
.

openSMILE:) The Munich Open-Source Large-scale Multimedia Feature Extractor

openSMILE:) The
Munich Open-Source
Large-scale Multimedia
Feature Extractor

A tutorial for version 2.1

Introduction

The openSMILE feature extraction and audio analysis
tool enables you to extract large audio (and recently also
video) feature spaces incrementally and fast, and apply
machine learning methods to classify and analyze your
data in real-time. It combines acoustic features from
Music Information Retrieval and Speech Processing, as
well as basic computer vision features. Large, standard
acoustic feature sets are included and usable out-
of-the-box to ensure comparable standards in feature
extraction in related research.

The purpose of this article is to briefly introduce
openSMILE, it’s features, potentials, and intended use-
cases as well as to give a hands-on tutorial packed with
examples that should get you started quickly with using
openSMILE.

About openSMILE

SMILE is originally an acronym for Speech & Music

Interpretation by Large-space feature Extraction. Due to
the recent addition of video-processing in version 2.0,
the acronym openSMILE evolved to open-Source Media

Interpretation by Large-space feature Extraction.

The development of the toolkit has been started at
Technische Universität München (TUM) for the EU-FP7
research project SEMAINE. The original primary focus
was on state-of-the-art acoustic emotion recognition for
emotionally aware, interactive virtual agents. After the
project, openSMILE has been continuously extended to
a universal audio analysis toolkit. It has been used and
evaluated extensively in the series of INTERSPEECH
challenges on emotion, paralinguistics, and speaker
states and traits: From the first INTERSPEECH 2009
Emotion Challenge up to the upcoming Challenge at
INTERSPEECH 2015 (see openaudio.eu for a summary
of the challenges). Since 2013 the code-base has been
transferred to audEERING and the development is
continued by them under a dual-license model – keeping
openSMILE free for the research community.

openSMILE is written in C++ and is available as both
a standalone command-line executable as well as a
dynamic library. The main features of openSMILE are
its capability of on-line incremental processing and its
modularity. Feature extractor components can be freely
interconnected to create new and custom features,
all via a simple text-based configuration file. New
components can be added to openSMILE via an easy
binary plug-in interface and an extensive internal API.
Scriptable batch feature extraction is supported just as
well as live on-line extraction from live recorded audio
streams. This enables you to build and design systems
on off-line databases, and then use exactly the same
code to run your developed system in an interactive on-
line prototype or even product.

openSMILE is intended as a toolkit for researchers and
developers, but not for end-users. It thus cannot be
configured through a Graphical User Interface (GUI).
However, it is a fast, scalable, and highly flexible
command-line backend application, on which several
front-end applications could be based. Such examples
are network interface components, and in the latest
release of openSMILE (version 2.1) a batch feature
extraction GUI for Windows platforms:

As seen in the above figure, the GUI allows to easily
choose a configuration file, the desired output files and
formats, and to select files and folders on which to run
the analysis.

Made popular in the field of speech emotion recognition
and paralinguistic speech analysis, openSMILE is now
beeing widely used in this community. According
to google scholar the two papers on openSMILE
([Eyben10] and [Eyben13a]) are currently cited over
380 times. Research teams across the globe are using
it for several tasks, including paralinguistic speech
analysis, such as alcohol intoxication detection, in
VoiceXML telephony-based spoken dialogue systems
— as implemented by the HALEF framework, natural,
speech enabled virtual agent systems, and human
behavioural signal processing, to name only a few
examples.

Key Features

The key features of openSMILE are:

http://records.sigmm.ndlab.net/2015/01/opensmile-the-munich-open-source-large-scale-multimedia-feature-extractor-a-tutorial-for-version-2-1/
http://records.sigmm.ndlab.net/2015/01/opensmile-the-munich-open-source-large-scale-multimedia-feature-extractor-a-tutorial-for-version-2-1/
http://records.sigmm.ndlab.net/2015/01/opensmile-the-munich-open-source-large-scale-multimedia-feature-extractor-a-tutorial-for-version-2-1/
http://records.sigmm.ndlab.net/2015/01/opensmile-the-munich-open-source-large-scale-multimedia-feature-extractor-a-tutorial-for-version-2-1/
http://www.mmk.ei.tum.de/
http://semaine-project.eu
http://compare.openaudio.eu
http://www.audeering.com
http://scholar.google.de/scholar?cites=16166041346650616832&as_sdt=2005&sciodt=0,5&hl=de
http://www.halef.org/
http://link.springer.com/article/10.1007/s12193-011-0060-x
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769794/

.

openSMILE:) The Munich Open-Source Large-scale Multimedia Feature Extractor

• It is cross-platform (Windows, Linux, Mac, new in
2.1: Android)

• It offers both incremental processing and batch
processing.

