Semi-NMF model is able to simultaneously learn features for pose clustering (H1), for expression clustering
(H2), and for identity clustering (H3). Each of the images in X has an associated color coding that indicates its memberships according
to each of these attributes (pose/expression/identity).

function in Equation 3.

Cdeep =
1

2
‖X −Z1Z2 · · ·ZmHm‖2F

= tr[X>X − 2X>Z1Z2 · · ·ZmHm

+H>mZ>mZ>m−1 · · ·Z>1 Z1Z2 · · ·ZmHm] (3)

Update rule for the weights matrix Z We fix the rest of
the weights for the ith layer and we minimize the cost func-
tion with respect to Zi. That is, we set ∂Cdeep/∂Zi = 0,
which gives us the updates:

Zi = (Ψ>Ψ)−1Ψ>XH̃i
>
(H̃iH̃i

>
)−1

Zi = Ψ†XH̃†i (4)

where Ψ = Z1 · · ·Zi−1, † denotes the Moore-Penrose
pseudo-inverse and H̃i is the reconstruction of the ith

layer’s feature matrix.

Update rule for features matrix H Utilizing a similar
proof to Ding et al. (2010), we can formulate the update
rule for Hi as follows:

Hi = Hi �
√

[Ψ>X]pos + [Ψ>Ψ]negHi

[Ψ>X]neg + [Ψ>Ψ]posHi
(5)

Supplementary material including the implementation of
Algorithm 1 and the proof of its convergence can be found
at http://trigeorgis.com/deepseminmf.

Complexity

The computational complexity for the pre-
training stage of Deep Semi-NMF is of order
O
(
mt
(
pnk + nk2 + kp2 + kn2

))
, where m is the

number of layers, t the number of iterations until conver-
gence and k is the maximum number of components out
of all the layers. The complexity for the fine-tuning stage
is O

(
mtf

(
pnk + (p+ n)k2

))
where tf is the number of

additional iterations needed.

Non-linear Update Rules

One can use a non-linear function g(·), between each of the
implicit representations (H+

1 , . . . ,H
+
m−1), in order to bet-

ter approximate the non-linear manifolds which the given
data matrix X originally lies on. Thus, one can represent
the ith feature matrix Hi, by

g(Hi) ≈ Zi+1Hi+1. (6)

This, creates new derivatives update rules as the derivatives
with respect to the objective function become:

∂Cdeep

∂Zi
= (Ni −Ri)H

>
i (7)

∂Cdeep

∂Hi
= Z>i (Ni −Ri) (8)

http://trigeorgis.com/deepseminmf


A Deep Semi-NMF Model for Learning Hidden Representations

Algorithm 1 Suggested algorithm for training a Deep
Semi-NMF model. Initially we approximate the factors
greedily using the SEMI-NMF algorithm (Ding et al.,
2010) and we fine-tune the factors until we reach the con-
vergence criterion.

function DEEPSEMINMF
Input: X ∈ Rp×n, list of layer sizes
Output: weight matrices Zi and feature matrices Hi

for each of the layers

Initialize Layers
for all layers do
Zi,Hi ← SEMINMF(Hi−1, layers(i))

end for

repeat
for all layers do

H̃i ←
{

Hi if i = k

Zi+1H̃i+1 otherwise

Ψ←∏i−1
k=1 Zk

Zi ← Ψ†XH̃†i

Hi ←Hi �
√

[Ψ>X]pos + [Ψ>Ψ]posHi

[Ψ>X]neg + [Ψ>Ψ]posHi + ε

end for
until Stopping criterion is reached

end function

which gives the following update rules:

Zi =

{
XH̃†i ; if i = 1

g(Hi−1)H̃
†
i otherwise

, (9)

Hi = Hi �
[Z>i Ri]

pos + [Z>i Ni]
neg

[Z>i Ri]neg + [Z>i Ni]pos
(10)

where, ∀i.i ≤ m Ni,Ri are auxiliary matrices that facili-
tate the computation of the factors in each layer, Apos is a
matrix that has the negative elements of matrix A replaced
with 0, and similarly Aneg is one that has the positive ele-
ments of A replaced with 0. The base case values i = 1 for
these matrices are:

N1 = (Z1H̃1)�∇g−1(Z1H1), (11)

R1 = X �∇g−1(Z1H1), (12)

and for the cases where i > 1 they are computed as such:

Ni+1 = (Z>i Ni)�∇g−1(ZiHi), (13)

Ri+1 = (Z>i Ri)�∇g−1(ZiHi). (14)

