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Abstract

The international success of world-class athletes depends strongly on the assess-

ment and active improvement of their technique. Camera technology, force sensors,

and sophisticated evaluation software have become common tools for compiling so-

phisticated biomechanical performance profiles, which allow for precisely evaluating

the human motion and concluding necessary steps for improving the athletic per-

formance. In this work, we investigate approaches and algorithms for the fully

automatic, time-continuous estimation of kinematic and dynamic performance pa-

rameters of athletes in sports videos. Therefore, we focus on two specific application

scenarios: estimating the motion kinematics of swimmers in a swimming channel and

predicting the jump forces of ski jumpers just from video footage.

A fundamental concept of the kinematic analysis is the key-pose, a specific, well-

defined athlete posture. The precise and continuous identification of key-poses allows

for deriving a lot of relevant kinematic parameters: stroke frequency, kick rate, and

inner-cyclic interval timings. We show that the identification of a key-pose can be

treated as a classification problem and introduce an ensemble of spatiotemporal pose

detectors for continuously estimating the occurrence of distinct postures in cyclic

motion. While we can not guarantee that these postures represent actual key-poses,

they can be used in a simple probabilistic scheme to indirectly infer key-pose occur-

rences. We furthermore discuss articulate pose estimation for identifying key-poses

directly by their defining features. The proposed pose estimator leverages a deep

neural network for learning athlete appearance, which enables the articulate esti-

mation of joint locations even in the visually challenging scenario of a swimming

channel. With modern pose estimation systems not being immune to estimation

errors, we investigate the error susceptibility of two recent systems and derive a tax-

onomy of the most pertinent estimation errors. Several optimization strategies are

discussed, where each method rectifies a different error class, consequently improving

joint localization and key-pose identification.

At last, we address the question of how the jump forces of a ski jumper can

be predicted from video footage. We introduce a neural network build on dilated

convolutional layers for predicting a series of force measurements directly from a

sequence of athlete poses. An experimental exploration of different architectures

indicates the general feasibility of our approach.
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1 — Introduction

Termed by the greek ”κιυηµα” (kinema, engl.: movement, motion), ”kinematics is

the study of motion” [8] of particles or rigid bodies, without considering the causes

of that motion. In classical mechanics, the study of particle kinematics involves

arguing about the position of a particle, the displacement in position, commonly

referred to as the trajectory, and quantities like speed, velocity, and acceleration.

All these terms are equivalently used in the field of biomechanics, the ”study of the

movement of living things using the science of mechanics” [50]. The trajectories of

a human’s joints, their velocity, and acceleration are classical kinematic parameters

describing the motion kinematics of a person. In sports, these classical parameters

constitute the foundation to other kinematic characteristics. For example, the step

count and length of runners, the stroke frequency of swimmers or the posture and

flight trajectory of ski jumpers are all types of kinematic parameters that can be

considered in the biomechanical profiling of an athlete.

The field of dynamics1 studies forces and their association with motion, which

includes forces that cause motion and vice versa. In a biomechanical context and

especially in the biomechanical analysis of an athlete’s motion dynamics, dynamic

parameters include the pull forces of rowers or the jump forces of ski jumpers on

a jump, swimmers on a starting block or high divers on a high diving platform,

amongst others. Jump forces are measured using specialized equipment called force

plates that can register and precisely determine the jump force of a person.

Adding to force measurement hardware, technology like 2d and 3d camera sys-

tems, inertial sensors and sophisticated evaluation software have become common

tools in the daily routine professional athletes, their coaches and training scientists in

general. As the international success of world-class athletes depends quite strongly

1Nowadays, the term ”dynamics” is often used synonymously to the older term ”kinetics”.
When arguing about forces and their influence on motion, we will predominantly stick to the term
”dynamics” in this thesis.
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on the assessment and active improvement of his or her technique, technology is

used to measure kinematic and dynamic parameters as a foundation of a sophis-

ticated performance profile. Measurements are taken either directly via sensors or

indirectly, for instance by measuring and evaluating motion kinematics via manual

annotation of joints in video footage. Realistically, coaches usually consider only a

qualitative evaluation, because almost all types of quantitative assessment of kine-

matic parameters are immensely time-consuming and therefore typically reserved

only for the top athletes. This raises the question of how to exploit and reason-

ably evaluate the enormous amounts of data that camera systems produce without

having to spend an unreasonable amount of time and energy.

Recent breakthroughs in the field of computer vision and deep learning have

made the problem of automatically evaluating large sets of video data more ap-

proachable. A fully automatic analysis that captures motion kinematics and derives

all types of kinematic parameters for an elaborate biomechanical analysis creates

new possibilities in the broad field of performance diagnostics.

This thesis investigates algorithms and approaches for the estimation of kine-

matic and dynamic parameters in sports videos with a specific focus on swimming

and ski jumping.

The goal is to use computer vision algorithms to get one step closer to a fully

automatic, time-continuous performance analysis of athletes in training footage.

1.1 Problem Definition and Challenges

In the field of competitive swimming, a quantitative evaluation of an athlete’s motion

is highly desirable to supplement the typical qualitative analysis. We consider the

following real-life application of a camera system for evaluating the technique of

swimmers. An athlete swims in a swimming channel, a small pool where the water

is accelerated to constantly flow from one end of the pool to the other. The basin has

at least one glass wall and is monitored with multiple cameras from different angles.

The athlete then dives into the current and starts performing swimming strokes

in one of the four major swimming styles: butterfly, backstroke, breaststroke, and
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freestyle. For the time period of the test, he or she is filmed by all cameras. The

video footage constitutes the essential basis for the assessment of cyclic motion.

From the perspective of a human expert like a coach or training scientist, the

evaluation timeline for the video footage is arduous. In a typical evaluation scenario,

video footage is collected from a whole team of top-athletes and multiple, controlled

swim tests. Typical evaluation protocols include a quantitative and qualitative

analysis. The qualitative evaluation is determined by simply looking at the footage

and using expert knowledge to rate the posture of the athlete and infer clues on

how to optimize the motion sequence. A quantitative analysis is associated with

a lot of manual labor. The expert has to count strokes and kicks, measure stroke

times and, even more intricate, determine inner-cyclic motion intervals and their

execution times. This involves clicking through a lot of images - frame rates of

50-60 Hz are common - in order to precisely identify athlete postures (dubbed key-

poses) that constitute motion interval boundaries. The time that passes between

those boundaries is evaluated over multiple strokes and offers valuable answers to the

question of how to optimize even the last grain in an otherwise highly competitive

swimming motion.

Automating the delineated evaluation protocols with computer vision algorithms

involves several steps, some of which are trivial for a human, but difficult to express

and reliably solve with algorithms. Three main problems have to be addressed:

Detecting and tracking the athlete, estimating some form of pose representation

and inferring kinematic and possibly dynamic parameters.

The detection and tracking of an athlete in all frames of a video serves mainly

two purposes. Firstly, it is beneficial for a pose estimation algorithm to only evalu-

ate parts of the image where a person is actually depicted. Hence, a person detector

naturally reduces the size of the hypothesis space of pose locations, thereby increas-

ing the pose estimation precision by excluding potential false positive image regions

while lowering computational costs. Secondly, the continuous tracking of athletes

itself can be used for kinematic evaluation. Consider the sports of ski jumping,

where tracking allows for predicting the flight trajectory and velocity of the athlete,

both of which are important indicators for judging a jump.

Naturally, the question of determining performance parameters of athletes is

inherently linked to the human body and thereby human pose estimation, as

motion kinematics are usually defined on the position, velocity, and acceleration of
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joints and body parts. Measuring performance parameters involves detecting rele-

vant parts of the pose or - ideally - estimating the pose directly by detecting the lo-

cations of major joints. Using the example of visually challenging swimming footage,

direct pose estimation has been a difficult problem with unsatisfactory results for

the longest time. With the recent developments in feature learning techniques via

deep convolutional neural networks, finding good estimates for the complete skeletal

pose is not only feasible but also yields decent results. Emerging pose estimation

errors weaken the final pose estimation and therefore have to be addressed.

Depending on a specific parameter type, the deviation of biomechanical mo-

tion quantities like kinematics and dynamics can be very simple. Automatically

counting strokes and leg kicks is a trivial task given that we are able to reasonably

predict the human pose. The task of identifying the boundaries of inner-cyclic inter-

vals is akin to the task of activity recognition in computer vision. For instance, the

activity ”doing push-ups” can be partitioned into two phases, denoted sub-activities,

dropping to the ground from an outstretched posture and pushing up again. In the

context of biomechanical analysis, meticulously identifying distinct motion inter-

vals by standards of training scientists who emphasize utterly precise measurements

proves to be a big challenge.

1.2 Contributions

The contributions of this thesis can be summarized as follows:

- Spatiotemporal pose detectors: The identification of specific human poses

in aquatic environments is a challenging problem due to various forms of noise,

refraction, occlusion, and foreshortening. Presuming that evaluation-critical

key-poses can’t be identified directly and are therefore latent or ”hidden”, we

propose an identification scheme by means of a spatiotemporal pose detector.

The detector is built from an ensemble of classifiers called poselets, each of

which acts as a detector for the presence or absence of specific body part con-

figurations in images. The whole ensemble continuously and reliably detects

specific body postures, which we denote support-poses. We use these specific

pose occurrences in a simple probabilistic scheme to infer the occurrence of

latent key-poses.
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- A pose estimation network with image dependent pairwise relations:

We develop a deep neural network for human pose estimation of athletes. The

network consists of two parts. The first part is a convolutional neural net-

work that learns to identify the appearance of an athlete’s joints directly from

image data. The second part puts together possible joint detections in an

image to form a complete and reasonable pose estimate. The formulation

of the pose estimation network includes the definition of an operation called

max-convolution, which allows for expressing deformation between two joints,

i.e., the possibility that two neighboring joints may appear in a slightly de-

formable configuration. The proposed network is furthermore augmented with

image dependent pairwise relations, additional terms that use the image con-

tent around a joint to help to predict the positions of adjacent joints. The

athlete poses estimated with the network are used to directly query a key-

pose via the identification of its defining pose features.

- A pose rectification pipeline: We discuss a taxonomy of typical pose es-

timation errors that we face when using pose estimation systems in visually

challenging training videos: Joint swaps, joint detection outliers, and general

estimation noise. A pipeline of optimization problems is proposed for rec-

tifying each error class by merely arguing about joint locations. It involves

the definition of a spatiotemporal graph, where vertices represent joint loca-

tions in different frames and edges connect vertices within a frame (spatial)

and vertices over different frames (temporal). All edges are weighted with

probabilities that reflect whether groups of joints belong to the same joint tra-

jectories. A set of constraints defines which edges may appear together to form

a trajectory and which edges are mutually exclusive. An integer linear pro-

gram is used to partition the graph into joint trajectories by deleting edge with

low probability from the graph. Contrary to similar approaches, we explicitly

model the possibility for joints to swap their label, e.g., a left wrist detection

might be reassigned to the trajectory of the right wrist after optimization and

vice versa. Edge weights are determined from motion kinematics, in particu-

lar velocity and acceleration of joints. We show that the rectification of pose

sequences likewise improve joint and key-pose identification.
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- A convolutional neural network for predicting the jump force of ski

jumpers: We define the problem of estimating the jump forces of an athlete

as a classical machine learning question: Given that we continuously observe

the pose of a person during a jump motion, can we infer the measurements of

sensor plates taken at the same time? We propose a deep neural sequence-to-

sequence network for learning a mapping between a sequence of poses obtained

from a pose estimation network and a sequence of force measurements known

at training time. Contrary to other sequence learning methods like LSTM

networks, the proposed network is purely convolutional, which implicitly (via

the receptive field) allows for controlling how much of an inputs signals ”his-

tory” is included in the estimation of the output. Therefore, we leverage a

mathematical operation called a dilated convolution to be able to grow a large

receptive field without having to use an extensive amount of convolutional or

pooling layers.

1.3 Publications

Parts of this thesis have been published at the following international conferences:

Refining Joint Locations for Human Pose Tracking in Sports Videos.

Dan Zecha, Moritz Einfalt, Rainer Lienhart. IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops 2019. Long Beach,

CA, USA, June 2019.

A Convolutional Sequence to Sequence Model for Multimodal Dy-

namics Prediction in Ski Jumps. Dan Zecha, Christian Eggert, Moritz

Einfalt, Stephan Brehm, Rainer Lienhart. First International ACM Work-

shop on Multimodal Content Analysis in Sports (ACM MMSports’18), part

of ACM Multimedia 2018. Seoul, Korea, October 2018.

Kinematic Pose Rectification for Performance Analysis and Re-

trieval in Sports. Dan Zecha, Moritz Einfalt, Christian Eggert, Rainer

Lienhart. IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR) Workshops 2018. Salt Lake City, USA, June 2018.

Pose Estimation for Deriving Kinematic Parameters of Competitive

Swimmers. Dan Zecha, Christian Eggert, Rainer Lienhart. Computer Vision
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Applications in Sports, part of IS&T Electronic Imaging 2017, Burlingame,

California, January 2017.

Key-Pose Prediction in Cyclic Human Motion. Dan Zecha and Rainer

Lienhart. IEEE Winter Conference on Applications of Computer Vision 2015

(WACV 2015), Waikoloa Beach, HI, January 6-9, 2015.

Swimmer Detection and Pose Estimation for Continuous Stroke

Rate Determination. Dan Zecha, Thomas Greif, and Rainer Lienhart.

Multimedia Content Access: Algorithms and Systems VI, part of IS&T/SPIE

Electronic Imaging, 23 January 2012, Burlingame, California, USA.

1.4 Thesis Outline

The main part of this thesis covers five chapters. In Chapter 2, we define the task

of pose estimation as the foundation of this thesis. We will especially define the

term activity kinematics as a central evaluation goal in this work and also discuss

the specific datasets used throughout our experimental sections. In Chapters 3 and

4, the estimation of motion parameters is investigated using different types of pose

detectors and estimators. We describe a spatiotemporal pose detector for finding

specific, recurring poses in Chapter 3 and use a simple probabilistic scheme to infer

latent poses. In Chapter 4, we present and discuss different deep neural network

architectures to estimate the full pose of an athlete and infer kinematic parameters

from pose estimates directly. Chapter 5 analyses the error behavior of neural pose

estimation networks. Due to the visually challenging nature of our problem domain,

different classes of errors can be identified that impede the desired quality of pose

estimates. A series of optimization problems is proposed, each of which tackles a

different error mode. As a result, we can measure a considerable improvement in

pose estimation scores. In Chapter 6, we explore the question of how the jump

forces of a ski jumper can be predicted in an uncalibrated camera setting using

only the output of a pose estimator using fully convolutional networks with dilated

convolutional layers. The final Chapter 7 concludes the thesis.
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2 — Foundations and Datasets

The topic of kinematic and dynamic parameter estimation in video footage cannot

be discussed without a conceptional definition of the human pose in an image. In

this chapter, we introduce indispensable notation and concepts concerning the hu-

man pose in images and videos as well as a definition of kinematic and dynamic

parameters. We conclude this chapter with a survey of datasets and error metrics

commonly used throughout this thesis.

2.1 Human Pose Estimation

2.1.1 General Terminology

The human pose in an image is defined by the 2d locations of major joints of the

human body. Throughout this thesis, a joint is often represented by a (body) part.

While the term part is used ambiguously in pose estimation literature, we adopt the

most common conceptual definition of a part as the region around the location of

the major joint1. The term appearance of a part commonly denotes an image patch

depicting a joint at its center, while a part detector, part filter or part model is a

parameterized model trained for detecting a joint. A part detector for a joint type

should ideally return a high score at the pixel position depicting the joint and a low

score in image regions where no joint is present. The number of joints considered

for representing the human pose varies throughout the chapters due to the natural

evolution of pose models over the years. Initially, the joint set covered the head

annotated at ear height, the shoulders, elbows, wrists, hips, knees, and ankles of

1Although the part definition used in this work is widely adopted by the majority of pose esti-
mation researchers, a part in the original formulation of pictorial structures for object recognition
[32] was defined as the limp between two adjacent joints, therefore modeling not only size and
shape of the body part, but also its orientation.
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Figure 2.1: An example of a human pose graph (left) consisting of 14 joints connected
according to the skeletal structure if the human body. The goal of human pose
estimation is to find an instance of 2d joint locations that represent the skeletal
structure of a person in an image (middle and right, middle image taken from
[62]). For better clarity, the four torso connections (grey) are replaced with one
visualization for the spine (red).

a person. In later publications, an annotation for the neck was added to allow for

explicitly expressing the posture of the head while adapting the datasets to the

state-of-the-art annotation in pose estimation research. The geometric arrangement

of different parts - or rather their joint pixel positions - is denoted the human pose,

pose configuration, joint hypothesis or joint instance of a person. Figure 2.1 depicts

a joint hypothesis for a baseball player and a swimmer.

2.1.2 Human Pose Graphs

Mathematically, we represent the human pose by means of a tree-shaped graph

G = (V,E), where vertices V = {v1, ..., vN} represent a set of N = |V | body parts

and edges E ⊆ (V × V ) indicate which vertices are spatially related (see Figure

2.1 (left) for an example depiction). The pixel locations of the parts are defined by

the joint hypothesis L = {li = (xi, yi) : i ∈ {1, ..., N}}. The part i = 1 is usually

denoted the root part of G, which is represented by a person’s head location. Each

vertex vj ∈ V relative to the root has a depth dj equal to the number of edges

between itself and the root node. We will say that vj is a child of vi and vi is a

parent of vj if and only if (vi, vj) ∈ E and dj > di. The children Ci ⊂ V of vertex vi

are the vertices connected to vi with a depth of di + 1. Every vertex vi other than

the root has exactly one parent Pi = {vpa(i)} with depth di− 1, where j = pa(i) is a
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function returning the vertex vj that is the root of vi. We collect the neighborhood

of vertex vi in set Ni = Pi ∪ Ci.

2.1.3 Human Pose Estimation in Monocular Images

One of the first practical approaches to human pose estimation was proposed by

Fischler and Elschlager [37], who introduced the notion of a pictorial structure

representation of an object. Their model disassembles an object into a set of vi-

sual parts and spatial relationships between pairs of parts, which they describe as

”spring-like” or deformable. They also present a dynamic programming scheme that

computes an optimal configuration of all parts that best explains image evidence.

In their seminal work, Felzenszwalb and Huttenlocher [32] expand Fischler’s pic-

torial structures and propose a general statistical framework for object detection

and human pose estimation which they denote deformable part models (DPMs).

Their DMP paradigm indisputably laid one of the most influential cornerstones

for object detection and articulated pose estimation research in the last decade

[5, 12, 15, 42, 81, 82, 100, 109, 110]. We briefly introduce the basic notion behind

deformable part models in the following.

The human pose is modeled by a tree-structured human pose graph as described

in Section 2.1.2. The vertices in this graph are represented by a collection of parts.

Each part encodes the visual properties of the region around a part, and pairs of parts

are connected via edges. Similar to [37], the edges in this model are deformable, thus

a small displacement between parts is allowed up to a certain degree, constricted by

deformation terms. Felzenswalb measures how well a particular pose hypothesis fits

an image I using the cost function

score(l1, ..., lN ; I) =

appearance︷ ︸︸ ︷
N∑
i=1

φi(li, I)−

structure︷ ︸︸ ︷∑
i,j∈E

φij(li, lj) . (2.1)

In this formulation, φi is an appearance model for the part i that measures the degree

of match for part i at location li in image I. The function φij(li, lj) represents a

deformation model that measures the degree of spatial deformation and therefore

penalizes larger deviations from an optimal placement of two parts. Maximizing the

cost function returns a pose hypothesis such that the appearance model φi yields
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large scores while the deformation model φij should encourage a joint placement

with low deformation penalty.

The DPM paradigm is generic in the sense that it is independent of a specific

model for the part appearance and the structure of connections between the parts.

Over the years, several iconic formulations have been proposed for both compo-

nents of the cost function. The appearance of a part was initially modeled by rigid

template filters, which resulted from training a linear, structured support vector

machine on a HoG feature [20] representation of image patches. Training patches

are cropped tightly around a part, either for limbs [32, 81] or joints [5, 110]. Bourdev

et al. [12] introduced the notion of a poselet as a rigid template filter for groups

of joints, inspiring specific models for arms and legs [11, 42, 116]. In recent years,

the explicit engineering of features for appearance modeling has been replaced by

learned features based on convolutional neural networks [97, 100, 109], yielding su-

perior detection performance over hand-crafted features by far.

The modeling of the structure has also significantly changed over the last few

years. In Felzenzwalb’s original formulation [32], the deformation costs

φij(li, lj) = (li − lj)
TM−1

ij (li − lj) (2.2)

equal the Mahalanobis distance between two part placements with the restriction

that the covariance Mij has to be a diagonal matrix. Efficiently optimizing over

all possible part placements in a given image is a non-trivial problem for which

Felzenzwalb formulates an efficient algorithm for a generalized distance transform to

speed up inference. This formulation was widely adopted by most major publications

in the field of object detection and human pose estimation [5, 11, 12, 42, 81, 110] at

the time. With the introduction of deep convolutional neural networks (DCNNs),

the paradigm for deformation scoring shifted away from explicit deformation models

towards learning the allowed placement of joints directly from ground-truth pose

configurations [51, 65, 95, 106].

2.2 Kinematics and Dynamics in Videos

We complete the discussion on types of kinematic parameters from the introduction

by defining kinematic quantities that are considered in the following chapters.
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2.2.1 Traditional Motion Kinematics

Within this thesis, we will most commonly argue about the position of joints of the

human body. In a temporal context, the location li[t] of a joint i is a vector-valued

function of time

li[t] =

[
xi[t]

yi[t]

]
(2.3)

where xi[t] and yi[t] are coordinate functions of time. We will use l
(t)
i to describe the

Euclidean coordinate of joint i in a specific frame at time t and li for a location of

joint i in no specific temporal context. A joint in motion changes its position over

time, moving along a trajectory. In a video, we approximate the velocity v
(t)
i of a

joint i in frame t by

v
(t)
i = ∇l(t)i =

[
d
dτ
xi[τ ]

∣∣
τ=t

d
dτ
yi[τ ]

∣∣
τ=t

]
≈

[
x
(t)
i − x

(t−1)
i

y
(t)
i − y

(t−1)
i

]
(2.4)

The velocity is a vector quantity and therefore has a direction and a magnitude of

displacement. The second derivative of location is commonly known as acceleration.

It is approximated by

a
(t)
i = ∇2l

(t)
i ≈

[
x
(t)
i − 2x

(t−1)
i + x

(t−2)
i

y
(t)
i − 2y

(t−1)
i + y

(t−2)
i

]
(2.5)

Note that we presume that our approximations for velocity and acceleration are

strictly causal, i.e., Newton’s difference quotient2 is used to approximate the gradi-

ent. Therefore, the gradient computation at time t considers joint locations from

frames t−1 and t−2, which entails a ”lag” of 1/2 a frame and one frame for velocity

and acceleration, respectively. This lag is reflected in a larger approximation error,

which can be reduced using a symmetric difference quotient3 for approximating the

derivation.

2Given a function f(x), Newton’s difference quotient is defined as (f(x)− f(x−h))/h for some
small h. The last part of Equation 2.4 uses this approximation with the smallest possible h = 1
for joint locations in consecutive frames.

3The symmetric difference quotient is defined as (f(x + h)− f(x− h))/2h for some small h.
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2.2.2 Activity Kinematics

We define the term activity kinematics as a collective term for kinematic parameters

derived from activity intervals of athletes as follows. An activity interval is a motion

sequence that starts when the athlete strikes a well-defined pose and ends with an

equally well-defined posture. Both the start- and end-pose framing the activity

interval are dubbed key-poses. The frame depicting a key-pose is denoted a key-

frame.

