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Abstract
To achieve efficient and compact low-dimensional features for
speech emotion recognition, this paper proposes a novel feature
reduction method using multiscale kernels in the framework of
graph embedding. With Fisher discriminant embedding graph,
multiscale Gaussian kernels are used in constructing optimal
linear combination of Gram matrices for multiple kernel learn-
ing. To evaluate the proposed method, comprehensive experi-
ments, using different public feature sets from the open-source
toolbox openSMILE on various corpora, show that the pro-
posed method achieves better performance compared with con-
ventional linear dimensionality reduction methods and single-
kernel methods.
Index Terms: speech emotion recognition, dimensionality re-
duction, multiscale kernels

1. Introduction
In recent years, Speech Emotion Recognition (SER) has turned
to be an important subsection in speech processing, affective
computing, and pattern recognition [1, 2]. A widely known ap-
plication of SER is as an increasingly ‘necessary’ module in
Human-Machine Interaction. A typical SER system can be di-
vided into several significant modules, such as speech feature
extraction [3–6], feature selection [1, 2], dimensionality reduc-
tion [7–9], and classifier designing [3, 10–12].

In this work, we put emphasis on dimensionality reduction.
A low-dimensional feature vector describing a speech sample
bears a number of advantages such as lower complexity for the
learning algorithm and lower bandwidth in distributed process-
ing architectures [13]. Classical dimensionality reduction al-
gorithms, e. g., FDA (Fisher Discriminant Analysis) [14], LLE
(Locally Linear Embedding) [15], LPP (Locality Preserving
Projections) [16], LDE (Local Discriminant Embedding) [17],
GbFA (Graph-based Fisher Analysis) [18], have been proved
to be effective methods in image processing and recognition.
However, ‘original’ speech emotion features often include in-
formation on other speaker states and traits and the verbal con-
tent – partially even more strongly related to this ‘side’ informa-
tion. Therefore, most of the existing dimensionality reduction
methods are not suitable for the task of SER, due to the strong
dependence on labelling information for the features.
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of China under Grant No. 20110092130004.

In order to solve this, we present a discriminant analysis
method using multiscale kernels, in the framework of graph em-
bedding [19] with MKL (Multiple Kernel Learning) [20, 21].
Accordingly, we suppose that each sample can be represented
by linearly combining several kernels with different scales, end-
ing up its more concise and informative form. Based on kernel
theory in graph embedding, different kernels are denoted by d-
ifferent Gram matrices. Further, these Gram matrices can be
easily described by various scales when various scaling param-
eters are tried. To this end, we conduct dimensionality reduction
for raw features to construct an optimal speech emotion feature
representation, with the help of MKL using a graph embedding
optimization form.

2. Theoretical basis

2.1. Notation

Suppose X = [x1, x2, . . . , xN ] ∈ �n×N and Y =
[y1, y2, . . . , yN ] ∈ �d×N are the sets of N training sam-
ples with each of their column standing for one training sam-
ple, in the original feature space with the dimensionality of n
and in the dimensionality-reduced feature space with the di-
mensionality of d, respectively. Every column of φ(X) =
[φ(x1), φ(x2), . . . , φ(xN )] is the RKHS (Reproducing Kernel
Hilbert Space) of the corresponding column in X . The Gram
matrix K = φT (X)φ(X). We also assume that any sample
(including any training and testing sample) in the original and
the reduced dimensionality is represented by column vectors x
and y, respectively. x is with its high-dimensional forms φ(x).
For sample x, its kernelized coordinate is Kx = φT (X)φ(x).

Each column of S = [s1, s2, . . . , sN ]∈�c×N represents
the label information of every training sample, where c is the
number of classes. Sij = 1 when sample j belongs to class i,
otherwise Sij = 0, where i = 1, 2, . . . , c and j = 1, 2, . . . , N .
I is the identity matrix and every element of e ∈ �N×1 is equal
to one.