4. Experiments
Our main hypothesis is that a Deep Semi-NMF is able to
learn better high-level representations of our original data

than an one-layer Semi-NMF for clustering according to
the attribute with the lowest variability in the dataset. In
order to evaluate this hypothesis, we have compared the
performance of Deep Semi-NMF with that of other meth-
ods, on the task of clustering images of faces in 3 distinct
datasets. These datasets are:

• CMU MultiPIE: The first dataset we examine is
The CMU Multi Pose, Illumination, and Expression
(MultiPIE) Database (Gross et al., 2010) and contains
around 750, 000 images of 337 subjects, captured un-
der laboratory conditions in four different sessions. In
this work, we used a subset of 13, 230 images of 147
subjects in 5 different poses and 3 different illumina-
tion conditions, expressing 6 different emotions. Us-
ing the annotations from (Sagonas et al., 2013a;b), we
aligned these images based on a common frame by us-
ing piece-wise affine warping. After that, we resized
them to a smaller resolution of 30× 30. The database
comes with labels for each of the attributes mentioned
above: identity, illumination, pose, expression.

• CMU PIE: We also used a freely available version
of CMU Pie (Sim et al., 2003), which comprises of
2, 856 grayscale 32 × 32 face images of 68 subjects.
Each person has 42 facial images under different light
and illumination conditions. In this database we only
know the identity of the face in each image and we
could not use piece-wise affine warping, since we did
not have facial point annotations for it.

• XM2VTS: The Extended Multi Modal Verification
for Teleservices and Security applications (XM2VTS)
(Messer et al., 1999) contains 2, 360 frontal images
of 295 different subjects. Each subject has two avail-
able images for each of the four different laboratory
sessions, for a total of 8 images. The images were
aligned based on the same piece-wise affine warping
technique as the Multi-PIE dataset, after resizing the
original images to 42× 30.

In order to evaluate the performance of our model, we com-
pared it against not only Semi-NMF (Ding et al., 2010),
but also against other NMF variants that could be useful in
learning such representations. More specifically, for each
of our three datasets we performed the following experi-
ments:

• Pixel Intensities: By using only the pixel intensities
of the images in each of our datasets, which of course
give us a strictly non-negative input data matrix X ,
we compare the reconstruction error and the clustering
performance of our Deep Semi-NMF method against
the Semi-NMF, NMF with multiplicative update rules
(Lee & Seung, 2001), Multi-Layer NMF (Song & Lee,
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Number of components
Name 30 40 50 60 70
CMU Multi-PIE – Pixel Intensities
NMF 2.68 2.52 2.41 2.32 2.23
NeNMF 2.40 2.20 2.04 1.92 1.80
GNMF 3.05 3.03 2.98 3.02 3.02
Semi-NMF 2.37 2.16 2.01 1.89 1.78
Multi-layer NMF 2.71 2.54 2.42 2.31 2.22
Deep Semi-NMF 2.40 2.20 2.07 1.96 1.86
CMU Multi-PIE – Image Gradient Orientations
Semi-NMF 0.14 0.13 0.13 0.12 0.12
Deep Semi-NMF 0.14 0.13 0.13 0.13 0.12

Table 1. The mean reconstruction error for each of the algorithms
with a variable number of components. The error quantifies the
deviation of the reconstruction with the original matrix X , using
the Euclidean objective function we used: 1

N
‖X − X̃‖2, with

N amount of samples. Deep Semi-NMF has a comparable recon-
struction error to that of Semi-NMF.

2013), GNMF (Cai et al., 2011), and NeNMF (Guan
et al., 2012).

• Image Gradient Orientations (IGO): In general, the
trend in Computer Vision is to use complicated en-
gineered features like HoGs, SIFT, LBPs, etc. As a
proof of concept, we choose to conduct experiments
with simple gradient orientations (Zafeiriou et al.,
2012) as features, instead of pixel intensities, which
results into a data matrix of mixed signs, and expect
that we can learn better data representations for clus-
tering faces according to identities. In this case, we
only compared our Deep Semi-NMF with its one-
layer Semi-NMF equivalent, as the other techniques
are not able to deal with mixed-sign matrices.

Finally, we evaluated our secondary hypotheses, i.e. that
every hidden representation in each layer is in fact most
suited for clustering according to the attributes that corre-
sponds to the layer of interest. We performed clustering
experiments by using the features learned in each layer of
a two-layer Deep Semi-NMF on the case of CMU Multi-
PIE, as this was the only dataset for which we had labels
for attributes other than the identity.

