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We know the past
but cannot control it.
We control the future
but cannot know it.

CLAUDE SHANNON
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1 Introduction

Mainly driven by big data and artificial intelligence (AI), the health care system
is on the cusp of a new era, offering the potential to mitigate today’s imminent
challenges. This thesis explores how AI can support decision making in health care
with a particular focus on hospitals.

1.1 Motivation

Today’s health care systems around the globe face imminent social, organizational,
medical, and financial challenges. Among the most critical ones are demographic
change, legal regulations, operational inefficiencies, acute staff shortage, unpleasant
working conditions, investment backlog, and increasing cost pressure. In most
countries, the health care industry accounts for a large share of expenditures and
faces ongoing growth. In the United States, 3.3 trillion USD or nearly 18% of its
gross domestic product were spent on health care in 20161 reflecting an annual
growth of 4.3% compared to 2015 [12]. A closer look reveals that hospitals are a
key driver accounting for nearly one third of those health expenditures2 [12]. With
rising costs, hospitals are increasingly attracting attention from sponsors in both
the governmental and the private sector demanding more cost effectiveness while
ensuring the same level of service quality. “Pressures to make operating margins will
continue to be at the forefront of most hospital and health system leaders’ minds”
[38] - particularly, since it seems that nothing “will stop public spending on health

1about 9% in the OECD countries [39] and 11% in Germany [19]
2nearly 40% in the OECD countries [39]
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1 Introduction

care from rising” [41]. Within a hospital, the operating room is the most expensive
resource followed by the intensive care unit (ICU). A cost break-down for the United
States is depicted in Figure 1.1: 1.1 trillion USD were spent on hospitals, mainly
driven by operating room expenditures (40%, depicted in red) and ICU expenditures
(15%, depicted in orange). Consequently, this thesis studies decision making in
hospitals (see Section 2.1) with a particular focus on the operating room and the
ICU (see Sections 2.2 and 2.3).

Figure 1.1: United States’ health expenditures 2016 in trillion USD. Within a hospital,
the operating room (depicted in red) and the intensive care unit (depicted
in orange) are the most expensive resources representing around 40% and
15% of total hospital expenditures, respectively.

According to Berwick et al. [6], at least 20% of the health care expenditures could be
eliminated by addressing overtreatment, failures in coordination and execution of care
processes, inefficient pricing, administrative complexity, fraud and abuse. Health care
operations management has emerged as a key discipline to increase the operational
efficiency founded on a data-driven, mathematical approach [11]. Decision making
in operating room management can be categorized into three different hierarchical
decision levels [26]: the strategic level, the tactical level, and the operational level. At
the strategic level, hospitals decide on the case mix planning and long-term ambitions.
At the tactical level, available resources are allocated to medical specialties within
the strategic boundaries. At the operational level, the individual surgeries of patients
are scheduled on a daily basis. This thesis leverages the potential of big data and AI
to support decision making in hospitals, particularly at the tactical (see Section 2.2)
and the operational (see Section 2.3) level.
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1 Introduction

1.2 Introduction to machine learning

Within the last decades, AI has become ubiquitous and is now transforming many
industries. Most prominently, machine learning is rapidly advancing and paves
the way for numerous “intelligent” applications - from Arthur Samuel’s checkers
playing program [43] in the 1960s to today’s autonomous vehicles, drug discovery,
and precision medicine. When speaking about AI, one frequently refers to machine
learning which represents a branch of AI (see Figure 1.2) that systematically applies
algorithms to learn relationships from underlying data. Although the ideas behind

Figure 1.2: Schematic representation of artificial intelligence, machine learning, and
deep learning.

machine learning are not new, it was only recently that its potential could be exploited
thanks to the availability of big data, unprecedented analytical power, and powerful
frameworks. Arthur Samuel defined machine learning as the “field of study that
gives computers the ability to learn without being explicitly programmed” [43] and
Tom M. Mitchell stated the following definition: “A computer program is said to
learn from experience E with respect to some task T and some performance measure
P , if its performance on T , as measured by P , improves with experience E” [37].
Nowadays, machine learning is widely used in everyday applications such as spam
e-mail detection, face recognition, weather forecasting, movie recommendations on
Netflix, and voice recognition systems such as Amazon’s Alexa.

In this thesis, we focus on AI’s branch of machine learning. In general, it can be
categorized by learning type, problem type, and algorithm type.
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1 Introduction

Learning type. Commonly, one distinguishes between supervised learning, unsu-
pervised learning, and reinforcement learning. In supervised learning, the correct
labels are known for a set of historical samples such that the underlying relationship
can be learned. Unsupervised learning has the focus to identify patterns without the
knowledge of labels and reinforcement learning aims to balance between exploration
and exploitation. In this thesis, we focus on supervised learning.

Problem type. Commonly, one distinguishes between regression problems and
classification problems. While continuous valued output is predicted in the former,
it is discrete valued output in the latter. In this thesis, we study regression (see
Section 2.2) as well as classification problems (see Sections 2.3 and 2.4).

Algorithm type. Depending on learning type and problem type, various algorithms
can be applied. For example, linear regression is suitable for supervised regression
problems and logistic regression for supervised classification problems. Other powerful
algorithms include support vector machines, k-nearest neighbors, decision trees,
random forests, and most prominently neural networks. In this thesis, we explore
various algorithms, but mainly focus on neural networks.

In the following, a short description of neural networks shall be provided. More
details can be found in [4], [25], and [31]. In supervised learning, it is the aim of
the model to find a computable function x 7→ f(x) = y where input vectors x, i.e.,
so-called features, and output vectors y, i.e., so-called labels, are known for some
historical samples

(
x(m),y(m)

)
, m ∈M. Note, that the output vector y decays to a

scalar y for regression problems. The prediction function ŷ is obtained as output
of the neural network that is composed of neurons as fundamental building blocks.
Figure 1.3 depicts a neuron that maps the three inputs x1, x2, and x3 to one output
ŷ (omitting the index m). In a neuron, three mathematical operations are performed.
In Eq. (1.1), the dot product between the input vector x and the corresponding
weight vector w is computed and a bias b is added. In Eq. (1.2), an activation
function g(z) is applied to the term resulting in the prediction ŷ.

z = wxT + b (1.1)
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1 Introduction

Figure 1.3: Schematic representation of neuron as fundamental building block.

ŷ = g(z) (1.2)

Common activation functions are the sigmoid function, ReLu function, and tanh
function (see Chapter 6 in [25]). Neurons are then combined to form larger structures,
so-called neural networks. Figure 1.4 depicts a neural network with one input layer,
several hidden layers, and one output layer. A neural network’s topology is defined

Figure 1.4: Schematic representation of a neural network.

by the number of layers and the number of neurons in each layer. Hereafter, we
use the form [10:4:2] to indicate the number of neurons in the hidden layers. Deep
learning refers to neural networks with multiple hidden layers and is a branch of
machine learning that is particularly powerful for image classification (see Figure 1.2).
Commonly, the set of historical samples is split into a training set, a validation
set, and a test set. The former is used to train the network, i.e., backpropagation
adjusts the weights such that the deviation between measured and predicted labels
is minimized. Validation and test set are used to tune the hyperparameters and
measure the predictive performance, respectively.
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1 Introduction

1.3 Machine learning in health care

Machine learning has the potential to radically transform health care for three reasons.
First, the health care system faces imminent challenges, particularly staff shortage,
cost pressure, and pressure to improve outcomes (see Section 1.1). Second, there is
no shortage of health care data, including electronic health records, clinical trials,
magnetic resonance imaging, and the constantly increasing number of information
from monitoring devices such as consumer wearables (see Section 3.3). Third,
recent advances in computational power make it possible to fully leverage that data
with new, powerful algorithms in order to improve many aspects of drug discovery,
preventive care, diagnosis, intervention, medication, decision making, risk assessment,
operational and administrative processes.

Already today, machine learning helps to address inefficiencies and create new oppor-
tunities in health care. By 2022, spending on AI-related tools is expected to reach
USD 8 billion annually across seven areas: remote prevention and care, diagnistics
support, treatment pathways and support, drug discovery and development, opera-
tions, marketing and sales, and support functions [3]. Most prominently, machine
learning is used to advance diagnosis and detection, e.g., to classify skin cancer [18],
to predict pneumonia [28], to classify fetal heart rates [32], to predict diseases [13] and
colorectal cancer outcome based on tissue samples [9], to identify neurodegenerative
diseases [29], to suggest referrals in retinal disease [21], and to detect schizophrenia
[36]. Furthermore, it is used to support robot-assisted surgeries [52], advance drug
discovery [53], and for numerous other applications [38, 48]. Eventually, machine
learning also advances decision support in hospital operations, e.g., to predict surgical
durations [20, 49], to assess perioperative cardiac risks [30], to identify patients at
risk of postinduction hypotension [33], to predict implantation outcome of individual
embryos [50], to predict clinical deterioration [15] and other clinical events [17].

Recently, numerous health tech startups become attracted by the new opportunities
offered by machine learning, e.g., to discover new drugs (Atomwise), to improve
patient experience (Babylon Health), to enable robot-assisted surgery (Auris Health),
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and to analyze medical imaging (Zebra) [3]. An overview of the current landscape
with more than 90 promising AI startups transforming the health care sector is
provided in [1] and [16]. Given their consumer-friendliness, digital sophistication,
and record amount of unspent capital, also big tech players have recognized their
potential to create lasting impact and recently started to heavily invest in health care,
e.g., IBM’s Watson helps health care professionals to manage and harvest medical
data, Apple builds a platform for healthcare and wellness around its Apple Health
Record and Apple Watch, and Google develops an augmented reality microscope to
diagnose cancer in real-time [14]. In fact, Google’s CEO Sundar Pichai announced
that “healthcare is one of the most important fields AI is going to transform” (Google
I/O 2018 keynote).

1.4 Organization of this thesis

While there is a large body of research on AI-enabled decision support in health
care, there are still a few research gaps. The following open research questions are
answered by this thesis.

1. Can ideas from Industry 4.0 help mitigate the imminent challenges in health
care?

2. How can hospitals navigate the variety of use cases on the way to the hospital
of the future?

3. What role do big data and data analytics play in hospitals?

4. Which aspects should be considered for operating room management?

5. How can machine learning contribute to operating room scheduling at the
tactical level?
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1 Introduction

6. How can machine learning contribute to surgery scheduling at the operational
level?

7. Can machine learning contribute to other health care areas besides hospitals?

In this Section 1, we have stated the motivation for this work, explained the key
concepts of machine learning, and presented vivid applications of machine learning
in health care. The remainder of this work is organized as follows. In Section 2, we
summarize each of the four contributions contained in this thesis. Section 3 discusses
each of the seven aforementioned research questions and links them to the presented
contributions. Eventually, Section 4 concludes this work and points out possible
directions for further research. All contributions can be found in their full version in
the appendix of this thesis.