• It efficiently extracts a large number of features very
fast by re-using already computed values.

• It has multi-threading support for parallel feature
extraction and classification.

• It is extensible with new custom components and
plug-ins.

• It supports audio file in- and output as well as live
sound recording and playback.

• The computation of MFCC, PLP, (log-)energy, and
delta regression coefficients is fully HTK compatible.

• It has a wide range of general audio signal
processingcomponents:

• Windowing functions (Hamming, Hann, Gauss,
Sine, …),

• Fast-Fourier Transform,

• Pre-emphasis filter,

• Finit-Impulse-Response (FIR) filterbanks,

• Autocorrelation,

• Cepstrum,

• Overlap-add re-synthesis,

• … and speech-related acoustic descriptors:

• Signal energy,

• Loudness based on a simplified sub-band auditory
model,

• Mel-/Bark-/Octave-scale spectra,

• MFCC and PLP-CC,

• Pitch (ACF and SHS algorithms and Viterbi
smoothing),

• Voice quality (Jitter, Shimmer, HNR),

• Linear Predictive Coding (LPC),

• Line Spectral Pairs (LSP),

• Formants,

• Spectral shape descriptors (Roll-off, slope, etc.),

• … and music-related descriptors:

• Pitch classes (semitone spectrum),

• CHROMA and CENS features.

• It supports multi-modal fusion on the feature level
through openCV integration.

• Several post-processingmethods for low-level
descriptors are included:

• Moving average smoothing,

• Moving average mean subtraction and variance
normalization (e.g. for on-line Cepstral mean
subtraction),

• On-line histogram equalization (experimental),

• Delta regression coefficients of arbitrary order,

• Binary operations to re-combine descriptors.

• A wide range of statistical functionalsfor feature
summarization is supported, e.g.:

• Means, Extremes,

• Moments,

• Segment statistics,

• Sample-values,

• Peak statistics,

• Linear and quadratic regression,

• Percentiles,

• Durations,

• Onsets,

• DCT coefficients,

• Zero-crossings.

• Generic and popular data file formatsare supported:

• Hidden Markov Toolkit (HTK) parameter files (read/
write)

• WEKA Arff files (currently only non-sparse) (read/
write)

• Comma separated value (CSV) text (read/write)

• LibSVM feature file format (write)

In the latest release (2.1) the new features are:

• Integration and improvement of the emotion
recognition models from openEAR,

• LSTM-RNN based voice-activity detector
prototype models included,

• Fast linear SVMsink component which supports
linear kernel SVM models trained with the WEKA
SMO classifier,

• LSTM-RNN JSON network file support for networks
trained with the CURRENNT toolkit,

• Spectral harmonics descriptors,

• Android support,

• Improvements to configuration files and command-
line options,

• Improvements and fixes.

openSMILE’s architecture

openSMILE has a very modular architecture, designed
for incremental data-flow.
A central dataMemory component hosts shared memory
buffers (known as dataMemory levels) to which a single
component can write data and one or more other
components can read data from. There are data-source
components, which read data from files or other external
sources and introduce them to the dataMemory. Then
there are data-processor components, which read data,
modify them, and save it to a new buffer – these are the
actual feature extractor components. In the end data-

http://currennt.sourceforge.net

.

openSMILE:) The Munich Open-Source Large-scale Multimedia Feature Extractor

sink components read the final data and save them to
files or digest it in other ways (classifiers etc.):

As all components which process data and connect
to the dataMemory share some common functionality,
they are all derived from a single base class
cSmileComponent. The following figure shows the
class hierarchy, and the connections between the
cDataWriter and cDataReader components to the
dataMemory (dotted lines).

