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Abstract
Purpose The TF (Thomsen–Friedenreich, CD176, Galβ1-3GalNAc) carbohydrate moiety is known as a specific oncofetal
carbohydrate epitope present in fetal and neoplastic tissue as well as in stem cells. TF was demonstrated to mediate tumor-
promoting features and to be highly immunogenic. The current study aimed to evaluate whether presence of the TF antigen
is associated with clinico-pathological parameters and prognosis of early breast cancer (BC).
Methods Primary BC tissue (n = 226) was stained for TF using two monoclonal anti-TF antibodies (Nemod-TF1, Nemod-
TF2). Staining results were correlated to clinical data including survival.
Results Nemod-TF1 staining was positively correlated to lymph node metastasis (p = 0.03) and the presence of tumor-
associated MUC1 (TA-MUC1; p = 0.003). Further, the presence of the Nemod-TF1 epitope predicted worse prognosis in
TA-MUC1 positive (overall survival: p = 0.026) as well as in triple negative (overall survival: p = 0.002; distant metastasis-
free survival: p = 0.012) BC.
Conclusions The data presented here further support a role of TF in BC tumor biology. Whether anti-TF directed treatment
approaches may gain clinical relevance in those cases determined as triple negative or TA-MUC1 positive remains to be
determined.
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Abbreviations
BC  Breast cancer
CIS  Carcinoma in situ
CSC  Cancer stem cell
DFS  Disease-free survival
DMFS  Distant metastasis-free survival
ER  Estrogen receptor
FFPE  Formalin-fixed, paraffin-embedded
IRS  Immunoreactive score
LRFS  Local recurrence-free survival
OS  Overall survival
PR  Progesterone receptor
REMARK  REporting recommendations for tumor

MARKer prognostic studies

TA-MUC1  Tumor-associated mucin-1
TF  Thomsen–Friedenreich, CD176,

Galβ1-3GalNAc
TNBC  Triple negative BC
WHO  World Health Organization

Background

The Thomsen–Friedenreich (TF, core-1) antigen is a spe-
cific oncofetal carbohydrate (Galβ1-3GalNAc) moiety pre-
sent on the surface of neoplastic cells of numerous cancer
entities [1]. For instance, mucin-like glycoproteins such as
MUC1 (CA15-3, CD227), which has developed to be the
most widely used breast cancer (BC) serum tumor marker,
were demonstrated to abundantly carry the TF antigen [2,
3]. TF is covered by a cryptic glyco-structure in healthy
adult tissue, but has been detected to become exclusively
demasked during the process of malignant transformation
[4].  Accordingly,  TF is hardly found in non-neoplastic
adult cells but widely present in cancer cells especially in
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epithelial descent. For this reason, TF has been hypoth-
esized to be a tumor marker of exceptional specificity [4].
The TF carbohydrate moiety is linked to carrier molecules
by α- or β-O-glycosylation and has therefore be termed as
TFα or TFβ, respectively [5]. As TFβ is absent in tumors
of epithelial descent [5], in this manuscript the term TF—
unless otherwise stated—refers to TFα.

TF has been found to mediate endothelium adhesion
and tumor invasion implying its potential as a marker of
cancer cell aggressiveness [6]. A recent study of our group
also demonstrated that the apoptotic potential of galec-
tin-1 on BC cells  is  dependent  on the presence of  cell
surface TF [7]. In addition, the TF glycoepitope is highly
immunogenic and thus several attempts have been made
to design antibodies targeting TF. These antibodies have
already been shown to comprise anti-cancer cell activity
in vitro and a mouse BC model [8, 9].