8



2 Summaries of the contributions

This thesis makes several contributions to the current literature highlighting how
machine learning can support decision making in health care. All contributions are
summarized in this section and can be found in their entirety in the appendix. The
order of the contributions does not follow the chronological order of submission to
scientific journals. In fact, we start with the overarching conceptional framework
for the hospital of the future that also proves useful to categorize the remaining
three contributions. The two subsequent contributions focus on selected processes for
operating room steering and resources management at the tactical and operational
level, respectively. Finally, we show that decision support extends beyond the scope
of operating rooms by presenting our contribution about automated monitoring of
airborne pollen for personalized allergy management.

2.1 A Framework for the Hospital of the Future

Schiele et al. [45] develop a vision for the hospital of the future. Based on scientific
findings as well as insights from an extensive survey with hospital experts, they
present a conceptual framework for the hospital of the future in 2040 structured in
32 dimensions along seven areas and based on four enablers as foundation. This
contribution has been submitted to “Journal of Business Economics”, which is ranked
in category B in the VHB-JOURQUAL3 ranking [2]. It can be found in its entirety in
Appendix A. Moreover, selected excerpts of the contribution have been presented at
the 2019 autumn conference of the Bundesverband KH-IT e.V. in Erlangen, Germany,
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2 Summaries of the contributions

on September 19, 2019, and at the interdisciplinary research seminar in Augsburg,
Germany, on November 12, 2019, as well as published in “Krankenhaus-IT Journal”,
issue 6, 2019.

Today’s health care systems around the globe face social, organizational, medical,
and financial challenges and must constantly adapt to a changing environment.
Demographic change, increasing cost pressure, lack of funding, time-consuming
documentation, legal regulations imposed by authorities, data security, and acute
shortage of staff in hospitals are just some of the key challenges. However, inspired
by the fourth industrial revolution, some of the aforementioned challenges might
be mitigated by technical, social, and organizational innovations. The fact that
big data and machine learning offer unprecedented analytical power, wearables
become omnipresent, and digital health attracts increasing investments indicate
that we are on the cusp of a new era in health care. This concept is called Health
Care 4.0 and has been studied extensively in the literature. Schiele et al. derive
several implications for the four traditional health care sectors, i.e., providers, payers,
medical technology companies, and biopharma companies, as well as for patients and
technology companies. Since literature dedicated to providers is rare, they focus on
hospitals and develop a conceptual framework for the hospital of the future.

According to Schiele et al., the hospital of the future in 2040 will be characterized by
digitization, integration, automation, and personalization in both support processes
as well as core processes using cyber-physical systems and data analytics. There will
be more integration within the hospital and with other stakeholders, less paper-based
work and less bureaucracy, efficient and optimized processes, more automation and
data-driven solutions, transparency and sustainability, more time spent for value-
adding tasks and with the patient, higher quality and safety, and after all better
medicine and better treatment leading to higher satisfaction of staff and patients.
However, they also state that the human component will remain essential in the
future. Not few hospitals have already started to discuss and implement selected
use cases such as electronic health records or surgery robots. Even though these
individual lighthouses might be innovative and beneficial, most hospitals still lack a
holistic concept that guides them on the way towards the hospital of the future.

10



2 Summaries of the contributions

This contribution proposes a conceptual framework for the hospital of the future
that orchestrates the individual use cases in 32 dimensions along seven areas. This
so-called HoF framework reflects both latest scientific findings as well as hands-
on insights experienced in practice. The authors conducted an extensive survey
with more than 265 hospital experts such as managers, physicians, nurses, and IT
professionals. The survey reveals that hospital managers have high ambitions to
enhance their hospitals, but are struggling to build momentum. Most of the seven
key benefits were evaluated by the participants as relevant and with high potential.
To make the hospital of the future more tangible, the authors develop a target picture
that illustrates how they envision the hospital of the future. In fact, they distill seven
key HoF areas: ‘Patient’, ‘Staff’, ‘Treatment and intervention’, ‘Logistics and supply’,
‘Management and organization’, ‘Data and control’, and ‘Infrastructure’. Each area is
divided into several dimension that are described in detail and enhanced with vivid
examples from scientific literature and practice. Furthermore, they asked the survey
participants to evaluate those dimensions by importance and maturity level (on a
scale from low (0) to high (4), respectively) leading to one of four recommendations:
‘Deprioritize’, ‘Monitor for changes’, ‘Need for action’, and ‘Become master’. The
survey results reveal need for action in almost all dimensions. Eventually, they also
distill the four most critical enablers that are indispensable prerequisites to become
a hospital of the future: ‘Employees & skills’, ‘IT infrastructure & data security’,
‘Strategy & roadmap’, and ‘People engagement & governance’. The authors describe
all four enablers in detail and present evaluation results obtained from the survey.

Given the pressing challenges and the fast-changing environment, the authors em-
phasize that hospitals need to move quickly to address all four key enablers, develop
a long-term vision, and conduct many pilots. This will help hospitals to familiarize
with the new concept, initiate a cultural change, attract qualified employees, build
up strong partnerships, and gain first hands-on experiences. In order to support
practitioners who want to apply the framework, the authors propose a four-step
approach. In fact, they suggest to assess the overall maturity level of a hospital and
illustrate it by indicating the score for each dimension in a radar chart. The derived

11



2 Summaries of the contributions

radar chart might be useful to evaluate gaps between the current and the target level
and to compare the maturity level with other hospitals.

In conclusion, the proposed high-level target picture, the structured framework,
and the four-step approach will facilitate strategic discussion and serve as valuable
guidance for practitioners to navigate the multitude of use cases in a structured
manner. Moreover, the framework enables researchers to categorize their work
into one of the 32 dimensions, develop structured literature overviews, and uncover
research gaps. The work opens up several options for future research such as field
studies with selected hospitals, a global survey, and development of a benchmarking
database.

2.2 Predicting ICU Bed Occupancy for Integrated

Operating Room Scheduling via Neural Networks

Schiele et al. [47] study the implications of tactical operating room scheduling on
the downstream units in a hospital. The work at hand can be categorized into the
dimension ‘Operating room steering and resources management (T1)’ belonging to
the area ‘Treatment and intervention’ of the HoF framework (see Section 2.1). They
propose a neural network based approach to predict the ICU bed occupancy level
resulting from a given master surgery schedule (MSS). This contribution has been
accepted for publication in “Naval Research Logistics”, which is ranked in category B
in the VHB-JOURQUAL3 ranking [2]. It can be found in its entirety in Appendix B.
Moreover, selected excerpts of the contribution have been presented at the 2019
Graduate Program in Operations Management (GPOM) in Munich, Germany, on
January 11, 2019, and at the 2019 Wissenschaftstag at Universitätsklinikum Augsburg,
Germany, on November 14, 2019, as well as published in “Kongresszeitung 136.
Kongress der Deutschen Gesellschaft für Chirurgie (DGCH)”, issue 1, 2019.

The ICU is one of a hospital’s most expensive resources representing nearly 15%
of the United States’ total hospital expenditures [27] and an important bottleneck
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[34] bearing the risk of blocked operating rooms and inferior patient treatment.
Consequently, also the implications on the ICU should be considered when scheduling
operating rooms. Most hospitals are challenged by ICU capacity shortages causing
overtime costs, unsatisfied staff and patients, and postponed and cancelled surgeries.
It is well known that allocating operating room capacity to different medical specialties
has an impact on the resulting occupancy levels of downstream units. Hence, the
hospital management requires a supporting tool in order to address the ICU shortages
already at the tactical level.

At the tactical level, operating room managers are asked to develop a MSS by
assigning a hospital’s operating room capacity to different medical specialties. The
suitability of block scheduling has been analyzed by Van Oostrum et al. [51].
Usually, a MSS is constructed cyclical, i.e., repeating after a fixed cycle. Most MSS
approaches in the literature focus only on the operating room, but neglect or simplify
the impact on downstream units. However, an integrated approach that incorporates
downstream units seems more suitable to improve their combined performance. In
order to consider the impact on supporting units, hospital managers require a model
that predicts the resulting bed occupancy levels for a given MSS. The state-of-the-art
approach by Fügener et al. [23, 24] considers multiple downstream units and serves
as comparison for the study at hand.

In this contribution, the authors present the first prediction model for the integrated
operating room scheduling problem that is based on machine learning. The proposed
prediction model leverages a large data set with m ∈M samples

(
x(m), y(m)

)
. Instead

of explicitly modeling the rather complex relationship between inputs xn, n ∈ N ,

i.e., a given MSS, and the corresponding labels y, i.e., number of occupied ICU beds
on day m, their proposed neural network learns automatically from the historical
data. Unlike previous work, this method enables the authors to reflect all patient
paths that have occurred in the past without any simplifications. In fact, they
reconstruct the exact location of each patient within the hospital for any given date
from admission to discharge. The bed occupancy levels in hospital departments
such as ward, ICU, intermediate care unit, emergency room, and operating room
are obtained by superimposing all patients in the respective location. The authors

13
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use multiple input features, i.e., number of operating room blocks allocated to
specialty j ∈ J on day m + d,∀m ∈ M, d ∈ D, and one-hot encoded days of the
week e ∈ E . For each room that has been occupied by a medical specialty on a
given day, one operating room block is assigned to the respective specialty. In case
of shared operating rooms, the operating room block is allocated to the involved
medical specialties according to their accumulated surgery durations. The authors
introduce a new parameter called memory depth d ∈ D to consider operating room
blocks of previous days and subsequent days as well. The objective of the prediction
model is to minimize the deviation between the predicted and the realized ICU bed
occupancy.

Schiele et al. evaluate the model with real-world data retrieved from Universitäts-
klinikum Augsburg, a 1,700-bed, maximum-care university hospital located in South-
ern Germany. In fact, surgery records as well as supporting unit records from 2010
to 2016 were retrieved from the hospital information system to derive more than
M = 2,500 samples covering more than P = 77,000 patients, F = 1,017 distinct
patient paths, and J = 8 medical specialties, i.e., Cardiothoracic Surgery, General,
Visceral, and Transplant Surgery, Gynecology, Oral and Maxillofacial Surgery, Neu-
rosurgery, Traumatology, Orthopedics, and Plastic Surgery, Urology, and Vascular
and Intravascular Surgery. The used data sets are commonly available in most
hospitals and usually can be interlinked by an unique patient identifier which is
essential to reconstruct the patient paths. The authors propose a 3-step approach
to structure pre-processing and training. In step 1, the patient group in focus is
selected, e.g., elective patients, outpatients, and selected medical specialties. In
step 2, pre-processing is performed to derive features and labels for various mem-
ory depths. In step 3, model hyperparameters are selected for the training, e.g.,
topology, activation function, and optimizer. The proposed model has been imple-
mented in Python. For data processing, Pandas, NumPy, SciPy, scikit-learn, and
Tensorflow are used. Pre-processing and training were performed on a dedicated
simulation node equipped with 56 physical Intel(R) Xeon(R) Platinum 8176 cores
with enabled hyperthreading.