2.2. Graph embedding and discriminant analysis

The graph embedding framework [19] was proposed to combine
subspace and manifold learning. By using graph structures for
data, it aims to search for optimal embedding of graphs, togeth-
er with data mapping types and optimization forms, to discover
the internal essence of a data set. The optimization form of the
graph embedding framework is shown in Eq. (1) and Eq. (2),
with the constraints of penalty and scaling respectively:
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min
N∑

i,j=1

‖ yi − yj ‖2W (I)
ij s.t.

N∑

i,j=1

‖ yi − yj ‖2W (P )
ij = t, (1)

min
N∑

i,j=1

‖ yi − yj ‖2 W
(I)
ij s.t.

N∑

i=1

yi
2Dii = t, (2)

where W (I) and W (P ) are the adjacency matrices of the intrin-
sic graph and the penalty graph, respectively; D is a diagonal
matrix to control the weights of the samples, and t is a positive
constant value.

Considering the matrix form and the transformation of con-
straints, we can change the optimization of Eq. (1) to

arg
z

min
zL(I)zT

zL(P )zT
, (3)

where z ∈ �1×N stands for the one-dimensional new features
of N samples. L(I) = D(I) −W (I), with each element of the
diagonal degree matrix D(I) as D

(I)
ii =

∑N
j=1 W

(I)
ij , where

i = 1, 2, . . . , N . Similarly, L(P ) = D(P ) − W (P ) and the
diagonal matrix D(P ) contain elements D(P )

ii =
∑N

j=1 W
(P )
ij .

For FDA, with W (I) = W (I)FDA = ST (SST )−1S

and W (P ) = W (P )FDA = 1
N
eeT , the optimization form in

the graph embedding framework can be achieved accordingly.
Then, we can draw linear, kernelized, and tensorized forms of
FDA in this framework according to Eq. (3).

2.3. Multiple kernel learning FDA in graph embedding

Based on the graph embedding framework of FDA, with the
optimization for data mapping α ∈ �N×1, we can write the
kernelized form of FDA, namely KFDA, as

arg
α

min

N∑

i=1

N∑

j=1

‖ αTKxi − αTKxj ‖2 W
(I)
ij

s.t.
N∑

i=1

N∑

j=1

‖ αTKxi − αTKxj ‖2 W
(P )
ij = t.

(4)

When multiple kernels [21] are required, Kx is
written as the linear combination of different kernel-
s, namely Kx =

∑M
m=1 β

mφT
m(X)φm(x) = Ωxβ,

where the multiple kernel coordinate matrix Ωx =
[φT

1 (X)φ1(x), φ
T
2 (X)φ2(x), . . . , φ

T
M (X)φM (x)] ∈ �N×M

and β ∈ �M×1 is the column vector with corresponding
elements βm for kernel m. The number of kernels is M . Each
column of Ωx is the corresponding coordinate for the sample x.

By extending the mapping α to A = [α1, α2, . . . , αd] ∈
�N×d, we obtain multiple mappings by solving the optimiza-
tion problem. αi is the ith mapping vector with i = 1, 2, . . . , d.
For simplicity, the variables of W (I)FDA and W (P )FDA are
represented by W (I) and W (P ), respectively. Therefore, the
optimization of MKL-FDA is given as

arg
β

min

N∑

i,j=1

‖ ATΩxiβ −ATΩxjβ ‖2 W
(I)
ij

s.t.

{ ∑N
i,j=1 ‖ ATΩxiβ −ATΩxjβ ‖2 W

(P )
ij = t,

βm ≥ 0, m = 1, 2, . . . ,M.

(5)

Then, the bilateral form of MKL-FDA is given by Eq. (6)
for solving kernel mappings A, while it is given by Eq. (7) for
solving linear weights β of multiple kernels.

arg
A

min tr
(
ATQ(I)(β)A

)
s.t. tr

(
ATQ(P )(β)A

)
= t,

Q(I)(β) =
N∑

i,j=1

(Ωxi − Ωxj )ββ
T (Ωxi − Ωxj )

TW
(I)
ij ,

Q(P )(β) =

N∑

i,j=1

(Ωxi − Ωxj )ββ
T (Ωxi − Ωxj )

TW
(P )
ij .