Producing  monoclonal  antibodies  (mAbs)  detecting
TF appeared to be difficult in the past. In addition, mAbs
detecting TF differ regarding specificity and selectivity
and only few of them proved to be highly specific and
selective for TF in its ‘natural’ context without showing
cross-reactivity to synthetic TF-conjugates. Goletz et al.
proposed Nemod-TF1 and Nemod-TF2 to be two of the
most thoroughly characterized mAbs detecting TF [10].
Though basically Nemod-TF1 and Nemod-TF2 both detect
the same carbohydrate moiety (i.e., TF), their fine specifi-
cities are different. Highly avid Nemod-TF2 detects TF but
is also cross-reactive to TFβ and to core-2, a carbohydrate
structure similar but not equal to TF [10]. Since core-2 has
not been found in humans and TFβ is not present in human
tissue at a level detectable by IHC, the cross-reactivity of
Nemod-TF2 to core-2 does not alter the detection of TF
by Nemod-TF2 in human tumors [10]. Nemod-TF1 holds
both high affinity and specificity for the α-anomer of TF
(herein termed TF), is not cross-reactive to core-2, and
even detects very low densities of TF. Therefore, Nemod-
TF1 is regarded to be the most specific TF antibody which
is seen as a basic requirement in terms of potentially using
Nemod-TF1 as a therapeutic antibody in the future [10].

In view of the above, we selected the two highly selec-
tive TF antibodies Nemod-TF1 and Nemod-TF2 to inves-
tigate whether TF may be related to clinico-pathological
parameters or prognosis of BC patients.  To the best of
our knowledge, no data exist upon Nemod-TF1 or Nemod-
TF2 immunoreactivity from a large panel of BC patients.
We thus correlated immunoreactivity of both Nemod-TF1
and Nemod-TF2 to clinico-pathological variables includ-
ing overall survival (OS), local recurrence-free survival
(LRFS),  distant  metastasis-free  survival  (DMFS),  and
disease-free survival (DFS).

Methods

Patients and specimen characteristics

Formalin-fixed, paraffin-embedded (FFPE) BC samples
from 226 patients who underwent surgery from 1988 to
2000 due to a malignant tumor of the breast at the Depart-
ment of Obstetrics and Gynecology, Ludwig-Maximilians-
University  of  Munich,  Germany,  were included in this
study (Table 1). Histopathological and clinical data as well
as the follow-up were retrieved from patients’ charts, the
laboratory archive, or from the Munich Cancer Registry.
Study endpoints were defined as follows: OS = period of
time from the date of surgery until the date of death or
the date of last  follow-up. Patients alive at  the time of
last follow-up and patients who died due to a non-BC-
related cause were treated as censored cases. LRFS = time
a patient  survives without  developing local  recurrence
(i.e., ipsilateral breast or axilla); DMFS = time a patient
survives  without  developing distant  metastatic  spread;
DFS = period a patient survives without local or distant
evidence of disease [11]. Patients not having experienced
an event (i.e., local recurrence [LRFS], distant metasta-
sis [DMFS], either local or distant recurrence/metastasis
[DFS]) were treated as censored cases.

Assay methods

Immunohistochemistry (IHC)

In total, 226 cases were investigated by Nemod-TF immu-
nohistochemistry. Data on both antibody stainings were
available from 222 cases. Four patient samples were only
available for either Nemod-TF2 or Nemod-TF1 staining,
respectively. The number of cases eligible for Nemod-TF1
IHC was 224. Nemod-TF2 was IHC was also performed
in 224 cases.

IHC of  TF and scoring was  described by our  group
before  [12, 13].  Tissue samples  were fixed in  buffered
formalin solution (3.7%) immediately after resection and
underwent  standardized  paraffin  embedding.  Samples
were stored under standardized conditions. Tissue slides
were cut using a microtome and dewaxed in xylene. Tis-
sue peroxidase was blocked using 3% peroxide in metha-
nol. Following a descending series of alcohols, a washing
and a blocking step slides were stained using Nemod-TF1
(mouse IgM, kappa produced by Glycotope, Berlin, Ger-
many) or Nemod-TF2 (mouse IgM, kappa produced by
Glycotope, Berlin, Germany) as described before [13, 14].
Antibody dilutions were 1:100 in case of Nemod-TF1 and
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1:200 for Nemod-TF2. Following another series of wash-
ing steps biotinylated anti-IgM secondary antibody was
applied and visualized using the Vectastain® Elite ABC-
Kit (Vector Laboratories, Peterborough, GB) in combina-
tion with DAB as a chromogenic substrate. Slides were
counterstained with hemalaun, washed, and mounted.