4.1. Implementation Details

In order to initiate the matrix factorization process, NMF
and Semi-NMF algorithms start from some initial point
(Z0,H0), where usually Z0 and H0 are randomly ini-
tialized matrices. In order to speed up the conver-
gence rate of NMF, Boutsidis & Gallopoulos (2008), sug-
gested Non-negative Double Singular Value decomposition
(NNDSVD), which is a new method based on two SVD
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Figure 3. CMU MultiPIE–Pixel Intensities: NMI and Accuracy
for clustering based on the representations learned by each model
with respect to identities. The deep architectures are compro-
mised of 2 representation layers 1988-625-a and the representa-
tions used were from the top layer. In parenthesis we show the
AUC scores.

processes, one to approximate the initial data matrix X and
the other to approximate the positive sections of the result-
ing partial SVD factors. Although, the proposed initializa-
tion of Semi-NMF by its authors is by using the k-means
algorithm (Ding et al., 2010), we found empirically that it
was too computationally heavy when the number of com-
ponents k was fairly high (k > 100). As an alternative we
used NNDSVD to gain an initial and deterministic approx-
imation, after forcing the initial data to have non-negative
values, by setting all negative values to zero.

For the GNMF experimental setup, we chose a suitable
number of neighbours, in our case 5, using visualization of
the datasets using Laplacian Eigenmaps (Belkin & Niyogi,
2001), such that we had visually distinct clusters.

Important for the experimental setup is the selected struc-
ture of the multi-layered models. After careful prelimi-
nary experimentation, we focused on experiments that in-
volve two hidden layer architectures for the Deep Semi-
NMF and Multi-layer NMF. Although we experimented
with a higher-number of layers, approximating the addi-
tional number of factors/layers did not seem to have a sig-
nificant impact on our results for these datasets, and was
significantly more computationally expensive. We specifi-
cally experimented with models that had a first hidden rep-
resentation H1 with 625 features, and a second represen-
tation H2 with a number of features that ranged from 20
to 70. Again we chose these numbers after preliminary re-
sults showed us that the computational burden of additional
features outweighed the performance increase obtained by
increasing these numbers.

4.2. Reconstruction Error Results

Our first experiment was to evaluate whether the extra lay-
ers, which naturally introduce more factors and are there-
fore more difficult to optimize, result in a lower quality lo-
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Figure 4. XM2VTS-Pixel Intensities: NMI and Accuracy for
clustering based on the representations learned by each model
with respect to identities. The deep architectures are compro-
mised of 2 representation layers 1260-625-a and the representa-
tions used were from the top layer. In parenthesis we show the
AUC scores.
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Figure 5. CMU PIE–Pixel Intensities: NMI and Accuracy for
clustering based on the representations learned by each model
with respect to identities. The deep architectures are compro-
mised of 2 representation layers 1024-625-a and the representa-
tions used were from the top layer. In parenthesis we show the
AUC scores.

cal optimum. We evaluated how well the matrix decompo-
sition is performed by calculating the reconstruction error,
the Frobenius norm of the difference between the original
data and the reconstruction for all the methods we com-
pared. Note that, in order to have comparable results, all
of the methods have the same stopping criterion rules. We
have set the maximum amount of iterations to 300 (usu-
ally ∼100 epochs are enough) and we use the convergence
rule Ei−1 −Ei ≤ κ max(1, Ei−1) in order to stop the pro-
cess when reconstruction error (Ei) between the current
and previous update is small enough. In our experiments
we set κ = 10−6. Table 1 shows the change in reconstruc-
tion error with respect to the selected number of features in
H2 for all the methods we used on the Multi-PIE dataset.
The results for the other datasets and for a larger variety of
number of components were similar and are excluded due
to lack of space.

The results show that Semi-NMF and Deep Semi-NMF
manage to reach a much lower reconstruction error than

Pose Accuracy (%) Identity Accuracy (%)
# H1 H2 H1 H2

1 27.58 23.11 9.37 16.59
2 28.18 23.25 9.48 16.67

Table 2. Clustering accuracy according to pose and identity labels
on the CMU Multi-PIE dataset using two Deep Semi-NMF mod-
els with two hidden layers each (1) 625-60 and (2) 625-70.

the rest consistently, which would match our expectations
as they do not constrain the weights Z to be non-negative.
What is important to note here is that the Deep Semi-NMF
models do not have a significantly lower reconstruction er-
ror compared to the equivalent Semi-NMF models, even
though the approximation involves more factors. This is
in contrast to the multi-layer NMF and GNMF which sac-
rifice the reconstruction quality, in return for uncovering
more meaningful features than their NMF counterpart.