(6)

arg
β

min βTQ(I)(A)β

s.t. βTQ(P )(A)β = t, βm ≥ 0, m = 1, 2, . . . ,M,

Q(I)(A)=

N∑

i,j=1

(Ωxi − Ωxj )
TAAT (Ωxi − Ωxj )W

(I)
ij ,

Q(P )(A)=
N∑

i,j=1

(Ωxi − Ωxj )
TAAT (Ωxi − Ωxj )W

(P )
ij .

(7)

Eq. (6) is approximately changed into the ratio-trace form
and can therefore be solved as Generalized Eigenvalue Prob-
lem (GEP). Eq. (7) is solvable by Semi-Definite Programming
(SDP) relaxation [22]. The solution of Eq. (5) is consequently
represented by bilateral steps of Eq. (6) and Eq. (7).

3. Proposed methodology
3.1. Learn multiscale kernels for speech emotion features

To our best knowledge, little research focuses on multiscale rep-
resentation in SER. In [12], MKL with the optimization form of
Support Vector Machines (SVM) is used in SER. However, it
requires large computational cost and is only valid in decision
making. We develop the method of multiscale kernel learning
to show its effectiveness on extracting speech emotion features
and then improving the performance of SER.

The research of MKL provides the possibility of solving
multiscale analysis of speech emotion factors. For Gaussian k-
ernels, it is easy to draw the multiscale case by regulating scal-
ing parameters. The kernel transforming between samples xi

and x is shown in Eq. (8), with the parameters σm > 0, where
m = 1, 2, . . . ,M and i = 1, 2, . . . , N :

(Ωxi )m = φT
m(xi)φm(x) = e

− (xi−x)2

σ2
m . (8)

Kernel methods are originally represented as high-
dimensional space by adopting inner product forms in RKHS.
However, it can be also assumed that kernel methods bring a
dimension-limited feature transformation in graph embedding.
This transformation constructs a new feature space for each
sample by kernel functions and training samples. Thus, the rela-
tionship between a given sample and each training sample leads
to the new features. Then, the scales of kernels are mainly de-
termined by the parameters of kernels.

As is shown in Figure 1, for sample x, the original speech
emotion features x are transformed into new features Ωxβ by
linearly combining multiscale kernels. Then, for the new fea-
tures of x, the dimensionality-reducted sample can be achieved
by using ATΩxβ in bilateral ways.

As outlined above, speech emotion features inevitably in-
clude much interference resulting from the factors of speakers,
text, languages, etc., in spite of state-of-the-art feature acquisi-
tion ways. Therefore, in the use of feature reduction methods
for SER, supervised information would be helpful to eliminate
such interference. Hence, these methods, which are guarded
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Figure 1: Schematic diagram of learning multiscale kernels.
The original features x are transformed into new features Ωxβ
by linearly combining multiscale kernels.

by supervised information, would seek for new compact feature
representations, which in turn fit with the task the SER system is
required to solve. Therefore, SER systems would benefit from
the novel feature reduction method in combination of the em-
bedding graphs of FDA and multiple kernel learning. In addi-
tion, few parameters need to be regulated in FDA.

3.2. Comparisons with related research

Lin et al. [21] proposed dimensionality reduction in the frame-
work of graph embedding using MKL. This is the motivation
of our research in SER. We choose the relatively stable FDA
structure to better describe speech emotions. Then, multiscale
kernels are represented by Gaussian forms with various scaling
parameters. In [20] multiscale Gaussian kernels are adopted in
KFDA. However, this is attempted only for a binary classifica-
tion. [23] presents the graph-designing extension of [21], with
local-based embedding graphs. In contrast, designing these em-
bedding graphs without processing is not a desirable choice in
SER. Compared with [12], our work focuses on extracting ap-
propriate features for SER with ‘simple’ classifiers.