Ovarian  cancer  tissue  served  as  positive  control  for
Nemod-TF1 and Nemod-TF2 staining as explained else-
where [12], while replacement of the primary antibody with
mouse IgM was performed as negative control.

The immunoreactivity of Nemod-TF1 and Nemod-TF2 was
examined by two independent observers by consensus. Sam-
ples were assessed by applying an established semi-quantita-
tive immunoreactive score (IRS) [15–17]. The IR score quanti-
fies immunoreactivity by multiplication of staining intensity
(graded as 0 = no, 1 = weak, 2 = moderate, and 3 = strong stain-
ing) and percentage of positively stained cells (0 = no staining,
1 = ≤ 10% of the cells, 2 = 11–50% of the cells, 3 = 51–80% of
the cells, and 4 = ≥ 81% of the cells). A Leitz (Wetzlar, Ger-
many) microscope was employed, and representative images
were taken by a CCD color camera (JVC, Japan). Since both
Nemod-TF1 and Nemod-TF2 positivity rates were found to be
quite low; the threshold was set at an IR score of 0 with cases
scored as IRS higher than 0 counted as positive. TA-MUC1

staining on the study panel has been published by our group
before [18].

Statistical analysis methods

This study has been carried out according to the REMARK
(REporting recommendations for tumor MARKer prognostic
studies) criteria [19]. We used the IBM statistic package
SPSS (version 24) and Microsoft Excel 2010 to test data
for statistical significance and to plot graphs. Chi-square
test was performed to test data for statistical independence.
Fisher’s exact test was used where numbers in each group
were insufficient for Chi-square test. Survival analysis was
done by applying the log rank test and data are presented as
Kaplan–Meier survival curves. Observations with p < 0.05
were considered as statistically significant.

Results

Study cohort

A breast tumor smaller than 2 cm in size was diagnosed
in 68.0% of cases (n (data available) = 225, n (pT1) = 153

Table 1  TF1 and TF2
positivities as correlated to
clinico-pathological parameters

CIS carcinoma in situ in invasive CA, ns not signficant

Nemod-TF1 Nemod-TF2

Neg. Pos. p Neg. Pos. p

Histology
NST 75 54 ns 76 52 ns
Non NST 63 32 53 43

Subtype
Luminal A 52 47 ns 51 49 ns
Luminal B 50 21 43 28
Her2 pos. 16 5 12 9
TNBC 18 11 22 7

Grading
G1, G2 63 39 ns 59 42 ns
G3 29 23 30 22

pT
pT1 94 57 ns 88 65 ns
pT2-pT4 43 29 40 30

pN
pN0 82 38 0.03 74 47 ns
pN1-pN3 50 43 50 42

CIS fraction in invasive CA
No 67 38 ns 66 39 ns
Yes 71 48 63 56

Age (years)
≤ 60 90 46 ns 85 52 ns
> 60 48 39 43 43
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(68.0%), n (pT2) = 66 (29.3), n (pT3) = 1 (0.4%), n (pT4) = 5
(2.2%)),  and  about  half  of  all  patients  were  diagnosed
for cancer without lymph node metastasis (n  (data avail-
able) = 215; n  (pN0) = 122 (56.7%)), respectively. About
one-third of tumors was classified as high grade (n (G3) = 53
(34.2%)). A significant number of cases also displayed a
DCIS/LCIS  fraction  within  the  invasive  carcinomas.
Information on intrinsic subtypes was available from 222
cases and subtypes were distributed as follows: n (Luminal
A) = 100 (45.0%), n (Luminal B) = 71 (32.0%), n (Her2 posi-
tive) = 21 (9.5%), n (TNBC) = 30 (13.5%). Study endpoints
were OS, DMFS, DFS, and LRFS.