The concept of activity intervals can be illustrated by the simple example of doing

a push-ups motion. A push-up can be divided into two distinct intervals. In the

first phase, an athlete starts in a key-pose where his arms are straight, followed by

steadily lowering the body to the ground by bending the elbows. At the point where

he reaches the key-pose with the smallest angle between both the upper arm and

forearm, the first activity interval ends. In the second phase, the athlete performs

the actual pushing motion, lifting his body from the ground until the arms are fully

pushed through. Both phases or activity intervals together describe the complete

push-up activity.

The same concept of partitioning a motion into intervals is done for world-class

athletes in swimming. A cycle can be divided into partitions, where the beginning

and the end of an interval is defined by a key-pose. Timing each motion interval in a

cycle allows a coach to determine how well a stroke was executed and assists him to

propose posture adjustments to the athlete for improving the overall performance.

A key-poses is based on a feature of the human pose or pose feature. Different

classes of pose features can be defined based on different numbers of joints. Classical

pose features include:

• The position of one joint in the image. For swimmers in a swimming chan-

nel, experts are interested in finding key-poses where the hand of a swimmer

touches the water surface or where it just leaves the water. Another example

is competitive swimming in a large pool, where the position of the head is used

to precisely determine interim times of the swimmer crossing certain marks in

a race, e.g., the 10 and 25-meter mark. In other sports like track and field

athletics, this translates to identifying the locations and timestamps in a video

where an athlete’s foot touches or leaves the ground.
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• The angle of a body part as measured in the image coordinate system. This

feature involves two joints of the body. In swimming, training scientists are

interested in the upper arm angles. In ski jumping, the angle of the upper

and lower body, as well as the angle of skis, is the most valuable parameter

for judging the jump trajectory of an athlete. This feature can also be used

for the qualitative assessment of motion, for instance in high diving.

• The angle between limbs. Measuring the angle between limbs of the body

commonly involves three joints. In swimming, especially for butterfly and

breaststroke swimming, training scientists are interested in the angles between

the thigh and lower leg as well as upper arm and forearm. Important times-

tamps depict occurrences of minimal or maximal angles between limbs. The

same measure is of interest for ski jumpers, where the angle between upper

and lower body sheds light on the goodness of posture during the flight phase.

Automating the time-consuming process of manually searching for key-poses

in large video databases can be achieved using human pose estimation. In this

thesis, we explore and focus specifically on the evaluation of activity kinematics

of swimmers, which involves the precise identification of key-poses by their pose

features. Therefore, experimental sections mimic real-world evaluation protocols

designed by training scientists and coaches.

2.2.3 Dynamics

Predicting jump forces directly in videos is, of course, a difficult problem, as a force

itself can only be observed if it results in an observable action. In ski jumping,

this action can apparently be observed through the jump motion of the athlete. In

this thesis, we formulate the estimation of jump dynamics from the motion of a ski

jumper as a classical learning problem. Our task is to predict a time series represent-

ing the jump force of a ski jumper during the duration of a jump given a sequence

of continuously estimated athlete poses for the same time window. Formally, we

predict an output sequence of force values

f = (f (t))t∈T = (f (1), ..., f (T )) (2.6)

where (.)t∈T describes a sequence of values of length |T | with T = {1, ..., T}. The

input sequence to our learning problem will be defined by a sequence of poses p =
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(p(t))t∈T given some learner M : P T → F T that produces the mapping

f =M((p(t))t∈T ).

Estimating dynamics by a learning problem allows to automatically find patterns

connecting the observable motion with the underlying, triggering forces without

having to explicitly define a physical model.

2.3 Datasets

The methods developed in this thesis are mainly evaluated on two distinct datasets.

Training footage of swimming athletes performing in a swimming channel is used

for evaluating activity kinematics. We estimate the jump forces of ski jumper in a

separate dataset. Additionally, we will leverage the Leeds Sports Pose dataset (LSP,

[62]) and the MSCOCO dataset [71] for initializing models prior to fine-tuning them

to the other datasets. Both datasets belong to the largest, most used and evaluated

datasets in the pose estimation community.

2.3.1 Swimming

We attempt to estimate kinematic parameters of swimmers in a swimming channel.

It allows for precisely regulating the water current while observing the full posture

of athletes above and below the water surface through a glass wall.

Terminology

The smallest unit within the repetitive motion of swimming is one cycle or stroke,

defined by the time that passes between the appearance of a specific body pose and

its earliest reappearance. Competitive swimming covers four different swimming

styles, namely butterfly (fly), backstroke (back), breaststroke (breast) and freestyle

(free). Figure 2.2 depicts example images for all four styles in two different swim-

ming channels. While butterfly and breaststroke are called symmetrical because

both halves of the body have the same posture at every time during a stroke, we

denote freestyle and backstroke as anti-symmetrical swimming styles. The essential

difference is that the arm movement in these two styles alternates from side to side;

while one arm is pulling, the other one is recovering above the water line. Hence,
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Figure 2.2: Examples images from the swimming channel dataset. The footage cov-
ers two different swimming channels located at the Institute of Applied Training Sci-
ence in Leipzig (left) and the Olympic Training Center Hamburg/Schleswig-Holstein
(right). The images illustrate major challenges of the dataset, which exacerbate any
automated evaluation: noise from water bubbles and splashes, occlusion from refrac-
tion at the water surface, self-occlusion, foreshortening, and irregular illumination.
Note for example the head in the top left image: refraction at the water line visually
divides the top from the bottom, making the precise detection (and annotation)
very difficult.
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free back fly breast
# images 1883 2665 2100 2281
# sequences 24 32 26 28
# videos 97 74 80 80
# key-pose annotations 1504 1172 1920 1280

Table 2.1: A summarization of the mmc-swim-channel dataset. The dataset is
comprised of overall 8929 images covering all four major swim styles. Each image
depicts one athlete for whom we annotated the full pose. Images are organized
in sequences of 50 to 100 consecutive frames. The video dataset covers overall
331 videos for key-pose estimation. In each video, the key-poses of two to four
consecutive swim strokes have been labeled, usually at the beginning and again at
the end of the video.

every pose of the left body half occurs approximately half a cycle later on the other

side of the body. If viewed from the side, one body half in symmetric styles is mostly

indistinguishable due to self-occlusion by the body half facing the camera.

Swimmer Dataset and Evaluation Protocols

Table 2.1 summarizes the dataset used and evaluated throughout this thesis,

which is comprised of images and videos. We refer to this dataset as mmc-swim-

channel. Both modalities were recorded in swimming channels at the Institute

of Applied Training Sciences in Leipzig and at the Olympic Training Center

Hamburg/Schleswig-Holstein. The cameras in Leipzig record with a resolution of

720 × 576 pixels at 50i, while the cameras in Hamburg record with a resolution of

1280×720 pixels at 60 frames per second. Both images and videos depict swimmers

of different age, stature, gender, and body size. The footage covers different test

scenarios with different water current velocities within the range of 0.8ms−1 to

2.2ms−1. All athletes are filmed from a side view through a glass wall with their

left body side facing the camera, except for backstroke swimmers, who face the

camera with their right body half (see Figure 2.2 for examples).

Image Sequences. The images in the dataset are fully annotated with com-

plete athlete poses. Each annotation covers 14 joints, including the head, neck,

shoulders, elbows, wrists, hip joints, knees, and ankles. If a joint is occluded, a

human expert interpolated the most probable joint position. Only the left body

side was annotated for butterfly and breaststroke swimmers due to the symmetry

in their motion. Images are organized in sequences, where each sequence covers
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between 50 to 100 consecutive images. Overall, we annotated the pose of athletes in

8929 images, which form 110 sequences covering all swim styles. The set of image

sequences was used to train and evaluate pose estimators throughout the chapters.

Videos. For the task of key-pose estimation, we use a distinct set of swimmer

videos. Each video is between 20 seconds and 2 minutes long and covers on average

between 20 to 30 swim strokes. Videos are not annotated with ground truth poses.

Instead, an expert labeled all key-frames depicting a key-pose. Key-poses where

typically annotated for two to four consecutive swim strokes, often at the beginning

of a video and again at the end. In some cases, it may happen that a pose can be

identified as a key-pose by two different pose features at the same time. In this case,

the key-pose is also annotated twice, once for each associated key-pose. Overall,

we collected 331 videos covering approximately 2500 swimming cycles for which we

annotated 5876 key-poses.

Evaluation Protocols. Images are used for training pose estimators in this

work. If not stated otherwise, we always measure the performance of a pose estimator

on the complete image set using 3-fold cross-validation. Therefore, the image dataset

is partitioned into three almost equally sized partitions (we do not split sequences).

Either two partitions are used for training and one part is used for testing. We

split about 10% of the images from the training set and keep them for validating

the pose estimator. In the case of key-pose estimation, if the proposed approach is

parameterized and needs training, we use a leave-one-out cross-validation scheme,

where we keep one video for testing and train the key-pose estimator on the rest of

the set. The final performance is then averaged over all splits.

In Chapters 3 and 4, only a subset from the freestyle swimmer images and videos

in Table 2.1 will be used for training and evaluation. We will introduce this subset

as well as applicable evaluation protocols in the respective chapters.

Peculiarities and Visualizations of Swimmer Poses

We discuss some peculiarities of swimmer poses and motion to convey a better

understanding of the composition and variability of our data and to sensitize for

extraordinary challenges.

Range of Motion. A property of sports footage that makes it more interesting

to work with is that athletes tend to have a higher range of motion compared to

normal people in everyday situations. Using the pose coloring scheme from Figure
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(a) MSCOCO (b) Leeds Sports Pose

(c) freestyle (d) backstroke

(e) butterfly (f) breaststroke

Figure 2.3: The dynamic range of motion of different datasets. Each visualization
is generated by aligning all pose configurations in a dataset at the necks, resizing
all configurations such that they have approximatelly the same upper body size and
then plotting them on top of each other. The coloring scheme from Figure 2.1 was
used, i.e., light blue and green colors depict arms, dark blue and purple the legs,
orange and red represent head and spine, respectively. The top row depicts the
dynamic range of MSCOCO poses ([71], only fully annotated configurations) and
the Leeds Sports Pose (LSP, [62]) datasets. The bottom two rows show all four
different swimming styles in our dataset.
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2.1, we visualize this circumstance in Figure 2.3. Each color representation in this

depiction was generated by aligning all pose configurations in a dataset at the neck

of each pose configuration, resizing all configurations such that they have approxi-

mately the same upper body size and then plotting them on top of each other. This

allows us to get a better feeling for the dynamic range of motion throughout differ-

ent datasets. We first compare fully annotated pose configurations from MSCOCO

and LSP in Figure 2.3 (a,b). MSCOCO depicts mostly upright persons in different

everyday scenarios. Compared to LSP, the range of motion in this dataset is only

limited. LSP is one of the most popular datasets in articulated pose estimation

research, as it covers a wide variety of flexible poses in all orientations (see Figure

3.4 for examples). Compared to these general datasets, swimmers (Figure 2.3 (c-f))

seem to express less range of motion due to their uniform general orientation. Upon

closer inspection, we can see that the range of motion, especially for the arms, is

equally or even more articulate and prolated.

Swim Stroke Velocities. To give a better understanding of the kinematic

variability in swim strokes, we visualize velocity vectors of the whole left body side

covering one cycle of each swim styles in Figure 2.4. This plot was generated from

ground truth annotations of the left arm joints (shoulder, elbow, wrist) and the left

leg joints (hip, knee, ankle). Only for backstroke swimmers, the right body side

was used. We densely sampled points on the arm and leg bones in between pairs

of adjacent joints. This allows us to plot the illustrated dense velocity vector fields.

Each gradient is rooted at the small dots with the directional lines representing the

gradient orientation. Line length and color both represent velocity magnitude. It

should become clear in this visualization that motion kinematics can vary signifi-

cantly depending on the the athlete, his or her pose, exhaustion level, and water

current.

Pose Estimation Challenges in Swimming. The swimmer dataset comes

with ordinary pose estimation challenges like foreshortening and self-occlusion. Ad-

ditionally, new problems arise from the peculiarities of this specific setting, which are

partially depicted in Figure 2.2. For example, the aquatic environment introduces

considerable amounts of refraction at the water surface which regularly occludes

parts of the pose to the point of complete limb occlusion during specific phases of a

stroke. Refraction also visually splits body parts, where one half of a part above the

water surface is clearly offset from the half below. This is illustrated by the head
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Figure 2.4: We use annotations of the arm (shoulder, elbow, wrist) and leg (hip,
knee, ankle) joints of the left body side (right side for backstroke) and densely sam-
ple points in between neighboring joints. The depicted grid illustrates the velocity
vectors of one complete swimming cycle as obtained by Equation 2.4. Line direc-
tions equal gradient directions, line color and length represent magnitude (red is
faster). From top to bottom: butterfly, backstroke, breaststroke, freestyle. Motion
kinematics vary during a swimming cycle depending on the athlete, his or her pose,
exhaustion level, and the water current.
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and shoulder of the swimmer in the top left image in Figure 2.2. In contrast, fast

swimmers can produce waves that due to refraction allow for observing the torso

from the side and the top at the same time. Adding to this, constant self-occlusion

and external occlusion from water bubbles and splashes exacerbate this problem. In

general, noise from water bubbles and splashes makes a precise localization of joints

considerably more challenging than in non-aquatic environments. Lighting condi-

tions can also cause problems. While lighting should be easily controllable in the

confined environment of a swimming channel, we found that illumination is often

less than optimal due to poor architectural design or operator mishandling during

recordings.

It can be argued that our footage is visually homogeneous and that it should be

much simpler to train a pose estimator that performs very well on this data compared

to ”in-the-wild” settings. We found that due to the aforementioned visual challenges

and without the clear presence of distinct visual cues like the face of a person, pose

detectors tend to have trouble correctly distinguishing between body sides. This

often leads to false joint assignments, even in novel pose estimation systems. An

elaborate discussion on this topic is given in Chapter 5.

2.3.2 Ski Jumping

For the task of predicting the jump forces of ski jumpers in videos, we put together

a dataset consisting of 467 video sets of different athletes performing one jump in

each set. One set consists of multiple camera views (examples in Figure 2.5). The

different cameras are mounted along the end of the jump and along the hill and thus

depict the ski jumper from either the right or left body side in different phases of

a jump. The cameras are also synchronized by a light barrier that is triggered by

the athlete at the beginning of the jump. The registration of the camera views was

not possible with traditional methods, as the camera images do not overlap enough

for classical calibration methods to be applicable. The videos were recorded in a

720× 576 pixel format at 25 interlaced frames, leaving us with 50 full frames after

deinterlacing. The whole footage covers a wide range of recording scenarios (day vs.

night, good vs. bad vs. foggy weather, snowy and rainy scenes, winter and summer

footage) and a variety of ski jumpers of all ages and statures.

Throughout all 467 videos sets, a number of 9323 athlete poses have been an-

notated by experts. Similar to butterfly and breaststroke swimming, ski jumpers
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Figure 2.5: Examples images from the ski jumper dataset.

exhibit a symmetrical pose. Hence, only the head at ear level, the shoulder, elbow,

wrist, hip, knee, and heel of the body side facing the camera were annotated. From

the 9323 annotated poses, we keep 500 for testing and another 900 for the validation

of the pose estimator.

Jump forces are estimated on a subset of 225 video sets for which we were able to

obtain a series of force measurements for each video set. We split the dataset into

180 video sets for training, 20 for validation and 25 for testing. The measured force

values were recorded at 2 kHz with multiple force plates which are synchronized

among each other but not with the video system. The exact process of how to

continuously measure the jump forces of a moving person over a distance of the

last 17 meters of the ski jump is unknown to us. In the end, the measuring system

outputs a low-pass filtered force series where each reading is labeled with the distance

between the ski jumper and the edge of the ski jump. Force values lie in the range

of 0 kilonewton4 to 2.5 kilonewton.

4A kilonewton (symbol: kN) is a unit of force: 1kN = 102kg · 9.81ms−2.
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2.4 Related Work

In each chapter, we will cover the relevant scientific work related to the discussed

approaches and algorithms. Enveloping the whole thesis is the topic of computer

vision in sports, specifically computer vision algorithms for analyzing swimmers. In

general, publications focusing on water sports and people in aquatic scenarios are

still rare. Most work researching the tracking of people in aquatic environments has

focused on drowning detection [27], localization of athletes in swimming competi-

tions [89, 101], the automatic analysis of large databases of swimming videos [90]

and motion analysis for video-based swimming style recognition [98].

Pose estimation and initialization. A Kalman filter framework is presented

in [46] to explicitly model the kinematics of cyclic motions of humans in order to

estimate the joint trajectories of backstroke swimmers. Ries et al [84] use Gaussian

features for detecting a specific pose of a swimmer in a pool with the intention

of initializing his/her pose. Einfalt et al. [26] investigate CPM architectures for

improving pose estimates of swimmers in a swimming channel by conditioning the

networks with the swimming style as an additional network input.

Kinematic parameters. Most research in kinematic parameter extraction of

swimmers focuses on detecting the stroke rate. This has been explored by Victor

et al. [104], who use a DCNN to predict a sinusoidal stroke signal of competitive

swimmers in a swimming pool. Hakozaki et al. [49] tackle the same problem us-

ing a modified LSTM network [54]. Lienhart et al. [70] use classical data mining

techniques to infer kinematic parameters like the stroke rate from matching pose

configurations in a large dataset of automatically estimates poses. Fani et al. [30]

perform a qualitative analysis of the pull motion of freestyle swimmers by evaluating

human pose estimates.

Key-poses. The concept of key-poses has also been investigated in different

sports scenarios. Given perfectly detected poses, Dios et al [23] automatically de-

termine key-poses in cyclic human motion by performing a principal component

analysis on pose estimates, followed by a supervised cluster analysis, which allows

for classifying the quality of stretch motions with high precision. Likewise, Vicente

et al [24] automatically pick key-poses from a query video with pose annotations

obtained through motion capture in order to classify motion sequences for Taek-

wondo videos using a latent-dynamic conditional random field. Both approaches
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presume an almost perfect annotation of the human pose. Carson et al [14] includes

a selection process for action specific postures by matching shape information from

individual frames in order to recognize specific tennis strokes in game footage.

Each chapter in this thesis includes its own related work section presenting papers

specifically relevant to the chapter.
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3 — Activity Kinematics from

Spatiotemporal Poselet Ac-

tivation

We address the question of how to estimate activity kinematics via key-pose identifi-

cation using a pose detection approach in this chapter1. Note the difference between

articulate pose estimation and pose detection: While we try to identify all joints

of an athlete with a pose estimator, we attempt to classify complete poses using a

pose detector, which is somewhat related to the field of object detection with the

”object” being a specific pose. In visually challenging training scenarios, the detec-

tion of a key-pose can be difficult because either the associated key-pose feature is

too inconspicuous or the estimation approach itself performs subpar for that pose.

As a consequence, we might assume that key-poses are latent or ”hidden”, impli-

cating that we are not able to detect them directly. We address the challenge of

latent key-poses identification by leveraging the fact that cyclic motion like swim-

ming or running has a predetermined motion structure. Additionally, we make the

assumption that all motion sequences have at least some expressive poses which can

be identified using a discriminative pose detector. We label these expressive poses

support poses, as they support the discovery of latent key-pose occurrences.

The proposed method can be summarized as follows: We train discriminative

pose detectors, which consist of an ensemble of smaller detectors called poselets.

Each poselet is trained for detecting the presence of specific arm configurations

of the athlete. Therefore, a poselet is trained from a spatiotemporal set of image

patches, i.e., the training data for one poselet detector includes patches depicting

the same configuration from different swimmers (spatial closeness) but also configu-

1The work presented in this chapter was partially published in [115, 116].
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Figure 3.1: Left: A swimmer in a swimming channel. Joints are depicted by yellow
circles. Arm configurations, depicted in blue, are used for poselet training. Right:
A selection of training patches of arms. Each column depicts patches representative
for one poselet cluster.

ration patches from the immediate surrounding frames (temporal closeness). Patch

examples are depicted in Figure 3.1. The whole poselet ensemble is used to identify

support poses within the cyclic motion of a swimmer. A measure of goodness can

be defined for identifying the most suitable support poses, which are then used to

estimate the occurrence of key-poses in a simple interpolation scheme. The proposed

approach is evaluated on a subset of the mmc-swim-channel dataset containing only

freestyle swimmers.

3.1 Related Work

Pose Estimation With Part Based Models. Part based models have played a

huge role in the fields of object detection and (human) pose estimation within the

last years. Based on the fundamental work Fischler and Elschlager [37], these mod-

els represent an object through multiple parts which are connected via deformation

terms, allowing for matching them in a flexible configuration. Various manifes-
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tations of this basic notion have been developed through the years, kicked off by

Felzenszwalb et al [33] with their deformable part models for object detection. Dif-

ferent refinements have been proposed specifically for human pose estimation, e.g.

by enriching a model with additional parts to compensate for the flexibility of the

human body [110] or by allowing rotation of parts [5].

While effective implementations of part detectors have been proposed for char-

acteristic body parts like head and torso, part templates for extremities are usually

weak. This issue has been addressed by [81], who argue that person and body part

templates should be pose specific rather than generally trained. Bourdev et al [12]

also follow this notion by proposing the concept of poselets, generic rigid part de-

tectors based on Histograms of Oriented Gradients (HoG) [21] as a generalization

of specific body part detectors. Poselets lift the spatial limitation of parts being

connected to an actual body part and encode generic parts of the body. Gkioxari et

al [42] recently utilized poselets for training discriminative classifiers to specifically

differentiate between arm configurations of a person.

Poselets in Videos. In the context of key-frame selection in videos, poselets

have been used for human activity recognition. Raptis et al. [83] propose a frame-

work based on poselet activations for selecting key-frames that represent key-states

in an action sequence. An additional classifier trained on pairwise terms for all acti-

vations then decides if a specific action sequence occurred. Carson et al. [14] select

action specific postures by matching shape information from individual frames in

order to recognize specific tennis strokes in-game footage.

Human Gait Analysis. The analysis of human gait is the most established

application in the field of periodic motion research. A big focus lies on the identifica-

tion of a person via his/her intrinsic gait signature, for example by determining and

tracking the body shape [118] or through the fusion of multiple gait cycles [55]. More

general approaches strive to recover the human body pose [48] in order to retrieve

a full set of gait parameters. Periodic motion in images was examined by Cutler

and Davis [19], who use self-similarity and frequency transformations to obtain the

frequency of the periodic motion of human and animal gait.

Procrustes Analysis. The problem of matching configurations and shapes

was extensively studied in the past under the name orthogonal Procrustes Statistics

[44, 87, 92]. Procrustes Analysis has applications in rigid body alignment, crystal-

lography, and multivariate analysis methods, in particular, Multidimensional scaling
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[67, 99]. The derivation of the semimetric for spatiotemporal configuration matching

in this chapter particularly builds on the work of [88].

3.2 Spatiotemporal Poselet Detection

The deduction of key-poses from support poses in a predictable or repetitive mo-

tion sequence is a two-stage process. Firstly, an ensemble of poselets is trained for

the identification if support poses. Secondly, a maximum likelihood estimator is

proposed for good support poses in order to predict the occurrence of a key-pose.

3.2.1 Poselet Training

We build our system on localizable parts of the human pose, initially introduced

as poselets by Bourdev et al. [12]. The original work defines poselets as rigid

linear filters, based on Histograms of Oriented Gradients (HoG, [21]) features. Each

filter is trained from a set of example image patches that are close in configuration

space. The patches are transformed into feature space and a linear Support Vector

Machine (SVM) is trained to classify patches and thereby learn a representation. For

inference, the SVM is reformulated as a dense linear filter, which is cross-correlated

with the HoG feature representation of a test image, yielding a classification score

for every placement of the filter.