Getting openSMILE and the documentation

The latest openSMILE packages can be downloaded
here.
At the time of writing the most recent release is
2.1. Grab the complete package of the latest release.
This includes the source code, the binaries for Linux
and Windows. Some most up-to-date releases might
not always include a full-blown set of binaries for all
platforms, so sometimes you might have to compile from
source, if you want the latest cutting-edge version.

While the tutorial in the next section should give you a
good quick-start, it does not and can not cover every
detail of openSMILE. For learning more and getting
further help, there are three main resources:
The first is the openSMILE documentation, called
the openSMILE book. It contains detailed instructions
on how to install, compile, and use openSMILE and
introduces you to the basics of openSMILE. However,
it might not be the most up-to-date resource for the
newest features. Thus, the second resource, is the on-
line help built into the binaries. This provides the most
up-to-date documentation of available components and
their options and features. We will tell you how to use the

on-line help in the next section. If you cannot find your
answer in neither of these resources, you can ask for
help in the discussion forums on the openSMILE website
or read the source-code.

Quick-start tutorial

You can’t wait to get openSMILE and try it out on your
own data? Then this is your section. In the following the
basic concepts of openSMILE are described, pre-built
use-cases of automatic, on-line voice activity detection
and speech emotion recognition are presented, and
the concept of configuration files and the data-flow
architecture are explained.

a. Basic concepts

Please refer to the openSMILE book for detailed
installation and compilation instructions. Here we
assume that you have a compiled SMILExtract binary
(optionally with PortAudio support, if you want to use the
live audio recording examples below), with which you
can run:

to see general usage instructions (first line) and the on-
line help for the cWaveSource component (second line),
for example.

However, from this on-line help it is hard to get a general
picture of the openSMILE concepts. We thus describe
briefly how to use openSMILE for the most common
tasks.

Very loosely said, the SMILExtract binaries can be seen
as a special kind of code interpreter which executes
custom configuration scripts. What openSMILE actually
does in the end when you invoke it is only controlled by
this configuration script. So, in order to do something
with openSMILE you need:

• The binary SMILExtract,

• a (set of) configuration file(s),

• and optionally other files, such as classification
models, etc.

The configuration file defines all the components that are
to be used as well as their data-flow interconnections. All
the components are iteratively run in the “tick-loop“, i.e. a
run method (tick()) of each component is called in every
loop iteration. Each component then checks if there are
new data to process, and if yes, processes the data, and
makes them available for other components to process
them further. Every component returns a status value,

http://www.audeering.com/research/opensmile#download
http://www.audeering.com/research/opensmile#download
http://www.audeering.com/research-and-open-source/files/openSMILE-book-latest.pdf
http://opensmile.audeering.com
http://www.audeering.com/research-and-open-source/files/openSMILE-book-latest.pdf

.

openSMILE:) The Munich Open-Source Large-scale Multimedia Feature Extractor

which indicates whether the component has processed
data or not. If no component has had any further data to
process, the end of the data input (EOI) is assumed. All
components are switched to an EOI state and the tick-
loop is executed again to process data which require
special attention at the end of the input, such as delta-
regression coefficients. Since version 2.0-rc1, multi-
pass processing is supported, i.e. providing a feature
to enable re-running of the whole processing. It is not
encouraged to use this, since it breaks incremental
processing, but for some experiments it might be
necessary.

The minimal, generic use-case scenario for openSMILE
is thus as follows:

Each configuration file can define additional command-
line options. Most prominent examples are the options
for in- and output files (-I and -O). These options
are not shown when the normal help is invoked with
the -h option. To show the options defined by a
configuration file, use this command-line:

The default command-line for processing audio files
for feature extraction is:

This runs SMILExtract with the configuration given in
my_configfile.conf.

The following two sections will show you how to
quickly get some advanced applications running as pre-
configured use-cases for voice activity detection and
speech emotion recognition.

b. Use-case: The openSMILE voice-
activity detector

The latest openSMILE release (2.1) contains a research
prototype of an intelligent, data-drive voice-activity
detector (VAD) based on Long Short-Term Memory
Recurrent Neural Networks (LSTM-RNN), similar to the
system introduced in [Eyben13b].

