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Abstract
In this paper, we introduce results for the task of Auto-

matic Public Speech Assessment (APSA). Given the comparably
sparse work carried out on this task up to this point, a novel
database was required for training and evaluation of machine
learning models. As a basis, the freely available oral presenta-
tions of the ICASSP conference in 2011 were selected due to
their transcription including non-verbal vocalisations. The data
was specifically labelled in terms of the perceived oratory ability
of the speakers by five raters according to a 5-point Public Speak-
ing Skill Rating Likert scale. We investigate the feasibility of
speaker-independent APSA using different standardised acoustic
feature sets computed per fixed chunk of an oral presentation in
a series of ternary classification and continuous regression exper-
iments. Further, we compare the relevance of different feature
groups related to fluency (speech/hesitation rate), prosody, voice
quality and a variety of spectral features. Our results demonstrate
that oratory speaking skills can be reliably assessed using supra-
segmental audio features, with prosodic ones being particularly
suited.
Index Terms: Automatic Public Speech Assessment, database,
classification, regression, prosody.

1. Introduction
Advances in signal processing and machine learning techniques
have resulted in the development of a variety of applications
of Computational Paralinguistics. These applications include
affect recognition (e.g., [1, 2]), the automatic detection of speak-
ing disabilities (e.g., [3, 4, 5]), or automatic evaluation of lan-
guage proficiency (e.g., [6, 7, 8]). However, to the best of our
knowledge, little work has been done in the field of automatic
assessment of public speaking skills, despite the fact that such
an application could help speakers to evaluate and improve their
performance. This is particularly relevant as there are a myriad
of circumstances where good public speaking skills can facilitate
career advances (e.g., create new professional opportunities) and
also bring benefits in other areas, including personal life (e.g.,
speech at a friend’s wedding, inspire a group of volunteers at a
charity event). Another indicator of the importance of automati-
cally assessing public skills is the fact that there is commercial
interest in such a product. Already in 2006, Hewlett Packard
(HP) filed a patent [9] describing a “System and method of pro-
viding evaluation feedback to a speaker while giving a real-time
oral presentation”. To our knowledge such a system has yet to
be developed, and will be the focus of this paper.

There are many components that come together to make a
good speech - not only does the content, structure and language
need to resonate with the audience, but the speaker who is pro-

jecting the message through his/her voice, body language and
visual aids also needs to be engaging. In this paper we focus on
what can be assessed from the voice of the speaker. According to
the literature related to public speaking [10, 11, 12, 13], the most
important voice-related characteristics to optimise for a speech
are the volume (needs to be appropriate to room size), pauses and
pacing, intonation, clarity (avoiding ”filler” hesitation words)
and energy. Interestingly, these attributes refer to paralinguistic
aspects of speech and can be estimated from low level acoustic
descriptors. Therefore it is plausible to hypothesise that paralin-
guistic analysis of speech can be used to predict the quality of
the speaker.

Previous research in speaker quality assessment has focused
on multimodal analysis. For instance, [14] proposed a system
that used vocal, visual and lexical inputs from audio, video
and 3D motion capturing devices. Interestingly they found that
among the three recorded modalities, speech features (related
to speech delivery e.g. speaking rate, prosodic variations, paus-
ing) provided the most information. In another work, [15] pro-
posed a proof-of-concept system to develop a platform for public
speaking training based on the analysis of speech flow (intrinsic
rhythm) and clarity of intonation, gestures and gaze patterns.
Regarding voice analysis, they show that descriptors such as
number of pauses, average intensity, breathiness, number of
pause fillers, fundamental frequency (F0) and spectral station-
arity were highly correlated with expert assessments of speech
quality (flow of speech, intonation, volume, interruptions and vo-
cal variety). [16] proposed a presentation training system giving
rule-based feedback to the user with respect to speaking rate, eye
contact with audience and timing, using both speech and image
processing techniques. Feedback on speech is given on both
speaking rate and F0 in the cases where they respectively exceed
or fall below a predefined threshold. Finally, [17] proposed the
only method to assess public speaking skills exclusively from
paralinguistic features. They trained a set of six Support Vector
Machine (SVM) classifiers (Radial Basis Function kernels) each
predicting a distinct public speaking quality dimension as defined
by an expert evaluator. These qualities were clear, competent,
credible, dynamic, persuasive and pleasant. The authors used a
set of 6552 acoustic features (openSMILE’s “emo large” default
feature set) - prosodic, voice quality and spectral features [18]),
with feature selection The performance of their system (averaged
across the six binary classifiers – for each label) reached 81%
(chance level of 50%). Nonetheless, the database used was very
small (124 instances).