4.3. Clustering Results

After achieving satisfactory reconstruction error for our
method, we proceeded to evaluate the features learned at
the final representation layer, by using k-means clustering,
following the experimental protocol in (Cai et al., 2011).
To assess the clustering quality of the representations pro-
duced by each of the algorithms we compared, we take ad-
vantage of the fact that the datasets are already labelled.
The two metrics used were the accuracy (AC) and the nor-
malized mutual information metric (NMI), as those are de-
fined in (Xu et al., 2003).

Figures 3-5 show the comparison in clustering accuracy
and NMI when using k-means on the feature representa-
tions produced by each of the techniques we compared,
when our input matrix contained only the pixel intensities
of each image. Our method significantly outperforms ev-
ery method we compared it with on all three datasets. The
difference is not as obvious in Figure 5, which could per-
haps be a sign that our method is able to use the warping
technique we used to its advantage more so than the other
techniques we used.

By using IGOs, the Deep Semi-NMF was able to outper-
form the single-layer Semi-NMF as shown in Figures 6-
8. Making use of these simple mixed-signed features im-
proved the clustering accuracy considerably, especially for
XM2VTS and CMU PIE. It should be noted that in all
cases, with the exception of the XM2VTS experiment with
IGOs, our Deep Semi-NMF outperformed all other meth-
ods with a difference in performance that is statistically sig-
nificant (paired t-test, p� 0.01).
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Figure 6. CMU MultiPIE-IGO: NMI and Accuracy scores on
clustering based on the representations learned by each model
with respect to identities. The deep architectures are compro-
mised of 2 hidden layers 1988-625-a and the representations used
were from the top layer. In parenthesis we show the AUC scores.
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Figure 7. XM2VTS-IGO: NMI and Accuracy scores on cluster-
ing based on the representations learned by each model with re-
spect to identities. The deep architectures are compromised of 2
hidden layers 2520-625-a and the representations used were from
the top layer. In parenthesis we show the AUC scores.

4.4. Clustering with Respect to Different Attributes

Finally, we conducted experiments by performing k-means
clustering on each of the two representations learned by
our Deep Semi-NMF models by using the raw intensities
of our warped images of CMU Multi-PIE. We only used
Multi-PIE since we only had identity labels for our other
datasets. Since the warping technique we use gets rid of
most of the variability shown in expressions, we evaluated
how well we did on clustering according to pose and iden-
tities. As one can see in Table 2 our first layer indeed learns
representations that are better suited for clustering accord-
ing to poses. On the other hand, we do confirm that our fi-
nal layer indeed learns representations that are better suited
for clustering according to identities, thus confirming our
secondary hypothesis, i.e. that every hidden representation
in each layer is in fact most suited for clustering according
to the attributes that corresponds to the layer of interest. As
one can see in Figure 3, by learning the hidden represen-
tation that relates to poses, we are able to achieve signifi-
cantly better results compared to the Semi-NMF, where we
learn only one level of representation.
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Figure 8. CMU PIE-IGO: NMI and Accuracy scores on cluster-
ing based on the representations learned by each model with re-
spect to identities. The deep architectures are compromised of 2
hidden layers 2048-625-a and the representations used were from
the top layer. In parenthesis we show the AUC scores.

5. Conclusion
We have introduced a novel deep architecture for semi-non-
negative matrix factorization, the Deep Semi-NMF , that is
able to automatically learn a hierarchy of attributes of a
given dataset, as well as representations suited for cluster-
ing according to these attributes. We have also presented
an algorithm for optimizing the factors of our Deep Semi-
NMF, and we evaluate its performance compared to the
single-layered Semi-NMF and other related work, on the
problem of clustering faces with respect to their identities.
We have shown that our technique is able to learn a high-
level, final-layer representation for clustering with respect
to the attribute with the lowest variability in the case of
three popular datasets of face images, outperforming the
other NMF-based techniques.

The next obvious step is to explore the suitability of such
learned hidden representations for performing classifica-
tion. Another line of work that will aid the learning process
will be the initialization scheme for pre-training the Deep
Semi-NMF model, as currently we used a rough approxi-
mation of the initial Z0,H0 matrices using the NNDSVD
algorithm. Finally, future avenues include experimenting
with other applications, e.g. in the area of speech recog-
nition, especially for multi-source speech recognition and
we will investigate multilinear extensions of the proposed
framework (Zafeiriou, 2009b;a).
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