The proposed approach depends heavily on precisely trained, distinguishable

poselets. We achieve this by extracting patches of characteristic parts of the poses,

e.g., patches of the limbs from all images. The underlying ground truth joint an-

notations are used to cluster the image patches into groups depicting similar con-

figurations (see Figure 3.1 for examples). From each group, one poselet classifier is

trained.

A simplifying assumption often made in the context of poselets is that the vi-

sual representation of a part does not change with part rotation. Hence, other

approaches like [42] strive to find the best possible transformation between different

configurations by rotating, reflecting, translating, and rescaling body part configu-

rations. In contrast, we extend the purely spatial representation of a poselet and

additionally include configurations from a small time window around a pose config-

uration. We develop a distance semimetric which explicitly excludes rotation and
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reflection of arm and leg configurations, therefore preserving the temporal context

of configuration patches.

Dataset

We use a subset of the mmc-swim-channel dataset covering 1200 images of freestyle

swimmers with fully annotated poses for training the poselets. All images come from

footage exclusively recorded in the Leipzig swimming channel. The images cover

different athletes, three male and five female, performing overall 20 strokes. From

these images, groups of “sub-configurations” are extracted, e.g. arm-configurations

(shoulder, elbow, and wrist of the same arm) or leg configurations (hips, knees, and

angles). These sub-configurations are clustered using k-means and the following

distance measure.

3.2.2 Temporal Poselet Clustering

For the purpose of this section, let A′ = (a1, · · · ,an)T ∈ Rn,2 be a configuration

of n joints, where each ai ∈ R2 (i = 1, · · · , n) denotes a 2-dimensional location

(x, y) of one joint. The ordering of rows in each configuration is used to label the

points, e.g., a1 always denotes the head coordinate. Similarly, let B′ be a different

configuration. We normalize each configuration by

A =
A′√

tr[A′A′T ]
, B =

B′√
tr[B′B′T ]

(3.1)

where tr[.] denotes the trace of a matrix. It follows that

tr[AAT ] = tr[BBT ] = 1 (3.2)

holds for all configurations in the dataset. The importance of this normalization

will become clear in the following derivation. A measure for the distance between

two rigid configurations is given by Procrustes statistics [44, 88, 92],

d1(A,B) = min
s,R,c

n∑
i=1

‖ ai − sRTbi + c ‖22

= min
s,R,c
‖ A− sBR + c ‖22

(3.3)
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where s is a scaling factor, R models an optimal rotation and reflection and c denotes

a translational offset between configurations A and B. Optimizing this measure

performs a transformation on B to match it as best as possible with A, leaving the

sum over residuals as a final measure-of-goodness between both configurations. A

solution to this problem is given by Gower [44],

d1(A,B) = tr[ĀĀT ]− {tr[(B̄
T ĀĀT B̄)1/2]}2

tr[B̄B̄T ]
(3.4)

where Ā, B̄ are mean centered versions of A and B, respectively.

We formulate a modified measure by setting R = I to the identity, which yields

d2(A,B) = min
s,c
‖ A− sB + c ‖22 . (3.5)

The configuration B is translated via c and resized with a scaling factor s. This

formulation closely resembles the classical Procrustes optimization problem with

the important difference that we do not allow for B to be rotated and reflected

by a linear transformation. This will assure that a configuration from any point

within the cyclic motion is not reflected or rotated onto a configuration that is not

temporally close. It can be shown [88] that subtracting configuration means ā and

b̄ from A and B respectively minimizes equation 3.5 w.r.t. the translation c. Hence,

we define Ā = (a1− ā, · · · ,an− ā)T and can set c = 0. As a scaling operation does

not change the mean of a configuration, we can rewrite Equation 3.5 to

d2(Ā, B̄) = min
s
‖ Ā− sB̄ ‖22= min

s
tr[(Ā− sB̄)(Ā− sB̄)T ]

= min
s

(tr[ĀĀT ] + s2 · tr[B̄B̄T ]− 2s · tr[ĀB̄T ])
(3.6)

We minimize this expression w.r.t. s by differentiating and solving for s:

s =
tr[ĀB̄T ]

tr[B̄B̄T ]
. (3.7)

When solving the full Procrustes problem in Equation 3.3, Sibson et al. [92] prove

that s is strictly non-negative. By setting R = I we can no longer guarantee that

s ≥ 0 still holds. A negative scaling factor is equivalent to a point reflection of

the configuration at the coordinate origin with additional scaling. As we require

the optimization problem not to reflect any configuration, we can enforce a positive
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scaling factor sp = |s| and substitute into Equation 3.6:

d3(Ā, B̄) = tr[ĀĀT ] +

∣∣∣∣ tr[ĀB̄T ]

tr[B̄B̄T ]

∣∣∣∣2 · tr[B̄B̄T ]− 2

∣∣∣∣ tr[ĀB̄T ]

tr[B̄B̄T ]

∣∣∣∣ · tr[ĀB̄T ]

= tr[ĀĀT ] +
tr[ĀB̄T ]2

tr[B̄B̄T ]
− 2

∣∣∣∣ tr[ĀB̄T ]

tr[B̄B̄T ]

∣∣∣∣ · tr[ĀB̄T ]

(3.8)

We may utilize the fact that configurations are normalized as constituted in Equation

3.2 and simplify to

d(Ā, B̄) ≡ d3(Ā, B̄) =

{
1− tr[ĀB̄T ]2 if tr[ĀB̄T ] ≥ 0

1 + 3tr[ĀB̄T ]2 else
(3.9)

While this formulation might seem a bit cumbersome, we will demonstrate that it

has some interesting properties.

Properties

An intuitive insight into properties of d(Ā, B̄) can be given by introducing a vec-

torized representation of a configuration. To that, it is straightforward to show

that for any configuration C and D, tr[CDT ] = 〈c,d〉 with c = [cT1 , ..., c
T
n ]T ,

d = [dT1 , ...,d
T
n ]T , and 〈., .〉 denotes the inner product of two vectors. Given that

all configurations are normalized such that tr[CCT ] = tr[DDT ] = 1 holds, we know

that c and d are unit vectors. By arguing over dot products of unit vectors, it is

now a bit more intuitive to show important properties of d(Ā, B̄):

• Non-negativity: As 〈a,b〉 ∈ [−1, 1], it follows that d(Ā, B̄) ∈ [0, 4] ≥ 0

• Identity: Given that 〈a, a〉 = 1, it follows that d(Ā, Ā) = 0

• Symmetry: From 〈a,b〉 = 〈b, a〉, it follows that d(Ā, B̄) = d(B̄, Ā)

• Triangle inequality: Given any three configurations {a,b, c|〈a,b〉 =

0 ∧ 〈b, c〉 = 0 ∧ 〈a, c〉 = −1}, we can show by evaluating d(Ā, B̄) + d(B̄, C̄) =

1 + 1 � 4 = d(Ā, C̄) that the triangle inequality does not hold.

With the triangle inequality not holding, d(Ā, B̄) is not a valid distance metric.

Instead, a metric with these properties is commonly referred to as a semimetric.
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Figure 3.2: A topological visualization of different distance (semi)metric embeddings
into two dimensions using t-SNE [103]. Each dot represents a configuration. If two
configurations are close in configuration space according to a distance metric, they
will be also close in these embeddings. Dots with similar color are temporally close
within a swimming cycle, black dots indicate cluster centers. (a) The optimal so-
lution d3(Ā, B̄) preserves temporal structure well. (b) Minimizing d2(Ā, B̄) retains
some temporal closeness, but negative scaling factors introduce reflected configura-
tions. (c) The full optimization of d1(Ā, B̄) preserves no temporal structure. (d)
Another distance metric from Lienhart et al. [70] preserves groups of local configu-
rations.
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Semimetric Visualization

Figure 3.2 depicts the distances between samples from a set of 360 left arm configura-

tions of different freestyle swimmers using different metrics. For the purpose of visual

evaluation, we use t-distributed Stochastic Neighbor Embedding (t-SNE, [103]) to

project all six-dimensional vectorized configurations (3 joints × 2 coordinates x and

y per joint) to two dimensions. t-SNE minimizes the KL-divergence between the sim-

ilarities of high-dimensional data - encoded with conditional probabilities between

data pairs - and its projection to some low-dimensional representation, thereby pre-

serving relative distances between features in the embedding. The scatter-plots in

Figure 3.2 give us a good intuition about the distance between configurations in the

original space. All configuration embeddings are colored such that configurations

that are temporally close within a swimming cycle have similar colors. As becomes

evident in this depiction (top-left), arm configurations that are temporally close in

the training data are also grouped together by our distance measure, which was the

intention of designing this function. When the scale in Equation 3.7 is not forced

to be positive (top-right), we see that some configurations mix with temporally dis-

tinct ones. When using HoG-based pose classifiers, we found that mixing visually

discriminative training patches from a noisy environment leads to subpar classifica-

tion results. For comparison, we additionally visualize the full Procrustes distance

d1 and another distance measure defined by Lienhart et al. [70] for matching pose

configurations.

Poselet Similarity

We present some qualitative examples of similar swimmer poses using semimetric

d(Ā, B̄) in Figure 3.3. Each row depicts colored arm configurations that are close in

the metric space. The first image per row was used as a query image, the following

images are the closest ones from the dataset under d(Ā, B̄).

The question may arise how d(Ā, B̄) can be used in more general data sets.

While we deduced this semimetric with the intention to cluster temporally close

configurations in cyclic (swimming-) motion, it can also be used to find poselets

with visual similarity in different scales. We show this in Figure 3.4 for the LSP

data set. The composition is the same as in 3.3. It becomes apparent that the

proposed semimetric is also an appropriate tool for pose mining tasks, where we

wish to find configurations that are most similar to a query pose.
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Figure 3.3: Poselet similarity examples from the swimmer data set using semimetric
d(Ā, B̄). Each row depicts images with similar limb configurations. The first image
in each row was used as a query image (queried configuration in colored lines), the
following images are the closest one under d(Ā, B̄).

.

3.2.3 Classifier Training

Given a cluster of partial configurations, a patch in image I(t) with framenumber

t is defined by a location tuple lp = (x, y, s, w, h), where (x, y) denotes the pixel

position, s defines a scale on which the patch is extracted, and w × h describe

width and height, respectively. Training image patches I(t)(lp) are cropped and

resized to a reference poselet size. We use Histograms of Oriented Gradients [20] for

feature representation Φ and transformed all patches into a feature space Φ(t)(lp) ≡
Φ(I(t)(lp)). The set of positive training patches depicting configurations is completed

with a set of negative training patches of the same size, cropped from arbitrary

background images. The whole dataset is used to train a linear support vector

machine for classification similar to [34]. The resulting linear classifier βi with

i = {1, ..., n} can be reshaped to the same dimensions as Φ and is subsequently

denoted a poselet or poselet classifier. It is used for patch classification by

performing a cross-correlation between poselet and an image transformed to feature
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Figure 3.4: Poselet similarity in the LSP data set. Each row depicts images with
similar limb configurations. The first image in each row was used as a query image
(queried configuration in colored lines), the following images are the closest ones
under d(Ā, B̄). Note how poselet configurations are often typical for one activity
(e.g., playing tennis, gymnastics, jumping).

space Φ. A poselet classifiers build from HoG features often dubbed a (linear)

HoG-filter. Note however that the key-pose identification method described in the

following section is not limited to this feature representation. Advanced machine

learning algorithms like DCNNs can be used for patch classification as long as they

return some confidence values.

3.2.4 Spatiotemporal Poselet Mixtures

Let βi describe one of n poselet classifiers of size hi × wi. Multiple poselets are

combined into a mixture M = (β0,β1, . . . ,βn). We define a scoring function Γ of

a poselet at location l in a feature pyramid2 of frame t via the cross-correlation

2A feature pyramid is comprised of resized versions of an input image, where each version is
transformed into the feature domain Φ. This technique allows for detecting objects of different
sizes in images.
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operator ?,

Γ(βi,Φ
(t)(l)) = βi ? Φ(t)(l). (3.10)

The position lp = (x, y, s, w, h) defines two coordinates x and y for a poselet place-

ment, a scale s of a pyramid level and the size of the sub-window w × h, which

equals the size of the poselet.

Similar to [21], a poselet β0 for the whole configuration of an athlete is trained

and used to retrieve an initial hypothesis l∗ for the placement of the athlete by

maximizing

l∗0 = arg max
l

Γ(β0,Φ
(t)(l)). (3.11)

In our scenario, only one person is depicted per frame. In a multi-person scenario,

β0 can be used to track multiple athletes and derive one poselet activation vector

per frame and detection. If Γ(β0,Φt(l
∗
0)) > τ for a model specific detection threshold

τ , a good initial position of the athlete was found. This best scoring detection l∗0 is

projected to the original image size by dividing by s∗, thus

l0 = (x∗/s∗, y∗/s∗, s∗/s∗, w∗/s∗, h∗/s∗) = (x0, y0, 1, w0, h0) (3.12)

Given this root hypothesis of the location of the athlete, a score Γ(βi,Φ
(t)(l∗i )) for

each poselet βi in the mixture is derived by maximizing over

l∗i = arg max
lk∈R

Γ
(
βi,Φ

(t)(lk)
)
, (3.13)

where

R =

{
lk

∣∣∣∣zT (s2kΣi

)−1
z < γ2

}
(3.14)

and

z =

[
xk

yk

]
− sk

([
x0

y0

]
+ µi

)
. (3.15)

R is called the activation region and restricts the evaluable location of a poselet

by means of a γ-thresholded, squared Mahalanobis distance. All positions in R lie

within an elliptic region shaped by deformation covariance Σi, which is centered

at deformation anchor µi relative to the root location l0. The size of this region

is restricted by γ, which we empirically set to γ = 3, i.e., 3-times the standard

deviation of Σi, thus covering 99.7% of the training patch locations.
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Deformation Terms

Both µi and Σi can be estimated directly from the training data by fitting a nor-

mal distribution on pairwise offsets between the root model and poselet training

patch locations. Given a set of pairwise correspondences between the root model

and a poselet, we want to take the athlete’s size into account prior to the Gaus-

sian parametrization. Therefore, we utilize a normalization coefficient q = dref/w0,

where w0 is the width of the root detection at p0 and dref ∈ R+ is a constant ref-

erence length, set to average over different swimmer bounding box widths. Each

offset between root position and poselet patch position is normalized with q prior

estimation µi and Σi. For inference, the swimmer’s size is determined through the

root hypothesis and averaged over multiple frames for stability. The deformation

parameters in Equation 3.14 and 3.15 are then adapted by multiplying the µi with

q−1 and Σi with q−2.

The model formulation above closely resembles a star-shaped pictorial structure

of poselets, where all parts are connected via deformation features µ and Σ with a

root model. Deformable Part Models [35] for object detection implement a struc-

turally related approach, which was expanded by many others [5, 81, 110]. While

the original approach penalizes the score of a poselet if it is detected too far from

its “ideal” position relative to the root template, we instead perform a max pooling

on all scores in the region R.

3.2.5 Key-pose Estimation from Poselet Activation

The poselet ensemble is built from temporally distinctive poselets, thus each poselet

in an ensemble vividly acts like a sensor measuring the presence or absence of a body

part, resulting in high or low scores over time. If the body part that the poselet

was trained for is present in a frame at the location specified by the deformation

parameters, the score of the poselet should be high. If the athlete continues his

movement, the poselet score decreases. The underlying assumption here is that the

poselet is sound, i.e., that the observed score reflects the actual image content. This

may not be the case for all poselets. While some configurations are simply not suited

to be represented and reliably detected by a poselet, other poselets reproduce certain

motion velocities and the associated change in human posture, while a different set

of filters might be adapted to specific athletes or body types. As a consequence, not
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all poselets in a mixture work equally well for different athletes. Another peculiarity

arises with a unique perspective on the swimming channel, where the swimmer is

depicted from a side view. We found that dense HoG templates trained for anti-

symmetrical swimming styles are not able to distinguish between left and right arm

configurations of an athlete. Consequently, the time series of scores of a good poselet

has two peaks within one cycle for anti-symmetrical swimming styles. This fact has

to be considered during evaluation accordingly.

Support Poses from Poselet Activation

The term poselet activation was initially defined by different authors [11, 83]. In

the original definition, a set of poselets is correlated with a feature pyramid and the

maximal scores of the poselets are combined into a poselet activation vector, where

each vector element equals the score of the poselet if it is activated, or zero if it is

deactivated. A poselet is activated if its classification score lies above a threshold

and it is not activated otherwise [11].

We define poselet activation as follows. Let a timeseries of poselet scores Pi for

poselet βi over a sequence of frames T be defined as

Pi = (Γ(βi,Φ
(t)(l∗i )))t∈T (3.16)

In order to compensate for the noisy output of linear HoG filters, we smooth each Pi

with a Gaussian filter. The activations of a poselet i are collected in an activation

set Ai. Each element αi,j ∈ Ai ⊂ N+ is the index of a local maximum of Pi. In other

words, each element αi,j ∈ Ai with j ∈ {1, . . . , |Ai|} denotes a framenumber where

the poselet score was locally maximal. We call poses depicted in frames indexed by

Ai support poses, as they will support the discovery of key-poses.

The temporal interval [αi,j−1, αi,j+1s ] covers one complete stroke for a good pose-

let. Here, 1s is an indicator function:

1s =

{
1 if s ∈ {freestyle, backstroke}
0 else.

(3.17)

The usage of the indicator function is necessary because of the aforementioned anti-

symmetry of freestyle and backstroke motions. With the poselets not being able to

distinguish left and right body side, we usually observe two distinct maximal peaks
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within one stroke. The length of a stroke is given by αi,j+1−αi,j−1 for freestyle and

backstroke and αi,j − αi,j−1 for breaststroke and butterfly swimmers.

We use a simple heuristic to filter potential false activations, i.e., activations that

do not represent a support pose. Therefore, we can build a histogram for all stroke

intervals in Ai and determine the dominant stroke frequency fstroke for a swimmer via

the maximal value in the histogram. False activations can be iteratively discarded

by greedily deleting αi,j ∈ Ai that produce frequencies much smaller than fstroke.

An interval [αi,j−1, αi,j+1s ] are called a regular interval if αi,j+1s−αi,j−1−fstroke < λ

holds for a small λ. In the experiments, λ = 0.1 ·fstroke proved to be a decent choice.

Activation Likeness

Not all poselets are informative for predicting key-poses. We propose to measure the

self-similarity of an activation set in order to sort sorting activation sets according

to their goodness. Adjacent groups of activations should be very similar if the series

is regular. Dissimilarity indicates that the series is irregular due to false positive or

missed activations.

Let two vectors a,b of adjacent poselet activations in activation set Ai be defined

as

a = [αi,j, αi,j+1, αi,j+2]
T ,b = [αi,j+3, αi,j+4, αi,j+5]

T (3.18)

We reuse our semimetric derived for configurations to obtain a measure of activation

likeness. Subtracting the element-wise mean from both vectors, normalizing such

that aTa = bTb = 1 and enforcing a positive scaling factor, we use Equation 3.9

to compute the distance between a and b. All poselet activation series can then be

sorted according to the resulting distances, with smaller distances indicating more

regularity. Note that the activation likeness can change within the same video, e.g.,

if the flow velocity and the posture of the swimmer changes, some poselets might

stop working while others capture the changed situation better. We evaluate the

likeness of all poselets continuously, using only a subset of poselets with the most

regular activations to predict key-poses. In the experimental section, the effect of

using different sets of poselet activations will be evaluated thoroughly.
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Key-pose Estimation

Our key-pose estimation scheme builds on support-poses, defined by regular poselet

activation sets Ai. We model the occurence of a key-pose κ (= number of key-frame)

within a motion cycle by a maximum a posteriori probability

κ∗ = arg max
κ

p(κ|Aκ). (3.19)

The κ-specific activation set Aκ ⊂
⋃
iAi is a subset of all activation sets. This

set holds all regular activation interval borders αi,j and αi,j+1+1s such that αi,j <

κ < αi,j+1+1s . Including only the closest support poses follows the notion that only

temporally close support poses are decent predictors for a key-pose. We can rewrite

Equation 3.19 by means of Bayes’ theorem, yielding

κ∗ = arg max
κ

p(Aκ|κ)p(κ). (3.20)

We may assume a uniformly distributed prior for now and only look into the max-

imum likelihood of Equation 3.20. By making the simplifying assumption that

activations from different poselets are independent from each other given κ, this

leaves us with the log-likelihood

κ∗ = arg max
κ

∏
i

p(αi,j, αi,j+1+1s|κ)

= arg max
κ

∑
i

log p(αi,j, αi,j+1+1s|κ)
(3.21)

Vividly, each poselet gives its own estimate of where a key-pose occurs in the

time series. The final estimate for κ∗ is then the sum over different contributions

p(αi,j, αi,j+1+1s|κ). Each probability p(αi,j, αi,j+1+1s|κ) is modeled by a Normal dis-

tribution as follows.

Key-pose Probabilities

A problem when predicting key-pose occurrences is the stroke frequency between

different athletes. In our scenario, different swimmers spend different time executing

a cycle. Even for the same athlete, different current velocities yield different stroke

timings. Let us define the length of a stroke interval as ci = αi,j+1+1s − αi,j. We
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can use c to normalize a key-pose occurrence given a poselet activation interval

[αi,j, αi,j+1+1s ] by

κ̂i =
κ− αi,j
ci

(3.22)

It follows that κ̂i ∈ [0, 1]. Using a database of training videos with annotated key-

poses κ, we apply our poselet detector and extract activation intervals as described

above. For each regular activation interval that surrounds a key-pose annotation κ

in a training video, we apply Equation 3.22 and retrieve κ̂i. We then fit a normal

distribution N (κ;µi, σ
2
i ) to all normalized key-poses κ̂i in the training set. For infer-

ence, each estimated Gaussian is linearly transformed to approximate the likelihood

p(αi,j, αi,j+1+1s|κ) in Equation 3.21 by

κ∗ = arg max
κ

∑
i

log p(αi,j, αi,j+1+1s|κ)

= arg max
κ

∑
i

log
(
ci · N (κ;µi, σ

2
i ) + αi,j

)
= arg max

κ

∑
i

logN (κ; ciµi + αi,j, c
2
iσ

2
i )

(3.23)

The formulation above assumes that the prior probability p(κ) is uniformly dis-

tributed, thus reducing the maximum a posteriori (MAP) estimate to a maximum

likelihood (ML) estimate. The complete Bayesian view, however, assumes that a

prior p(κ) is used. Finding a good prior initialization can be challenging. For

instance, an expert could annotate just one single occurrence of a key-pose for a

specific video manually. This single annotation can be propagated to all other cy-

cles by designing a normal distribution similar to the likelihood model, setting the

standard deviation σ2
i to a fixed small value. We will elaborate and evaluate the

idea of ignoring or setting a prior in the experimental section.

3.3 Experiments

The performance of the proposed key-pose estimators are validated and discussed on

a subset of the mmc-swim-channel dataset covering 30 swimmer videos of different

freestyle swimmers (six male, eight female, ages 15 to 25, different body sizes) in

the Leipzig swimming channel. A human expert annotated all frames that depict

one of four key-poses (illustrated in Figure 3.5), overall 1696 occurrences. Note that
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(a) (b)

(c) (d)

Figure 3.5: All four key-poses evaluated in this chapter. A key-pose for anti-
symmetrical swimmers occurs on the left (depicted on top) and on the right (de-
picted on bottom) half of the body. (a) Upper arm under water, 270 degrees angle
in the camera image. (b) Hand just leaving the water surface. (c) Upper arm 90
degrees relative to the image plane, above the water surface. (d) Hand touching
water surface.

these key-poses annotations are not the same as in Table 2.1, where key-poses where

re-annotated at a later time for the larger dataset.