In this paper we introduce a new annotated database of
public speech quality, and present a series of classification and
regression experiments for the automatic assessment of speech
quality. The remainder of this paper is organised as follows:
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Section 2 introduces the datasets of audio recordings used. Sec-
tion 3 introduces the acoustic feature sets used for the automatic
assessment of speech quality. Section 4 details our classification
and regression experiments, and Section 5 concludes this paper
with a summary of our findings and a discussion of future areas
for follow-up research.

2. Database Description and Labelling
Procedure

As far as we are aware, there is no database of single speaker
speeches that has been labelled in a consistent fashion according
to public speaking ability. Therefore, in this paper we introduce
a new database that makes use of the ICASSP 2011 conference
talks for the creation of a new labelled database for Automatic
Public Speaking Assessment (APSA)1. The ICASSP 2011 con-
ference talks were chosen in particular, as the speech transcripts
of each recording include syllable count and annotations of hes-
itations (such as “uh” or “um”), which allows the calculation
of speech and hesitation rates two important features of public
speaking quality.

2.1. Recordings

We downloaded a set of ICASSP 2011 conference recordings
from the Superlectures website (http://superlectures.com/). From
the full list of available recordings, we have chosen only sin-
gle speaker recordings (e.g., panel discussions were discarded),
and one talk per speaker. For each talk, we removed the initial
60 seconds (to cut out speaker preparation and introduction) as
well as the last 25% of the recording (this cut off was decided
after a sample of videos indicated that the Q&A sessions were
typically included in this section of the recordings). Then, for
each speaker, we extracted three 30 seconds segments from the
beginning, middle and end of each selected talk as it provides
a sufficient and suitable time frame over which adequately as-
sess a speech quality. Further, using the annotations on syllable
counts included with the talks (which will be described later),
we discard those speakers with at least one of the 30 seconds
segments with fewer than 100 spoken syllables per minute as
this is an unusually low syllable count and was found to be often
the result of recording problems or a consequence of speakers
making live demonstrations (e.g., playing a music recording).
The final database, henceforth referenced as APSA-ICASSP, in-
cludes 228 distinct speakers (26 female, 202 male) and a total of
684 instances (3 per speaker).

2.2. Annotations and Ground Truth

Five postgraduate students from the Imperial College London
(4 male, 1 female, aged between 22-30) were asked to label the
APSA-ICASSP database in terms of perceived oratory ability (see
Table 1). Labelling was carried out on an independent basis in
various sessions (one hour maximum to avoid fatigue) over a
1 week period. Annotators used a 5-point Likert scale ranging
from -2 (very bad speaker) to 2 (very good speaker) to provide
their ratings. Henceforth, we refer to this scale as 5-point Public
Speaking Skill Rating (PSSR5). The meaning of each level of
the rating scale was explained beforehand to all annotators as
shown in Table 1. Annotators were specifically asked to rate the
perceived oratory ability while ignoring the verbal contents of
the talk and the pronunciation of the speaker.

We computed inter-rater agreement in terms of pairwise

1The database can be obtained from the authors on demand.

Table 1: Guidelines used as a reference by raters to assign
PSSR5 scores, total number of instances per score, number of
instances with female speakers per score

PSSR5 Description #Instances
(#Female)

-2 Very bad speech, excessive
pauses/hesitations that frustrate
the listener and poor performance on
the majority of prosodic aspects

12 (0)

-1 Bad speech, some negative traits ob-
served such as too monotonous, or too
fast, or too many hesitations/pauses

107 (5)

0 Average/neutral speech, some weak-
nesses, but generally intelligible and
easy to listen to

321 (25)

1 Good speech, few hesitations/pauses,
good flow that sparks interest

228 (45)