4. Experimental results
4.1. Corpora and speech emotion features

Three corpora, the Berlin Emotional Speech Database (EMO-
DB) [24], the audio parts of eNTERFACE’05 [25] and
the Geneva Multimodal Emotion Portrayals (GEMEP) [26]
databases, are adopted for evaluation.

EMO-DB includes seven emotions, namely neutral, anger,
fear, joy, sadness, disgust and boredom. Ten speakers, cho-
sen from 40 ones, were required to say ten German predefined
sentences. We use the 494 instances commonly used based on
naturalness in our experiments. For the above seven emotions,
there are 78, 128, 54, 65, 53, 37, and 79 samples, respectively.

eNTERFACE’05 is a multimodal emotion corpus with
both visual and audio parts. It contains examples of the emo-
tions happiness, sadness, surprise, anger, disgust, and fear. The
corpus totally includes 42 subjects from 14 nations. The text to
be prompted after some story-based emotion elicitation includes
five English short sentences. We adopt the commonly chosen 40
speakers in our experiments, with 200 samples per emotion.

GEMEP includes 18 emotions in total, with 10 speakers,
including 1 260 multimodal emotion samples. In our experi-
ments, the 12 emotions (amusement, pride, joy, relief, inter-
est, pleasure, hot anger, panic fear, despair, irritation, anxiety,
sadness) [27] are adopted, including 1 080 samples, with ap-
proximately 90 samples per emotion. It was used as benchmark
set in the INTERSPEECH 2013 Computational Paralinguistics
Challenge for SER [28] and we use the selection defined in the

challenge.
Our open-source openSMILE toolbox [29] is used for ob-

taining ‘raw’ speech emotion features in our experiments. We
separately consider the feature sets of the INTERSPEECH 2009
Emotion Challenge (IS09) [4], the ‘emobase’ configuration [5],
and the INTERSPEECH 2010 Paralinguistics Challenge (IS10)
[6], with the dimensionality of 384, 988 and 1 582 respectively.
These features are obtained by LLDs (Low-Level Descriptors)
with subsequential application of statistical functionals. For
more details on these features sets, see [4–6]. The choice of
the sets is motivated by their gradually increasing, yet reason-
able sizes.

4.2. Parameters and system design in experiments

Normalization is conducted on each feature according to the re-
spective training data. Afterwards, MKL with multiscale Gaus-
sian kernels and Fisher discriminant graphs is used in dimen-
sionality reduction. The bilateral way is adopted in solving the
optimization of MKL. In the stage of decision, we apply simple
nearest-neighbor classifiers to evaluate our method in a trans-
parent way with little influence by the classifier. This is also in
line with [30], where deep learning was used for reduction of
dimensionality.

We ensure speaker-independent evaluation as follows: On
EMO-DB, Leave One Speaker Out (LOSO) cross-validation
is used, while on eNTERFACE’05 we use two-fold cross-
validation with each fold including 20 speakers. On GEMEP,
six out of ten speakers are adopted for training, while the rest
are used in testing. In dimensionality reduction we use ten mul-
tiscale Gaussian kernels, where the kernel parameters σ2

m in Eq.
(8) are shown in Table 1. The number of iterations is set as five.

Table 1: The choices of Gaussian kernel parameters σ2
m.

m m = 1 m = 2 m = 3 m = 4 m = 5
σ2
m 0.001n 0.005n 0.01n 0.03n 0.05n
m m = 6 m = 7 m = 8 m = 9 m = 10
σ2
m 0.1n 0.3n 0.5n 0.75n n

4.3. Experiments and analysis

We divide the experiments into two sections according to the
number of emotion categories. In detail, EMO-DB and eN-
TERFACE’05 stand for basic emotions, while GEMEP contains
more meticulous emotional species.