14
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After discussions with the hospital management, the root mean squared error is
used to evaluate the performance since robustness of the model has highest priority.
Schiele et al. present numerical results for various combinations of patient selection
(step 1), data set selection (step 2), and model selection (step 3). The model achieves
a root mean squared error of 3.46 for the base case, i.e., for P = 77k patients,
memory depth D = {−20, 10}, and [200:50] topology. In order to better contrast the
performance of the proposed model to the literature, the authors present two types
of comparison. First, they keep the pre-processing (steps 1 and 2) as proposed and
only vary the machine learning algorithm (step 3). They conclude that most of the
studied alternatives are also well-suited for the prediction problem at hand, however,
do not outperform the proposed neural network. Second, they compare the entire
model with the state-of-the-art model by Fügener et al. [23] and conclude that their
model achieves an prediction error that is 43% lower in number of predicted beds.

Among other possible applications, the proposed prediction model will be most
beneficial for the evaluation of a given MSS. Since the benefits of a new prediction
model comes not only from the improvement in prediction quality but rather from
the improvement in the quality of the decision that the model informs, the authors
present two options to incorporate it into a decision making process in order to
inform a better decision. First, the proposed prediction model serves as a valuable
tool in regular management discussions to adaptively evaluate a given, feasible MSS
with respect to the expected ICU bed occupancy levels. Second, the prediction model
can be incorporated as an objective function in an optimization model such as a
genetic algorithm. The authors compare the current MSS A that is based on status
quo with MSS B that is based on discussions with the hospital management and
MSS C that is based on genetic algorithm optimization. The bed occupancy for
MSS C shows a better leveling compared to the other ones leading to an estimated
reduction of the maximum ICU bed demand by 8.9%.

In summary, the model can be used as a supporting tool for hospital managers or
incorporated in an optimization model in order to make operating room scheduling
more efficient in the future. Machine learning is well suited for this problem since
traditional models struggle to reflect the hospital’s real-world complexity and its
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inherent uncertainty. The work opens up several directions for further research, e.g.,
enrichment with additional features such as emergency status.

2.3 Predicting Surgical Durations and Implications at

the Operational Level

Schiele [44] investigates the consequences of surgery scheduling at the operational level
of a hospital. The work at hand can be categorized into the dimension ‘Operating
room steering and resources management (T1)’ belonging to the area ‘Treatment
and intervention’ of the HoF framework (see Section 2.1). He proposes a multi-
objective approach based on neural networks to predict the duration as well as several
operational implications of a surgery. He shows that a variety of parameters can
be retrieved from commonly available hospital records and incorporated into the
prediction model. Numerical results are presented for a case study with data from
Universitätsklinikum Augsburg. This contribution has been submitted to “Medical
Decision Making”, which is ranked in category A in the VHB-JOURQUAL3 ranking
[2]. It can be found in its entirety in Appendix C. Moreover, selected excerpts of the
contribution have been presented at the 30th European Conference on Operational
Research (EURO) conference in Dublin, Ireland, on June 25, 2019.

The operating room is the most critical resource and a major cost driver of a hospital.
In fact, operating room expenditures account for around 40% of the hospital expen-
ditures and an average operating room in the United States costs roughly 4,000 USD
per hour. Consequently, it is of utmost importance to ensure an efficient manage-
ment of the operating room environment. In order to schedule surgeries efficiently,
accurate predictions of surgical durations are essential to avoid overestimating as
well as underestimating both of which bear undesirable consequences. In today’s
hospitals, predictions are prone to inaccuracy being based on either expert estimates
or simple historic averaging. Within the last decades, a vast amount of research has
been done. The author identifies 114 papers in this field and distinguishes between
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literature reviews, probability distribution fitting, expert prediction assessments,
data mining and machine learning models, scheduling and sequencing, and others.
In particular, machine learning based approaches seem promising and well suited
for the prediction of surgical durations by learning the relationship between features
and outputs from historic data.

This contribution proposes a new multi-objective approach based on neural networks.
The model leverages a variety of patient-related, procedure-related, and operations-
related features to predict multi-class labels for six different metrics with great
practical relevance, i.e., operating room duration, incision suture duration, anesthetist
duration, postoperative unit, postoperative length of stay, and discharge type. In
fact, the model focuses not only on durations within the operating room, but also
considers the influence of a scheduled surgical case on the further course of a patient’s
postoperative stay in the hospital as well as post-hospital treatments required both
of which contributing to the efficiency of a hospital. Unlike other approaches, Schiele
also considers features and labels that were derived from individual patient paths,
e.g., the preoperative length of stay. The proposed model is generalizable and based
on input data that is commonly available in most hospitals.

The proposed prediction model is based on neural networks and a large data set with
m ∈M historic samples

(
x(m),y(m)

)
, i.e., surgical cases, where xn, n ∈ N , describes

the features and yo the corresponding multi-class labels for o ∈ O outputs. Schiele
evaluates the model with real-world data retrieved from Universitätsklinikum Augs-
burg, a 1,700-bed, maximum-care university hospital located in Southern Germany.
In fact, surgery records as well as supporting unit records from 2010 to 2016 were
retrieved from the hospital information system to derive more than M = 150,000
samples covering more than P = 125,000 distinct patients. After deliberation with
the hospital management, the author uses patient-related features such as patient
age, gender, patient type, emergency status, and admission type, procedure-related
features such as International Classification of Procedures in Medicine code, operat-
ing room type, and surgical specialty, and operations-related features such as the
number of previous surgeries, the preoperative length of stay in the hospital, the
origin unit before being transferred to the operating room, the weekday, and the
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time of the day. He distinguishes between continuous and categorical features and
presents their representations for the training samples. Categorical variables are
converted into integers by using one-hot encoding. A multi-class label y(m)

o is defined
for each output o ∈ O with values y(m)

o,c ∈ [0, 1] for c ∈ Co classes where quantiles are
used to categorize the surgical durations. The model has been implemented with
scikit-learn in Python [40] and computations were done on a dedicated simulation
node equipped with 56 physical Intel(R) Xeon(R) Platinum 8176 cores with enabled
hyperthreading.

In order to evaluate the performance of the model, unweighted average precision
(UAP), unweighted average recall (UAR), and unweighted average F-measure (UAF)
are used. The author runs various computations with different hyperparameters
and presents results for the models achieving the best performance. In particular,
an UAP= 59.7%, an UAR= 58.7%, and an UAF= 59.1% are achieved on a neural
network model with topology [10:10] for the prediction of the operating room duration
and an UAP= 97.2%, an UAR= 97.4%, and an UAF= 97.2% are achieved on a model
with topology [100:50:25] for the prediction of the postoperative unit. Moreover,
confusion matrices are presented to illustrate the performance for each individual
class of the multi-class output.

In summary, the proposed model seems to be of great practical value and could
support clinicians in surgery scheduling. An aggregated version of the unweighted
average performance metrics can be used to identify the model constellations with
the best predictive power. The work opens up five possible directions for further
research, i.e., additional features, customized performance metrices, comparision
with other models, incorporation into an optimization framework, and application in
the field.
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2.4 Automated Classification of Airborne Pollen using

Neural Networks

Demonstrating that AI-enabled decision support in health care extends beyond the
scope of operating rooms, Schiele et al. [46] explore the automated monitoring of
airborne pollen with the aim of improving personalized allergy management. The
work at hand can be categorized into the dimension ‘Smart devices and medication
(P3)’ belonging to the area ‘Patient’ of the HoF framework (see Section 2.1). They
propose a new pollen classification model based on deep neural networks, present
numerical results, and compare the performance with a state-of-the-art algorithm.
This contribution has been published in “41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC)”, which is not ranked
in the VHB-JOURQUAL3 ranking [2]. It can be found in its entirety in Appendix D.
Moreover, selected excerpts of the contribution have been presented at the EMBC in
Berlin, Germany, on July 26, 2019.

Clinical evidence reveals a general increase in both the incidence and prevalence of
respiratory diseases over the last half century [7] which presumably is related to a
parallel increase in the amount of airborne allergenic pollen [54]. Not only patients
suffer from allergies, but also economic effects are noticeable, e.g., costs for visits
to allergy specialists, lost working hours, and reduced working efficiency of patients.
With prophylaxis being the first line of allergy management, accurate information
on the occurrence and abundance of airborne pollen is needed in order to diminish
exposure. Up to date, the volumetric Hirst-type sampler [8] is the biomonitoring
gold-standard despite its fully manual operation from collection to chemical analysis
and microscopic classification of different types of pollen [22]. Consequently, relevant
risk alerts are announced to the public usually with a delay of at least 7 to 10 days.

Schiele et al. present a new automated pollen classification approach based on
machine learning. The authors describe a 4-step automated pollen monitoring
process, i.e., automated collection of air samples on a probe (step 1), detection of
objects within each probe (step 2), classification of objects as either ‘no pollen’ or as
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a specific pollen type (step 3), and online publication of up-to-date information about
the pollen concentration (step 4). For the collection of samples in step 1, airborne
allergenic pollen have been monitored in Augsburg, Germany, in 2015 and 2016 using
a novel automated pollen measuring device. The Bio-Aerosol Analyzer BAA5001

continuously samples ambient air using a 3-stage virtual impactor such that pollen is
deposited on a sticky surface and digitized with a camera. For the detection in step
2, the authors rely on the internal detection algorithm of the BAA500. The detected
pollen samples were then manually labeled by aerobiology experts based on typical
morphological features. In the study at hand, the 15 most abundant and allergenic
pollen types worldwide were considered [54], i.e., Alnus, Betula, Carpinus, Corylus,
Fagus, Fraxinus, Plantago, Poaceae, Populus, Quercus, Salix, Taxus, Tilia, Ulmus,
and Urticaceae.