2 Very good speech, almost no hesita-
tions, enthusiastic and natural speaker

16 (3)

Spearman rank correlation (ρ) and normalised Cronbach’s Al-
pha (α). Both statistics indicate an good level of inter-rater
agreement – ρ = .470 and α = 0.840. Then, from the indi-
vidual ratings, we computed the ground truth using the Evalua-
tor Weighted Estimator (EWE, [19]). This method computes a
weighted average based on each rater’s correlation with the mean
ratings. The EWE will be used in our regression experiments
(hereinafter PSSREWE). In order to derive discrete class labels
from the continuous ratings, we rounded the PSSREWE for
each instance to the nearest discrete rating (see last column of
Table 1). Due to the low number of instances with a PSSR5

score of 2 and -2, we merged labels 1 and 2, and -1 and -2, which
resulted in three cover classes {Positive, Neutral, Negative}
(henceforth referred to as PSSR3). This procedure led to a
more balanced class distribution with {244, 321, 119} instances
per class ({Positive, Neutral, Negative}, respectively).

3. Features
For the acoustic modelling of our public speaking databases,
we used two standard features sets – the INTERSPEECH 2013
Computational Paralinguistics ChallengE (ComParE) [20] offi-
cial feature set (COMPARE13), and the extended Geneva Mini-
malistic Acoustic Parameter Set(EGEMAPS; [21]). For the sake
of reproducibility, feature extraction was carried out using the
openSMILE toolkit [18]

The COMPARE13 feature set comprises 6 373 static features
of functionals of low-level descriptor (LLD) contours (a full de-
scription of the feature set is available in [22]). The EGEMAPS
is a much smaller feature set comprising 88 LLDs and respective
functionals, and it was designed as a standard acoustic param-
eter set for automatic voice analysis (details shown in Table 2).
With the purpose of evaluating the importance of prosody-related
features for APSA, we divided both features sets into prosody-
(COMPARE13-P and EGEMAPS-P) and non-prosody i.e. spec-
tral/voice quality-related (COMPARE13-NP and EGEMAPS-
NP) features. COMPARE13-P comprises 483 features corre-
sponding to the LLDs in the “prosodic” group detailed in [22]
and their related functionals. The remaining COMPARE13 fea-
tures (5890) were assigned to the COMPARE13-NP set. As
for EGEMAPS-P, it includes 26 features comprising all Pitch
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Table 2: The EGEMAPS Feature Set is composed of 18 low-level
descriptors (LLD) separated into 3 Parameter Groups, along
with applied functionals. Asterisk denotes features included in
the EGEMAPS-P feature set.

6 frequency related LLD
Pitch*, Jitter, Formant 1,2, and 3 frequency, Formant 1 band-
width
3 energy/amplitude related LLD
Shimmer, Loudness*, HNR (Harmonics-to-Noise Ratio)
9 spectral related LLD
Alpha Ratio, Hammarberg Index, Spectral Slope 0-500Hz and
500-1500Hz, Formant 1,2 and 3 relative energy, Harmonic dif-
ference H1-H2, Harmonic Difference H1-A3

Functionals applied to all LLD (36)
Arithmetic mean, coefficient of variation (standard deviation
normalised by arithmetic mean)
Functionals applied to loudness and pitch (52)
20th, 50th, 80th percentile, range of 20th-80th percentile, mean
and standard deviation of the slope of rising/falling signal parts
Functionals applied to Alpha Ratio, Hammarberg Index,
Spectral Slope 0-500Hz and 500-1500Hz (56)
Arithmetic mean over all unvoiced segments
Additional functionals resulting in temporal features* (6)
Rate of loudness peaks, mean length and standard deviation of
voiced segments (F0 > 0), mean length and standard deviation
of unvoiced regions, number of continuous voiced regions per
second

and Loudness LLDs and related functionals, plus 6 functionals
related to temporal features (denoted with an asterisk in table 2).
All other features (62) were assigned to the EGEMAPS-NP set.