4.3.1. Experiments on EMO-DB and eNTERFACE’05

The best recognition rates (%) of emotions for different algo-
rithms within low dimensionality (no larger than 70 dimension-
s) are shown in Table 2, with the rates represented in the form
of ‘WA (Weighted Accuracy) / UA (Unweighted Accuracy)’.
It is noticeable that in eNTERFACE’05 WA and UA are the
same, due to the same number of samples for each class in
our experiments. ‘MS-KFDA’ stands for the proposed method.
The best three recognition rates for KFDA are represented with
the parameters σ(1), σ(2), σ(3) = σi (i = 1, 2, . . . ,M , with
M = 10). In Table 2, some of the linear feature reduction algo-
rithms, including LDA, LPP, LDE, and GbFA, are considered
for comparison. In order to raise their low-dimensional perfor-
mance, SVD (Sigular Value Decomposition) is conducted when
solving GEP [14, 16].

One can conclude from Table 2 that, the multiscale-kernel
based FDA outperforms KFDA and various linear-mapping-
based dimensionality reduction methods. Beyond that, MS-
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Table 2: The best recognition results (%) and their correspond-
ing dimensions of different algorithms on EMO-DB and eN-
TERFACE’05 considering the feature sets IS09 and emobase
(‘WA / UA’).

Corpora EMO-DB eNTERFACE’05
Feature Sets IS09 emobase IS09 emobase

Baseline 55.2 / 49.8 63.8 / 61.5 42.8 27.5
PCA 56.5 / 52.9 62.5 / 59.5 37.5 32.1

LDA / FDA 74.6 / 72.1 76.0 / 73.4 46.7 38.4
LPP 55.6 / 49.1 63.0 / 59.5 35.7 33.8
LDE 70.1 / 65.6 73.3 / 66.2 49.3 39.8
GbFA 71.6 / 68.1 73.2 / 73.2 48.9 40.8

σ(1)-KFDA 76.3 / 70.1 81.7 / 75.6 56.8 45.1
σ(2)-KFDA 75.6 / 69.4 81.1 / 74.4 55.8 44.2
σ(3)-KFDA 74.5 / 68.7 79.0 / 73.0 55.1 42.0
MS-KFDA 77.7 / 71.6 81.8 / 75.7 57.1 46.8

KFDA shows better performance compared with these single-
kernel ways in most conditions. The kernel parameters corre-
sponding to the top-3 recognition rates (both WA and UA) are
σ4, σ5, σ6 for EMO-DB with IS09, and are σ6, σ5, σ7 for EMO-
DB with emobase, while for eNTERFACE’05, the parameters
are σ4, σ6, σ5, and σ6, σ7, σ8 with IS09 and emobase respec-
tively. Considering feature sets, the emobase set performs better
than IS09 on EMO-DB. However, the rates of emobase fail to
outperform those of IS09 on eNTERFACE’05.

We further show the recall (%) of each emotion in Table 3,
when using MS-KFDA. The recognition rates of the feature sets
of IS09 and emobase are represented as ‘IS09 / emobase’.

Table 3: The recall (%) of the best UA on EMO-DB and eN-
TERFACE’05 using multiscale kernels, with the form of ‘IS09 /
emobase’.

Emotions\Corpora EMO-DB eNTERFACE’05
anger 89.8 / 88.3 59.0 / 52.0

boredom 84.8 / 91.1 −
fear 51.9 / 68.5 51.5 / 49.5

disgust 62.2 / 67.6 70.0 / 59.5
joy or happiness 60.0 / 61.5 75.0 / 60.5

neutral 84.6 / 91.0 −
sadness 79.3 / 79.3 42.0 / 44.5
surprise − 45.0 / 15.0

4.3.2. Experiments on GEMEP

Following the description and Table 2 in the former section, the
best recognition rates with the dimensionality no larger than 70
are represented in Table 4 for GEMEP.

Table 4: The best recognition results (%) and their correspond-
ing dimensions of different algorithms on GEMEP using the fea-
ture sets IS09, emobase, and IS10 (‘WA / UA’).