The VAD examples are contained in the folder scripts/
vad. A README in that folder describes further
details. Here we give a brief tutorial on how to use the
two included use-case examples:

• vad_opensource.conf: Runs the LSTM-RNN VAD
and dumps the activations (voice probability) for each
frame to a CSV text file. To run the example on a wave
file, type:

This will write the VAD probabilities scaled to the
range -1 to +1 (2nd column) and the corresponding
timestamps (1st column) to vad.csv. A VAD
probability greater 0 indicates voice presence.

• vad_segmeter.conf: Runs the VAD on an input wave
file, and automatically extract voice segments to new
wave files. Optionally the raw voicing probabilities as
in the above example can be saved to file. To run the
example on a wave file, type:

This will create a new wave file (numbered
consecutively, starting at 1). The vad_segmenter.conf
optionally supports output to CSV with the -csvoutput

filename option. The start and end times (in seconds)
of the voice segments relative to the start of the
input file can be optionally dumped with the -

saveSegmentTimes filename option. The columns of
the output file are: segment filename, start (sec.), end
(sec.), length of segment as number of raw (10ms)
frames.

To visualise the VAD output over the waveform, we
recommend using Sonic-visualiser. If you have sonc-
visualiser installed (on Linux) you can open both the
wave-file and the VAD output with this command:

An annotation layer import dialog should appear. The
first column should be detected as Time and the second
column as value. If this is not the case, select these
values manually, and specify that timing is specified
explicitly (should be the default) and click OK. You
should see something like this:

http://www.sonicvisualiser.org/

.

openSMILE:) The Munich Open-Source Large-scale Multimedia Feature Extractor

c. Use-case: Automatic speech
emotion recognition

As of version 2.1, openSMILE supports running
the emotion recognition models from the openEAR
toolkit [Eyben09] in live emotion recognition demo. In
order to start this live speech emotion recognition
demo, download the speech emotion recognition
models and unzip them in the top-level folder of the
openSMILE package. A folder named models should be
created there which contains a README.txt, and a sub-
folder emo. If this is the case, you are ready to run the
demo. Type:

to run it. The classification output will be shown on the
console.

NOTE: This example requires that you are running

a binary with PortAudio support enabled. Refer to

the openSMILE book for details on how to compile

your binary with portaudio support for Linux. For

Windows pre-compiled binaries (SMILExtractPA*.exe)

are included, which should be used instead of the

standard SMILExtract.exe for the above example.

If you want to choose a different audio recording device,
use

To see a list of available devices and their IDs, type:

Note: If you have a different directory layout or have

installed SMILExtract in a system path, you must make

sure that the models are located in a directory named

“models” located in the directory from where you call the

binary, or you must adapt the path to the models in the

configuration file (emobase_live4.conf).

In openSMILE 2.1, the emotion recognition models
can also be used for off-line/batch analysis. Two
configuration files are provided for this
purpose: config/emobase_live4_batch.conf and config/

emobase_live4_batch_single.conf.
The latter of the two will compute a single feature vector
for the input file and return a single result. Use this, if
your audio files are already chunked into short phrases
or sentences. The first, emobase_live4_batch.conf will
run an energy based segementation on the input and
will return a result for every segment. Use this for longer,
un-cut audio files. To run analyis in batch mode, type:

This will redirect the result(s) from SMILExtract’s
standard output (console) to the file result.txt. The file
is by default in a machine parseable format, where
key=value tokens are separated by :: and a single result
is given on each line, for example:

The above example is the result of the analysis of the
file example-audio/media-interpretation.wav.

d. Understanding configuration
files

The above, pre-configured examples are a good quick-
start to show the diverse potential of the tool. We will now
take a deeper look at openSMILE configuration files.
First, we will use simple, small configuration files, and
modify these in order to understand the basic concepts
of these files. Then, we will show you how to write your
own configuration files from scratch.

The demo files used in this section are provided in
the 2.1 release package in the folder config/demo. We
will first start with demo1_energy.conf. This file extracts
basic frame-wise logarithmic energy. To run this file
on one of the included audio examples in the folder
example-audio, type the following command:

openSMILE

http://www.audeering.com/research-and-open-source/files/emotion-models-0.1.0.zip
http://www.audeering.com/research-and-open-source/files/emotion-models-0.1.0.zip

.

openSMILE:) The Munich Open-Source Large-scale Multimedia Feature Extractor

This will create a file called energy.csv. Its content
should look similar to this:

The second example we will discuss here, is the audio
recorder example (audiorecorder.conf).