As mentioned earlier, the ICASSP 2011 conferences were
transcribed with structural information that allowed us to com-
pute two additional measures – speech and hesitation rates. Each
recording had an accompanying XML file comprising a set of
transcribed strings, each referenced with a timestamp. The
speech rate was calculated using the syllable count over a given
time segment by computing the number of vowels per string
and linearly interpolating if the desired time segment started or
ended in between 2 timestamps. The algorithm uses “a,e,i,o,u,y”
as vowels, and counts the number of non-consecutive vowels. If
the word ends in “es”, or if the word ends in ‘e’ but the preceding
character is not ‘l’, the syllable count is decremented by 1 count.
All words shorter than 3 characters were considered as monosyl-
labic. Due to many peculiarities in the English language it is not
possible to get a perfectly accurate syllable count unless a full
English dictionary look up is used for every word. Nevertheless,
we have tested that the syllable count algorithm gives correct
results to a tolerance of 10%. The hesitation rate was calcu-
lated by counting the number of instances of transcribed “um”
and “uh” interjections divided by the total number of syllables
spoken over the segment. The hesitation rate, together with the
speech rate described earlier, were used to create a new feature
set (SHRATE).

4. Experiments and Results
The feature sets (COMPARE13-P, COMPARE13-NP, COM-
PARE13, EGEMAPS-P, EGEMAPS-NP, EGEMAPS and
SHRATE) and ground truths (PSSREWE and PSSR3) de-

Table 3: Distribution of PSSR3 per speaker-independent split
used in our experiments (228 instances per split). Number
of speakers per gender in each split is also indicated – Total
(Male/Female).

Split PSSR3

Positive Normal Negative
1 72 (59/13) 105 (100/5) 51 (48/3)
2 81 (59/22) 111 (104/7) 36 (35/1)
3 91 (78/13) 105 (92/13) 32 (31/1)

Table 4: Performance measures on the test sets (averaged across
all folds) for APSA classification (UAR) and regression (ρ) ex-
periments using the various feature sets (and their combination).
Chance level for the classification tests: 33%.

Feature Set #Features UAR (%) ρ
COMPARE13 6373 52.9 0.60

COMPARE13-P 483 51.7 0.48
COMPARE13-NP 5890 52.6 0.60

EGEMAPS 88 54.3 0.52
EGEMAPS-P 26 56.2 0.58

EGEMAPS-NP 62 49.5 0.48
SHRATE 2 59.5 0.59

scribed earlier were used in a series of regression and classifi-
cation experiments. For both classification and regression tasks
we compared the performance of the models using all 7 feature
sets in order to determine the most relevant types of features
for APSA. For the classification tests we used Support Vector
Machines (SVM), and for regression Support Vector Regres-
sion (SVR). Both models were implemented with WEKA [23].
For both SVM and SVR models we used polynomial Kernels
of degree 1, and used the Sequential Minimal Optimization
(SMO) algorithm for training. The database instances were split
into equally sized, speaker-independent sets (using a modulo
3 scheme on the speaker IDs). Gender distribution as well as
label distribution was checked to be relatively even across the
three sets (see Table 3). Then, we used a 3-fold cross-validation
schema to optimise the models’ parameters and to estimate the
performance on the test set. For the classifications tests, the
training sets in each fold were up-sampled by integer values
to achieve an even balance between classes (this implied up-
sampling the majority classes as well). No upsampling was
performed for the regression tests. In each cross-validation fold,
all sets were standardised to the mean and standard deviation
of the respective training set. The validation set of each fold
was used to estimate the best soft-margin complexity hyper-
parameter C (we tested 0.0001, 0.001, 0.01, 0.1, and 1). After
the best complexity hyperparameter was determined, we joined
the training and development sets in each fold, retrained the
models using the optimised C, and estimated the performance
on the respective test set. In the regression tests we computed
the unweighted average recall (UAR) as performance measure,
whereas in the regression tests we used Spearman’s rank cor-
relation coefficient (ρ). The results of both classification and
regression tests (averaged across all folds) are shown in Table 4.