Feature Sets IS09 emobase IS10
Baseline 23.6 / 23.6 30.6 / 30.3 25.9 / 26.0

PCA 27.3 / 27.5 30.3 / 30.4 29.4 / 30.1
LDA / FDA 28.9 / 29.4 32.4 / 33.0 32.4 / 33.2

LPP 24.3 / 24.5 30.6 / 30.3 28.0 / 28.6
LDE 29.6 / 29.6 35.0 / 34.6 35.2 / 36.1
GbFA 29.2 / 30.0 30.6 / 32.5 33.6 / 34.7

σ(1)-KFDA 35.2 / 36.2 42.1 / 42.5 38.2 / 39.5
σ(2)-KFDA 33.6 / 34.6 41.9 / 42.4 37.7 / 38.9
σ(3)-KFDA 33.3 / 33.9 38.4 / 39.3 37.3 / 38.3
MS-KFDA 36.3 / 38.1 41.0 / 42.4 39.4 / 40.5

In Table 4 for GEMEP, the kernel parameters correspond-
ing to the top-3 recognition rates (both WA and UA) are σ5, σ4,
σ6 with the IS09 set, while the parameters are σ4, σ5, σ6 when
using the feature set IS10. Yet for emobase, the top-3 rates are
σ5, σ4, σ6 and σ4, σ5, σ3, respectively for WA and UA. The

recognition rates of MS-KFDA outperform the given methods
when using the feature sets IS09 and IS10, but the rates fall be-
hind for the emobase set. In order to show the performance of
MS-KFDA for the emobase set, in Figure 2 we draw maximal,
mean, and 3rd best values of the top-5 recognition rates of KF-
DA, when separately using the 10 kernel parameters for the di-
mensionality reaching from 10 to 13, and conduct a comparison
with MS-KFDA. According to Figure 2a for WA, MS-KFDA
achieves better performance than most KFDA algorithms based
on single kernel, though it cannot reach the best result. Figure
2b shows the performance of MS-KFDA can approach the best
of KFDA for UA.
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Figure 2: Maximal, mean and 3rd best values of 5-top recogni-
tion rates of KFDA using 10 kernel parameters, compared with
the recognition rates of MS-KFDA, dimensionality 10 to 13 with
emobase set. (a) WA, (b) UA.

In Table 5, the baseline rates, written as ‘WA / UA’, when
using the classifiers Naive Bayes (NB), SVM, and Extreme
Learning Machine (ELM) [31] are provided for comparison.
Here we use linear and the ’one-against-one’ strategy for SVM,
and the violation level of Sequential Minimal Optimization (S-
MO) iterations CI is set as 0.001. The ELM is set as the linear
form, which is similar as ridge regression. It shows that the pro-
posed method can achieve better performance in this condition.

Table 5: The recognition results (%) (‘WA / UA’ ) on GEMEP
using the feature sets of IS09, emobase, and IS10, with different
algorithms.

Feature Sets IS09 emobase IS10
NB 32.6 / 32.0 32.9 / 32.6 32.9 / 33.5

SVM (CI = 0.001) 31.7 / 32.1 39.1 / 39.4 38.9 / 39.7
ELM (Linear) 32.9 / 33.7 33.3 / 33.7 30.8 / 31.8

MS-KFDA 36.3 / 38.1 41.0 / 42.4 39.4 / 40.5

The experimental results show a satisfying performance
for the multiscale-kernel method in dimensionality reduction of
speech emotion features. Compared with other dimensionality
reduction methods in this paper [14–18], its computational cost
depends on iteration times and the solution procedure of SDP.

5. Conclusions
We presented the multiscale-kernel method using MKL based
FDA in dimensionality reduction of speech emotion features
in this paper. Validated by experiments, the proposed method
achieves relatively desirable performance by using multiple
speech emotion feature sets on different speech emotion cor-
pora, compared with other dimensionality reduction methods.

The success of this method inspires us to extend this mul-
tiple kernel learning framework of a multiscale analysis to a
multi-dimensional principal analysis. In addition, Gram matri-
ces with a low-dimensional space can be considered to reduce
the computational deviation in the iterations.
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