For the classification in step 3, the authors propose a model that is based on
convolutional neural networks. Consisting of a cascade of so-called convolutional
layers and one or several fully-connected neural layers, convolutional neural networks
are a state-of-the-art method in image classification tasks such as visual object
recognition, optical character recognition, or image based medical diagnostics [18].
In a pre-processing step, each pollen image is embedded in the center of a black
background frame and the data set is split into three sets: the training set containing
60% of all samples of each class, the validation set with 20%, and the test set
with 20%. Raw pixel values of the embedded images are used to train the network
consisting of three convolutional layers, each followed by a maximum-pooling step,
a fully-connected layer with dropout, and an output layer. The described model
has been implemented with the Tensorflow library in Python and the training was
performed on a dedicated GPU cluster equipped with 16 Nvidia Titan X (Pascal)
cards.

Using the aforementioned performance metrics (see Section 2.3), the model achieves
an UAP of 83.0%, an UAR of 77.1%, and an UAF of 79.1% on the test set. A look
at the confusion matrix reveals that Taxus and Fagus are predicted particularly
well with a recall of 96% and 92%, respectively, and Quercus and Fraxinus show a

1https://www.hund.de/en/instruments/pollen-monitor/
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rather bad performance with 35% and 43%, respectively. The authors also compare
their results with the BAA500 internal classification algorithm which is based on a
mathematical model calculating features such as area, perimeter, eccentricity, and
roundness for each pollen sample. Overall, their model is able to predict less classes,
but shows superior performance than the BAA500 model.

In summary, the proposed approach seems promising to advance towards an accurate,
real-time, automatic dissemination of allergenic pollen information. The deep neural
network based model is able to classify different types of airborne pollen with
high accuracy and without requiring the objects to be round. The work opens up
several possibilities for further research such as expansion to more pollen classes,
development of an object detection algorithm (step 2), and expansion to automated
monitoring of other air particles, e. g., fungal spores. The availability of real-time
and accurate pollen information will contribute significantly to improve personalized
allergy management.
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This thesis is dedicated to AI-enabled decision support in health care and comprises
the four aforementioned contributions of which each one fills a research gap in existing
literature. The section at hand discusses how the contributions provide answers to
the following research questions.

1. Can ideas from Industry 4.0 help mitigate the imminent challenges in health
care?

2. How can hospitals navigate the variety of use cases on the way to the hospital
of the future?

3. What role do big data and data analytics play in hospitals?

4. Which aspects should be considered for operating room management?

5. How can machine learning contribute to operating room scheduling at the
tactical level?

6. How can machine learning contribute to surgery scheduling at the operational
level?

7. Can machine learning contribute to other health care areas besides hospitals?

In the following, each research question is discussed in a separate section.
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3.1 Can ideas from Industry 4.0 help mitigate the

imminent challenges in health care?

The overall health care system and in particular hospitals around the globe face
various social, organizational, medical, and financial challenges and must constantly
adapt to a changing environment. In particular, the increasing cost pressure, the
complex regulatory environment, and the acute shortage of staff contribute to this
challenging setting and make it difficult to focus on value-adding tasks. However,
instead of cutting costs and reducing value-added care, it is more promising to use
concepts similar to Industry 4.0 in order to mitigate those challenges. Digitization,
integration, automation, and personalization using cyber-physical systems and data
analytics will help to advance the health care system. This has implications for
the four traditional health care sectors, i.e., providers, payers, medical technol-
ogy companies, and biopharma companies, as well as for patients and technology
companies.

In the hospital of the future, those innovations will lead to more integration, less
paper-based work, less bureaucracy, efficient processes, more automation, data-driven
solutions, transparency, sustainability, and after all to more time for value-adding
tasks, better medicine, higher satisfaction of staff, and better health of patients.
However, it is also important to consider the differences between the smart factory
and the hospital of the future. In a hospital, the core process is not production
but diagnosis and therapy and the core are not products but humans. In fact,
human-human interactions are essential for the recovery process of patients and will
remain a valuable component in the future. Taking these differences into account,
the concept of Industry 4.0 can well be transferred to the hospital setting serving as
assistance for support processes such as cleaning and catering as well as core processes
such as diagnostics and surgery. The concept is studied in the first contribution in
this thesis [45] (see Section 2.1).
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3.2 How can hospitals navigate the variety of use

cases on the way to the hospital of the future?

Mainly driven by big data and analytical power, health care is on the cusp of a new
era paving the way for the hospital of the future. Not few hospitals have already
started to discuss and implement first use cases of this new concept, e.g., electronic
health records or surgery robots, and have high ambitions for the upcoming years.
Even though these individual lighthouses might be innovative and beneficial, most
hospitals still lack a holistic strategy that guides them on the way to become a
hospital of the future.

The first contribution in this thesis [45] investigates this problem (see Section 2.1).
Based on scientific literature and an extensive survey among hospital practitioners,
Schiele et al. derive a target picture that makes the hospital of the future in 2040 more
tangible and facilitates strategic discussions. In order to support hospitals to navigate
the variety of use cases, they propose a structured HoF framework that orchestrates
the individual use cases in 32 HoF dimensions along seven HoF areas. Moreover, they
present an evaluation matrix for prioritization and a four-step approach including a
radar chart as supporting tool for self-assessment and benchmarking.

3.3 What role do big data and data analytics play in

hospitals?

Data is essential for nearly all processes in a hospital such as diagnosis, treatment,
prevention, hospital operations, and documentation. Hospitals have no shortage of
data given the almost indefinite variety of sources such as electronic health records,
lab results, magnetic resonance imaging, x-ray scans, medication plans, monitoring
records, medical letters, clinical trials, insurance data, and billing information. In the
near future, this will be further augmented by the integration of consumer wearables
such as fitness bracelets, scales, glucometers, and smartphone applications. In order
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to leverage the full potential, it is essential to aggregate and manage all data in a
centralized hospital information system. The availability of structured data pave
the way for advanced methods such as big data analytics, machine learning, pattern
recognition, simulation, and optimization offering a previously unimaginable variety of
applications, e.g., advanced diagnostics, personalized medicine, post-care monitoring,
predictive maintenance, detection of anomalies, paperless documentation, scheduling
of resources, operational improvements, as well as prediction of bed occupancy
levels, surgical durations, and clinical outcomes. The increasing number of scientific
contributions that successfully apply machine learning in health care indicates that
the approach is promising. The first contribution in this thesis [45] explores how
big data and data analytics can advance hospitals and present numerous vivid
applications (see Section 2.1).

Although levels of detail, systems, and tools vary significantly between hospitals,
most keep track of the conducted surgeries and the patient movements:

Surgery records. A data set covering the conducted surgeries that often con-
tains patient identifiers, patient types, emergency status, medical specialties, and
timestamps for surgery-related events.

Supporting units records. A data set covering admission, transfers, and discharge
during the hospital stay that often contains patient identifiers, room numbers, and
timestamps for movement-related events.

Understanding individual patient paths through the hospital is beneficial to improve
decision making at the tactical and operational level. Given an unique patient
identifier, it is possible to interlink the two aforementioned data sources and recon-
struct the respective paths for each patient. In fact, the second [47] and the third
[44] contribution in this thesis leverage the reconstructed patient paths to improve
decision making at the tactical and operational level, respectively (see Sections 2.2
and 2.3).
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3.4 Which aspects should be considered for operating

room management?

The operating room represents the core of a hospital. In the past six decades,
extensive research has been carried out to optimize operating room management
[10, 26, 42]. Based on the identified challenges and pitfalls, four critical aspects can be
distilled. Figure 3.1 depicts the resulting IUCT classification scheme that summarizes
all four aspects that should be considered for operating room management.

Figure 3.1: IUCT classification scheme: four aspects should be considered for oper-
ating room management.

Integrity. Operating room decisions directly affect the connected up- and down-
stream units of a hospital such as ward and ICU. Particularly the ICU is crucial from
a financial [27], medical [5], and organizational perspective [34] and hence, should to
be included in the decision making process to improve the overall efficiency.

Uncertainty. Uncertainty is inherent to health services. Patient arrivals, length of
stay as well as number, frequency, type, and outcome of interventions are not known
in advance, but directly affect demand for resources and workload. In order to make
decisions on a realistic basis, uncertainty can not be ignored.

Complexity. Real-world hospital settings are rather complex being shaped by a
variety in many dimensions such as patient types, medical specialties, supporting
units, and patient paths. Hence, conventional models struggle to explicitly imitate
the real-world complexity in all details. Until today, there is no model that reflects
all possible patient paths through the hospital without simplifications, e.g., Fügener
et al. [23] neglect preoperative stays, multiple surgeries, and transfers from ward to
the ICU.
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Tangibility. Hospitals are risk-adverse. As patient safety is of utmost importance
and capacity is expensive, any modifications to crucial processes require robust
reasoning to avoid potentially lethal disruptions. In order to achieve lasting improve-
ments in real-world hospitals, it is mandatory to build upon real data and to ensure
that the hospital stakeholders understand the resulting benefits.

The second [47] and the third [44] contribution in this thesis propose data-driven
models for the operating room management at the tactical and operational level,
respectively, that both satisfy the IUCT classification scheme: considering operating
rooms as well as supporting units, handling uncertainty and complexity reflected in
seven years of underlying real data, and closely aligned with key stakeholders of the
reference hospital Universitätsklinikum Augsburg (see Sections 2.2 and 2.3).

3.5 How can machine learning contribute to

operating room scheduling at the tactical level?

In operating room scheduling at the tactical level, a MSS is developed to assign a
hospital’s operating room capacity to the different medical specialties. This decision
does not only affect the operating rooms, but also has implications on the resulting
bed occupancy levels in downstream units such as the ICU. The ICU is one of a
hospital’s most expensive resources and often represents an important bottleneck
bearing the risk of blocked operating rooms and inferior patient treatment, i.e.,
lower probability of ICU admission, higher discharge rates, and increased danger
of re-admission. Consequently, also the ICU should be considered when scheduling
operating rooms (see IUCT scheme in Section 3.4). To do so, a supporting tool is
required that predicts the impact of a MSS on downstream units.

Within the last decade, machine learning has gained momentum and helped to
advance applications in health care, particularly for diagnosis such as classification of
skin cancer [18]. Moreover, it is well-suited for forecasting and prediction problems
in several industries, e.g., surgical durations [35]. Consequently, it seems beneficial
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and worth approaching to develop the supporting tool based on machine learning.
The second contribution in this thesis [47] investigates the integrated operating
room scheduling problem and proposes a neural network based supporting tool that
predicts the resulting ICU bed occupancy levels for a given MSS (see Section 2.2).
While traditional model struggle to reflect the hospital’s real-world complexity and
uncertainty, machine learning is well suited for this problem being able to learn the
relationship between given MSS and resulting bed occupancy level directly from
historical data. The approach is able to reflect more supporting units, patient types,
and patient paths than previous work and the achieved predicting results outperform
a state-of-the-art model. The proposed model serves as valuable supporting tool for
hospital managers and can be incorporated in an optimization model.