As shown in Table 4, all feature sets yielded a classifica-
tion performance well above chance level (33%). In relation
to the EGEMAPS features, we found that the prosodic sub-
set (EGEMAPS-P) led to the best results both in classification
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(UAR = 56.2%) as in regression tasks (ρ = 0.58). Both re-
sults indicate that prosodic features are particularly relevant for
APSA. This observations receives further confirmation from the
results obtained with the SHRATE feature set. The classification
accuracy was the highest of all sets tested (UAR = 59.5%), and
the second best (ρ = 0.59) in the regression experiments (with
the top performance being a small distance away – ρ = 0.60).
This outcome is not surprising given that speech and hesitation
rates are important features of speech quality (and were reported
by the raters as two of the most important cues used to provide
their assessments). However, it is interesting to observe that
this feature set consisting only two features achieves compa-
rable prediction accuracy. In relation to the large feature set
(COMPARE13) and its subsets, we found that the classification
performance was generally worst than all other sets. Nonetheless,
COMPARE13-NP performed better than EGEMAPS-NP which
may indicate that a larger set of non-prosodic features may also
include relevant information for APSA. In the regression task,
instead, we found that COMPARE13 and COMPARE13-NP per-
formed better than all other sets (ρ = 0.60), but very close to
the performance of the SHRATE (ρ = 0.59) and EGEMAPS-
NP (ρ = 0.58) sets. Taken together these findings suggest that
prosodic features are particularly well suited for APSA.

5. Conclusions
In this paper we have presented a new database of audio record-
ings for Automatic Public Speech Assessment, and the percep-
tual study conducted to obtain judgements of the perceived or-
atory ability of each recording with respect to supra-segmental
characteristics. These annotations (shown to be highly consistent
across raters) were then used to compute the gold standard used
in a series of classification and regression experiments to predict
quality of the various speakers in our database. Additionally, we
also compared the use of different predictors related to prosody
(and fluency in particular – speech/hesitation rate), voice quality
and a variety of spectral features.

Overall, using a speaker-independent schema, we have
demonstrated that it is feasible to predict the quality of public
speeches from acoustic features alone. This was evident in both
classification and regression experiments, where we achieved,
respectively, a top performance of 59.5% (UAR) and 0.60 (rho).
Prosodic features were generally better predictors of oratory
ability, which is in line with a priori intuitive expectations as
discussed in section 1 and consistent with the findings in [14].
In particular, we found that only two prosody-related features
(speech and hesitation rates) can provide similar explanatory
power to a larger feature sets that encapsulates a wider range
of acoustic features. Taking into account the fact that measures
of speech and hesitation rates were manually computed from
human annotations, and therefore may not always be readily
available for future inputs to the model, we find that the rela-
tively compact EGEMAPS-P prosodic feature set is certainly a
good alternative as it provides strong performance in both classi-
fication and regression models. Finally, the substantially larger
COMPARE13 feature sets did not result in significantly stronger
classification results, but the additional number of features did
seem to have an effect in regression.

In addition to expanding our database to include more speech
corpora, there are other potential directions for future research
that would be of interest. First, and although there was strong
inter-rater agreement for APSA-ICASSP database, annotations
were performed by non-expert annotators. Additional labelling
by, for instance, speech coaches (such as those used in [24])

could provide a more solid ground truth. Furthermore, the use
of separate labels for individual oratory quality features (e.g.,
fluency, pace, monotonicity, etc.) could also prove beneficial for
establishing a more informative assessment of public speaking
skills. In this case, each individual prosodic label could then be
predicted with a targeted selection of features, and potentially
lead to the development of a system that would give more granu-
lar feedback on the aspects of the public speaking skills of the
speaker that should be developed. Second, given the explanatory
power of speech and hesitation rates alone, further work should
explore the use of algorithms for the automatic calculation of
these measures (or the development of new ones). Third, given
the relevance of prosodic features in general to the prediction
of oratory quality, it would be important to investigate in more
detail other specialised prosodic features such as those proposed
in [25]. Finally, and although it was not the focus of this pa-
per, alternative machine learning models could also be tested.
Possible candidates are random forests ([26]) and convolutional
neural networks (CNNs; [27]). In particular, the latter would be
of special interest as CNNs have been shown to perform well
for image recognition [28] due to their invariance to translations
and other small transformations. This has analogies in audio
processing if a 2 dimensional input layer was used (time versus
the extracted features extracted), such that there would be over-
lapping receptive fields (each field as a matrix of all the features
over a small chunk of time) across time.
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