NOTE: This example requires that you are running

a binary with PortAudio support enabled. Refer to

the openSMILE book for details on how to compile

your binary with portaudio support for Linux. For

Windows pre-compiled binaries (SMILExtractPA*.exe)

are included, which should be used instead of the

standard SMILExtract.exe for the following example.

This example implements a simple live audio recorder.
Audio is recorded from the default audio device to an
uncompressed PCM wave file. To run the example and
record to rec.wav, type:

Modifiying existing configuration files is the fasted way to
create custom extraction scripts. We will now change the
demo1_energy.conf file to extract Root-Mean-Square
(RMS) energy instead of logarithmic energy. This can
be achieved by changing the respective options in the
section of the cEnergy component (identified by the
section heading [energy:cEnergy]) from

to

As a second example, we will merge audiorecorder.conf

and demo1_energy.conf to create a configuration file

which computes the frame-wise RMS energy from live
audio input. First, we start with concatenating the two
files. On Linux, type:

On Windows, use a text editor such as Notepad++ to
combine the files via copy and paste. Now we must
remove the cWaveSource component from the original
demo1_energy.conf, as this should be replaced by the
cPortaudioSource component of the audiorecorder.conf

file. To do this, we search for the line

and comment it out by prefixing it with a ; or the C-
style // or the script- and INI-style #. We also remove the
corresponding configuration file section for waveSource.
We do the same for the waveSink component and
the corresponding section, the leave only the output
of the computed frame-wise energy to a CSV file.
Theoretically, we could also leave the waveSink section
and component, but we would need to change the
command-line option defined for the output filename,
as this is the same for the CSV output and the wave-
file output without any changes. In this case we should
replace the filename option in the waveSink section by:

Now, run your new configuration file with:

and inspect the contents of the live_energy.csv file with
a text editor.

openSMILE configuration files are made up of sections,
similar to INI files. Each section is identified by a header
which takes the form:

The first part (instancename) is a custom-chosen name
for the section. It must be unique throughout the
whole configuration file and all included sub-files. The
second part defines the type of this configuration section
and thereby its allowed contents. The configuration
section typename must be one of the available
component names (from the list printed by the command

http://notepad-plus-plus.org/

.

openSMILE:) The Munich Open-Source Large-scale Multimedia Feature Extractor

SMILExtract -L), as configuration file sections are linked
to component instances.
The contents of each section are lines of key=value

pairs, until the next section header is found. Besides
simple key=value pairs as in INI files, a more advanced
structure is supported by openSMILE. The key can be
a hierarchical value build of key1.subkey, for example,
or an array such as
keyarray[0] and keyarray[1]. On the other side, the value
field can also denote an array of values, if the values are
separated by a semi-colon (;). Quotes for the values are
not needed and not yet supported, and multi-line values
are not allowed.
Boolean flags are always expressed as numeric values
with 1 for on or true and 0 for off or false.
The keys are referred to as the configuration options
of the components, i.e. those listed by the on-line help
(SMILExtract -H cComponentType).

Since version 2.1, configuration sections can be split into
multiple parts across the configuration file. That is, the
same header (same instancename and typename) may
occur more than once. In that case all options from all
occurrences will be joint.

There is one configuration section that must always be
present: that of the component manager:

The component manager is the main instance which
creates all component instances of the currently loaded
configuration, makes them read their configuration
settings from the parsed configuration file (through the
configManager component), and runs the tick-loop, i.e.
the loop where data are processed incrementally by
calling each component once to process newly available
data frames. Each component that shall be included
in the configuration, must be listed in this section,
and for each component listed there, a corresponding
configuration file section with the same instancename

and of the same component type must exist. The only
exception is the first line, which instantiates the central
dataMemory component. It must be always present in
the instance list, but no configuration file section has to
be supplied for it.