A mixture model of 16 poselets (one root + 15 arm poselets) was trained from

1200 distinctive images with given pose annotations. The root detector covers the

whole swimmer and gives a root hypothesis for spatially max-pooling all other pose-

let in the mixture. The rest of the model covers 15 temporally clustered arm config-

urations (shoulder, elbow, and wrist) from all arms in the dataset, i.e., from the left
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and right body side. The estimation of key-pose occurrences is evaluated in 30-fold

cross-validation, where key-pose estimators are trained on all subsets of 29 videos

and evaluated on the remaining video. The final score is averaged over all folds.

Performance Measure

In general, we distinguish between different types of detections. An estimated key-

pose is counted as a true positive TP if it was estimated within ± 10 frames of a

ground truth label an no other estimate is closer to the same ground truth. Other-

wise, the estimated pose is counted as a false positive FP . A ground truth key-frame

without a matched prediction is a false negative FN . The performance of the pro-

posed algorithm is evaluated using the Percentage-of-Correct-Key-Frames measure

(PCKF). This measure normalizes the deviation between a predicted key-frame and

the ground truth with the stroke length. The normalized deviation threshold δ on

the x-axis is then compared against the percentage of correctly identified key-frames

on the y-axis. Normalizing the deviation with the length of the stroke is natural as

a deviation of two frames for a fast-moving swimmer produces a larger error than

two frames deviation for a slow swimmer. All PCKF curves will be compared at

a deviation threshold of δ = 0.03, denoted PCKF@0.03, which reflects the mean

human error tolerance between different experts. A threshold of 3% is approxi-

mately equivalent to a deviation of δ ≤ ±2 frames averaged over different videos

with different water flow velocities and different annotators. Additionally, we also

report PCKF@0.02 to give a better intuition for the PCKF curve. As the PCKF

measure makes no statement about false positive detections, we additionally consult

the precision Pr of the model, defined as

Pr =
TP

TP + FP
(3.24)

The precision is an indicator of how many false guesses the predictor made and will

be presented with each PCKF curve. A complete overview of the achieved scores is

given in Table 3.1.

Comparison between ML, Prior and MAP predictions

We first compare the performance of different probabilistic approaches for the pre-

diction of key-pose one in Figure 3.6 (left). Our maximum likelihood (ML) approach
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Figure 3.6: Left: PCKF for maximum likelihood (ML), prior and maximum a pos-
teriori (MAP) estimates for occurrences of key-pose 1. Right: MAP and ML esti-
mates considering a different number of activation sets. While the PCKF steadily
increases, the precision decreases with the introduction of false positives. The red
curve represents the best model which includes a second camera view.

only estimates the occurrence of a key-pose based on poselet activation sets. We

also evaluate a prior probability as well as the combined MAP probability.

Using the time series of the five best-performing poselets, the maximum likeli-

hood model achieves a PCKF of 61.6% at an error threshold of δ = 0.03 with a

precision of Pr = 0.995. The large precision indicates that only a small number of

false positive key-pose predictions were made. A prior estimate can be included by

using just a single expert annotation of a key-pose in one motion cycle, assuming

that the temporal occurrence will be similar in all other cycles. The prior can be

incorporated into the whole model only if we are able to express it as a normal

distribution. Therefore, we use Equation 3.22 to normalize a single expert key-pose

annotation per video, given the activation sets of the detector. From this annota-

tion, the mean is naturally given by the index of the key-frame itself. As we are

not able to determine an uncertainty σ2 from just one example, a tight value re-

flecting the belief that an expert annotation is very precise is chosen empirically by

setting σ2 = (0.04 · fstroke)2. Applying only the prior estimate to all videos leads

to surprisingly good key-pose estimates, yielding a PCKF of 0.641 at δ = 0.03 with

precision 0.990. If the prior is incorporated with the ML estimate, forming a com-

plete Bayesian MAP hypothesis, we find that its resulting PCKF curve (green) in

Figure 3.6 slightly surpasses both other probability estimates.
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Figure 3.7: Left: PCKF@0.03 for a varying number of poselets. Right: PCKF for
walking persons in the CMU Motion of Body database [47] for human gait analysis.

An interesting difference in key-pose estimation performance can be seen when

explicitly distinguishing between left and right body side. As the detectors are

not able to make this distinction, we manually evaluated the PCKF for the left

side (MAP5 left) and the right body side (MAP5 right) in Table 3.1. We find that

the PCKF for the left is considerably higher than the score for the right. This

effect can be attributed to the poselet confidence. While poselets may not be able

to distinguish explicitly between left and right body side, detecting the part of

the body that is further away from the camera is more difficult due to more noise

and considerable foreshortening, consequently leading to significantly smaller poselet

confidences. This effect constitutes irrecoverable support poses and therefore inferior

key-pose estimation scores for the right body side.

Increasing Number of Poselets

The performance of spatiotemporal poselet detectors can be enhanced by incremen-

tally adding additional, subpar poselet activations to the MAP estimation. Results

of this process are depicted in Figure 3.6 (right) and specifically for a PCKF@0.03

in Figure 3.7 (left). The overall performance clearly improves up to a PCKF of

0.85 when using all poselets and a prior, independent of whether the poselets are

eligible. On the other hand, the precision drops significantly to Pr = 0.809 as an

unwanted side effect. Most poselet activation sets, even the bad ones, contain at

least some valid stroke intervals which improve the performance. However, they also
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Figure 3.8: Examples from an additional camera view which can be used to improve
predictions for key-pose occurrences.

contain stroke intervals which do not represent a support-pose and introduce false

predictions.

Figure 3.7 (left) illustrates that if a prior can be added to the model, the PCKF

is consistently higher than when using only a poselet detector for key-pose predic-

tion. Especially for very few poselets, it becomes apparent that adding an addi-

tional Gaussian in form of a prior to Equation 3.20 is beneficial to the overall score.

However, in terms of a fully automatic approach to activity kinematics estimation,

adding a prior might not be desirable, leaving us with the ML scores as a baseline.

We obtain our best ML results with high precision by leveraging the activation

likeness of a poselet, as described in Section 3.2.5. We empirically set the likeness

threshold λ = 0.005 and use all poselets where the activations of a cycle compared

with the next cycle produce a likeness score smaller than λ. The results are il-

lustrated in Table 3.1 and dubbed ML-AL. While the PCKF scores lie above the

average ML10 model, we did not produce too many false positive detections.

Additional Camera View

The results from the last experiment - that key-pose estimates can be improved

with additional and potentially bad poselet activation sets - inspired the following

experiment. An additional mixture of poselets, one athlete detector plus six arm

poselets, is trained for a second synchronized camera view that captures each swim-

mer from above the swimming channel. Examples for this camera view are depicted

in Figure 3.8. While this camera is not able to monitor any movement below the

water surface due to froth, it detects the swimmer and any arm movement above

the water surface quite well. Note that this model behaves like a model trained for
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PCKF@0.02 PCKF@0.03 precision
ML5 0.482 0.616 0.995
ML5 left 0.524 0.64 -
ML5 right 0.422 0.48 -
ML10 0.596 0.739 0.833
ML15 0.679 0.808 0.796
ML-AL 0.625 0.751 0.985
MAP5 0.518 0.643 0.993
MAP10 0.666 0.781 0.853
MAP15 0.712 0.843 0.809
prior 0.491 0.665 0.993
MAP18 (2 views) 0.770 0.895 0.791

Table 3.1: Scores for the proposed key-pose detector for maximum likelihood (ML),
prior and maximum a posteriori (MAP) key-pose estimation using a different number
of considered poselets (5,10,15,18). ML-AL uses activation likeness to determine
the best performing poselets within a time window using the likeness threshold
λ = 0.005.

a symmetrical swimming style. Poselet activations only occur once a cycle because

each arm is detected by its own set of poselets. Hence, we mirror poselets detecting

the same arm configuration on the left an right body side and join them together

in one activation set. The resulting three activation sets are joined with the other

15 from the main view. Including the second view improves the PCKF by another

4.5% to an overall score of 0.895, with only a minor drop of 0.01 in precision. This

resulting PCKF curve is also depicted in Figure 3.6 (right, red graph). We will use

this model as a baseline for the comparison in the next chapter.

Human Gait Analysis

Although the key-pose estimation scheme presented in this chapter was initially

developed for swimmers depicted from a side view, it is not necessarily restricted

to this application. In order to show that this approach can be transferred to other

cyclic motion, an additional experiment was carried out on the CMU Motion of

Body database [47], which was commonly used for human gait analysis in the past.

We trained a ten-part poselet model for leg configurations of ten walking persons

depicted from the left side (Figure 3.9). A maximum likelihood estimator was trained

for the key-pose depicting a person when his or her left or right heel touches the

ground at the end of swing phase preluding the stance phase. The model was then
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Figure 3.9: Examples from the CMU Motion of Body database.

evaluated on a different set of ten videos with the same evaluation criterion as for

the swimmers. The result is depicted in Figure 3.7 (right). As the walking frequency

is usually larger than the stroke-frequency of a swimmer, the allowed deviation of

±2 half-frames for swimmers roughly translates to 8% deviation for walkers. Within

this threshold, we achieve a PCKF of 0.801 with a precision of 0.962.

3.4 Summary

The support pose detector and key-pose estimation scheme established in this chap-

ter structurally follows the formulation of a deformable part model [34] for object

detection with some important modifications:

- Instead of just detecting spatial pose configurations, the model is built for spa-

tiotemporal pose detection. To that, multiple poselets for the same part of the

body at different temporal stages of cyclic motion are evaluated simultaneously

and continuously.

- A semimetric for clustering poselets measures the similarity of poses and clus-

ters pose configurations that are spatially and temporally close.

- We relax the constraint that the covariance of the spatial relationship between

two poselets has to be diagonal and allow for arbitrary covariance matrices,

which we use to define activation regions for the poselet ensemble.

- The proposed poselet ensemble is evaluated hierarchically, i.e., the activation

of a poselet in the image is conditioned on the score of a top-level classifier.
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- A simple averaging scheme is proposed for identifying latent key-poses only

from the best performing poselets in the model.

The HoG feature representation used for training poselets is outdated nowadays.

We will show in the following chapters that novel pose estimation systems based on

DCNN features can significantly outperform key-pose estimation results reported in

this chapter. Nevertheless, key-pose estimation via support poses identification is

neither obsolete nor superfluous. Beyond the key-poses depicted in 3.5, coaches are

sometimes interested in detecting more intricate pose features. We found that pose

features can sometimes be so inconspicuous that even deeply learned image features

are not able to identify them directly. This is where the strength of a spatiotemporal

poselet detector lies. Even if we are not able to detect a latent pose feature directly,

it can be inferred indirectly given that we are able to determine stable support poses.
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4 — Athlete Pose Estimation with

Deep Neural Networks

Prior to the revival of deep convolutional neural networks by Krizhevsky et al. [66],

the estimation of all major joints of the swimmer pose with HoG-based [20] feature

representations only yielded unsatisfactory results. Over the past few years, hand-

crafted features such as HoG have been replaced by deeply learned features, resulting

in significant performance improvements for various computer vision tasks.

In this chapter, we propose a pose estimator for swimmers that builds on the ba-

sic pictorial structure model briefly introduced in Chapter 2. The estimator builds

on a deep neural network to learn appearance representations for all joints of the

human body. The output of this network is passed to a computational graph [4, 60],

which implements the classical deformable structure model1. We also include image

dependent pairwise relation (IDPR) terms. The notion behind these terms is that

the visual context of a part can be used to make a prediction for the location of

neighboring parts and therefore improve part location estimates in the whole frame-

work (Figure 4.1). We show that IDPR terms can be computed efficiently as part

of the joint appearance. In the experimental section, the proposed pose estima-

tion model, which we denote CG-IDPR, is compared with the system introduced

by Wei et al. [106]. They propose a convolutional network for pose estimation that

uses several fully convolutional blocks for implicitly learning a representation for the

structure of human poses.

The direct estimation of the human pose allows for predicting key-poses directly

by detecting their associated pose features. Therefore, we evaluate two distinct

methods. Method one simply predicts key-poses by querying pose features, method

two infers key-poses via a random forests classifier.

1The proposed pose estimator was published in [112].

53



Figure 4.1: Image dependent pairwise relation terms model the notion that a local
image patch around a joint (left) itself is a strong indicator of where the neighboring
joints are located (implied by green arrows on the right).

4.1 Related Work

With the resounding success of deep convolutional neural networks, hand-crafted

models for the appearance and the deformable structure of a pose have been replaced

by neural networks recently [100, 106]. The joint training of pictorial structures and

DCNNs has been picked up by Tompson et al. in [97] who combine a DCNN with

a Markov Random Field and successfully show that their model can successfully

exploit geometric relationships between body joint locations. Chen and Yuille show

in [15] that local appearance of parts learned by a DCNN can also be used to predict

neighboring part locations and thereby improve the prediction performance of the

whole model. Yang et al. [109] formulated DPMs in the context of a DCNN by

introducing a message passing layer which recurrently performs inference on part

detection maps. Compared to our system, their formulation only covers a basic

DPM formulation excluding image dependent pairwise relations.

Over the last years, more and more pose estimation approaches have replaced

explicit deformation modeling with a deep learning scheme [16, 51, 78, 95, 108, 117].

This chapter specifically discusses the work of Wei et al. [106], who introduce simple

five-layered convolutional blocks to improve the joint detections of an appearance

network using an advised training procedure. While this method might not produce

the latest state-of-the-art results [65, 95], it is charmingly simple and easy to adapt

to novel applications.
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4.2 Pose Estimation with Image Dependent Re-

lation Terms

4.2.1 Base Model

The goal of articulated human pose estimation is to find a hypothesis L for all joints

given some image evidence. To that goal, we define the following model energy

function. The goodness of a placement L = {l1, ..., l|V |} of all joint parts for an

image I can be evaluated by

F (L, T, I; θ,w) =

appearance︷ ︸︸ ︷∑
i∈V

wiΓi(li) +

structure︷ ︸︸ ︷∑
(i,j)∈E

Ψ(li, lj, tji,w
tji
ji )

+
∑

(i,j)∈E

wijΛi(li, tij) +
∑

(i,j)∈E

wjiΛj(lj, tji)︸ ︷︷ ︸
IDPR

(4.1)

where θ are the parameters of the DCNN, T = {Tij, Tji : (i, j) ∈ E} are spatial

relationships (=clustered offsets between pairs of neighboring parts) and w, w are

learned weights balancing the different terms.

Let us for the moment ignore the detailed mathematical notation and just dis-

cuss the three semantically distinguishable terms in this equation. The first sum

in equation 4.1 evaluates the appearance of a specific placement of the parts. This

term should be large if a joint i is present at a position li in the image and small

otherwise. The second sum represents the structure model and rates the goodness

of placements of neighboring parts. Ideally, this term is large if we find two neigh-

boring parts in an optimal configuration and it should be small for unrealistic part

placements. Both terms describe the traditional energy formulation for matching a

deformable part model according to [35] as briefly discussed in Chapter 2. The last

two sums are summarized under the term IDPR and assess the local belief that a

neighboring part is placed at a certain location based on image evidence. Given a set

of model appearance parameters θ, learned weights w, w and an image I, the goal

of an inference algorithm is to maximize F (.) in order to find the best fitting joint

hypothesis L. In the following, we will discuss the mathematical terms in Equation

4.1 in detail.
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Figure 4.2: The part detection network is based on the AlexNet structure [66] with
the last fully connected layers transformed to convolutional kernels as proposed by
[91]. The network returns confidence maps for joints in very specific neighborhood
configurations which are passed to the pose deformation graph for further processing
(see Section 4.2.2).

Part Appearance

As the depiction of the human pose in an image can be highly articulate, we allow

for multiple offsets between two joints and model a set of spatial relationships Tij =

{1, ..., K} and rij = {rtijij : (i, j) ∈ E ∧ tij ∈ Tij}, where the offsets between two

neighboring parts i and j in a training set are clustered into K clusters with cluster

identifiers tij ∈ Tij and cluster centers r
tij
ij . Given a set of swimmer images with

a ground truth joint annotations li with i ∈ {1, ..., |V |}, we extract image patches

I(li) centered around each joint i. A class label out of a set of labels L is assigned

to each patch I(li), consisting of its joint class c = i and identifiers tiNi
obtained

from clustering each offset between a joint i and its neighbor j ∈ Ni in the training

data. Intuitively, all part patches sharing the same part label depict the same joint

with all the neighboring joints having the same spatial configuration in the image.

This procedure leads to a rather large set of |L| =
∑

i∈V
∏

j∈Ni
|Tij| + 1 specialized

classes2 for detecting very specific configurations of joints and one class representing

background patches.

We use a deep neural architecture based on an AlexNet [66] with a soft-max loss

to predict the class labels for all extracted joint patches. The architecture for this

network is depicted in Figure 4.2. After training, we implement the trick presented

in [91] and transform the last two fully connected layers to 1x1 convolutional kernels.

This allows for feeding an image of arbitrary size into the network instead of single

2For a human pose with 13 joints (no neck) and K = 11 clusters per joint pairing, |L| = 3554.
Including a joint annotation for the neck, |L| = 4775 classes of joint appearances have to be
predicted.
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image patches. As a result, we receive |L| confidence maps, one for each patch class

label. Each value in an output map represents the confidence for an associated,

patch sized input window in the input image. From the specific output maps of

the joint detection network, general joint detectors for joint i can be derived by

element-wise summing over all network output maps where the patch class label

incorporates the joint class c = i. We denote the score of an appearance detector

for joint i at location li with Γi(li) in the following. The sum over all appearance

detectors constitutes the appearance term in Equation 4.1.

Image Dependent Pairwise Relation Terms

Our model formulation incorporates image dependent pairwise relation (IDPR)

terms. Therefore, we define an image dependent term Λi(li, tij = k) specifically

tailored to represent a joint c = i at location li in a particular neighbor configura-

tion k with neighbor j. A score for Λi can be obtained by summing over all class

outputs of the appearance network from the previous section where the patch class

label incorporates joint c = i and additionally the specific cluster id tij = k for the

edge (i, j) ∈ E. The sum over all IDPR terms for all neighboring joints constitutes

the IDPR part of objective Equation 4.1.

Deformation Terms

The classical deformation terms assess the fit of two detections for neighboring parts

and allow for some flexibility in the relative positions between both. In our model

formulation, it is defined by

Ψ(li, lj, tji,w
tji
ji ) =

〈
w
tji
ji , δ

(
li −

(
lj + r

tji
ji ,
))〉

(4.2)

where δ(∆l) = [∆x,∆x2,∆y,∆y2]T and ∆l = [∆x,∆y]T is a deformation feature

and w
tij
ji are learned deformation weights penalizing larger magnitudes of ∆l. The

notion behind deformation terms is to allow for a part j to deviate slightly from its

ideal placement r
tij
ji relative to part i. While small deviations from the ideal rela-

tive offset between two parts lower the score only by a small margin, there will be a

larger penalty for a part that is located further away from the ideal offset. The steep-

ness of this score decay is defined by the deformation weights w
tji
ji , where smaller

deformation weights allow for a larger deviation from the optimal displacement.
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Felzenszwalb et al. [33] propose to use a generalized distance transform [36] to

implement the process of matching parts in a deformable configuration efficiently.

The transform is applied on the appearance map of one joint and spreads high

scoring detections of a part to nearby locations. The spread distance is restricted

by the quadratic deformation parameters. After shifting the map by the ideal offset

between the two joints, the spread high scores can positively influence the final score

sum between both parts.

Weight Parameter Learning

The energy formulation in Equation 4.1 includes weight terms wi, wij and wji for

appearance and image dependent pairwise relations, respectively, as well as weights

w
tji
ji influencing the allowed deformation between two neighboring parts. We learn

all weight parameters by defining sparse feature vectors φ(In, ln, tn) representing the

concatenation of image dependent terms, IDPR terms, deformation features and a

bias term set to 1 in image In with annotated part locations ln and derived type

labels tn for training example n. Note that sparsity of φ(In, ln, tn) follows from the

fact that all dimensions in this feature that do not correspond to type labels and

deformation terms observed in image In are set to zero. We collect a training set of

positive examples from ground truth joint annotations and negative examples mined

through hard-negative mining detections on images depicting no athletes. Finally,

all weights w are learned by training a linear support vector machine on positive

and negative training examples as described in [15].

Inference

The maximization of equation 4.1 yields a set of joint placements L∗ and their

pairwise relations T ∗:

L∗, T ∗ = argmaxL,TF (L, T, I; θ,w) (4.3)

Optimization of this energy function defined over a tree-shaped pose graph G is

achieved by means of dynamic programming using the max-sum algorithm, which

allows for recursively splitting the part matching problem into subproblems. Let

Si(li) denote the model score for a sub-tree Gi of G. Starting with the leafs of the

human pose tree, i.e., wrists and ankles, the placement for each joint is simply given

58



by the appearance maps. Continuing from the leaves, a recursive score for each

parent nodes is given by

Si(li) = wiΓi(li) +
∑
n∈Ci

sin (4.4)

with

sin = max
ln,tni

(Ψ(li, ln, tni,w
tni
ni ) + wijΛi(li, tin)

+wjiΛn(ln, tni) + Sn(ln)).
(4.5)

Si equals the appearance confidence of the parent joint plus the score of the children

after deformation terms and IDPR terms have been evaluated. Determining the

final pose hypothesis involves the technique of backtracking. A global maximum of

the energy function is found by picking the root location l∗1 = argmaxl(S1(l) > τ)

given a detection threshold τ . The location of all other parts can be traced back

recursively. Therefore, for all children of a vertice, we determine the location offset

r
tij
ij of the part detection that contributed the most to the best score. In order to

perform the backtracking procedure efficiently, it is beneficial to trace joint offset

variables in lookup tables during the forward pass of an image.

4.2.2 Pictorial Structures as Computational Graphs

We implement the model described in the previous section as a computational graph.

Therefore, we first focus on a single step for pairwise optimization of a sub-tree as

described by Equations 4.4 and 4.5. Afterward, we present the graph structure for

predicting the complete pose of an athlete.

Pairwise Joint Optimization

The computational graph depicted in Figure 4.3 specifically solves one step in the

max-sum algorithm as illustrated in Equations 4.4 and 4.5. In this figure, rectangles

correspond to confidence maps of appearance and IDPR terms, circles denote an

operation on maps and arrows visualize the data flow through the graph. We assume

in this depiction that the edge between a child part j and its parent part i has been

clustered K times. As a result, there are K different IDPR maps describing the belief

for the position of parent i seen from part j and another K IDPR maps describing
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Figure 4.3: One step of the dynamic program discussed in Section 4.2.1. Partial
solutions (a) of a child joint is added to the weighted IDPR terms for the child
node in (b). Distance transformations are performed in (c) for different pairwise
relations. In (d), the transformed results are added to parent joint IDPR maps.
The elementwise maximization in (e) yields the best child joint scores, which are
added to the parent joint appearance map in (f), which yields the results of Equation
4.4 in (g). A high scoring joint configuration can be obtained by backtracking the
optimal path in this data flow graph.

the belief for the position of child j seen from parent part i. Also, K clusters

implicitly define K different deformation weights w together with their offsets rji

between part j and i. A solution Si for the sub-tree Gi is computed as follows. The

sub-tree scores in Figure 4.3 (a) is added to the weighted IDPR terms in (b) of part

j. This step is executed K times for all K IDPR maps. For each sum, an operation

called a max-convolution is performed, yielding overall K2 transformed maps in

stage (c). We will introduce the max-convolution in detail in the next section. Each

set of transformed confidence map is now added to the IDPR terms of the parent

in (d). Note that stages (b) to (d) compute the Cartesian combinations of all IDPR

terms between two parts. In step (e), the element-wise maximum of all intermediate

results are combined, yielding the best confidence scores from all possible locations

of the child parts. The result is then added to the appearance of the parent, yielding

the final score map Si. We denote the complete optimization graph in Figure 4.3 a

part-to-part layer.
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Max-Convolution. While the operations of addition, multiplication and

element-wise maximization are straight forward to implement, the formulation of

a max-convolution has to be defined more precisely. It implements the classical

deformation computation, for which [33] initially proposed a generalized distance

transform, efficiently as a filtering operation.