Mean  OS  was  12.2 years  (95% CI  11.6–12.8 years),
mean follow-up was 9.8 years (95% CI 9.27–10.3 years),
and 49 cancer-related deaths were documented. Another
23 women died due to non-cancer-related reasons and were
treated as censored cases. Mean DMFS was 13.0 years (n
(events) = 34), mean DFS was 11.4 years (n (events) = 55),
and mean LRFS was 13.4 years (n (events) = 32). Mean
patient age was 58.3 ± 13.3 years. Further patients’ charac-
teristics are listed in Table 1.

TF with respect to clinico‑pathological parameters

Both Nemod-TF1 and Nemod-TF2 showed immunoposi-
tivity in about 40% of cases (Nemod-TF1: 38.4%, Nemod-
TF2: 42.4%; Fig. 1). Correlation analysis revealed a strong
concordance between Nemod-TF1 and Nemod-TF2 staining
(p < 0.001) which was independent of the intrinsic BC sub-
type (i.e., Luminal A/B, Her2 positive, TNBC), respectively.
Co-expression of both Nemod-TF epitopes was observed in
63 out of 222 cases (‘double positive’, 28.4%), while the
absence of both epitopes was found in 105 cases (‘double
negative,’ 47.3%) samples. The presence of neither Nemod-
TF1 nor Nemod-TF2 epitope was related to histopathological
parameters like histology, histologic subtype, pT stage, the
presence of an in situ component, or tumor grade (Table 1).
TF immunostaining was not associated with patient age.
Those cases that presented with lymph node metastasis at

initial diagnosis expressed TF significantly more often than
lymph node-negative tumors did (fraction of Nemod-TF1
positive in pN+ : 46.2% vs. fraction of Nemod-TF1 posi-
tive in pN0: 31.7%; p = 0.03). Nemod-TF1 was inversely
correlated to anthracycline-containing systemic treatment
(p = 0.048) while Nemod-TF2 was positively correlated with
radiotherapy (p = 0.047; Table 2).

Tumors expressing the Gatipotuzumab (formerly known
as  PankoMabGEX) epitope  (= TA-MUC1)  at  the  tumor
cell membrane stained positive for Nemod-TF1 more often
than those classified as negative for TA-MUC1 (fraction of
Nemod-TF1 positive in TA-MUC1 positive: 44.9% vs. frac-
tion of Nemod-TF1 positive in TA-MUC1 negative: 23.5%;
p = 0.003). The presence of the Nemod-TF1 epitope was
inversely correlated to ki67 (p = 0.013). Immunoreactivity of
Nemod-TF2 was significantly higher in ER-positive (fraction
of Nemod-TF2 positive in ER positive: 46.0% vs. fraction
of Nemod-TF2 positive in ER negative: 20.7%; p = 0.011)
and PR-positive cancers (fraction of Nemod-TF2 positive
in PR positive: 46.9% vs. fraction of Nemod-TF2 positive
in PR negative: 31.7%; p = 0.049). Finally, Nemod-TF2 was
positively correlated to membrane staining of TA-MUC1,
too (fraction of Nemod-TF2 positive in TA-MUC1 positive:
49.0% vs. fraction of Nemod-TF2 positive in TA-MUC1
negative: 27.5%; p = 0.003) (Table 3).

Nemod‑TF1 immunoreactivity predicts shortened
distant metastasis‑free and OS in triple negative BC
patients

BC samples were stratified as either Nemod-TF1 positive
vs. negative or Nemod-TF2 positive vs. negative, respec-
tively.  Neither  immunoreactivity  of  Nemod-TF1  nor
immunoreactivity of Nemod-TF2 was associated with OS,
LRFS, DMFS, or DFS regarding the non-stratified study
cohort. Then, immunopositivity of both anti-TF antibod-
ies was tested for its ability to predict prognosis in sub-
groups of the cohort. Staining of Nemod-TF1 was related
to  shortened  OS  in  cases  expressing  the  carbohydrate

Fig. 1  Staining of TF by
Nemod-TF1 and Nemod-TF2 in
BC tissue. Representative pho-
tomicrographs of Nemod-TF1
and Nemod-TF2 immunostain-
ing are presented (25× lens)