Each component that processes data has a data-
reader and/or a data-writer sub-component, which are
configurable via the reader and writer objects. The only
options of interest to us now in these objects are the
dmLevel options. These options configure the data-flow
connections in your configuration file, i.e. they define in
which order data is processed by the components, or in

other words, which component is connected with which
other component:

Each component that modifies data or creates data (i.e.
reading it from external sources etc.), will write its data to
a unique dataMemory location (called level). The name
of this location is defined in the configuration file via the
option writer.dmLevel=name_of_evel. The level names
must be unique and only one single component can write
to each level. Multiple components can, however, read
from a single level, enabling re-use of already computed
data by multiple components.
E.g. we typically have a wave source component which
reads audio data from an uncompressed audio file (see
also the demo1_energy.conf file):

The above reads data from input.wav into the
dataMemory level wave.
If next we want to chunk the audio data into overlapping
analysis windows of 20ms length at a rate of 10ms, we
need a cFramer component:

The crucial line in the above code is the line which sets
the reader dataMemory level (reader.dmLevel = wave)
to the output level of the wave source component –
effectively connecting the framer to the wave source
component.

To create new configuration files from scratch, a
configuration file template generator is available. We will
use it to create a configuration for computing magnitude
spectra via the Fast-Fourier Transform (FFT). The
template file generator requires a list of components
that we want to have in the configuration file, so we
must build this list first. In openSMILE most processing
steps are wrapped in individual components to increase
flexibility and re-usability of intermediate data.
For our example we thus need the following
components:

• An audio file reader (cWaveSource),

• a component which generates short-time analysis
frames (cFramer),

• a component which applies a windowing function
to these frames such as a Hamming window
(cWindower),

• a component which performs a FFT (cTranformFFT),

.

openSMILE:) The Munich Open-Source Large-scale Multimedia Feature Extractor

• a component which computes spectral magnitudes
from the complex FFT result (cFFTmagphase),

• and finally a component which writes the magnitude
spectra to a CSV file (cCsvSink).

The generate our configuration file template, we thus run
(note, that the component names are case sensitive!):

The switch -cfgFileTemplate enables the template
file output, and makes -configDflt accept a comma
separated list of component names. If -configDflt is
used by itself, it will print only the default configuration
section of a single component (of which the name is
given as argument to that option). This invocation of
SMILExtract prints the configuration file template to the
log (i.e., standard error and to the (log-)file given by the
-logfile option). The switch -l 0 suppresses all other log
messages (by setting the log-level to 0), leaving only the
configuration file template lines in the specified file.

The file generated by the above command cannot be
used as is, yet. We need to update the data-flow
connections first. In our example this is trivial, as one
component always reads from the previous one, except
for the wave source, which has no reader. We have to
change:

to

The same for the framer, resulting in:

and for the windower:

where we also change the windowing function from the
default (Hanning) to Hamming,
and in the same fashion we go down all the way to the
csvSink component:

The configuration file can now be used with the
command:

However, if you run the above, you will most likely get an
error message that the file input.wav is not found. This
is good news, as it first of all means you have configured
the data-flow correctly. In case you did not, you will get
error messages about missing data memory levels, etc.
The missing file problem is due to the hard-coded input
file name with the option filename = input.wav in the
wave source section. If you change this line to filename

= example-audio/opensmile.wav your configuration will
run without errors. It writes the result to a file called
smileoutput.csv.

To avoid having to change the filenames in the
configuration file for every input file you want to process,
openSMILE provides a very convenient feature: it allows
you to define command-line options in the configuration
files. In order to use this feature you replace the value of
the filename by the command \cm[], e.g. for the input file:

and for the output file:

The syntax of the \cm command
is: [longoptionName(shortOption-1charOnly){default
value}:description for on-line help].

e. Reference feature sets

A major advantage of openSMILE over related feature
extraction toolkits is that is comes with several reference
and baseline feature sets which were used for the
INTERSPEECH Challenges (2009-2014) on Emotion,
Paralinguistics and Speaker States and Traits, as well
as the Audio-Visual Emotion Challenges (AVEC) from
2011-2013. All of the INTERSPEECH configuration files
are found under config/ISxx_*.conf.
All the INTERSPEECH Challenge configuration files
follow a common standard regarding the data output

.

openSMILE:) The Munich Open-Source Large-scale Multimedia Feature Extractor

options they define. The default output file option (-
O) defines the name of the WEKA ARFF file to which
functionals are written. To save the data in CSV format
additionally, use the option -csvoutput filename. To
disable the default ARFF output, use -O ?.
To enable saving of intermediate parameters, frame-
wise Low-Level Descriptors (LLD), in CSV format the
option
-lldoutput filename can be used. By default, lines are
appended to the functions ARFF and CSV files is they
exist, but the LLD files will be overwritten. To change this
behaviour, the boolean (1/0) options -appendstaticarff
1/0, -appendstaticcsv 1/0, and -appendlld 0/1 are
provided.