3.6 How can machine learning contribute to surgery

scheduling at the operational level?

In surgery scheduling at the operational level, clinicians consider several aspects such
as estimated utilization of operating rooms, under- and overtime of staff, and the
impact on downstream units. For an efficient operating room management, accurate
predictions of surgical durations are essential since both overestimating as well as
underestimating surgical durations bear undesirable consequences, i.e., idle time, lost
revenues, waiting times, and cancellations. However, deriving accurate predictions is
a complex endeavor due to inherent uncertainty and diversity. In most hospitals, the
predictions are based on either expert estimates or simple averaging methods making
them prone to inaccuracy. Besides surgical durations, also accurate predictions of
operational implications such as postoperative unit, postoperative length of stay, and
discharge type are important, but are rarely considered in today’s hospitals.

Within the last decades, a vast amount of research has been done in the field
of surgical scheduling [10], however, the problem of predicting surgical durations
comprises only a minor fraction of the literature and just recently started to get more
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attention. Machine learning is well suited for the prediction of surgical durations
by learning the relationship between features and outputs from historical data. The
third contribution [44] investigates the problem at hand (see Section 2.3). Schiele
presents a new multi-objective approach based on neural networks that is able to
predict various perioperative durations as well as operational implications with great
practical relevance. The model leverages a variety of patient-related, procedure-
related, and operations-related factors retrieved from 7 years of real-world data
covering more than 150,000 surgeries at Universitätsklinikum Augsburg. Convincing
numerical results with high precision and recall values indicate that the approach is
valid and could prove useful to support clinicians in their decision making.

3.7 Can machine learning contribute to other health

care areas besides hospitals?

As shown in the second [47] and the third [44] contribution in this thesis, machine
learning is well suited to improve decision making at a hospital’s tactical and
operational level, respectively (see Sections 2.2 and 2.3). Moreover, numerous studies
and applications demonstrate the potential of machine learning in hospitals, e.g., to
classify skin cancer [18], to predict pneumonia [28], to assess perioperative cardiac
risks [30], to identify patients at high risk of postinduction hypotension [33], to
support robot-assisted surgeries [52], to predict surgical durations [20] and other
clinical events [17].

However, the potential of AI-enabled decision support in health care extends far
beyond hospitals. The first contribution [45] in this thesis describes applications for
each of the four traditional health care sectors, i.e., providers, payers, medical tech-
nology companies, and biopharma companies, as well as for patients and technology
companies (see Sections 2.1). For example, machine learning supports biopharma
companies to discover promising drugs by leveraging clinical data and partnering
with biobanks [3, 53]. Providers use machine learning to automate claims handling
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and detect fraud, waste, and abuse. Medical technology companies improve the
efficiency of their operations by identifying bottlenecks, preventing stock-outs on
critical products, and using predictive maintenance. Also, technology companies
become increasingly attracted by the new opportunities offered by machine learning
in health care, e.g., to discover drugs (Atomwise), to connect patients with general
practitioners (Babylon Health), and to analyze medical imaging (Zebra) [3].

Demonstrating the potential of AI outside of hospitals, the fourth contribution in
this thesis [46] explores how machine learning can contribute to personalized allergy
management (see Section 2.4). Pollen allergies are considered as a global epidemic
nowadays, but today’s alerts on high-risk allergenic pollen exposure are still based
on conventional monitoring methods that are laborious and delayed by at least 7 to
10 days. Schiele et. al propose a fully automated approach based on convolutional
neural networks to classify airborne pollen. Airborne allergenic pollen have been
monitored in Augsburg, Germany, using a novel automatic Bio-Aerosol Analyzer
(BAA 500, Hund GmbH). The proposed model achieves convincing results, i.e., an
UAP of 83.0% and an UAR of 77.1% across 15 classes of pollen taxa. Automatic,
real-time information on concentrations of airborne allergenic pollen will significantly
contribute to the implementation of timely, personalized management of allergies in
the future.
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This thesis explores several aspects of AI-enabled decision support in health care. It
motivates the need for further research on the intersection between health care and
machine learning. The main part of this thesis consists of four contributions to the
literature. A summary of each of the contributions is provided and the contributions
are applied to answer seven open research questions introduced in this thesis.

The first contribution [45] introduces a vision for the hospital of the future in 2040
(see Section 2.1). Based on scientific literature and an extensive survey, a high-level
target picture and a conceptual framework structured in 32 dimensions along seven
areas is proposed in order to facilitate strategic discussions and navigate the multitude
of use cases in a structured manner. A tangible four-step approach underlines the
practical relevance and enables self assessment. The second contribution [47] studies
the implications of MSSs on the downstream units at the tactical level of a hospital
(see Section 2.2). This is the first prediction model for the integrated operating room
scheduling problem that is based on neural networks. A case study underlines its
effectiveness and presents prediction results that outperform state-of-the-art by 43%.
The proposed model serves as a valuable supporting tool in regular management
discussions and can be incorporated as an objective function in an optimization
model. In the case study, the expected maximum ICU bed demand was reduced by
8.9%. The third contribution [44] examines the consequences of surgery scheduling at
the operational level of a hospital (see Section 2.3). This is the first multi-objective
classification model based on neural networks that is able to predict multi-class labels
for six different metrics with great practical relevance. A case study demonstrates
convincing prediction results, i.e., UAFs of at least 55.4% up to 97.2%. Finally, the
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fourth contribution [46] explores automated monitoring of airborne pollen with the
aim of improving personalized allergy management (see Section 2.4). It introduces a
4-step automated pollen monitoring process and proposes a new pollen classification
model based on deep neural networks. In a case study with 15 pollen types, the
model achieves convincing prediction results, i.e., an UAF of 79.1%, showing superior
performance than the state-of-the-art model.

The thesis poses several research questions which have not been answered by existing
literature. The first contribution [45] shows how the concept of Industry 4.0 can help
to mitigate the imminent challenges in health care (see Section 3.1). Digitization,
integration, automation, and personalization using cyber-physical systems and data
analytics have implications for the four traditional health care sectors as well as
for patients and tech companies. In hospitals, the concept serves as assistance for
support processes such as cleaning and catering as well as core processes such as
diagnostics and surgery. In order to support hospitals to navigate the variety of
use cases, the first contribution [45] proposes a structured HoF framework that
orchestrates the individual use cases in 32 HoF dimensions along seven HoF areas
(see Section 3.2). Big data and data analytics play an essential role in hospitals (see
Section 3.3). The first contribution [45] explores how big data and data analytics
can advance hospitals and present numerous vivid applications. The second [47]
and third [44] contribution leverage two data sources of a hospital and reconstruct
patient paths in order to improve decision making. A new classification scheme is
presented summarizing four aspects that should be considered for operating room
management (see Section 3.4). Two contributions [47, 44] address the operating room
management and propose data-driven models that both satisfy the classification
scheme. Machine learning is well suited to improve decision making at a hospital’s
tactical level (see Section 3.5). The second contribution in this thesis [47] investigates
the integrated operating room scheduling problem and proposes a neural network
based supporting tool that predicts the resulting ICU bed occupancy levels for a given
MSS. At the operational level, machine learning can contribute to surgery scheduling
by predicting implications of surgeries (see Section 3.6). The third contribution [44]
presents a new multi-objective approach based on neural networks that is able to
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predict various perioperative durations as well as operational implications with great
practical relevance. AI-enabled decision support has great potential for hospitals, but
also for other health care areas (see Section 3.7). Some applications are described in
the first contribution [45]. The fourth contribution [46] proposes a fully automated
approach based on convolutional neural networks to classify airborne pollen.

This thesis opens up several opportunities for further research. While all contributions
present relevant applications that support decision making in health care, it is
worthwhile to apply and test them in practice. Field studies with selected hospitals
on a global scale will be beneficial to further underline the relevance and improve
the predictive performance. We intend to set up a global benchmarking database for
the HoF framework that provides learnings from best-of-class hospitals. While the
proposed neural network based models achieve convincing results, it is worthwhile to
study the integration of additional features, evaluation with customized performance
metrics, and comparison with alternative machine learning models. Ultimately, we
believe that a joint consideration of tactical and operational decision levels would
be beneficial. In particular, to predict the ICU occupancy level, one might consider
patient-specific features or reflect the operating room occupancy on an hourly basis.
Customized loss functions could be beneficial to penalize high congestion periods
more severely. Metaheuristic or greedy random search could help to identify even
better topologies for the neural network. Analogous to the second contribution,
the model presented in the third contribution could also be incorporated into an
optimization framework. The model in the fourth contribution could be expanded to
other air particles and complemented with an object detection algorithm.

Facing many challenges, the health care system is on the cusp of a new era. Now is
the right time for a data-driven health care industry. AI-enabled decision support
has the potential to improve health care processes and even save lives. It is our
intention to encourage further research and practical studies in this area to unfold
the full potential and create lasting impact.
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Future

The following contribution [45] has been submitted to “Journal of Business Eco-
nomics”, which is ranked in category B in the VHB-JOURQUAL3 ranking [2]. The
submitted version is reproduced below in its entirety.
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A Framework for the Hospital of the Future

Abstract

Today’s hospitals around the globe face social, organizational, medical, and financial chal-

lenges. The hospital of the future in 2040 will be characterized by digitization, integration,

automation, and personalization in both support processes as well as core processes using

cyber-physical systems and data analytics. There will be less bureaucracy, more efficient

processes, higher staff satisfaction, more time spent for value-adding tasks and with the

patient, better medicine, and - after all - better treatment of patients. The human com-

ponent, however, will also remain essential in the future. Not few hospitals have already

started to discuss and implement selected use cases such as electronic health records or

surgery robots. Even though these individual lighthouses might be innovative and bene-

ficial, most hospitals still lack a holistic strategy on the way to become a hospital of the

future.

In this study, we present a conceptual framework for the hospital of the future struc-

tured in 32 dimensions along seven areas and based on four enablers as foundation. This

HoF framework reflects both latest scientific findings as well as hands-on insights ex-

perienced in practice. We conducted an extensive survey with more than 265 hospital

experts such as managers, physicians, nurses, and IT professionals. Hospital managers

have high ambitions to enhance their hospital and expect significant benefits, but they

are struggling to build momentum. Employees & skills as well as IT infrastructure &

data security are critical enablers and there is need for action in nearly all dimensions of

the framework. This study serves as valuable guidance for hospital managers to advance

their hospital to the next level and for researchers to categorize their work. Eventually,

we provide a four-step approach to help them getting started.