647                                                       

   

epitope  TA-MUC1  at  the  cell  surface  (as  detected  by
Gatipotuzumab)  (OS:  p = 0.026, Fig.  2c).  Regarding
DMFS (p = 0.057, Fig. 2a)  and  DFS (p = 0.067, Supp.
Fig. 1a), this observation was of borderline significance.
DMFS and OS of patients diagnosed for triple negative
BC were  significantly  shortened  in  case  of  expressing
the Nemod-TF1 epitope (DMFS: p = 0.012, Fig. 2b; OS:

p = 0.002, Fig. 2d). This association failed to be significant
(p = 0.091, Supp. Fig. 1b) for DFS. Multivariate models
were built to test whether Nemod-TF1 might evolve to be
an independent prognosticator in the subgroups mentioned
above. Nemod-TF1 proved to be an independent predic-
tor for OS and DMFS in TNBC (Table 4). Since data on
systemic treatment were available from 17 TNBC patients

Table 2  Local and systemic treatment of patients studied

ALNE axillary lymphonodectomy, ns not significant, neg. negative, pos. positive, CHT chemotherapy

Data available Nemod-TF1 Nemod-TF2

Nemod-TF1 Nemod-TF2 Neg. Pos. Neg. Pos.

Type of breast surgery 185 185 Breast conserving 88 49 ns 84 55 ns
Mastectomy 28 20 25 21

ALNE 175 175 Performed 113 62 106 69
Radiation 137 139 Yes 87 43 ns 81 51 0.047

No 6 1 7 0
Systemic treatment 105 106 No 40 26 ns 40 27 ns

Yes 27 12 25 14
Anthracycline-containing CHT 104 105 No 47 34 0.048 47 35 ns

Yes 19 4 17 6
Platinum-containing CHT 104 105 No 64 37 ns 62 40 ns

Yes 2 1 2 1
Taxane-containing CHT 104 105 No 55 35 ns 52 39 ns

Yes 11 3 12 2
Endocrine treatment 105 106 No 22 9 ns 22 10 ns

Yes 45 29 43 31

Table 3  Nemod-TF1 and
Nemod-TF2 positivities as
correlated to cancer biomarkers

ns not significant

Nemod-TF1 Nemod-TF2

Neg. Pos. p Neg. Pos. p

ER
Negative 19 10 ns 23 6 0.011
Positive 105 68 94 80

PR
Negative 39 21 ns 41 19 0.049
Positive 74 53 68 60

Her2
Negative 98 62 ns 97 62 ns
Positive 16 3 11 7

ki67
Negative 52 48 0.013 52 49 ns
Positive 51 21 44 28

Gatipotuzumabmem

Negative 52 16 0.003 50 19 0.003
Positive 86 70 79 76

Gatipotuzumabcyt

Negative 94 52 ns 87 58 ns
Positive 44 34 42 37
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only, just type of breast surgery, tumor size, lymph node
status, patient age, and Nemod-TF1 staining were included
in the multivariate model.

On the opposite, though not reaching statistical signifi-
cance, the presence of TF, as detected by Nemod-TF1, seemed
to be associated with favorable DMFS in Her2-positive cases
(p = 0.057; Supplementary Fig. 2).

Discussion

This study detected immunoreactivity of Nemod-TF1 to pre-
dict prognosis in BC cases classified as either positive for the
Gatipotuzumab epitope TA-MUC1 (membrane staining) or
as triple negative.