Besides the Challenge feature sets, openSMILE 2.1
is capable of extracting parameters for the Geneva
Minimalistic Acoustic Parameter Set (GeMAPS —
submitted for publication as [Eyben14], configuration
files will be available together with publication of the
article), which is a small set of acoustic paramters
relevant for affective voice research. It was standardized
and agreed upon by several research teams, including
linguists, psychologists, and engineers.

Besides these large-scale brute-forced acoustic feature
sets, several other configuration files are provided for
extracting individual LLD. These include Mel-Frequency
Cepstral Coefficients (MFCC*.conf) and Perceptual
Linear Predictive Coding Cepstral Coefficients
(PLP*.conf), as well as the fundamental frequency
and loudness (prosodyShsViterbiLoudness.conf, or
smileF0.conf for fundamental frequency only).

Conclusion and summary

We have introduced openSMILE version 2.1 in this
article and have given a hands-on practical guide
on how to use it to extract audio features of out-of-
the-box baseline feature sets, as well as customized
acoustic descriptors. It was also shown how to use
the voice activity detector, and pre-trained emotion
models from the openEAR toolkit for live, incremental
emotion recognition. The openSMILE toolkit features
a large collection of baseline acoustic feature sets for
paralinguistic speech and music analysis and a flexible
and complete framework for audio analysis. In future
work, more efforts will be put in documentation, speed-
up of the underlying framework, and the implementation
of new, robust acoustic and visual descriptors.

Acknowledgements

This research was supported by an ERC
Advanced Grant in the European Community’s
7th Framework Programme under grant agreement

230331-PROPEREMO (Production and perception of
emotion: an affective sciences approach) to Klaus
Scherer and by the National Center of Competence in
Research (NCCR) Affective Sciences financed by the
Swiss National Science Foundation (51NF40-104897)
and hosted by the University of Geneva.

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme under grant agreement No.\
338164 (ERC Starting Grant iHEARu).

The authors would like to thank audEERING UG
(haftungsbeschränkt) for providing up-to-date pre-
release documentation, computational resources, and
great support in maintaining the free open-source
releases.

Papers

[Eyben09] F. Eyben, M. Wöllmer, and B. Schuller,
"openEAR - Introducing the Munich Open-Source
Emotion and Affect Recognition Toolkit," in Proceedings
3rd International Conference on Affective Computing
and Intelligent Interaction and Workshops (ACII 2009),
vol. I, Amsterdam, The Netherlands, pp. 576-581,
HUMAINE Association, IEEE, September 2009.

[Eyben10] F. Eyben, M. Wöllmer, and B. Schuller,
"openSMILE - The Munich Versatile and Fast Open-
Source Audio Feature Extractor," in Proceedings of
the 18th ACM International Conference on Multimedia
(ACM'MM 2010), Florence, Italy, pp. 1459-1462, ACM,
October 2010.

[Eyben13a] F. Eyben, F. Weninger, F. Groß, and B.
Schuller, "Recent Developments in openSMILE, the
Munich Open-Source Multimedia Feature Extractor," in
Proceedings of the 21st ACM International Conference
on Multimedia (ACM'MM 2013), Barcelona, Spain, pp.
835-838, ACM, October 2013.

[Eyben13b] Eyben, F.; Weninger, F.; Squartini, S.;
Schuller, B., "Real-life voice activity detection with
LSTM Recurrent Neural Networks and an application
to Hollywood movies," 2013 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 483-487, 26-31 May 2013.
doi: 10.1109/ICASSP.2013.6637694

[Eyben14] F. Eyben et al.: "The Geneva Minimalistic
Acoustic Parameter Set (GeMAPS) for Voice
Research and Affective Computing", submitted to IEEE
Transactions on Affective Computing. 2015.