Let H be a regular grid and f : H → R be a function defined on that grid. In

our case, f(.) is a confidence map. The generalized distance transform Df (p) at a

point p on H is defined over neighboring points q given a kernel h(.) as

Df (p) = (f ⊗ h)(p) = max
q

(f(q)− h(p− q)) (4.6)

The operator ⊗ denotes the max-convolution. Note that this formulation of the

distance transform somewhat resembles a discrete convolution

(f ? h)[p] =
∑
q

f [p] · h[p− q] (4.7)

where the sum is replaced by the max operator and the product is replaced by a

summation. This similarity inspires the name max-convolution, which in contrast to

the standard convolution is highly non-linear. Classical graph-based pose estimation

approaches often assume that the deformation costs are modeled by quadratic terms,

i.e., h(p−q) = 〈w, (p−q)� (p−q)〉, where � denotes the entrywise product. The

parameters w control the opening width of a 2D parabola centered at p, penalizing

scores f(q) based on the distance between p and q. The greater the distance

between p and q, the greater the penalty on f(q). We can interpret Equation 4.6 as

a filtering operation, where f(.) is a function defined on a 2D-grid and h(p−q) is a

max-convolution filter. The filter kernel has a side length of 2s+ 1 (we empirically

chose s = 10) and each filter weight at position x is initialized to

h(x) =
〈
w,
(
x− (s, s)T

)
�
(
x− (s, s)T

)〉
, (4.8)

a parameterized parabola rooted at the center of the kernel. Using this kernel,

the distance transform at any point p can then be obtained by placing the filter

at position p, performing an element-wise subtraction from the function f(.) and

maximizing over all resulting values.
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Figure 4.4: The CG-IRLS graph structure for human pose estimation. Appearance
maps are summed up to form a representation for joint appearance and image de-
pendent pairwise relation terms. After resizing all maps to the original image size,
both are passed to a network of part-to-part layers (green rectangles, see also Figure
4.3) representing the structure of the human pose graph G. The part-to-part layers
compute partial solutions for each joint.

Full Inference

The computational graph depicted in Figure 4.3 represents just one building block

of our pose estimation pipeline. The combination of multiple of these part-to-part

layers - structurally arranged as a human pose graph - represents the whole pose

estimation model. The resulting computational graph is depicted in Figure 4.4 and

discussed in the following.

From the part detection network, we obtain a set of confidence maps representing

beliefs that the part is present in different configurations of neighboring parts. From

this large collection of specific belief maps, two stacks of score maps are extracted

as described in Section 4.2.1, one for the appearance of the parts and one for image

dependent terms. We resize all appearance and IDPR maps to the size of the original

input image using a deconvolution layer that implements a bilinear deconvolution

kernel. The resized confidence maps are passed into a tree-shaped network consisting

of part-to-part blocks. Each green rectangle in Figure 4.4 corresponds to one part-

to-part layer outputting a partial solution Si for joint i. Note that the structure of

all part-to-part blocks represents exactly the pose graph G. We denote the whole

pose estimation graph as CG-IRLS.
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Figure 4.5: A convolutional pose machine (CPM) as proposed by [106] consists of
multiple stages. The first stage (top) learns appearance features and is structurally
similar to the appearance stage in Figure 4.2. It outputs confidence maps P for each
joint. The following stages (bottom) concatenate the output P of their previous
stage together with an intermediate feature representation F from the first stage.
Multiple stages can be connected in line.

4.3 Convolutional Pose Machines

We discuss an alternative network structure for human pose estimation called a

Convolutional Pose Machine (CPM), initially introduced by Wei et al. [106]. They

propose a much simpler, yet effective network architecture to learn the structure

between joints purely from data, thereby taking the final leap from a manually

modeled pose estimator towards an end-to-end trainable, data-driven pose estima-

tion approach.

The CPM network structure is depicted in Figure 4.5. It consists of several

stages, usually three, and can be extended with additional ones. The first stage

is designed with the same intention as the part detection stage for the CG-IDPR

model and therefore shares an unsurprisingly similar architecture. The network

input is a rectangular image patch depicting a person at its center. The first stage

outputs a stack of joint confidence maps, one for each joint plus an additional one

for the background. These confidence maps ideally contain high confidence values at

positions where a joint is present in the input patch. Unfortunately, visually similar

joints will usually produce high confidence values in the wrong joint maps, as will
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Figure 4.6: The CPM VGG network implements the CPM structure using smaller
kernels where possible. As the receptive field should be kept the same as in the
original formulation, using smaller kernel sizes naturally increases the network depth.

false positive predictions in general. Fixing these false detections is the job of all

consecutive stages.

All stages following the first one are built the same way. The input to each

stage is a collection of joint confidence maps from the previous stage, which are

concatenated with intermediate appearance features from the first stage (see Figure

4.5 for details). After five convolutional layers with relatively large kernel sizes,

the stage outputs the same number of joint confidence maps as the previous stage.

With their large receptive field that covers almost the complete input image, the

kernels in each stage learn to emphasize correct joint detections while suppressing

potentially false positive scores. This mechanism improves confidence maps with

every stage added to the network. Commonly, a fully CPM consists of three stages,

one appearance stage, and two ”structural” stages, but networks up to six stages

have been evaluated by Wei et al. Adding stages leads usually to better scores, but

also to an increase in convergence time during training and inference time.

The standard CPM formulation as depicted in Figure 4.5 is comprised of kernels

with large sizes. This is necessary as the receptive field of the network needs to be

large enough such that false detections can be suppressed based on the positions of

the surrounding joints. A disadvantage is that networks with large kernels conse-

quently also have a large number of parameters that need to be estimated, which

usually involves larger amounts of training data more training time. We experi-

mented with an alternative architecture of a CPM influenced by the findings of [93],

who propose the VGG architecture by replacing large convolutional kernels with a

series of smaller 3× 3 kernels. Therefore, we replace convolutional kernels in stage

one of the standard CPM with multiple 3x3 kernels (see Figure 4.6), consequently
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making the network a bit deeper to retain the size of the receptive field. In all

successive structural stages, all 11× 11 layers were replaced by multiple 7× 7 layers

with the same final receptive field as in the original CPM. We found that altering

the receptive field or using kernels with a smaller size always yields subpar pose

estimation results. We denote this alternative network CPM-VGG and discuss the

results of this modification in the experimental section.

4.4 Key-pose Occurrences from Human Pose Es-

timates

We explore two methods for identifying key-poses in sequences of athlete pose esti-

mates in the following.

4.4.1 Pose Feature Series

The first procedure is almost trivial and straight forward to implement. For each

key-pose, we translate the associated pose feature into a time-series of key-pose con-

fidence values with the property that the confidence has to be maximal for frames

that depict the key-pose and lower otherwise. Take for instance key-pose one de-

picted in Figure 3.5. This key-pose was defined by an expert based on the pose

feature ”270-degree angle of the upper arms”. This specific angle is directly de-

ducible from the joint estimates for shoulder and elbow. Given a sequence of pose

estimates, we use the time-series notation (xt)t∈T = (x1, ..., xT ) to define a sequence

of confidence values for the upper arm angle as

Y = (− sin(α(t)))t∈F (4.9)

for each upper arm angle α(t) (in radians) for frames t in the ordered sequence of

frame-indices F . Y is locally maximal if the key-pose occurs and produces lower

confidence values for all other arm angles.

For all other key-poses, we can design functions that are locally maximal if a key-

pose is present and produce smaller confidences otherwise. The temporal occurrence

for any such design function Y [t] is then simply given by the setK of all local maxima

κ of Y [t]:

K = {κ : Y ′[κ] = 0 ∧ Y ′′[κ] > 0}. (4.10)
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In order to account for double detections within temporally close frames, we apply

non-maximum suppression by keeping local peaks with the largest confidence values

and deleting peaks within a temporal window of ±6 frames around them.

This approach is trivial as long as a pose feature is directly observable in the

pose estimate and as long as we can find a design function with the aforementioned

properties3. A drawback of this intuitive method is that key-poses and respective

pose features have to be established at the time of implementation. We use the

abbreviation N-TS to denote the method of using naively designed time series from

pose features.

4.4.2 Random Forest Classification

We propose a second method that treats key-pose identification as a random forest

classification problem. The classifier learns to predict an is-key-pose label just from

attributes derived from the pose estimates alone. Therefore, we build a training set

from sequences of pose estimates where each frame is flagged as a key-frame or as a

non-key-frame by an expert. We first normalize the location of each estimated pose

hypothesis by centering it at the x-coordinate of the head and the y-coordinate of the

water surface. A pose representation vector4 f (t) is compiled from each pose estimate

by concatenating all joint locations. We additionally add the sines and cosines of

the edge orientations (e.g., upper arm angles, forearm angles, et cetera) and angles

between neighboring edges (e.g., the angle between the thigh and lower leg, and

so on) to the feature representation. Limb orientations and angles cover the set

of possible pose features defined in Section 2.2.2. The inclusion of these attributes

is necessary because random forests do not have the ability to learn dependencies

between different attributes in the feature vector.

Naturally, the number of occurrences of a key-pose is limited to one frame per

complete swimming cycle, while all other frames in the cycle do not depict a key-

pose. To counteract this rather imbalanced set of positive versus negative examples,

we increase the number of positive training examples by labeling the poses in the

±2 adjacent frames of a key-pose frame also as key-poses. At the same time, we

decrease the number of non-key-poses by randomly sampling from the set of all

3In case we want to find key-poses based on latent pose features, the method described in
Chapter 3 is more appropriate.

4Not to be confused with the pose feature defining a key-pose.
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non-key-pose examples such that we are left with approximately five times more

negative examples than positives. We finally train a random forest classifier RF (.)

to distinguish between key-poses (RF (.) = 1) and non-key-poses (RF (.) = 0).

At inference, we build a feature representation for each pose in a video and

aggregate the predicted class labels. The resulting confidence sequence is given by

Y = (RF (f (t)))t∈F (4.11)

It ideally contains short bursts of consecutive positive labels. We use a low-pass filter

to emphasize the positive label of the key-pose in the middle of a burst. We identify a

key-pose through local maxima search and apply non-maximum suppression around

high scoring poses. The abbreviation RF-TS is used to denote the method of using

a random forest classifier to produce a key-pose time series.

4.5 Experiments

We evaluate the CG-IDRP model and compare it against CPM and CPM-VGG.

Articulated human pose estimation allows for evaluating the joint estimation per-

formance directly using established pose estimation criteria. The key-pose predictors

are evaluated using the same protocol as in the last chapter.

4.5.1 CG-IDPR Training

Training the CG-IDPR model involves training the model components separately,

for which we use 1200 images of freestyle swimmers from the mmc-swim-channel

dataset. From this set, 900 images are used for training the network, 100 for vali-

dation, and 200 serve as a test set for evaluating the pose estimator.

Each offset between two joints is quantized using k-means clustering with eleven

clusters for all arm joints and six clusters for all other joints. We crop patches from

overall 13 joints (head, shoulders, hips, knees, ankles, elbows, wrists) with a patch

size of 100×100 pixels and augmenting this initial set by adding variations of training

patches. Therefore, we randomly rescale each training image by a factor of [0.8, 1.2]

and add random rotations within +/ − 15 degrees. We randomly crop negative

patches from images showing empty swimming channels with different water flow

velocities. Our final training patch collection covers 44.500 examples, which are
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Figure 4.7: PCK curves of CG-IDPR (left) and CPM (right) networks fine-tuned
on freestyle swimmers. While both networks work well in this application scenario,
CG-IDPR has more difficulties detecting extremities of the athlete.

resized to the net input size of 256× 256 and tagged with a label from the label set

L The network was implemented using Caffe [61] and is trained for 40.000 iterations,

batch size 16 and an initial learning rate of 0.001, which is reduced by a factor of 10

every 10.000 iterations. After the network has converged, the parameters are fixed

and the last two layers are remodeled to fully convolutional layers.

The second training step entails deriving deformation terms and other weight

parameters. Therefore, we process the training images with the appearance network

and generate joint appearance and IDPR maps. The deformation parameters and

weights are learned as described in Section 4.2.1. The weight parameters of the de-

formable part model are optimized on the training images using three bootstrapping

rounds.

The CPM model used for comparison in this paper was also fully implemented

and trained using the Caffe Framework [61], while CPM-VGG was implemented

using the Tensorflow framework [28]. Both networks were initially trained on the

LSP dataset and fine-tuned on the 900 freestyle swimmers in the training set. As

a consequence of the LSP pre-training, they predict an additional joint position of

the neck.

4.5.2 Joint Localization

We evaluate the joint localization performance of CG-IDPR and the classical CPM in

Figure 4.7 first. Therefore, patches depicting the athlete in the test set are cropped
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CG-IDPR CPM CPM-VGG
head 99.6 93.6 93.2
neck - 100.0 99.9
right soulder 99.3 94.5 94.3
right elbow 94.0 93.5 93.0
right wrist 85.5 88.4 88.1
left shoulder 100.0 96.8 96.7
left elbow 98.9 96.5 96.0
left wrist 87.8 94.9 94.7
right hip 97.3 91.7 91.6
right knee 94.8 95.6 95.1
right ankle 74.7 93.1 92.8
left hip 99.2 98.6 98.1
left knee 98.1 98.9 98.3
left ankle 91.1 94.8 94.7
mean PCK 93.8 95.2 94.7

Table 4.1: Comparison of PCK scores (in [%]) for CG-IDPR, CPM and CPM-VGG.
All joints of 200 freestyle swimmers from the dataset are evaluated. The CPM
outperforms the other networks with an average PCK score of 95.2%.

from the images and used directly as an input to the networks. The patches for

the CG-IDPR network are resized by a factor of 2.5, reflecting the upscaling factor

during training. The patches for the CPM model are rescaled to fit the network

input of 368× 368.

Percentage of Correct Keypoints

A common metric to judge the quality of human pose estimates is the Percentage of

Correct Keypoints (PCK, [86]) measure, sometimes called the Percentage of Detected

Joints (PDJ) metric. This metric normalized all joint residual magnitudes with the

upper body length of a person, defined by the distance between right shoulder and

left hip. The normalized residual threshold δ is then compared on the x-axis against

the percentage of correctly detected joints for each threshold. Similar to the PCKF,

the PCK is usually evaluated for different thresholds of the upper body size. The

most common threshold is δ = 0.2 (PCK@0.2), which is considered by most authors

for comparing the performance of different pose estimators.
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Figure 4.8: Two swimmer poses estimated by the CG-IDPR model.

PCK Evaluation

Figure 4.7 (left) shows that we achieve a PCK@0.2 of 93.8% with CG-IDPR on our

test set of 200 freestyle swimmer images. For the same threshold, the authors who

introduced IDPR terms originally [15] report a PCK value only for elbows and wrists

on the LSP dataset [62], which in their implementation equals 94.9% and 92.0%,

respectively. Our implementation achieves average scores of 96.5% and 86.6% for

both joint types, respectively. Detecting the wrists is much more challenging for

swimmers, especially as the right wrist is often occluded or in general difficult to

detect.

The CPM (Figure 4.7, right) outperforms the CG-IDPR model by 1.4% PCK.

Note that this model includes detections for the neck of the athletes, which was

added manually to the ground truth data. A notable difference in both models can

be found in the extremities, where the CG-IDPR model produces inferior prediction

results. Comparing joint scores for both models in Table 4.1, we find the CPM

performs sub par especially for the head (-7%) and right hip joint (-5.6%). We

additionally evaluated the PCK for the CPM-VGG model for comparison. We find

the scores to be comparable with the standard CMP models, coming out just a

bit worse (-0.5%) on average. Two qualitative examples of the proposed CG-IDPR

model are depicted in Figure 4.8.

4.5.3 Key-Pose Localization

For the task of key-pose identification, we use the same 30 freestyle swimmer videos

from a subset of the mmc-swim-channel dataset as in the previous chapter. We
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key-pose
# 1 # 2 # 3 # 4 mean PCKF

ML-AL PCKF@0.02 0.760 0.622 0.598 0.520 0.625
N-TS PCKF@0.02 0.801 0.813 0.779 0.615 0.752

RF-TS PCKF@0.02 0.810 0.827 0.793 0.631 0.765
ML-AL PCKF@0.03 0.898 0.717 0.727 0.662 0.751

N-TS PCKF@0.03 0.913 0.938 0.910 0.890 0.912
RF-TS PCKF@0.03 0.920 0.941 0.921 0.898 0.920

Table 4.2: PCKFs for N-TS, RF-TS and the best automatic key-pose estimator ML-
AL (no prior) from the last chapter. On average, RF-TS outperforms both other
approaches. The last column reports the average precision over all key-poses for an
allowed inlier threshold of ±10 frames around a ground truth key-pose annotation.

evaluate different methods of key-pose extraction based on pose estimates of the

CG-IDPR network.

For the N-TS method, we design different time series functions for all key-poses of

freestyle swimmers as depicted in Figure 3.5. A time series is generated for each key-

pose in each video and smoothed with a Gaussian kernel with standard deviation

σ = 1. The key-frames are identified by local maximums in the time series and

compared to ground truth labels using the PCKF measure. For the random forest

key-pose classifier RF-TS, we use a leave-one-out cross-validation scheme, where the

classifiers are trained on 29 videos and evaluated on the remaining test video. For

each key-pose type, we use a random forest with 10 trees, maximum tree depth of

two and information gain split criterion. A class decision is inferred by a majority

vote between all trees, weighted by the fraction of all samples in the decision leaf of

each tree. Similar to N-TS, the resulting time series are smoothed using a Gaussian

kernel with a standard deviation of σ = 1. The final PCKF scores are averaged

over all validation splits. Both methods are compared to the best fully automatic

key-pose predictor ML-AL from the last chapter in Table 4.2.

PCKF Comparisons

On average, both proposed schemes for key-pose estimation outperform ML-AL by

a wide margin. The best result is obtained using the RF-TS classification approach,

which outperforms ML-AL by 16.9% on average. RF-TS is also better than N-TS,

although the average margin is much smaller (+0.8%). We found that the reason
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for this lead is that the random forest adapts easier to the detection bias of a pose

estimator. For example, if a human tags a 90-degree angle of the upper arm as the

pose feature of a key-pose, a pose estimation system might on average detect these

key-poses with a slightly different angle. A learning system is able to adapt to these

differences while the naive approach N-TS just places a key-pose occurrence at a

hard 90-degree measurement.

Last but not least, we compare the precision of all three approaches. Again, we

use an inlier threshold of ±10 frames, i.e., a key-pose is counted as a true positive

if is lies within ±10 frames of a ground truth annotation and no other estimate

is closer to that annotation. Otherwise, a key-pose estimate is counted as a false

positive. N-TS and RF-TS achieve a precision of 0.92 and 0.9, respectively. Both

procedures introduce more false positive key-pose estimates than ML-AL, which

achieves a precision of 0.985. As the determination of a key-pose is directly based

on the pose estimate, every pose estimation error can introduce false key-poses.

4.6 Summary

In this chapter, we discussed how key-poses can be directly derived from a prediction

of the human pose itself. We introduced a network implementation of a classical

deformable part model with additional pairwise relations terms for predicting joint

neighborhoods. We briefly discussed convolutional pose machines, a fully convolu-

tional, end-to-end trainable alternative pose estimator. In our experiments, both

networks perform well for the task of pose estimation on freestyle swimmers and

produce similar quantitative results, with the CPM performing slightly better.

The determination of key-poses directly from pose estimates is tested in two

ways. Firstly, the pose feature is queried directly, translated into a time-series and

key-poses are determined by local maxima search. As an alternative, we examined

a random forest classifier to predict a key-pose without knowledge about the un-

derlying pose feature. Therefore, the poses in video footage are transformed into

feature representations and a random forest is trained to automatically distinguish

between key-poses and non-key-poses. We can experimentally show that both ap-

proaches perform similarly well, with the classifier beating the intuitive method.

Both outperform the poselet detector presented in the last chapter by far.
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5 — Kinematic Pose Rectifica-

tion

A pose estimation system enables us to continuously estimate the human pose in

a video. While state-of-the-art pose estimation algorithms often perform well on

benchmark video footage and less complex scenes, the output of such algorithms

can be inaccurate and partially incorrect in a visually demanding training scenario.

Human pose estimation in aquatic environments is made more difficult by noise

from air bubbles, water splashes, constant self-occlusion and refraction, which of-

ten impede the estimation of the human joints and consequently the retrieval of

key-poses. The unique perspective on the swimming channel entails an additional

challenge. The side view exhibits visually ambiguous poses for antisymmetrical body

movement, thereby inducing many false detections.

In this chapter, we analyze different error modes of the CPM pose estimation

system that are common in swimming channel footage1. A pipeline of optimization

problems is proposed to rectify different types of estimation errors. The experimental

section reports PCK improvements for all swim styles and attests that key-pose

prediction in general benefits from pose rectification.

5.1 Related Work

Deep architectures have been used for improving pose estimation in videos. For

instance, Song et al. [94] stack multiple contiguous frames as parallel input for a

network, while [9] leverage a recurrent network structure for improving pose esti-

mates. Iqbal et al. [58] incorporate human action into a deformable part model to

improve pose estimation in videos and propose a procedure for jointly training both

1Parts of the analysis and algorithms discussed in this chapter have been published in [113, 114].
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pose and action in one model. Gkioxari et al. [43] feed additional pose priors from

previous detections together with an image into a CNN. While all these methods

attempt to enforce consistency by leveraging some type of smoothing constraints,

others like Pfister et al. [80] favor optical flow as an additional input modality.

Recently, multi-person tracking has gained a lot of attention from the scientific

community. Iqbal et al. [59] use LP optimization on a spatiotemporal pose graph

for tracking multiple persons. Girdhar et al. [41] use Mask R-CNN[51] for keypoint

prediction in small clips and link them over an entire video using a lightweight track-

ing scheme. While both multi-person tracking solutions are structurally similar to

our method, none of them allows for explicit label swapping.

Pose rectification can also be seen as a ”data cleaning” task. To this, recurrent

frameworks [73], conditional Boltzmann machines [96], Kalman filtering [6], dimen-

sionality reduction [3] or data-dependent random forests [29] have been successfully

applied to identify and rectify outliers in human poses and other modalities. Specifi-

cally in sports, Hwang at al. [56] combined global and local pose estimation to refine

joint predictions of athletes. Human pose estimation in live sports footage has been

addressed by Fastovets et al. [31], who propose a generative learning algorithm for

athlete tracking. In earlier work [113], we performed pose rectification for athlete by

means of a convex optimization problem based on motion kinematics of an athlete.

This solution involves a strictly causal dynamic program, which does not allow for

incorporating detections from future frames.

5.2 Pose Estimation Error Taxonomy

We embark this chapter by discussing different types of pose prediction errors that

are common with novel pose estimation systems like Mask R-CNN [51] or CPM [106].

The idea of this section is to provide the reader with a better sense of error types and

frequency that may occur in sports videos and to convey a deeper understanding of

why it is necessary to address them.