Keywords: Hospital of the future; hospital 4.0; smart hospital; vision; digital health;

framework
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1 Motivation

The overall health care system and in particular hospitals around the globe face various

social, organizational, medical, and financial challenges and must constantly adapt to a

changing environment (see Figure 1). Driven by an increasing life expectancy worldwide

[69] as well as lower fertility rates [93], demographic change is a major driver of increasing

health expenditures per capita [26]. Furthermore, it also imposes qualitative challenges

such as multimorbidity to hospitals. Among others, urbanization and the shift to outpa-

tient treatment require the hospital system to adapt accordingly, e.g., increasing home

care delivery. Also global developments such as the climate change or global epidemics

demand their tributes. Not only the society overall is changing, but also do patients

as individuals: their health awareness and expectations are increasing and they demand

more autonomy and participation in the treatment process, e.g., flexible access to care,

regular updates, and online planning tools. In addition to those social challenges, also

Figure 1: Today’s hospitals face social, organizational, medical, and financial challenges.

organizational requirements become more demanding and complex. Next to their regular

tasks, physicians and staff are asked to fulfill time-consuming documentation and comply

with ever increasing legal regulations imposed by authorities. The regulatory environ-

ment of hospitals is confusing, complicated, and changing. In particular, data security is

an highly sensitive topic that needs to be treated with utmost care. Prominent incidences

such as 2006’s hacker attack to blackmail German Lukaskrankenhaus [91] or 2019’s global

leak of more than 16 millions of picture archiving communication system (PACS) data
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[39] (also see [92]) vividly demonstrate the high risk and the far-reaching consequences.

The challenging situation is further aggravated by an increasing cost pressure from both

public and private sponsors. In most countries around the globe, the health care indus-

try accounts for a large share of expenditures and is still growing. For example, in the

United States, 3.3 trillion USD or nearly 18% of its GDP were spent on health care in

2016 reflecting an annual growth of 4.3% compared to 2015 [19]. Similarly, the OECD

countries spent on average 9% of their GDP [70] and Germany 11% [33]. A closer look

reveals hospitals as main driver accounting for 32% in the United States and nearly 40%

in the OECD [19, 70]. With rising costs, hospitals are increasingly attracting attention

from sponsors in both the governmental and the private sector demanding more cost ef-

fectiveness while ensuring the same level of service quality. “Pressures to make operating

margins will continue to be at the forefront of most hospital and health system leaders’

minds” [66] - particularly, since it seems that nothing “will stop public spending on health

care from rising” [74]. As a consequence, most hospitals suffer from an investment back-

log and lack of funding. Commonly, the response to the cost pressure is to cut costs such

as payment levels and benefit structures. This directly leads to one of the most critical

challenges: the acute shortage of staff in hospitals. In German hospitals it is particularly

challenging to find, recruit, and retain qualified nursing staff and the situation has further

intensified with the introduction of the German regulation for the threshold of nursing

staff in 20191. However, there is not only a shortage of nurses, but the survey results

confirm also a lack of qualified physicians, administration staff, and IT experts. Given

the changing environment, adequate qualification and continuous training becomes even

more important. Moreover, most personnel suffers from unpleasant working conditions,

high workload, lack of valuation, and difficulties to reconcile work with personal time,

i.e., on weekends and during night shifts. In this setting, it is very challenging to per-

form value-adding tasks with the necessary diligence and spend sufficient time with each

individual patient.
1https://www.bundesgesundheitsministerium.de/personaluntergrenzen
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The purpose of this paper is to develop a vision for the hospital in 2040 with the

intention to advance hospitals and take some pressure off the system. To sharpen the

presented vision, we have considered both latest findings published in scientific journals

as well as valuable input provided by more than 265 practitioners in response to our

survey. Our contribution is the conceptual HoF framework for the hospital of the future

structured in 32 dimensions along seven areas and based on four enablers as foundation.

Moreover, we underpin the vision with results of the extensive survey representing the

perspective of hospital managers, physicians, nursery, and IT leaders. We believe that

this study provides a valuable guidance for practitioners to navigate the multitude of use

cases in a structured manner.

The remainder of this paper is organized in five sections. In Section 2, we explain

the concept of Health Care 4.0, provide an overview of previous literature, distinguish

between six stakeholders, and derive a definition for the hospital of the future. The target

picture for the hospital of the future is detailed and depicted in Section 3. In Section 4,

we present the HoF framework for the hospital of the future and describe each of the 32

dimensions in detail. Moreover, we also explain and evaluate the four critical enablers.

Section 5 proposes a four-step approach which is intended to support practitioners who

want to apply the framework and enhance their hospitals to the next level. Finally, we

conclude our findings and discuss managerial insights in Section 6.

2 From Health Care 4.0 to the hospital of the future

Inspired by the fourth industrial revolution that led to the smart factory [108, 60, 56],

similar concepts will also help to advance the health care system. Historically, Industry

1.0 refers to mechanical production facilities in the late 18th century such as steam

powered machines and the weaving loom. The second industrial revolution introduced

electrical energy, the assembly line, and mass production. In Industry 3.0, computers and

electronics paved the way for automation of machines. Industry 4.0 or smart factory refers

Appendix A A Framework for the Hospital of the Future

49



to a factory in which machines are augmented with sensors, everything is connected by

the so-called internet of things (IoT), decisions are decentralized, processes are visualized

and automated, and cloud computing as well as artificial intelligence (AI) are realized.

Similarly, these technical, social, and organizational innovations can also make a valuable

contribution to overcoming the challenges in the health care system. This concept is

called Health Care 4.0. In the following, we will have a short look at previous literature

addressing Health Care 4.0. Afterwards, we will focus on hospitals and develop a concept

for the hospital of the future.

In the past years, many articles have been published on the concept of Health Care

4.0 which is often referred to as smart health or digital health. Instead of cutting costs

and reducing value-added care, this concept focuses on reducing waste and increasing ef-

ficiency. According to Berwick et al., at least 20 % of total health care expenditures could

be eliminated by addressing overtreatment, failures in coordination and execution of care

processes, inefficient pricing, administrative complexity, fraud and abuse [15]. Thuemm-

ler and Bai [95] define Health Care 4.0 as “a strategic concept for the health domain

derived from the Industry 4.0 concept”. They argue that the patient flow and patient

pathways would be the classical models of value chains within the health care industry,

which is not any different to other industries. Moreover, they name virtualization in order

to enable personalization as aim of Health Care 4.0. This should be achieved through the

usage of cyber-physical systems, cloud computing, IoT, and mobile communication net-

works. They also highlight that in contrast to Industry 4.0, more attention must be paid

to safety, security, and resilience in health infrastructures. Mohanty et al. [64] describe

the concept as a “combination of various entities, including traditional health care, smart

biosensors, wearable devices, ICT, and smart ambulance systems”. Particularly great at-

tention was given to various applications of machine learning (or in broader terms: AI)

in health care. Dua et al. [28] composed an extensive collection of articles on machine

learning in health care informatics and present a variety of applications such as screening

of arrhythmia from electrocardiography, regulation of glucose level for diabetic patients,
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detection of neuropsychiatric disorders such as Alzheimer’s disease, and clinical decision

making. Also Natarajan et al. [66] present a valuable collection of big data and machine

learning based applications in health care, i.e., precision medicine, financial reporting,

and medical imaging. Chen et al. [20] state that combining machine learning systems

with human practitioners will improve our collective health. The fact that big data and

machine learning offer unprecedented analytical power, wearables become omnipresent,

and investment in digital health has overtaken funding for biotechnology [88] indicate

that we are on the cusp of a new era in health care. Hence, it is not surprising that - next

to the scientific literature - also consultancies, institutes, and other cooperation study

the concept of Health Care 4.0. Aboshiha et al. [2] describe that “health care players are

using AI to address significant inefficiencies and open up powerful new opportunities”.

They list various applications “from the delivery of remote health care services to the

early diagnosis of disease and the hunt for new life-saving medicines” such as heart mon-

itors, smart glucose pumps, and diagnostic devices. Across the health care value chain,

they identify seven areas for opportunities of AI in health care: remote prevention and

care, diagnostics support, treatment pathways and support, drug discovery and develop-

ment, operations, marketing and sales, and support functions. Hipp et al. [45] describe

use cases, benefits, challenges, and recommendations for the digital transformation of the

health care sector. They present a three-step roadmap from (1) today’s health care on

loose strings which is characterized by a lack of continuity, transparency, and digitiza-

tion to (2) a central healthcare platform in which stakeholders are digitally connected to

a central entity towards (3) the future patient-centered health system in which patients

have control over their information and stakeholder interaction. Similarly, Clawson et al.

[23] observe that health care is one of the least mature, most regulated, and least efficient

industries despite being among the largest in most developed countries. Consequently,

they postulate the end of the current system and ask both policymakers and responsible

industry leaders for a transformation such that “competitive forces will promote innova-

tions and development that improve health care value”. Finally, the concept of Health
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Care 4.0 is also covered in numerous recent blogs [25, 27] and newspaper articles [65].

As stated in the aforementioned literature, we are on the cusp of a new era in health

care. This has implications for the four traditional health care sectors, i.e., providers,

payers, medical technology companies, and biopharma companies, as well as for patients

and technology companies. Figure 2 depicts these six key stakeholders in the health care

industry.

Figure 2: The six key stakeholders in the health care industry.

Patients are the core of the health care system and will see positive impact in many

ways. Thanks to efficiency gains and technological as well as medical innovations, they

are served with cheaper insurance, better diagnostics, more accurate monitoring, tailored

pharmaceuticals, and an improved treatment. Additionally, they will participate more

actively in health care processes and make use of remote health services from home.

Payer refers to private and statutory, for-profit and not-for-profit health insurance com-

panies. Big data analytics and AI will yield major efficiencies in claims handling and

detection of fraud, waste, and abuse. Also population health management (PHM) will

play a more important role. The GKV 4.0 trend monitor [17] identifies and evaluates nine

technology trends that are relevant for statutory health insurance companies, i.e., mobile,

big data and advanced analytics, robotics, cloud computing and connectivity, AI, affec-

tive computing, IoT, virtual reality (VR) and augmented reality (AR), and blockchain.
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Biopharma companies have already started to implement use cases of Health Care 4.0.

For example, they improve the efficiency of drug discovery by leveraging clinical data and

partnering with biobanks [2]. Moreover, precision medicine and genome research offer new

business potentials.