Authors: Florian Eyben and Björn Schuller
Affiliations: F. Eyben: Technische Universität München,
Munich, Germany; B. Schuller: Chair of Complex and

http://www.cs.waikato.ac.nz/ml/weka/

.

Call for Workshop Proposals @ ACM Multimedia 2015

Intelligent Systems (CIS), University of Passau, Passau,
Germany and Department of Computing, Imperial College
London, London, UK.

Call for Workshop
Proposals @ ACM
Multimedia 2015
We invite proposals for Workshops to be held at
the ACM Multimedia 2015 Conference. Accepted
workshops will take place in conjunction with the main
conference, which is scheduled for October 26-30,
2015, in Brisbane, Australia.

We solicit proposals for two different kinds of workshops:
regular workshops and data challenge.

Regular Workshops

The regular workshops should offer a forum for
discussions of broad range of emerging and specialized
topics of interest to the SIG Multimedia community.
There are a number of important issues to be considered
when generating a workshop proposal:

1. The topic of the proposed workshop should offer
a perspective distinct from and complementary to
the research themes of the main conference. We
therefore strongly advise to carefully review the
themes of the main conference (which can be found
here), when generating a proposal.

2. The SIG Multimedia community expects the
workshop program to be part of the program to
nurture and to grow the workshop research theme
towards becoming mainstream in the multimedia
research field and one of the themes of the main
conference in the future.

3. Interdisciplinary theme workshops are strongly
encouraged.

4. Workshops should offer a discussion forum
of a different type than that of the main
conference. In particular, they should avoid becoming
“mini-conferences” with accompanying keynote
presentations and best paper awards. While formal
presentation of ideas through regular oral sessions
are allowed, we strongly encourage organizers to
propose alternate ways to allow participants to
discuss open issues, key methods and important
research topics related to the workshop theme.
Examples are panels, group brainstorming sessions,
mini-tutorials around key ideas and proof of concept
demonstration sessions.

Data Challenge Workshops

We are also seeking organizers to propose Challenge-
Based Workshops. Both academic and corporate
organizers are welcome.

Data Challenge workshops are solicited from both
academic and corporate organizers. The organizers
should provide a dataset that is exemplar of
the complexities of current and future multimodal/
multimedia problems, and one or more multimodal/
multimedia tasks whose performance can be objectively
measured. Participants in the challenge will evaluate
their methods against the challenge data in order
to identify areas of strengths and weakness. Best
performing participating methods will be presented in
the form of papers and oral/poster presentations at the
workshop.

More information

For details on submitting workshops proposals and the
evaluation criteria, please check the following site:

http://www.acmmm.org/2015/
call-for-workshop-proposals/

Important dates:

• Proposal Submission: February 10, 2015

• Notification of Acceptance February 27, 2015

Looking forward to receiving many excellent
submissions!

Alan Hanjalic, Lexing Xie and Svetha Venkatesh
Workshops Chairs, ACM Multimedia 2015

MPEG Column: 110th
MPEG Meeting
– original posts here by Multimedia Communication

blog, Christian Timmerer, AAU/bitmovin

The 110th MPEG meeting was held at the Strasbourg
Convention and Conference Centre featuring the
following highlights:

http://records.sigmm.ndlab.net/2015/01/call-for-workshop-proposals-acm-multimedia-2015/
http://records.sigmm.ndlab.net/2015/01/call-for-workshop-proposals-acm-multimedia-2015/
http://records.sigmm.ndlab.net/2015/01/call-for-workshop-proposals-acm-multimedia-2015/
http://www.acmmm.org/2015/call-for-workshop-proposals/
http://www.acmmm.org/2015/call-for-workshop-proposals/
http://records.sigmm.ndlab.net/2015/01/mpeg-column-110th-mpeg-meeting/
http://records.sigmm.ndlab.net/2015/01/mpeg-column-110th-mpeg-meeting/
http://multimediacommunication.blogspot.co.at/2015/01/mpeg-news-report-from-110th-meeting.html
http://multimediacommunication.blogspot.co.at/
http://multimediacommunication.blogspot.co.at/
http://research.timmerer.com
http://www.aau.at
http://www.bitmovin.net/