We focus our error assessment on only two of the four major swimming styles

because we found that the pose detectors produced most errors on them, quan-

titatively and qualitatively. However, the error classes we observe for the other

swimming styles are at least a subset of what is discussed in the following. We per-

formed an analysis of joint errors on pose estimates produced by a CPM, which we
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fine-tuned on a set of 56 image sequences covering overall 4500 images of freestyle

and backstroke swimmers in the mmc-swim-channel dataset. As a dataset con-

taining 4500 images is relatively small, it is desirable to use all of them for error

investigation. To abide best practices, one pose estimate for each image can be

obtained by three-fold cross-validation. Therefore, the dataset is partitioned into

three complementary subsets. Either two subsets are joined to a training set which

is used to train and validate a pose estimation model. Pose predictions can then

be obtained for the third remaining set, denoted the test set. For one split, a CPM

initially pre-trained on the Leeds Sports Pose dataset [62] is fine-tuned using the

training set. Approximately 10% of the training set was chosen as a validation set,

usually covering one to two full swimming sequences.

In Figure 5.1, different types of errors are depicted. They usually fall into one

of four categories:

• A joint transposition occurs if the estimator swaps joints that are visually

similar. For instance, the right wrist is falsely detected as the left wrist and

vice versa. In our pose parametrization, there exist six visually similar partner

joints, which are the wrists, elbows, shoulders, right and left hip, knees, and

ankles. Swaps are often correlated with visually challenging poses, where the

detector is not able to properly distinguish between body sides. This error

class is, therefore, most prevalent in antisymmetrical motion, e.g., freestyle or

backstroke swimming. An error is classified as joint transposition if and only

if both joint predictions lie within the true positive error range of the partner

joint, respectively. Swaps may occur for one or multiple partner joints at the

same time. If correctly identified, they can be fixed by just swapping the joint

labels for the respective joints.

• A joint estimate is considered an outlier, if its distance to the ground truth

joint location is too large. This includes cases where two partner joints are

placed at the ground truth position of one of both joints. Outliers are classical

false positive detections which can often be corrected using robust interpola-

tion. This error typically occurs as a standalone event as well as in bursts,

where the pose estimator completely losses a joint over multiple frames.

• A ground truth joint location is a denoted a false negative or miss if there

exists no detection with the correct label in the proximity of the ground truth.
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Figure 5.1: Qualitative examples of different errors. Top left: three original images.
Top right: ground truth annotations. Bottom left: pose prediction by fine-tuned
CPM [106]. Bottom right: pose prediction by fine-tuned Mask R-CNN [51]. The
results from both pose estimation networks both illustrate a variety of estimation
errors.
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False negatives are usually the counterpart to outliers and can be equally

corrected by using interpolation.

• All other joint detections that are not predicted precisely a the ground truth

location but in close proximity fall in the last category. This location jitter

has a joint-specific variance and usually leads to volatile joint trajectories.

While some joint estimation jitter may be acceptable, a reasonable requirement

for a good joint detector is that a set of joint predictions should on average

have a zero mean deviation from the respective ground truth annotations. As

can be seen in the following, this requirement is easily violated in visually

challenging scenarios.

Joint transposition and outlier errors are typically considered false positives,

while misses are false negative detections. In the context of the PCK measure, the

rectification of these error categories leads to a better recall at the largest inlier

threshold. Improving joints on a finer scale by removing location noise from the

trajectory mainly raises the PCK curve for smaller thresholds.

5.2.1 Frequency

One important question to ask is how common different error types are. If each

error class only rarely occurs, then correcting them would be a trivial task. Figure

5.2 visualizes the x and y coordinates (blue and orange) of an elbow and a wrist of a

freestyle and backstroke swimmer, respectively. The lines in the left column of the

plots depict the raw output of the CPM, while the transparent corridors indicate the

true joint trajectories. The width of each corridor represents a deviation if ± 0.2 of

the upper body length around the ground truth. These graphs are very exemplary

for the error frequency we observe in the data: While joint swaps and outliers can

appear as standalone events, more often than not they appear in bursts over a couple

of frames.

In addition to the number of errors, the mixture of different error types proves

challenging to tracking algorithms. As becomes apparent in Figure 5.2, joint trans-

position errors mix with single and consecutive outliers as well as general detection

noise. This mixture of errors makes it especially difficult to quantify the frequency

of each error type. From the PCK curves in the experimental section, we know that
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Figure 5.2: A sequence of joint coordinates of a freestyle swimmer’s left (blue) and
right (orange) elbow (top two rows) and a backstroke swimmer’s wrists (bottom two
rows). Row 1 and 3 depict x coordinates, row 2 and 4 the y coordinates. From left
to right: Original sequence as predicted by a CPM fine-tuned on swimmer data,
after swap correction, after outlier and noise correction. Colored corridors depict
the ground truth timeseries with ± PCK@0.2.

about overall 4% to 5% of all detections have to fall in either the outlier or the joint

swap category.

5.2.2 Correlation

We can obtain a different perspective on error behavior by examining the correlation

between joint residual magnitudes. Figure 5.3 depicts the Pearson correlation coef-

ficients for error magnitudes of all joints in a pose configuration. For both freestyle

and backstroke swimmers, we find a correlation of up to 0.8 for the upper body

joints and slightly larger correlation for the lower body. Especially between part-

ner joints, the correlation coefficients are considerably larger than for other joint

pairings. Large Pearson coefficients indicate a strong linear relationship between

residuals, i.e., if there is a displacement of one joint, the partner joint is displaced

with equal magnitude. While we might expect some error correlation for a well work-
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Figure 5.3: Pearson correlation coefficients for residual magnitudes of different joints
for freestyle (left) and backstroke (right) swimmers. Larger correlation coefficients
emerge for the upper body joints and especially for partner joints, and separately
for the lower body joints.

ing pose estimator, the large coefficients between partner joints and the decoupled

correlation of upper and lower body are somewhat unexpected.

5.2.3 Directional Offsets

We examine the general detection noise between ground truth and joint estimates.

A fair assumption to make about a decently well functioning pose estimator is that

over an adequately large sample of joint detections, we can expect the mean over

all estimation residuals to be zero. This expectation does not hold for swimmers

in a swimming channel, as there is a measurable non-zero mean offset of residuals

along body parts (=parts are estimated foreshortened). We demonstrate this effect

with a simple analysis. For a joint of type j, let l̃j be the ground truth location and

let lj be the predicted location. The adjoining ground truth body part q̃j can be

defined as q̃j = l̃j − l̃Pj
, where Pj is the parent joint of j. The orientation of a body

part is given by the angle α = ∠q̃j. The residual between a predicted joint and its

associated ground truth can be normalized with the orientation α by multiplication

with a rotation matrix Rα, yielding the residual rj:

rj = RT
α q̃j (5.1)
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left wrist right wrist left ankle right ankle
mean residual x 3.969 5.690 3.172 2.065
mean residual y 0.119 -0.505 0.242 -1.216

Table 5.1: Mean residual error (x,y) for orientation normalized wrist and ankle
residuals of freestyle swimmers. An offset of up to 5.6 pixel along the body part
(x-axis) can indicates that joints are estimated foreshortend. Note that all offsets
are determined for size normalized swimmers with a reference upper body size of
100 pixels. Hence, a deviation of one pixel in this table is equivalent to a real error
of 1% of the swimmer’s actual upper body size.

We perform this rotation for each residual offset in the dataset and normalize each

residuals location with the ground truth position of the joint:

rj,norm = rj − l̃j (5.2)

Rotating all residual offsets such that the orientation of the adjoining ground

truth parts equals zero and by aligning all residuals at the ground truth location

allows for determining a mean residual offset, which is summarized in Table 5.1

for the extremities of freestyle swimmers. Note that all offsets are determined for

size normalized swimmers with a reference upper body size of 100 pixels. Hence, a

deviation if one pixel in Table 5.1 is equivalent to a real error of 1% of the swimmer’s

actual upper body size.

5.3 Joint Refinement

In this section, we will discuss a pipeline of optimization problems, each of which

is designed for rectifying the aforementioned error types. Therefore, a CPM is used

to produce joint estimates for each frame in a video depicting an athlete (Figure

5.4, top). All optimization problems are merely defined on the raw 2d joint location

output of a pose estimator.

5.3.1 Swap Optimization

The following optimization problem addresses the problem of joint transposition.

The idea behind the proposed method is to first construct a graph where vertices

represent joint detections and edges connect joint detections of partner joints over
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Figure 5.4: An example for a kinematic partner graph for wrist joints. Top: Three
consecutive images with joint predictions. Wrists marker colors indicate joint labels
as detected by [106] (swap error in left image). Bottom: ILP edges for wrists. Green
edges connect joint predictions from adjoining frames. Red edges explicitly model
label swaps between adjoining frames. Transitive edges (yellow) skip one frame,
connecting joints from frames t with frames t+ 2.

multiple frames. The edges are weighted with probabilities that reflect whether

joints belong to the same trajectory. We use an optimization procedure to delete

edges from the graph, thereby partitioning it into the most probable joint trajectories

for each partner joint.

Kinematic Partner Graphs

We define a kinematic partner graph as follows. The denomination refers to the

fact that edges in this graph model the relationship between partner joints and that

the weights for each edge are derived from the motion kinematics of the athlete.

A CPM is used to obtain sets of joint detections Dt for each frame t in a video.

Each detection d
(t)
j ∈ Dt of joint type j is associated with a joint pixel location

l
(t)
j = (xj, yj)

T in the image. The function j′ = ν(j) returns the partner joint j′ of

joint j. For instance, if j is the identifier for the left wrist, ν(j) returns the identifier

for the right wrist. A kinematic partner graph is defined by edges connecting joint

detections of the same type and partner joint detections over adjoining frames.

We differentiate between two edge types. Let a set of velocity edges Ev connect

detections over consecutive frames:

Ev = {(d(t)j , d
(t+1)
j′ ) : d

(t)
j ∈ Dt ∧ d(t+1)

j′ ∈ Dt+1 ∧ j′ ∈ {j, ν(j)}} (5.3)
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The denomination of a velocity edge stems from the fact that we will use the first

derivative of joint locations as weights assigned to all edges in Ev. Edges in Ev

represent the trajectory of all joint detections as originally predicted by the pose

estimator. Additionally, Ev includes connections between a detection d
(t)
j of joint

j in frame t and its partner joint detection d
(t+1)
ν(j) in frame t + 1, which models the

possibility of joint transpositions. Hence, there are four velocity edges for each pair

of partner joints in two consecutive frames.

We add additional transitive edges called acceleration edges Ea to the partner

graph. Similar to velocity edges, the denomination was choosen to reflect that the

edge weights for acceleration edges are derived from second order derivatives of joint

locations. We define the set Ea using an unusual edge notation as follows:

Ea = {(d(t)j , d
(t+2)
j′ )j′′ : d

(t)
j ∈ Dt ∧ d(t+2)

j′ ∈ Dt+2 ∧ j′, j′′ ∈ {j, ν(j)}}. (5.4)

Acceleration edges connect detections of joint j in frame t with joint detections of

the same joint type as well as the partner in frame t+ 2. Note that we deliberately

added a subscript (., .)j′′ to the edge definition. It indicates that there are two edges

connecting (d
(t)
j , d

(t+2)
j′ ), namely (d

(t)
j , d

(t+2)
j′ )j and (d

(t)
j , d

(t+2)
j′ )ν(j). Both these edges

connect d
(t)
j with d

(t+2)
j′ , but have different weights. The weights are determined by

which of the two joint detections d
(t+1)
j and d

(t+1)
ν(j) at frame t+1 better fit the respec-

tive trajectory. This peculiarity leads to overall eight acceleration edges connecting

each pair of partner joints over two frames. A fully build partner graph for the

wrists in three consecutive images is depicted in Figure 5.4, where red and green

lines are velocity edges and yellow lines depict acceleration edges.

Edge Weighting

The denomination of velocity and acceleration edges in the previous section is not

accidental, as we use first and second order numerical derivatives of the joint loca-

tions to determine edge weights as follows.

Pose preprocessing. All predicted joint locations are resized relative to a

reference upper body size sref to account for athletes of different size in images. In

our experimental setup, the size of an athlete in a video is approximately constant.

Hence, let sup be the median length of an athlete’s upper body size in a video,

determined by the distance between right shoulder and left hip. Then, each original
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joint estimate at location l̂
(t)

j for all joints j in all frames t is resized to

l
(t)
j =

sref
sup

l̂
(t)

j . (5.5)

The estimation of sup may be more complex if athletes are filmed in different training

scenarios. For example, if pan shots are used and the size of the athlete in the

footage changes over time, sup needs to be continuously estimated, for instance by

a smoothing spline over predicted upper body lengths.

Kernel density edge weights. A weight for each edge can be computed from

first and second order numerical derivatives of joint locations. Let the velocity v
(t)
j

of a joint j in frame t be approximated by

v
(t)
j = ∇l(t)j = l

(t)
j − l

(t−1)
j (5.6)

and the acceleration a
(t)
j be the rate of change in velocity, thus

a
(t)
j = ∇2l

(t)
j = v

(t)
j − v

(t−1)
j = l

(t)
j − 2l

(t−1)
j + l

(t−2)
j . (5.7)

A kernel density estimator (KDE) based on the parabola shaped Epanechnikov

kernel K(v;h) = 1 − v2/h2 and a bandwidth of h = 1 is used to determine a

probability distribution for observed velocity magnitudes |vk| (=speed) in training

videos. The distribution is queried to determine probabilities for approximated

speeds from both detection locations connected to each velocity edge in Ev. After

all weights are assigned, edge normalization for all velocity edges connecting partner

joints from frame t with frame t+ 1 is performed. Therefore, all edge weights from

velocity edges connecting two partner joints, i.e, {(d(t)j′ , d
(t+1)
j′′ ) : j′, j′′ ∈ {j, ν(j)}},

are normalized such that the sum of all weights equals one.

The same weighting process is repeated for all acceleration edges in Ea. A KDE

for each joint type is queried to determine probabilities for the estimated acceleration

magnitude |aj|. When using acceleration edges to connect detections in frame t− 2

with detections in frame t, Equation 5.3.1 tells us that detections from frame t− 1

contribute to the approximation of acceleration. Hence, two transitive edges with

distinct weights are generated connecting any transitive joint pairing. An example

is shown in Figure 5.5. Both blue edges f1 and f2 connect the same two detections

but have different edge weights, depending on the detections at frame t + 1 that
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Figure 5.5: Velocity edges {e1, ..., e8} between joint detections d of partner joints
j and ν(j) in three consecutive frames (t, t + 1, t + 2). Colors indicate predicted
trajectories (black) and swap-edges (red). Transitive acceleration edges f1 and f2
(blue) connect d

(t)
j with d

(t+2)
j . For clarity, only two out of eight transitive edges are

shown.

contribute to the acceleration weight. We will use constraints to guarantee that

only one transitive edge will be included in the final joint trajectory.

Edge Constraints

The weighted partner graph defined in Section 5.3.1 is constructed from velocity and

acceleration edges connecting partner joints over all configurations in a sequence.

Recall the original idea that an optimization problem is used to delete edges from

the full partner graphs. In order to guarantee that we are left with plausible and

valid trajectories after optimization, we define some constraints that the optimizer

has to consider.

In order to be able to intelligibly explain constraints without requiring an overly

intricate notation, we will use the exemplary notation from Figure 5.5. This figure

depicts an abstract sketch of two partner detections (large rectangles) in three con-

secutive frames (from left to right). Velocity edges ei (black and red) connect all

detections from adjoining frames. Additionally, two transitive acceleration edges f1

and f2 are also added in this sketch. For clarity, all other transitive edges have been

omitted. We will use the edge notation from this Figure to carve out optimization

constraints. Note that ei and fi pose as indicator variables. If we want an edge to

be existent, the corresponding variable equals 1 and 0 otherwise. In the end, the

full constraint set holds all constraints for all frame triples and all partner joints in

our partner graph.
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The first set of constraints model mutual exclusivity between velocity edges: A

detection of joint j in frame t can not be connected to both joint j and joint ν(j)

in frame t + 1 at the same time. Using the nomenclature from Figure 5.5, this

translates to:

e1 + e2 ≤ 1

e3 + e4 ≤ 1
(5.8)

Both these constraints are violated if mutually exclusive edges appear together in

the final solution. This set of constraints thereby guarantees that the graph is

partitioned into separate joint trajectories.

The second set of constraints guarantees that the correct acceleration edges

matching a selection of velocity edges are considered. If, for instance, edges e1

and e5 are included in a final trajectory, then the weight of transitive edge f1 has to

be considered in the optimization problem. This constraint is modeled as

e1 + e5 − f1 ≤ 1 (5.9)

While this constraint models the necessary presence of transitive edges, they do not

prevent the arbitrary inclusion of other transitive edges. This motivates the third

and last set of constraints for mutual exclusivity of transitive edges. This constraint

only allows two transitive edges per partner pairing and frame triple to be included

in the final solution. It follows that only two of the eight possible transitive edges

per detection triple can be included:

8∑
i=1

fi ≤ 2. (5.10)

All constraints allow for a feasible partition of the graph and thereby a trajectory

for each partner joint.

Optimization

We have defined a kinematically weighed partner graph and a set of constraints.

Towards to goal of partitioning the graph into trajectories for each joint, we use an
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integer linear program (ILP) as follows. We optimize over the objective function

maximize wTx

subject to Cx ≤ b

x ∈ {0, 1}n
(5.11)

Here, x is a binary vector representing all edges in the partner graph. Each entry

xi indicates whether an edge is present (xi = 1) or absent (xi = 0). The weight

vector w associates an edge weight wi with each edge represented in x. In simpler

words, maximizing the objective wTx means adding the most probable weights of the

most probable trajectories of joints in the graph. The partitioning itself is achieved

with the set of constraints which are encoded by matrix C and vector b. The joint

detections connected by a path of edges form the optimal trajectory w.r.t. objective

5.11.

Practically, the problem is modeled using the convex optimization modeling lan-

guage CVXPY [1] with the Embedded Conic Solver (ECOS, [25]). The test se-

quences in the experimental section do not exceed 100 frames, for which the opti-

mization of the kinematic graph is still tractable. For evaluating longer sequences,

as necessary for video processing, the sequence of poses can be split into subse-

quences of length 100, overlapping with three frames. The ILP is solved for each

subsequence, and the edges for the first frames are fixed to the solution obtained

from the preceding subsequence.

Edge Conflation

There is some potential for optimizing the size of the problem. The edge set of the

partner graph can be reduced to sets with smaller cardinality by capitalizing the fact

that we only argue over partner joints. Consider both partner detections in frames

t and t + 1 in Figure 5.5. If we assume that detection d
(t)
j is connected to d

(t+1)
j

via edge e1, then it automatically follows that d
(t)
ν(j) is connected to d

(t+1)
ν(j) via e4.

Edges e2 and e3 would be deleted from the graph in this scenario. Then again, if e2

and e3 had larger probabilities, then they would connect the detections and e1 and

e4 would be excluded from the solution. This binary characteristic of the problem

allows for merging edges in the graph. For example, edges e1 and e4 can be merged

into a new edge with its weight being set to the sum of both single edge weights.
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This edge now represents that no swap occurs from frame t to frame t+1. The same

can be done by merging edges e2 and e3, yielding an edge representing a possible

swap. This procedure can be implemented for all velocity and acceleration edges

in the graph, reducing the number of weighted edges and associated constraints by

half, leading to a more compact optimization problem which can be solved faster.

5.3.2 Directional Offset Minimization

We discuss the problem of directional offsets along the limbs of athletes, which

is very unique for swimmers. Unfortunately, removing the directional offset is a

difficult problem. At inference time, the only information that can be salvaged

for minimizing the directional offset are the predicted joint locations. Just moving

detections a couple of pixels along the direction of the predicted body part is not

adequate, as its orientation is subject to detection noise from two connected joints.

The following simple yet effective practical method was found to diminish the

directional offset. In contrast to the method proposed in [113], this approach is much

simpler and yields similar results. On a separate set of training videos with ground

truth joint locations l̃j a CPM is used to estimate joint locations lj. Just like in

Section 5.2, the body part q connected to a predicted joint is given by q = lj − lPj
,

where Pj is the parent joint of j.

We use k-means clustering on all predicted parts q, as we found that predicted

body parts with similar appearance often suffer from the same directional error

bias. For all parts in a cluster c, the residuals r = l̃j − lj between ground truth and

predicted joint are rotated using rotation matrix Rα, where an α = ∠q denotes the

orientation of q. This operation normalizes the direction of all residuals in a cluster

by the orientation of the connected predicted part. For all orientation-normalized

residuals in cluster c, the geometric median r̃c is the point that minimizes the sum

over the L1-norm of residuals. We choose the geometric median over the mean, which

would be much simpler to compute, as after joint swap correction we are still left

with partially large outliers from false joint detections. Finding the robust geometric

median is one of the oldest non-trivial problems in computational geometry and can

be approximated by using the Weiszfeld algorithm [2], which iteratively converges

towards this point. We compute one median for all clusters of residual offsets.

At inference, we proceed accordingly. For a predicted joint location lj, the con-

nected body part q and its orientation α are calculated. We look up the cluster
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left wrist right wrist left ankle right ankle
mean residual x 3.969 5.690 3.172 2.065
mean residual x, minimized 2.487 3.352 0.288 0.931
mean residual y 0.119 -0.505 0.242 -1.216
mean residual y, minimized -0.100 0.098 -0.104 -0.152

Table 5.2: Mean residual error (x,y) for orientation normalized wrist and ankle
residuals of freestyle swimmers. An offset of up to 5.6 pixel along the body part
(x-axis) can indicates that joints are estimated foreshortend. Note that all offsets
are determined for size normalized swimmers with a reference upper body size of
100 pixels. Hence, a deviation of one pixel in this table is equivalent a real error of
1% of the swimmer’s actual upper body size.

assignment c for the part, transform the associated directional median r̃c using the

rotation matrix Rα and add it as a directional correction factor to the predicted

joint location lj with

l∗j = lj +Rα · r̃c. (5.12)

Table 5.2 summarizes directional offsets after this procedure. All offsets are

determined for size normalized swimmers with a reference upper body size of 100

pixels. Hence, one pixel of deviation equals a real error of 1% of the swimmer’s

actual upper body size.

5.3.3 Temporal Robust Regression

We discuss a windowed robust regression approach for finding and replacing outliers

while increasing the signal to noise ratio for each joint trajectory.

The basic notion behind local regression is that a noisy function can be approx-

imated in small local neighborhoods using a low-order polynomial that is robustly

estimated using a weighted regression approach. A neighborhood or window is de-

fined by subsequences of m equally spaced data points. Robustness is achieved by

weighting points. Data points that are closer to the approximation get a larger

weight and thereby larger influence on model regression coefficients. Likewise, the

influence of outliers should be mitigated by giving them a small weight.

Robust local regression has been extensively studied for locally weighted scat-

terplot smoothing (LOWESS, [18]), for which we discuss some modifications. First,

the authors in [18] state that although the polynomial algorithm was designed with

robustness in mind, the approximation may still suffer from large outliers. They
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choose arbitrary weighting functions, which we replace by weights emerging from

minimizing the L1-norm of approximation residuals, as proposed by [45]. Second,

LOWESS is computationally expensive. We propose a strided window placement

with stride bm/2c to obtain a decent approximation of an arbitrary function more

efficiently.