Fig. 2  Presence of the Nemod-TF1 epitope predicts shortened metas-
tasis-free  (DMFS)  and  OS  in  subgroup  analysis.  TF  as  detected  by
Nemod-TF1  was  found  to  be  predictive  for  shortened  OS  in  a  sub-
group  of  breast  cancers  expressing  the  Gatipotuzumab  epitope  TA-

MUC1  at  the  cell  surface  (TA-MUC1mem)  (c).  Regarding  DMFS,
this  association  was  of  borderline  significance  only  (a).  In  addition,
expression  of  the  Nemod-TF1  epitope  was  predictive  for  shortened
DMFS (b) and OS (d) in triple negative breast cancer
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Immunopositivity of either Nemod-TF1 or Nemod-TF2
was present in about 40% of BC samples. In line with this,
others have demonstrated a similar fraction of TF-positive
cases  in  different  cancer  entities  and report  comparable
staining patterns [4, 20, 21]. Since TF has been hypothesized
to be an oncofetal carbohydrate tumor marker expressed on
cancer stem cells (CSC) or cell populations directly descend-
ing from them, such a distribution pattern may be rather
expected [4]. Thus, to get a representative impression of
Nemod-TF1/2 staining, IHC analysis presented here was
performed on slides cut from tumor paraffine blocks rather
than from core biopsies of tissue microarrays. We observed a
strong positive correlation between Nemod-TF1 and Nemod-
TF2 staining (p < 0.001). Although there was a positive cor-
relation of the two antibodies, they differed regarding their
correlation to clinico-pathological parameters and prognosis
prediction. We hypothesize this to be due to the different
fine specificity and affinity of the two as explained in the
“Background” section.

TF was shown to be linked to CSC markers (e.g., CD44)
by O-glycosylation [22]. Supporting its features as a CSC
marker, TF has been highlighted to be abundantly present
on circulating tumor cells [23] and to promote metastatic
spread [8].  Gunkel  et al.  used A78-G/A7 to stain tissue
samples of mucinous BC and their corresponding lymph
node metastasis for TF. They found a strong co-incidence
of TF expression in primary mucinous BC samples and
lymph node metastasis [24]. We also report a positive cor-
relation of TF expression and the presence of lymph node
metastasis. These results may imply that the presence of the
TF antigen in the primary breast tumor may facilitate meta-
static spread to axillary lymph nodes or distant sites during
early carcinogenesis. A biomarker reliably predicting lymph

node positivity in patients diagnosed for primary BC may
become of particular importance in terms of differentiat-
ing those patients with high vs. low risk for cancer spread
to lymph nodes. While lymph node dissection may not be
necessary in patients with low risk for positive lymph nodes,
it may remain to be an indispensable part of surgical treat-
ment of patients at high risk. Hence, a biomarker predicting
lymph node status may assist to safely de-escalate surgi-
cal radicality. About half of all cases with positive axillary
lymph nodes expressed the Nemod-TF1 epitope (fraction of
Nemod-TF1 positive in pN+ : 46.2%). However, 38 (31.7%)
out of 120 patients diagnosed as lymph node negative were
found to express the epitope of Nemod-TF1, too. As a con-
sequence, though expression of the Nemod-TF1 epitope sig-
nificantly correlates with lymph node positivity, it seems to
too unspecific to predict the lymph node status as a single
marker. Thus, to clear whether a biomarker set including
Nemod-TF1 may assist to prognosticate cancer spread to
axillary lymph nodes, a specifically designed and powered
trial would need to be set up.

Up to now, several glycoproteins in particular those clas-
sified as mucin-like glycoproteins have been identified to act
as TF carrier molecules [4, 22]. We performed correlation
analysis thus to screen for potential candidates. Statistical
correlation in our study sample confirms that membranous
TA-MUC1 (as detected by Gatipotuzumab) carries TF and
exposes it on the cell surface [25]. In line with this, canoni-
cal MUC1 has already been demonstrated to get glyco-mod-
ified by the TF moiety in breast and gastric cancer [26, 27].
MUC1 itself holds kinase-like activities [28], may directly
modulate downstream kinase signaling [29], and has been
demonstrated to regulate multiple tumor biologic features
[29]. Interestingly, the presence of TF predicted shortened
DDFS and OS especially in the TA-MUC1-positive sub-
group, supporting that the oncogenic activity of TF may
somehow be dependent on expression of TA-MUC1 at the
cell membrane. Insight analysis apart from statistical cor-
relation is indispensable in order to prove this.