Medical technology companies will improve the efficiency of their operations, i.e.,

identifying bottlenecks and preventing stock-outs on critical products. Moreover, they

will develop new products and solutions such as intelligent monitoring and diagnostic

devices. Hosseini et al. [47] provide an overview of data-driven business models and

illustrate selected medtech companies that have already started.

Technology companies are not yet considered part of the traditional key segments, but

increasingly become attracted by the new opportunities in health care. An increasing

number of smaller companies and start-ups offer innovative solutions, i.e., to discover

drugs (Atomwise), to connect patients with general practitioners (GPs) (Babylon Health),

and to analyze medical imaging (Zebra) [2]. Given their consumer-friendliness and digital

sophistication, particularly technology giants such as Alphabet, IBM, Apple, Amazon,

and Alibaba are well suited and already started to invest significantly in health care.

Saxena et al. [81] show how they might disrupt each of the industry’s traditional segments.

Their algorithms will become more integrated in core processes of biopharma and payers,

they will increasingly handle clinical decision support and diagnostic tools for providers,

and they will offer products and solutions in the domain of medical technology companies.

Provider refers to hospitals, GPs, and transitional care providers such as rehabs and

hospices. They will profit from increased efficiency, automation of time-consuming sup-

port processes such as billing, better clinical decision making and allocation of resources

such as nursery rosters, and more efficient drug utilization. Better diagnostic and treat-

ment yield an improved outcome and consequently, also result in fewer complications and

readmissions. In the following of this study, we focus on hospitals.

Although literature dedicated to the hospital of the future is rare, we found some pre-
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vious work published by researchers, consultancies, institutes, and in newspapers. Afferni

et al. [3] present a framework for the Hospital 4.0 and discuss methodological and tech-

nological innovations. They name methods and policies, organization, and technology as

main pillars and demand a transformation from today’s poly-functional center where the

patient is considered as object to an integrated, patient-centered approach where the pa-

tient is an active user of an integrated health service. In this model, the patient interacts

only with dedicated client care services as single contact point while different expertises

are provided by clinical care services. Even further in the future, they envision a patient-

centric approach where smart patients are actively participating and collaborating within

an ecosystem of integrated health care services. Ribera et al. [80] studied the hospital

of the future to understand potential changes impacting European hospitals. Based on

surveys and interviews with hospital decision makers from Karolinska University Hospi-

tal in Stockholm and Hospital Clínic of Barcelona, they develop a conceptual framework

with five main dimensions: context, strategy and leadership, resources and capabilities,

processes, and results. Furthermore, they extract 14 key messages to summarize the

identified challenges and characteristics. Eichhorst et al. [30] analyze recent trends and

conclude that small, independent full service hospitals will disappear. Instead, the health

care system will be composed of a dynamic, integrated network structure in which vari-

ous providers coexist and cooperate, i.e., excellence centers for complicated interventions,

day clinics for routine tasks, outsourcing of clinical services such as in radiology, remote

treatment at home, gyms, and external care solutions. Fraunhofer institute’s Wibbeling

et al. [101, 102, 103] published several position papers on topics such as Hospital 4.0,

smart devices in hospitals, and human centered digital hospitals. Gimpel et al. [40] study

digitization of logistic processes in hospitals such as bed management and warehousing.

In a survey on digitization and integration in German hospitals [52], 87 % of the partici-

pants agree that the advantages of digitization outweigh the associated difficulties. The

most critical challenges are lack of funding (61 %), lack of IT capacities (54 %), and het-

erogeneous IT structures (48 %). The newspaper article by Schwinn [83] provides some
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vivid insights into the everyday life of a connected hospital using the example of German

Universitätsklinikum Hamburg-Eppendorf.

3 Sharpening the vision

Based on the aforementioned literature, the vision for the hospital of the future has

now become more tangible. The hospital of the future in 2040 will be characterized

by digitization, integration, automation, and personalization in both support processes

as well as core processes using cyber-physical systems and data analytics. There will

be more integration within the hospital and with other stakeholders, less paper-based

work and less bureaucracy, efficient and optimized processes, more automation and data-

driven solutions, transparency and sustainability, more time spent for value-adding tasks

and with the patient, higher quality and safety, and after all better medicine and better

treatment leading to higher satisfaction of staff and patients. However, it is also important

to consider the differences between the smart factory and the hospital of the future.

While production constitutes the core process in a factory, it is the diagnosis and therapy

process in a hospital. While we see mostly centralized decision structures in factories,

most decisions in hospitals are already made decentralized by physicians and nurses on the

ground. While products are core in a factory, it is the patients in hospitals. While human-

human interactions can be minimized in factories, they are essential for the recovery

process of patients and will remain a valuable component in the future. This humanizing

dimension is beneficial in multiple ways: patients find it easier to express their feelings,

physicians are able to show compassion, humor is helpful to lessen fear and increase pain

tolerance [89]. Taking these differences into account, the concept can be transferred to the

hospital setting serving as assistance for support processes such as cleaning and catering

as well as core processes such as diagnostics and surgery. Not few hospitals have already

started to discuss and implement selected use cases such as electronic health records

(EHR) or surgery robots. Even though these individual lighthouses might be innovative
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and beneficial, most hospitals still lack a holistic strategy on the way to become a hospital

of the future.

It is the purpose of this study to develop such a structured framework for the hospital

of the future in 2040. Our work is based on the aforementioned literature to account for

latest scientific, theoretical, and state-of-the-art findings, as well as on a survey among

hospital practitioners to complement the vision with their individual experiences from

a practical perspective. The detailed survey has been conducted with more than 265

participants from public (65 % of participants), church and charity (25 %), and private

(10 %) hospitals with focus on Germany (95 %). The participating hospitals differ in

terms of level of care (59 % offering maximal care, 6 % primary care), size (31 % with

more than 1,500 beds, 27 % less than 250 beds), and hospital type, i.e., covering big

university hospitals (41 %) such as Charité in Berlin, UK Heidelberg, UK Augsburg, UK

Köln, Universitätsmedizin Göttingen, and UK Hamburg-Eppendorf as well as hospital

chains (2 %) such as Schön Kliniken, Asklepios, and Helios as well as regular hospitals

(50 %) and others (7 %). A balanced picture is ensured thanks to the even distribution

of the participants’ professions, i.e., physicians and nursery (36 %), management, admin-

istration, and consulting (26 %), and IT experts (38 %). There were slightly more male

participants (67 %) and ages range from less than 30 years (12 %) to 31-40 years (25 %)

to 41-50 years (27 %) and older (37 %).

The survey reveals significant differences in the status of individual hospitals, but

there is a lot of catching up to do everywhere. Many hospitals still rely on paper-based

documents and fax machines while others already experiment with care robots and 3D

printing. Asked for their key challenges and pain points, topics related to staff shortage

were named most often (26 % of all given answers2) highlighting the difficulties associ-

ated with acquisition and retention of nursery, physicians, and IT experts. In German

hospitals it is particularly difficult to find, hire, and retain qualified nursing staff and

the situation has even intensified with the introduction of the German regulation for the
2Free text answers, up to three answers per participant
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threshold of nursing staff in 20193. Also, financial challenges are prevailing (11 %) includ-

ing lack of funding, cost pressure, decreasing revenues, and backlog of investments. Many

participants mention topics related to the working conditions (9 %). They are unsatisfied

with their workload, have difficulties to reconcile private life with work, complain about

weekend and night shifts, unbalanced schedules, and unpaid overtime. Topics related to

documentation and bureaucracy were perceived as major challenge as well (5 %). Partic-

ipants mention the increasing number of legal requirements, time-consuming and repeti-

tive task, and repeated documentation in multiple systems. Many participants mention

the hospital organization as significant challenge (5 %) including inefficient workflows, dis-

continuous processes with media interruptions, and in particular strict hierarchies that

hinder innovative solutions in line with the saying “eminence instead of evidence”. Others

state concerns with the IT infrastructure and data security (5 %). They have difficulties

with outdated systems and products and are afraid of data leaks and cyber attacks. On

average, only 15 % of the processes in a hospital are automated, while 52 % are supported

by simple IT tools such as Microsoft Excel, and 33 % are performed manually without any

support. Most hospitals have already started to develop, detail, and implement selected

use cases. Most common use cases are electronic health records (mentioned 69 times4),

data management in hospital information systems (33), digital monitoring of vital patient

parameters (25), and surgery robots such as Da Vinci (17). Some participants also men-

tioned staff rostering (11) and operating room (OR) scheduling using tools such as Agfa

ORBIS (9), automated imaging in radiology (6), unit dose systems for pharmaceuticals

(2), and additive manufacturing in areas such as oral surgery (2).

The survey results clearly confirm that hospitals have high ambitions for the future

and expect significant benefits (93 % of participants) from the concept of the hospital

of the future. Most hospitals (85 %) plan a timely implementation, thereof the majority

(62 %) already within the next 2 years. Participants expressed their hope for a better

medicine, increased patient safety, elimination of human errors, more efficient processes,
3https://www.bundesgesundheitsministerium.de/personaluntergrenzen
4Free text answers, up to five answers per participant

Appendix A A Framework for the Hospital of the Future

57



better cooperation and communication, and less bureaucracy. For each of seven key

benefits (see Figure 3), the participants were asked to evaluate the expected potential to

be addressed by the HoF concept on a scale from 0 (low potential) to 4 (high potential).

Moreover, they were asked to evaluate the relative importance of each benefit on a scale

from 0 (low importance) to 4 (high importance). Figure 3 depicts the resulting evaluation

matrix. Most benefits find themselves in the upper right corner significating that the

selected benefits are relevant and that the hospital of the future concept has high potential

to achieve those benefits.

Figure 3: Evaluation by importance and potential for expected benefits.

However, most hospitals struggle to build momentum and do not feel well prepared

(27 % completely or almost unprepared, 43 % only a little prepared). Participants high-

light that they need additional and qualified staff, a shift of mindset of the staff, i.e.,

acceptance, motivation, courage, and support, high quality training to master the trans-

formation, sufficient funding, as well as a clear vision, strategy, roadmap, and governance

structure. Common obstacles are lack of acceptance and responsibility, required time and

efforts, missing support of the management, restricting legal regulations, and lack of fund-

ing. Some participants also expressed their concern of blindly relying on machines (also

see [62]), lack of social contacts, inhuman medicine, and dismissals.
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In preliminary studies, we talked to industry experts and developed initial hypotheses.

Furthermore, taking into account the extensive literature research and the detailed results

of the survey, we are able to illustrate how we envision the hospital in 2040. Figure 4

depicts the target picture for the hospital of the future covering all essential areas. Overall,

we distinguish between seven key areas. From area 1 (Patient) to area 7 (Infrastructure),

each area is marked with a unique icon in Figure 4 and explained in the following.