L1-norm Minimization

Approximating polynomials with least squares has the disadvantage that the largest

errors in a signal dominate the approximation result. While this might not be a

problem if the signal noise is normally distributed, large outliers can cause degraded

fits. A potential solution to this problem is to minimize the sum of absolute resid-

uals, i.e., the L1-norm. In the following, robust approximations are estimated on

timeseries of x and y coordinates of consecutive joint locations. We use vector

c ∈ Rm to describe a series of either coordinate. The classical approach to finding a

polynomial model of degree g that approximates c is given by the relationship

ε = Ax− c (5.13)

where A ∈ Rm×(g+1) is a design matrix, x ∈ Rg+1 are the polynomial coefficients

and ε ∈ Rm are approximation residuals. Each line in A and c corresponds to a

polynomial of degree g for one data point. A robust L1-norm solution for x can be

found by minimizing

x∗ = arg min
x
||ε||1 = arg min

x

m∑
i=1

|εi| (5.14)

Finding a solution to this problem is inconvenient as the objective is usually non-

convex. A trick can be applied to transform the least absolute deviation into a

weighted least squares problem with weights wi by applying

|εi|p = |εi|p−2|εi|2
p=1
= w−1i ε2i (5.15)

which can be used to rewrite (5.14) to

x∗ = arg min
x
||ε||1 = arg min

x

m∑
i=1

w−1i ε2i = arg min
x
||W 1/2(Ax− c)||22 (5.16)
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Algorithm 1 Iteratively Weighted Least Squares for L1-norm minimization

Given: design matrix A (Ai denotes the i-th row of A), coordinate sequence c,
convergence threshold η
Initialize diagonal of W (0): W

(0)
ii ← 1

δ ← 0.0001
repeat

x(t+1) ← (ATW (t)A)−1ATW (t)c

W
(t+1)
ii ← max{|Aix(t+1) − ci|, δ}−1

until convergence

where W is a diagonal matrix with Wii = w−1i = |εi|−1. This reformulation is

called weighted least squares and has a closed form solution. In this special case,

the weights in W depend on the model parameters x. A solution to Equation 5.16

can be obtained utilizing the iteratively reweighted least squares (IRLS) algorithm,

which is summarized in Algorithm 1. Note that for a matrix A, we use Ai to denote

the i-th row of A. To avoid dividing by 0 when wi → 0, we can introduce a smoothing

parameter δ > 0 and set wi = max{|εi|, δ}. δ is usually chosen to be very small, e.g.,

δ = 0.0001. The algorithm converges if the sum of residuals falls below a threshold

η between two iteration loops. IRLS is known to converge fast, usually 5 iterations

are sufficient to reach convergence.

Windowed Local Regression

The original LOWESS algorithm performs regression for each subwindow around

a data point in order to replace it with a robust estimate. We found that we can

use a strided robust regression with equal approximation results. Hereto, for each

coordinate series c, windows of uneven size m - we use m = 21 for all experiments

- are sampled with stride s = bm/2c+ 1, i.e., all windows overlap at bm/2c values.

For each window, a robust approximation is obtained via L1-norm minimization as

discussed in the previous section. We add all approximations together considering

their original position in the coordinate series. Overlapping regions are linearly

weighted. Hereto, let c1 be the last n = bm/2c values of an approximation which

overlaps with c2, the first n values of the next approximation. Let t ∈ {1, ..., n} be

an index for each value in c1 and c2. Each approximated value in c1 at index t is

multiplied with weight wt = (n+ 1− t)/(n+ 1) and each approximation value in c2

at index t with 1− wt.
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Figure 5.6: Percentage of Correct Keypoints for all four major swimming styles.
Mask R-CNN (orange) is compared to CPM (blue). Dashed lines are raw pose
prediction baselines, continuous lines represent the PCK after rectification. Dotted
lines are results without ILP swap optimization, but with robust regression.

5.4 Experiments

5.4.1 Joint Localization

We compare two state-of-the-art pose estimation systems for joint localization:

CPMs with 3 stages and additionally Mask R-CNN [51] build on a ResNet-101

[53] backbone. The CPM model is initially pre-trained on the Leeds-Sports-Pose

dataset [62], the Mask R-CNN on the MSCOCO dataset. As we wish to compare

the PCK of the rectification pipeline with the baselines but only have a small, fully

annotated dataset of motion sequences available, we have to evaluate the pipeline

on our training data. Therefore, we refine both the CPM and Mask R-CNN on each

swimming style by fine-tuning it on our fully annotated sequences using a 3-fold
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cross validation. Hereto, the data is split into three partitions. One partition is

kept as the test set while the model is refined using the remaining partitions for

training and validation. Hereby, we obtain pose estimates for each frame in our

fully annotated image sequences.

As the input to a CPM is an image patch depicting the complete athlete, we

apply a Single Shot Detector (SSD, [72]) to all images and videos to obtain an

initial location hypothesis which we then process with the CPM. This process is

superfluous for Mask R-CNN, which is able to extract athlete localization proposals

from the whole image within its network structure.

PCK

The PCK on the initial estimates for both networks serves as the baseline and is

depicted in Figure 5.6 (dashed). We find that there is a difference in pose esti-

mation network performance, with CPM coming out on top of Mask R-CNN. For

the CPM, symmetrical swimming styles already work very well: the PCK@0.1 is

beyond 90%; almost all joints (>99.0%) are predicted within 0.2 of the upper body

size. The anti-symmetrical swimming styles are more difficult to predict precisely,

with a PCK@0.1 of 78.7% for freestyle and 82% for backstroke. Both hardly exceed

95% PCK@0.2. The Mask R-CNN shows surprising gains in for freestyle swimmers

(+4.8% PCK@0.2), but also for breaststroke and butterfly swimming, especially

compared to the marginal CPM gains. This can be attributed to the fact that the

Mask R-CNN detections are much more volatile. Even between consecutive images

with only very little change in content, the detections often jump unpredictably

around the ground truth. This also becomes evident when comparing RMS val-

ues in Table 5.3, where the larger gain is obtained from the second rectification

stage. Nevertheless, the localization gain is consistent and partially distinct for all

swimming styles and both networks.

Partner Graph Ablation

To get a better understanding of the importance of partner graph optimization, we

perform a simple ablation study by applying robust joint regression from Section

5.3.1 without optimizing the partner graph. The results are depicted as dotted lines

in Figure 5.6. For freestyle swimmers, the resulting PCK of 95.7%(+0.5%) for the

CPM and 83.8%(+1.3%) for Mask R-CNN is slightly better than the baselines but
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free back fly breast
Mask R-CNN baseline 31.84 34.77 40.70 26.10
Mask R-CNN swap corr. 28.91 32.02 - -
Mask R-CNN fully rectified 19.15 20.18 33.31 16.49
CPM baseline 14.81 17.90 7.07 6.69
CPM swap corr. 12.08 11.76 - -
CPM fully rectified 9.13 9.55 5.77 6.65
Zecha et al. [113] 10.74 11.34 5.78 6.56

Table 5.3: RMS values of the Euclidean distance between prediction and ground
truth for all joints.

worse than the results of the full rectification pipeline. For backstroke swimmers,

the PCK drops to 95.1%(-0.6%) for the CPM and 86.6%(-0.9%). We conclude that

partner graph optimization is not only beneficial to improving pose estimates, it can

also be necessary to avoid poor rectification results.

RMS

We evaluate each step in our pose rectification pipeline separately and compare the

results against [113]. The joint transposition ILP is applied to freestyle and back-

stroke swimmers, directional offset minimization and spatiotemporal regression are

applied to all swimming styles. Table 5.3 compares the root mean square values of

Euclidean distances between prediction and ground truth. Note that the RMS was

measured for size normalized poses as described in Section 5.3.1 with an reference

upper body size of sref = 100. The RMS consistently improves for all swimming

styles. Compared to previous work in [113], RMS values for all styles but breast-

stroke improved.

5.4.2 Key-Pose Retrieval

The initial motivation for improving the joint predictions of swimmers was to simi-

larly improve the identification of specific key-poses. Therefore, we use a SSD [72]

detector to track the swimmers in all videos of the mmc-swim-channel dataset and

estimate the pose using a standard CPM which was fine-tuned on the image se-

quences of the dataset. We then apply the whole rectification pipeline and extract

poses using both the naive approach N-TS and the Random Forest key-pose classi-

fier RF-TS from the previous chapter for key-poses identification. In the following,
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Figure 5.7: Example of key-poses defined by human experts. Raw images are de-
picted to the left of rectified pose estimates. From left to right: Freestyle, back-
stroke, butterfly, breaststroke. Arrows indicate the pose-features: upper arm angle
π/2 (green), upper arm angle 3/2π (yellow), angle between two parts (red).

N-TS is applied to the raw CPM output and serves as the baseline which is compared

against the pose rectification pipeline.

Compared to the subset of data evaluated in the last chapters, the complete

dataset mmc-swim-channel includes much more videos, different swim styles, and

new key-pose annotations. Therefore, the results we report in the following are not

comparable to scores from the previous chapters.

As a substitute, we compare the performance of the pipeline against one of our

older approaches discussed in [113]. In this publication, we used a stricter metric

where a key-pose prediction is counted as a True Positive (TP) if a ground truth

annotation lies within ±6 frames instead of ±10 frames, and no other detection is

closer to the ground truth. All detections that can’t be matched against a ground

truth are considered false positive detections (FP). If a ground truth is not matched

against a key-pose prediction, we count it as a False Negative (FN). Figure 5.7 depict

the key-poses which we evaluate for the new dataset. The arm angles evaluated for

freestyle swimmers are the same for backstroke swimmers. The same angles are

evaluated or backstroke swimmers. Both symmetrical swim styles include the pose

features ”closest and widest angle between the upper and lower arm and leg”.
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free back fly breast mean
PCKF CPM baseline (N-TS) 0.791 0.898 0.820 0.852 0.840
PCKF Zecha et al. [113] (N-TS) 0.828 0.920 0.851 0.901 0.875
PCKF CPM refinement N-TS 0.830 0.925 0.853 0.898 0.876
PCKF CPM refinement RF-TS 0.838 0.928 0.801 0.817 0.846
Pr CPM baseline (N-TS) 0.781 0.773 0.874 0.837 0.816
Pr Zecha et al. [113] (N-TS) 0.851 0.823 0.891 0.876 0.860
Pr CPM refinement N-TS 0.859 0.827 0.890 0.876 0.863
Pr CPM refinement RF-TS 0.858 0.838 0.811 0.793 0.825

Table 5.4: PCKF and Precision of key-pose retrieval. We compare the baseline
established by a fine-tuned CPM against our system from [113] and the rectification
approach proposed in this chapter.

PCKF values for the whole dataset are summarized in Table 5.4. Within the

human error of ±2 frames, we report considerable PCKF increases between +2% to

+5% for all swimming styles. On average, rectification with N-TS can be improved

by 3.6% compared to the baseline. Compared to [113], we achieve slightly better

scores. Confirming the results from the previous chapter, the random forest classi-

fier works well for anti-symmetrical swimming styles where only arm angles define

the pose features. Surprisingly, the average PCKF for both symmetrical swim-styles

drops to 81.7% and 80.1%, respectively, which even lies below the baseline perfor-

mance when using N-TS functions. The reason for this is the pose feature ”closest

angle” or ”widest angle” between upper arm and forearm or between the thigh and

the lower leg. In the naive approach, functions for these pose features are deliber-

ately designed to be maximal when the feature occurs. As the random forest features

were designed without temporal attributes in mind, the RF-TS model is not able to

these pose features well. This finally leads to inferior PCKF scores.

We additionally report the precision for all retrieved key-poses given the inlier

threshold of ±6 frames around a key-pose. An increase of up to 7% for the precision

means that we not only are able to improve on correctly predicted key-poses but also

retrieve far less false positive predictions for key-pose occurrences. Similar to the

PCKF drop for RF-TS key-pose estimation, we can also observe a drop in precision

for this classification scheme.
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5.5 Summary

In this chapter we demonstrated that a joint tracking and rectification pipeline can

improve estimates of an athlete’s joints and thereby considerably increase PCKF and

precision of retrieved key-poses. The proposed pipeline consists of a joint-kinematic

based integer linear program which is used to identify and correct joint swaps, a

simple scheme for diminishing directional residual offset and a robust regression

approach for replacing outliers with motion-consistent joint landmarks.

Contrary to other work in this field, the discussed approaches offer several nov-

elties:

- The ILP constraints explicitly model the possibility that joints may change

their label.

- Edge weights in the LP-optimization problem strictly follow motion kinemat-

ics. This entails that multiple transitive edges connecting the same detections

have to be defined and mutually excluded in the constraint set. Other ap-

proaches like [59] use intricate neural networks to determine edge weights,

which introduce another potential error source to the problem.

- Obtaining large quantities of high precision annotations for training sophisti-

cated machine learning algorithms remains a time-consuming and tedious chal-

lenge. Especially in less popular sports, this effort is often not feasible. The

proposed pipeline for improving continuous pose predictions can be trained

with a comparatively small set of annotated training data.

Experiments illustrate that there still is room to improve on both joint estima-

tion and key-frame extraction. For example, partner graph optimization is often

challenged if partner joints occlude themselves for longer time periods, like hips or

knees of swimmers. Improving long term tracking of joints remains future work.
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6 — Jump Dynamics Prediction

of Ski Jumpers

We address the problem of automatically predicting the jump forces of ski jumpers

in this chapter. The motion sequence of a ski jump can be divided into four phases

depicted in Figure 6.1. During the in-run, the athlete accelerates while skiing down

a jumping ramp. Reaching the end of the ramp, which is denoted the take-off table,

the athlete launches himself through a jumping motion into the flight phase. During

the flight phase, the jumper targets to assume an optimal posture to increase flight

time and thereby extend jump distance. The jump is completed with the landing

phase, where the final distance is rated by referees to yield a final score for the jump.

The final jump distance can be actively influenced by the athlete during each

phase of the jump. An optimal streamlined in-run guarantees enough initial velocity,

while a steady and precisely executed jump motion on the take-off table and a sta-

ble and optimal flying posture increase the final distance. During training sessions,

coaches put much effort into optimizing flight posture and the ideal timings for exe-

cuting the jump motion on the take-off table. Therefore, ski jump hills are equipped

with several cameras in parallel with the flight path of the jumper. Additionally,

force measurement plates are installed in the jump-off table to precisely measure

the jump force during the last meters of the in-run. After a run, coaches review

the camera footage and measured forces. Similar to the kinematical evaluation, the

jumper’s posture is manually annotated and the force measurements are evaluated

by identifying points of interest like the temporal occurrence of the strongest force.

This whole process is usually done manually and thereby time-consuming.

In this chapter, we strive to automate the jump evaluation process by leveraging

the poses of an athlete to estimate the jump force. Therefore, two problems need

to be solved. First, different camera views need to be registered in a mutual co-
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Figure 6.1: The different phases of a ski jump. From left to right: in-run, jumping,
flight phase, landing.

ordinate system, followed by temporal synchronization between camera views and

force measurements (Figure 6.2). Second, a model for generating sequences of force

predictions from sequences of pose estimates has to be defined. The methodology

discussed in this chapter was published in [111].

6.1 Related Work

Camera-calibration. The topic of non-classical camera-calibration, i.e., not based

on homography estimation between overlapping cameras, was addressed from differ-

ent directions in the past. [68, 105] propose search algorithms for temporal alignment

using human kinematics and point trajectories in dual camera setups. Padua et al.

[79] extend the two camera scenario to multi-camera systems. They define a search

space of calibration and synchronization parameters called a timeline and proposed

an optimization algorithm for approaching the optimal settings. A common fea-

ture in all these algorithms is that cameras need to film the same scene to optimize

spatiotemporal parameters.

Object dynamics/kinematics. Predicting dynamics of objects in still images

is commonly based on neural networks with two input arms, one for a (masked)

image and a second for force inputs. Forces are modeled using a game engine

[75] or a physics engine [76, 107], where the whole image scene can be simulated.

Alternatively, scenarios like billiard games [13, 38] are examined, where a force

can be applied to the scene in a controlled environment. Recurrent networks have

mainly been used for the prediction of human dynamics from just image/video.

For example, deep recurrent neural networks(RNNs) [74] and Encoder-Recurrent-

Decoder networks [39] are used to predict the motion of a person continuously. While
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distance from take-off table

force magnitude

Δ𝑥Δy

Figure 6.2: Based on the predicted poses of an athlete (green/yellow), joint trajecto-
ries (blue, orange, dark red) and camera offset ∆x and ∆y for two camera views can
be inferred with the method described in Section 6.2.2. The red line indicates the
edge of the take-off table, which serves as the anchor for force-image synchronization.
The synchronized force signal for the jump is depicted as a red graph.

they often state that the dynamics of a person’s movement are estimated, the actual

prediction only entails joint kinematics.

Sequence to sequence learning. Sequence to sequence networks have been

extensively researched in the last years for machine translation [64], audio synthe-

sis [102] or language modeling [22]. While network structures build on Recurrent

Networks [10], LSTMs [54] or Gated Recurrent Units [17] are numerous, convolu-

tional sequence to sequence modeling as an alternative has gained traction recently

in machine translation [40] as well as human kinematics prediction [69]. Compared

to recurrent models, the width of the history size can be directly defined and con-

trolled through the receptive field of the network. Additionally, computations over

all layers can be fully parallelized (in contrary to recurrent models).

Our work. While our work is strongly influenced by generic state-of-the-art

networks [7] for time series prediction with convolutional networks, classical appli-

cations of these models often work on discrete-valued input and output data. In

contrast to that, we attempt to use continuous input data to predict purely con-

tinuous output data. The prediction of real-world force measurements solely form
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camera footage in an entirely uncalibrated scenario - especially within our scope of

application, is a novel problem.

6.2 Multimodal Registration and Synchroniza-

tion

The process of predicting forces from human poses involves the registration and

synchronization of different modalities. We describe the measurement setup in the

following and propose a calibration strategy for registering different cameras in the

system and temporally synchronizing them with force measurements.

6.2.1 Measurement Setup

A ski jump hill is equipped with N cameras C = (C1, ..., CN) along the take-off

table and the flight trajectory of the athlete. All cameras shoot at 50 Hz and are

temporally synchronized by the athlete triggering a light barrier when he starts

his jump at the top of the in-run. Cameras are regularly spaced in parallel to the

fight path and usually do not overlap, except for two cameras with minimal overlap

pointing at the take-off table. While all image planes are assumed to be parallel to

the flight trajectory of the athlete, we can not guarantee the same distance between

each image plane and the jumper due to terrain limitations.

Force measurements are taken at a frequency of 2 kHz from a series of force

measurement plates installed at the last 17 meters of the in-run, up to the edge of

the take-off table. An external synchronization system for cameras and force plates

does not exist. The plates are triggered and synchronized among one another by

several light barriers along the in-run. The exact process of measuring the jump

forces over the last 17 meters of the ski jump is unknown to us. The output of the

measurement system is a series of force readings sampled at a rate of 2 kHz. Each

reading is labeled with the distance between the ski jumper and the edge of the ski

jump. As a result, the position of the jump edge together with the location of the

jumper defined by his ankle joint can be used as a temporal synchronization anchor

in both force signal and continuous pose estimate, respectively. Using the position

of the light barriers directly is not possible as they are typically not visible in the

camera images.
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6.2.2 Pose Estimation for Robust Camera Calibration

We propose to use post estimates of an athlete for image registration and make

some simplifying, but reasonable assumptions about the camera setup. Firstly, the

image planes are approximately parallel to the flight path of the jumper and they

are horizontally aligned with the horizon. While we found both assumptions to be

true in our setup, incorrect installation of the cameras could entail a rotation in the

image plane. In this case, parameters for camera rotation have to be added to the

proposed alignment model. Secondly, the detector used for pose estimation returns

mostly decent pose estimates, although a small set of outliers should not distort the

estimated model parameters. Thirdly, the flight path of the athlete between two

camera views can be approximated with a second-degree polynomial.

Pose Preprocessing

Under these assumptions, we first use a MobileNet [85] to detect a ski jumper in

all images in every video of a video set. The pose of the jumper is estimated using

the CPM-VGG network introduced in Chapter 5. Both the detection network and

the pose estimator are fine-tuned using annotated jumper poses. The output of the

pose estimator is a set of J joint coordinates for the head, shoulder, elbow, wrist,

hip, knee and ankle of the body side facing the camera. We found that the PCK

of our fine-tuned pose estimator (Figure 6.6) is on a par with state-of-the-art pose

estimation systems, if not even better due to the limited application domain and

the uniformity of jumper poses. Within the acceptable threshold of 0.2 of the upper

body length of an athlete, we can detect >99% of all joints correctly. Even with a

more restrictive threshold of 0.1, we still get a PCK of 95%.

As indicated in Section 6.2.1, we have to account for different camera scales. For

all poses obtained from one camera view Ci, we compute a scaling factor si based

on the mean upper body size supper of the athlete, which is defined as the distance

between shoulder and hip, in that shot:

si =
sref
supper

.

sref denotes a reference body size. We rescale all pose estimates in the i-th

camera view with si, resulting in the athlete having approximately the same relative

size in all camera views. We found that the upper body size hardly changes within
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a camera view, can be detected very robustly and is, therefore, a good choice for

obtaining a robust scale for each camera. To get an even more robust estimate for

the camera view scale, we exclude 10% of the largest and smallest detected upper

body length when computing the mean in one view.

Overdetermined Trajectory System

From our initial pose estimates of the ski jumper in all camera images of one run, we

derive a robust polynomial regression for the trajectories of all joints of the athlete

as follows. Let again the location be defined as l
(t)
j = [x̂

(t)
j , ŷ

(t)
j ]T , where x̂

(t)
j and ŷ

(t)
j

are the two dimensions of the joint coordinate of joint j. A robust approximation of

the joint trajectory and the camera offsets ∆x and ∆y for each location dimension

is obtained using a 2nd degree polynomial. For the x dimension, it is given by

x̂
(t)
j =

[t 0]T · [bj ∆x] if l
(t)
j ∈ Ci

[t 1]T · [bj ∆x] if l
(t)
j ∈ Ci+1

(6.1)

where bj = [bj,2 bj,1 bj,0] are the coefficients of the polynomial, ∆x is the offset in

x direction and t = [t2 t 1] is a vector of polynomial variables. In order to estimate

the parameters bj and camera offset ∆x for two adjacent camera perspectives Ci

and Ci+1 using all J joints and all K detected poses from both views, we define an

overdetermined system of equations

X̂ = AB. (6.2)

Here, X̂ ∈ RKJ is a vector of detected coordinates for each joint from each pose

estimate. The parameter vector B ∈ R3J+1 is comprised of all polynomial coefficients

and the offset, i.e,

B = [b1 ...bJ ∆x].

Each row in the sparse design matrix A ∈ RKJ×(3J+1) represents the polynomial

variables for one joint detection (time the joint was detected) and is therefore con-

nected to exactly one target value x̂
(t)
j ∈ X̂. As the structure of this matrix is a

bit intricate to write down, we illustrate the composition of one row in A with a

descriptive example. Assume that at time t = 4, we detected the shoulder joint

j = 1 at x position 356 in camera Ci+1. Then there would be a row ai in matrix A
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coding this detection as

ai = [

j=0︷ ︸︸ ︷
0 0 0

j=1︷ ︸︸ ︷
t2 t 1 0 ... 0 ∆x] = [0 0 0 16 4 1 0 ... 0 1]

and the corresponding target value in X̂ would be X̂i = x̂
(4)
1 = 356. Note that

according to Equation 6.2, this row of A is multiplied by the parameter vector B.

Therefore, the sparsity of this vector guarantees that only relevant parameters affect

the robust estimation of the joint trajectory. The last attribute in row vector ai is set

to 1 because this sample was taken from camera Ci+1. It would be = 0 if this specific

joint were predicted in camera Ci. Consequently, the estimated parameters express

all trajectories relative to the reference camera Ci. While the above deviation was

only defined for x̂j, the approximation of ŷj is correspondingly defined according to

Equation 6.1 and solved with a separate system.