TF has been described in multiple types of cancer. How-
ever, whether the presence of TF may be related to patients’
prognosis remains to be contradictory. Though the majority
of studies published on this topic report TF to be associated
with unfavorable prognosis [30–33], others found TF to be a
positive predictor [23, 34]. Despite appearing inconsistent or
even conflicting, both statements may be interpreted by TF
exerting different biological effects in BC, i.e., alteration of
the host anti-tumor immune response and direct regulation
of cell signaling. In detail, since TF—which has been named
the ‘hidden tumor antigen’ [10]—is covered by a “glyco-
cap” in non-neoplastic tissue and becomes exposed only
during malignant transformation [4], it may be recognized
as a foreign, ‘non-self’ antigen by the host’s immune sys-
tem. Therefore, TF might facilitate a kind of host anti-tumor

Table 4  Multivariate Cox regression analysis in TNBC

Con breast conserving, ME mastectomy

Exp(B) p 95.0% CI for
exp(B)

Lower Upper

Distant metastasis-free survival
pT (T1 vs. T2/3/4) 0.588 0.544 0.105 3.275
pN (neg. vs. pos.) 13.486 0.010 1.886 96.427
Age (≤ 60 years vs. > 60 years) 0.173 0.136 0.017 1.736
Breast surgery (con. vs. ME) 1.010 0.934 0.796 1.282
Nemod-TF1 (neg. vs. pos.) 7.604 0.038 1.123 51.506

Overall survival
pT (T1 vs. T2/3/4) 0.342 0.243 0.056 2.074
pN (neg. vs. pos.) 6.915 0.025 1.276 37.487
Age (≤ 60 years vs. > 60 years) 0.068 0.025 0.007 0.719
Breast surgery (con. vs. ME) 1.022 0.049 1.000 1.045
Nemod-TF1 (neg. vs. pos.) 11.929 0.002 2.500 56.916
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immune response enabling the host to initiate a more effec-
tive anti-tumor immune defense [23]. As a consequence,
those cancer cells that expose TF on their surface may get
eliminated more easily than those cancer cells not express-
ing TF. This seems to be especially attractive in terms of
developing anti-cancer, i.e., anti-TF-directed vaccines or
therapeutic antibodies for personalized oncology. Bearing in
mind its immunogenic, ‘non-self’ characteristics, the pres-
ence of the TF epitope may be causally related to favorable
DDFS in Her2-positive BC patients by augmenting a host
anti-tumor immune action. Though this hypothesis seems to
be conclusive and our analysis demonstrated survival curves
of TF-positive vs. TF-negative patients to be clearly sepa-
rated in Her2-positive BC, this did not reach statistical sig-
nificance—potentially due to the small number of patients in
this subgroup. Finally, it needs to be mentioned that this was
a retrospective study and that patients were treated between
1988 and 2000, i.e., before the trastuzumab era. Whether our
results can be reproduced in patients non-naïve for trastu-
zumab remains to be analyzed.

On the other side,  antibodies targeting TF effectively
blocked cell proliferation and extended survival of mice with
metastatic BC [8, 9, 35], hence supporting the hypothesis
that TF itself may comprise pro-tumorigenic actions and
may thus be associated with worse prognosis. This seems
to turn especially obvious in those BC cases either positive
for the Gatipotuzumab epitope TA-MUC1 at the cell mem-
brane or classified as triple negative. TA-MUC1 functions
as a TF carrier molecule and—as speculated above—might
be involved in mediating TF oncogenic activity. To gain
mechanistic insights, functional studies using the Nemod-
TF1 antibody would be required. Regarding TNBC, the pres-
ence of Nemod-TF1 was prognostic for shortened OS and
DMFS within both uni- and multivariate analysis. However,
results need to be interpreted with care since herein only
relatively few TNBC cases were studied. Larger trials are
needed to validate these results and to verify whether TF
may turn out to be a targetable epitope in BC. Especially in
case of TNBC, there is an unmet clinical need to develop
effective therapies to target molecules that—like TF—are
widely expressed in TNBC and that potentially hold onco-
genic activity in this molecular subtype.
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