Robust Parameter Estimation

An optimal least-squares solution to Equation 6.2 is given by B = (ATA)−1AT X̂.

However, we have to account for inaccuracies like detection outliers in the sequence

of predicted poses. Hence, we choose to minimize absolute L1-norm deviations.

A set of robust trajectory parameters and camera offsets B∗ can be obtained by

minimizing

B∗ = arg min
B

= ||X̂ − AB||1 (6.3)

A solution to this problem can be robustly approximated using the iterative method

in Algorithm 1. This procedure is applied to all pairs of adjacent camera views. The

resulting trajectories and camera offsets for the two cameras pointed at the take-off

table are visualized for one video in Figure 6.2 for one camera pair. The determined

trajectory parameters bi are used to resample the joint positions to the sampling

rate of the force plates (2 kHz). Thereby, one pose estimate can be assigned to each

measured force value.

6.2.3 Synchronization of Force and Camera

With all camera images spatially registered, we are left with temporally synchro-

nizing camera views and measured forces. As stated previously, we know for each

force value how far it was taken from the edge of the take-off table. Together with
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the upsampled pose estimates from the spatially registered camera views, temporal

synchronization between both modalities is straightforward: The edge of the table

is manually annotated in the respective camera view. The temporal synchronization

anchor in the camera views is determined as the point where the ankle of the ski

jumper passes the edge and consequently leaves the last force plate. The synchro-

nization point for the series of force measurements is merely the last data point

where a force measurement was taken on the take-off table. Both modalities are

aligned at both temporal anchors. Finally, we crop the series of pose estimates and

the synchronized force measurements to the same length of 1000 samples, equivalent

to the last 25 frames of the jumper before take-off.

6.3 Temporal Convolutional Model

We present a temporal convolutional sequence to sequence model based on the find-

ings of Bai et al. in [7], who propose a basic architecture for a temporal convolutional

network (TCN) which aims at combining the best recent practices in convolutional

network design for sequence prediction. TCNs were originally designed to map a

sequence of input length n to an output sequence of the same length using only

causal convolutions, i.e., there is no ”leakage” from future values to the past. TCNs

aim to build a long effective history size, meaning that they are able to look very

far back into the past to make a prediction. Most commonly, TCNs are used for

word-level language synthesis, machine translation modeling or polyphonic music

modeling [22, 64, 102] and are tested on benchmark tasks defined on discrete valued

input and output data. For our application, we modify the basic TCN blocks and

propose a network for predicting a continuous time series from a continuous pose

input.

6.3.1 Dilated Convolution Blocks

A major disadvantage of modeling a sequence to sequence network only with stan-

dard convolutional layers is that a very deep network with large kernel sizes has to

be constructed in order to obtain a wide receptive field and thereby a large history

size. Training very deep networks with large kernels from scratch is often not fea-

sible, especially if comparatively few training data is available. Recently, dilated

convolutions have been extensively researched for increasing the receptive field of a

104



Padding

Batch Norm

Padding

Batch Norm

ReLU

Dilated Convolution (k,d)

+

Dilated Convolution (k,d)

Conv 1x1

TCN block (k,d)

𝑓𝑖−1
1
, … , 𝑓𝑖−1

𝑇

𝑓𝑖
1 , … , 𝑓𝑖

𝑇

Batch Norm

Batch Norm

ReLU

Dilated Convolution (k,d)

Dilated Convolution (k,d)

TCN-nopad block(k,d)

𝑓𝑖−1
1
, … , 𝑓𝑖−1

𝑇

𝑓𝑖
1 , … , 𝑓𝑖

𝑇− 𝑘−1 𝑑−𝑘+1

ReLU

ReLU

Figure 6.3: Left: standard TCN block inspired by [7]. Right: TCN block without
padding and residual connection.

convolutional layer with a small kernel without having to add additional layers. A

dilated convolution ∗d on an arbitrary input sequence g ∈ Rl of length l is convolved

with a kernel h ∈ Rk of size k << l using a dilation factor d through

(g ∗d h)[t] =
l−1∑
i=0

g[t− id] · h[i] (6.4)

Dilated convolution spreads the filter coefficients over a larger area of the input

signal, increasing the receptive field and thereby - in a temporal context - expands

the history of past values.

Inspired by [7], we define a temporal convolution network block (TCN block,

dubbed as tcn in the experiments) as the basic building block for our networks. Such

a block is depicted in Figure 6.3. It includes two consecutive dilated convolutional

layers with additional padding, augmenting the output features to the same size as

the input features. Each convolutional layer is followed by batch-normalization [57]
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and a Rectified Linear Unit [77]. A residual connection [53] is added to the output

of the block, which allows for learning only the difference between the input and the

output. Each TCN block has two parameters k and d for the kernel and dilation

size, respectively.

In the standard definition of the TCN block, the length of the input signal does

not change throughout the network due to extensive padding. However, we found

that there is a drawback to dilated convolutions which arises especially when the

dilation factors get very large. In this case, the effective size of the kernel is very

large and the amount of zero-padding has to be equally increased to ensure that the

output signal has the same length as the input signal. For large dilation factors,

e.g., d > 10 at kernel size k = 5, extensive padding introduces a lot of volatility at

the edges of the final output signal (see Figure 6.7). Consequently, the gradients

produced from fluctuating forces at the edges of the output signal may introduce a

spurious training stimulus for all underlying convolutional kernels.

To examine this effect, we define a variation of TCN block which is also depicted

in Figure 6.3 and will be dubbed tcn nopad in the experiments. This block waives the

padding operation after each convolutional layer. Consequently, the skip connection

has to be dropped due to the difference in input and output size of the block. We

refer to a TCN block without padding as tcn nopad. The output shapes of the last

TCN-output layer are listed in Section 6.4.

6.3.2 Network Structure and Losses

The overall structure of a convolutional sequence to sequence network is built on

TCN blocks (tcn or tcn nopad). A sample architecture is depicted in Figure 6.4.

The input of the network is a time series of pose estimates as described in Section

6.2.2. The input layer is followed by a number of TCN blocks. The first TCN block

after the input layer performs a k × 14 convolution with kernel size k and 14 x and

y coordinates of the seven annotated joints. In order to increase the receptive field

of the network quickly without having to add too many layers, the dilation factor

for block q in the sequence is set to be d = 2q. In our experiments, the depth of the

network does not exceed 7 TCN blocks. We additionally experiment with different

quantities of kernels per block and compare classical design approaches based on

a steadily increasing number of kernels with strategies where the amount of kernel

first increases and then decreases. Details of different network parameters are listed
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Input ෠𝑃, size [batchsize x n x 14]

TCN block(5,0)

TCN block(5,1)

TCN block(5,2)

TCN block(5,4)

TCN block(5,8)

TCN block(5,16)

𝐿𝑜𝑏𝑗 𝐿𝑠𝑚𝑜𝑜𝑡ℎ

Conv 1x1

TCN network

Figure 6.4: An exemplary network architecture comprised of 6 TCN blocks (tcn 6)

in Table 6.1. A final convolutional layer terminates the network with kernel size 1

and linear activation, which reduces the output of the last layer to a one-dimensional

sequence of force values.

The training loss of our convolutional sequence to sequence networks is defined

by three partial losses. First, the objective loss between the ground truth force

F and the predicted force F̄ is defined by the piece-wise Huber-Loss with δ = 1,

defined as

Lobj(F − F̄ , δ) =

0.5(F − F̄ )2 |F − F̄ | ≤ δ

δ(|F − F̄ | − 0.5δ) otherwise.

Second, in order to avoid overfitting convolutional layers, a L2-regularization loss

per layer is introduced. All regularization losses are aggregated in the overall regu-

larization loss Lreg. Third, we found that the output of the network is often noisy.

In order to encourage smoothness in the final force predictions, we define a smooth-

ness loss Lsmooth = Lobj(
d
dt
F − d

dt
F̄ , δ) to be the Huber-Loss of the difference between

derivatives of ground-truth and prediction forces. The derivative of either time series

is simply determined numerically by d
dt
F (t) = F (t)− F (t− 1).
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The total network loss is defined as the weighted sum of all partial losses:

Ltotal = Lobj + αLreg + βLsmooth (6.5)

with α and β being loss weights.

6.4 Experiments

The prediction of continuous dynamic parameters of ski jumpers (and athletes in

general) solely from continuous pose estimates using convolutional sequence models

is a novel problem in the scientific community with no published results yet. Hence,

we focus on analyzing different network structures quantitatively and qualitatively.

6.4.1 Dataset

We use the dataset described in Section 2.3.2 for training the ski jumper detector

and pose estimator. The task of predicting jump forces is analyzed on a subset of 225

video set of different ski jumpers and corresponding force series. We split 180 videos

for training different TCN architectures, 20 for validation and 25 for testing. As

described in Section 6.2.2, we estimate all poses in each video and derive calibration

and synchronization parameters and therefore obtain one sequence of 1000 human

poses and force measurements per video. We artificially augment the training set

by cropping sequences of length 950 and a stride of five from the original 1000

measurements, which increases the dataset size by a factor of 10. For each joint in

the cropped pose series, we add a minimal amount of Gaussian noise with variance

σ2 = 1 to all joint coordinates. This does not have much influence on the robust

trajectories, but add spatial variance and therefore more variability. During training,

all sequences in the training set are randomly shuffled.

All force series are normalized by the largest occurring force value in the dataset,

which maps all measurements into the interval [0, 1]. For tcn nopad networks, we re-

sample the force time series to the proper network output size using FFT-resampling

from [63].
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6.4.2 Error Measures

We report the Mean Squared error (MSE) and median of the squared errors between

the ground truth F [t] and the predicted forces F̄ [t] for different network structures.

All errors are computed over all test-videos(see Table 6.2). In order to give a better

intuition of network performances, we additionally try to answer a real-world ques-

tion asked by coaches during the evaluation process: At which time in the video

is the maximal take-off force observed? In a training situation, the corresponding

frame depicting the distance between athlete and edge of the jump-off table gives

the coaches a visual clue for adjusting the timing of the jump in the next run. For

measuring how well we are able to identify this frame, we use the PCKF measure

from the previous chapters again.

Therefore, we take the argument of the maximal predicted force value t =

argmaxt(F̄ [t]) and compared it to the maximal force occurrence of the ground-

truth. By identifying the corresponding frames for both maximal forces, we can use

the PCKF measure, which counts a predicted maximal force occurrence as correct

if the temporal distance to the ground-truth frame falls within a threshold τ . In the

case of unpadded networks (tcn unpad), the output sequence length s is implicitly

defined by the number of dilated convolutional layers and the filter size. Hence, we

use the scaling factor 950/s to rescale the offset between prediction and ground-

truth in the short output sequence, allowing for comparing it with offsets in signals

with original length of 950 force values.

6.4.3 Tested Network Structures and Training Parameters

With the novelty of the proposed application, specifically in the context of the convo-

lutional sequence to sequence networks, a state-of-the-art for network architectures

and parameters is non-existent. We see this as an opportunity to perform experi-

ments on a variety of networks, summarized in Table 6.1. Three different network

types are examined. The basic tcn-network is implemented with four to six con-

secutive tcn blocks (tcn 4, tcn 5 and tcn 6 ). Non-padded versions (tcn unpad 4,

tcn unpad 5 and tcn unpad 6 ) are used to examine the influence of dilation on

volatile output sequences. All networks first increase the number of kernels up

to the middle of the network, then decrease it again. We compare this parameter

set to two networks tcn 5 wide and tcn 6 wide, which implement a more traditional

109



name len. input len. output #blocks #channels/block
tcn 6 950 950 6 [32,64,128,64,32,16]
tcn 5 950 950 5 [32,64,128,64,32]
tcn 4 950 950 4 [32,64,128,64]

tcn nopad 6 950 830 6 [32,64,128,64,32,16]
tcn nopad 5 950 702 5 [32,64,128,64,32]
tcn nopad 4 950 446 4 [32,64,128,64]
tcn 6 wide 950 950 6 [32,64,128,128,128,128]
tcn 5 wide 950 950 5 [32,64,128,128,128]

tcn 7 950 950 7 [32,64,128,128,64,32,16]
tcn 2 shallow 950 950 2 [64,128] w/ dilation [2,16]

Table 6.1: Overview over different tested network architectures. tcn x networks
are build from standard tcn blocks, tcn nopad x nets discard padding. tcn x wide
architectures increase the number of kernels from layer to layer.

distribution of kernels, i.e., the number of kernels is steadily increased throughout

the network. We also experiment with two more exotic networks, namely tcn 7 and

tcn 2 shallow. tcn 7 is a 15 layer network, i.e., seven consecutive TCN blocks and

the final layer, where the receptive field covers the entire pose input of the network.

tcn 2 shallow is a shallow net comprised of 2 TCN blocks. The dilation factors for

both blocks in this network were set to 2 and 16, respectively. With this network,

we want to examine if the reconstruction of a force signal can be achieved with very

few layers with large dilation factors. An overview of all network parameters is given

in Table 6.1.

The layers in all networks are initialized with variance scaling initialization [52]

and trained until convergence in mini-batches of size 16 with a learning rate of 0.01

and a learning rate reduction by a factor of 10 every 3 epochs. The loss weights for

the regularization loss was set to α = 0.0001, while the smoothness loss was set to

β = 1

6.4.4 Results

Before presenting the force prediction results for all networks, we present a short

discussion for the joint PCK obtained using the CPM-VGG variant of the CPM

network.
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Figure 6.5: Examples of pose estimates predicted by a fine-tuned CPM-VGG net-
work. Left: original image. Middle: expert annotation. Right: CPM-VGG output.
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Figure 6.6: Percentage of correct keypoints [86] for the fine-tuned CPM-VGG
used for estimating the pose of the jumper. We achieve very competitive results
(PCK@0.2>0.99), which allows for on a par pose estimates as a good starting point
for camera calibration and force prediction.

Joint PCK

We found that the PCK of our fine-tuned CPM-VGG network, depicted in Figure

6.6), is on a par with state-of-the-art pose estimation systems. Within the acceptable

threshold of 0.2 of the upper body length of an athlete, we can detect >99% of all
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Network MSE median
tcn 6 0.071 0.049
tcn 5 0.074 0.051
tcn 4 0.088 0.060
tcn nopad 6 0.105 0.067
tcn nopad 5 0.087 0.057
tcn nopad 4 0.091 0.061
tcn 6 wide 0.071 0.049
tcn 5 wide 0.073 0.047
tcn 7 0.062 0.043
tcn 2 shallow 0.093 0.065

Table 6.2: MSE and median of squared errors between ground truth and predicted
forces.

joints correctly. Even with a more restrictive threshold of 0.1, we can get a recall of

95%. Figure 6.5 depicts detection results.

MSE and prediction quality

The results of our experiments are listed in Table 6.2. We find that dropping the

padding does not entail good predictions regarding MSE. All architectures without

padding performed considerably worse in all experiments. A visual inspection of

some outputs in Figure 6.7 (middle column) supports the quantitative errors. All

tcn networks and their tcn wide variants seem to perform much better. MSE errors

indicate that more layers in a network result in superior performance over networks

with a smaller receptive field. Comparing the quality of the best performing net-

works tcn 6 and tcn 6 wide (left two columns in Figure 6.7), we see that tcn 6

produces more volatile predictions at the edge of the signals, despite them having

the same MSE and median error. In general, the observed volatility is a product

of the large dilation factors and stems from the convolution of a filter with large

amounts of padded zero-values. The prediction noise can be observed in all padded

tcn networks. From our experiments, we conclude that adding more filters to the

networks, especially in later layers, might improve force predictions at the edges of

the output signal.

The evidence for the hypothesis that deeper networks are superior in reproducing

the force signal is supported by the error of tcn 2 shallow, which performs similarly
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Figure 6.7: Qualitative outputs of different architectures. The best performing net-
works in terms of MSE (first three columns) and two more exotic variants (last two
columns) are compared for five different force series (rows). Ground-truth measure-
ments are depicted in blue, predictions in orange.

to the tcn nopad versions. While this network grasps the general trend of a force

graph (fourth column in Figure 6.7), a significant amount of volatility can be ob-

served at the edge of the predicted signals, despite a large number of filters in this

model.

The best results are obtained by the deepest network tcn 7. As previously stated,

the perceptive field of this network covers the complete input. While it produces a

relatively small MSE, we can also observe in column 5 of Figure 6.7 that it creates

more outliers in the predicted output than all other architectures. While the overall

performance of tcn 7 may be favorable, the outlier problem has to be addressed to

deliver a visually superior prediction.

PCKF

We conclude our experimental section with a short discussion of the PCKF perfor-

mance of all models, depicted in Figure 6.8. Our best models tcn 6 and tcn 6 wide

detect 25% of the frames depicting the jumper during the maximal leg force mea-
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Figure 6.8: Percentage of correctly identified key-frames depicting the moment of
the maximal leg pressure before the jump. The best-performing network predicts
25% of the frames perfectly correct and 55% within ± 2 frames.

surement correctly. Within a deviation of 2 frames, tcn 6 wide - despite producing

the same MSE as tcn 6 - surprisingly produces a superior recall of 55%. Most of the

models perform surprisingly well, although no model beats tcn 6 wide. It may also

be surprising that the best model regarding MSE, tcn 7, does not even come close

to the best scores. This may be attributed to the fact that we intentionally did not

perform any post-processing like low-pass filtering on the predicted force series, at

which point the volatility in the tcn 7 output is detrimental.

On the question of why the recall of the networks is comparatively small in

absolute terms, we point to Figure 6.7. We found that force measurements very

often have multiple local maxima, sometimes very close together, often with very

similar absolute values. This makes the identification of force peaks a great challenge

in general, which we will accept in the future.

6.5 Summary

In this chapter, we discussed convolutional sequence to sequence networks for the

multimodal prediction of jump forces of ski jumpers. The prediction networks use

the estimated pose of the jumper to infer a series of force measurements, recorded

with force plates at training time. The registration and synchronization between all

modalities, i.e., multiple cameras and multiple force measurement plates, was im-
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plemented through least squares optimization of the athlete’s joint trajectories. The

proposed sequence to sequence network structures are strictly convolutional. Simi-

lar structures have been used for discrete-valued data problems like an automated

translation. We demonstrate that with proper network architecture, a convolutional

sequence to sequence model can be used for simple regression tasks on strictly con-

tinuous input data. While the experimental results are very promising, problems

like the unwanted volatility of output forces have to be solved to produce more com-

petitive results in the future. Furthermore, an interesting question arises when the

problem statement is reversed: Is it possible to predict a sequence of poses for a ski

jumper with a convolutional sequence to sequence model, given only the measured

force values of a jump? This question and many others remain future work.
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7 — Conclusion

7.1 Summary

In this thesis, we propose two general approaches for identifying key-poses of swim-

mers in a swimming channel.

Key-Pose Inference from Support-Pose Detections. Our first approach

introduces a spatiotemporal, hierarchical pose detector. It unites an ensemble of

poselets, each of which acts as a small detector for discriminative limb configu-

rations. In order to be able to detect different poses within a motion sequence,

multiple poselets for the same limb at different temporal stages of the motion are

evaluated simultaneously and continuously. The introduced semimetric for cluster-

ing limb configurations measures the similarity of poses and allows for clustering

pose configurations that are spatially and temporally close. The proposed poselet

ensemble is also evaluated hierarchically, i.e., the activation of a poselet in the image

is conditioned on the score of a top-level athlete detector. The pose detector is used

to identify support poses via the activations of different poselets, which are used in

a simple probabilistic scheme to infer key-poses.

Key-Pose Inference via Articulated Pose Estimation. Our second ap-

proach discusses how key-poses can be directly derived from an articulate estimate of

the human pose itself. We introduce a network implementing a classical deformable

part model with deeply learned appearance features and additional pairwise relation

terms. Two methods for identifying key-poses from a sequence of post estimates are

discussed: by querying the pose feature directly using a design function or with

a random forest classifier to predict a key-pose without knowledge about the un-

derlying pose feature. We can experimentally show that both approaches perform

similarly well for antisymmetrical swim styles, with the classifier beating the intu-
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itive method due to being able to adapt the pose estimator’s detection bias. For

symmetrical swim styles, the random forest classifier performs subpar.

We experimentally show that the second method clearly outperforms the first

one. However, this is only the case if the key-pose defining pose feature is clearly

measurable within the human pose. If a pose feature is inconspicuous, making the

direct detection of the respective (latent) key-pose difficult, the first approach would

be suited better.

A closer analysis of novel pose estimators reveals that they suffer from several

orthogonal pose estimation errors. The proposed rectification pipeline consists of

a joint-kinematic based integer linear program which is used to identify and cor-

rect joint swaps, a simple scheme for diminishing directional residual offset and a

robust regression for replacing outliers with motion-consistent joint landmarks. We

experimentally demonstrate that joint tracking and rectification can improve pose

estimates and thereby key-pose identification results.

In the last chapter, we discussed convolutional sequence to sequence networks

for the multimodal prediction of jump forces of ski jumpers. The networks use the

continuously estimated pose of the jumper to infer a series of force measurements,

recorded with force plates at training time. The registration and synchronization be-

tween all modalities, i.e., multiple cameras and multiple force measurement plates,

was implemented through least squares optimization of the athlete’s joint trajec-

tories. The proposed sequence to sequence networks are strictly convolutional and

leverage dilated convolutions to keep the network depth small. We demonstrate that

with the proper network architecture, a convolutional sequence to sequence model

can be used for sequence regression tasks on continuous input data.

7.2 Conclusion and Outlook

Throughout this thesis, we focused on the estimation of key-pose occurrences, as

they lay the foundation for kinematical evaluation protocols in the real world. It

should be emphasized that there is still a lot of potential for improving key-pose

estimation of swimmers in a swimming channel. While sophisticated methods for

processing time-continuous data, like LSTMs or recurrent networks, show highly

promising results in tasks like time series classification and prediction, they share
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the commonality of being very data-hungry during training. This requirement is

very difficult to fulfill in specific application scenarios like the ones discussed in

this thesis. Collecting and preparing large amounts of training data is a tedious

process which in our case took many years. Even if data is available, obtaining

large amounts of high-quality annotations is a challenging problem, specifically in

aquatic environments, where even experts with longtime experience often face great

difficulties in identifying specific poses or correct joint placements.

The rectification of estimation errors using optimization strategies faces the same

problems. While we are able to perceive that errors are frequent and intricate enough

to be a problem, the amount of data necessary to compile a thorough and complete

error profile of an estimator, which then can be used to train a sophisticated and

reliable rectification approach, is difficult to obtain. With emerging research in the

field of 3d pose estimation from single images, an interesting idea might be to include

3d pose estimates into a rectification pipeline, leveraging an additional dimension

to enforce constraints on the geometry of the human pose. Of course, it would be

preferable not to make estimation errors in the first place. While various approaches

for temporal human pose estimation have been proposed over the last years, we still

lack the ability - or the amounts of data necessary - to train temporally consistent

pose estimators on images sequences directly.

The topic of predicting the jump forces of athletes, in our case ski jumpers,

has not been covered exhaustively within this thesis. While experiments show

that purely convolutional networks seem to be suitable for a task like sequence-to-

sequence prediction, we did not elaborate on various open questions concerning this

topic: Are raw pose estimates the best input for such a network or should we leverage

secondary features like limb angles? How can the drawbacks of wide dilated convolu-

tions, namely high volatility on the edge of the output signals, be diminished or pre-

vented? Can the proposed networks be generalized for other sequence-to-sequence

tasks? Is it possible to invert the problem, i.e., predict the motion sequence from

a series of force measurements? All these questions and many more remain future

work.
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