Figure 4: Target picture for the hospital of the future (sketch by Almut Rummel).

Patient (P) As described in Section 2, the individual patient is core in future patient-

centered models [3]. Patients participate actively in various health care processes and have

access to their digital files at all times. From the perspective of a patient, the experience

already starts at home in form of automated monitoring and smart pharmaceuticals.

Within the hospital, they are transported decentralized and autonomously to all stations

that are needed for their recovery process.

Staff (S) In contrast to today’s hospitals, physicians, nurses, and other staff are more

satisfied in the future and their workload is more balanced thanks to smart staff schedul-

ing. Mobile solutions, visualization and assistant systems make everyday work easier

allowing to spend more time for value-adding tasks and with the patient.

Appendix A A Framework for the Hospital of the Future

59



Treatment and intervention (T) Diagnosis, intervention, and care are considered core

processes. In the future, they are supported by robotics, planning tools, and smart AI

solutions. Also, telemedicine and precision medicine play a vital role.

Logistics and supply (L) Supporting processes such as warehousing, cleaning, laundry,

and catering are more efficient in the future. Connected devices, collaborative robots,

automated replenishment, and autonomous transportation are incorporated in order to

automate and optimize processes.

Management and organization (M) The hospital of the future looks different from

a managerial and organizational point of view. In particular, the concept of value-based

health care and the integration of various players along the value chain yield major

improvements.

Data and control (D) Data is essential for nearly all processes in the hospital. A cen-

tralized hospital information system forms the foundation for paperless documentation,

big data analytics, simulation, and optimization.

Infrastructure (I) The HoF concept has also implications for the design and construc-

tion phase of hospitals. Buildings, equipment, and systems are modular, integrated,

standardized, and sustainable.

In Section 4, we propose the structured HoF framework for the hospital of the future

along those seven areas and discuss each HoF area in more detail.

4 The conceptual HoF framework

We have learned that not few hospitals have already started to discuss and implement

selected use cases, but still lack a holistic concept that guide them on the way towards

the hospital of the future. In this section, we present the structured HoF framework that

orchestrates the individual use cases in 32 HoF dimensions along the seven HoF areas

that were identified in Figure 4. In the framework in Figure 5, the seven HoF areas are
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depicted as pieces of pie and illustrated by dedicated symbols. The HoF dimensions are

depicted as white balls and marked with unique identifiers that correspond to the detailed

description hereafter. Finally, we also distilled the four most critical enablers that are

indispensable prerequisites to become a hospital of the future. They are depicted in the

rectangular boxes below the pie chart.

Figure 5: The HoF framework for the hospital of the future.

Hereafter, the key areas, the associated dimensions, and the enablers that constitute

the framework for the hospital of the future are described in more detail.

4.1 Patient (P)

This area aggregates the five dimensions that are directly related to the patient. In

the hospital of the future, patients make use of EHRs (P1), automated monitoring and

preventive care (P2), as well as smart devices and medication (P3). Moreover, they

participate actively (P4) and follow a decentralized patient flow (P5). The numbers in

brackets for each dimension refer to the unique identifier as depicted in Figure 5.

Digital twin of the patient (P1). In the hospital of the future, all patient related in-

formation is stored digitally and accessible from mobile devices. This so-called digital twin
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of the patient goes much further than today’s electronic medical records (EMRs), EHRs,

or patient data management systems (PDMSs). In fact, it aggregates every piece of data

at one location such as the entire medical history, insurance data, contact data, pre-

scriptions, allergies, implants, detailed data of past surgeries, past lab results, computer

tomography (CT) and x-ray scans, past treatments received by other health providers,

real-time medication data and vital parameters, real-time location information, history

of interaction with virtual agents and human staff. Both patients as well as medical staff

are provided access via mobiles, tables, and at dedicated service-points in the hospital.

Moreover, they are provided with learning modules tailored to their needs. Patients

have full control over their data and have the option to contribute some of their data

for medical studies. Both patients and staff benefit from this dimension. Tedious calls

to GPs are a thing of the past, since patients stay automatically informed at all times

about their current status, the outcome of diagnostics, and suggested treatment plans.

Similarly, staff has access to required patient information regardless of location and time

and are supported by automated warnings and recommendations based on big data an-

alytics. Overall, this results in less bureaucracy, more transparency, higher efficiency,

and improved patient outcomes. EHRs are studied in the literature [22, 61], and also

implemented in practice. The hospital in Mühldorf am Inn, Germany, offers an app for

patients [67], the UK Hamburg-Eppendorf have replaced paper-based documents with

EHRs, and the United States government stimulated the usage of EHR with USD 30

billion in the HITECH Act.

Automated monitoring and preventive care (P2). In the future, continuous mon-

itoring and tracking of patient parameters are essential on three levels: preventive, in-

hospital, and post-care. On all levels, the gathered data is automatically analyzed in

real-time, provides valuable insights, and triggers alarms or warning alerts in case of

anomalies. Preventively, patients continuously monitor their state of health, e.g, vital

signs, glucose level, and weight, using mobile technologies and smart devices such as

weareables, e-skins, and smart home. Preventive monitoring which is also called quanti-
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fied health can help to recognize health risks such as heart diseases and obesity before they

become a major issue. Also, it helps to manage chronic health conditions such as chronic

obstructive pulmonary, hypertension, diabetes, and high cholesterol by recommending

personalized behavior plans. In the hospital, the state of health is continuously and

automatically monitored by smart, patient-friendly devices such as smart beds and com-

plemented with data from even more equipment such as electrocardiograms. In addition,

detailed health checks are recorded as part of the admission process, e.g., as emergency

triage, and before being released from the hospital. Post-care monitoring makes it possi-

ble for patients to leave the hospital much earlier after surgery than today. Even without

physical contact, physicians can interact with patients, recurring pain can be treated, the

risk of complications can be managed, and the chances of readmission can be predicted.

On all three levels, we see positive impact such as reduced manual tasks, improved pa-

tient care, increased patient safety, and saved costs, i.e., an estimated USD 200 billion

annually in the United States [2]. Already today, data from consumer wearables, scales,

and glucometers are integrated into electronic medical records through smartphone appli-

cations such as Apple’s HealthKit allowing to track changes and identify warning signs.

As another example for preventive care, IBM and Malteser partnered to develop an in-

home elderly care monitoring solution [12] using sensors for water, fire, video, and a bed

mat with sensors which could be enriched by intelligent fall sensor systems to prevent

falls, daily video calls, and remote trainings in the future. Agnihothri et al. [4] provide

an approach to quantify the benefit of using mobile health technology to manage chronic

conditions. An example for in-hospital monitoring is an early warning system to reduce

postoperative surgical-site and sepsis infections based on patient’s vital signs during the

operation [38, 42]. Other use cases include smart eyeglasses to monitor blood flow and

color [75], smart textiles and on‐body sensors [64], non-contact measurement of respira-

tory and heart rate in hospital beds [73], monitoring of dementia people safety and health

via mobile applications [106], early-warning system for depression based on social media

images [79], and detection of schizophrenia based on Twitter interaction [63].
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Smart devices and medication (P3). In the hospital of the future, pharmaceuticals

and medical devices are smart, connected, and personalized in order to improve patient

treatment and well-being. Bender et al. [95] define smart pharmaceuticals as “an elec-

tronic package, delivery system, or pill that offers one or more examples of intelligent

added value ”. As such smart added value, devices check the regular intake of drugs as

prescribed, e.g., by using smart dispensers, send reminders, and are connected in order

to analyze and document data. Moreover, medication plans can be tailored to individ-

ual daily needs. Smart devices and medication contribute to a higher quality of care,

increased patient safety, and higher patient satisfaction. For example, the smart glucose

pumps which are planted under skin provides great support to diabetes patients by au-

tomatically controlling glucose levels and injecting insuline if needed. Another example

would be the treatment of patients with mental health by leveraging AI technology to

offer daily chat conversations, mood tracking, and curated videos. Yousaf et al. [106]

provide an overview of mobile apps for activities of daily living based cognitive training.

Medication errors can be prevented by closed-loop medication systems, e.g., by scanning

a patient’s wristband for validation before drug intake as realized in German Agaplesion

Diakonieklinikum Rotenburg. Other examples are tailored behaviour plans using auto-

mated monitoring of airborne pollen [82], smart walkers [6], portable spirometers [78],

computer based training games [86], and IoT-enabled medicine boxes [90].

Patient participation (P4). As discussed in Section 2, smart patients are actively par-

ticipating and collaborating within an ecosystem of integrated health care services [3].

In a self‐administered health care system [95], patients stay well informed at all times,

choose between several options and providers, and autonomously use self care applica-

tions such as digital self sign stations on arrival at the hospital or a patient app to receive

the outcome after diagnostics. Moreover, they might also choose to participate in clinical

studies by sharing selected data, e.g., submitting ophthalmology test results. Of course,

patients who are unconscious or unable to make decisions are not forced to participate,

but are cared for by smart systems and experienced staff. For the patient participation,
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human-machine interaction plays an important role. Advanced multi-directional inter-

actions between patients and devices, health processes, and systems are enabled using

user-friendly mobile apps, online patient interfaces, virtual chat bots, voice recognition,

face recognition, and radio-frequency identification (RFID) chips. Patients book appoint-

ments in one-click digital booking systems, communicate with virtual agents from home

to clarify first questions, check-in at the hospital using face recognition, adjust machines

to their individual needs using RFID wristbands, and collect digital prescriptions. Hence,

health services become more accessible, personalized, and user-oriented [87]. Recent re-

search has also shown improved outcomes and lower readmission rates for patients that

actively participate in the treatment process [50]. In a study by Jain et al. [48], patients

seeking birth control were actively involved by online questionnaires leading to shorter

and better visits. In Denmark, patients are provided online access to a digital platform

which can be used to schedule appointments, retrieve digital prescriptions, or submit

x-ray scans to the GP. Other examples are conversational robots that prepare patients

for a treatment such as an MRT scan, robots that explain test results, mobile apps that

provide diagnostic results such as skin cancer self exam, direct-to-consumer tests that

can be done at home, e.g., genetic testing provider 23AndMe.

Decentralized, autonomous patient flow (P5). This dimension addresses the flow

management and treatment pathways within a hospital. In the future, patients are guided

by digital signage systems or transported by autonomous transport systems, e.g., in laser-

guided beds or wheelchairs. Furthermore, a patient’s treatment path from admission to

discharge is steered dynamically and decentralized. In particular, a patient-specific device

knows all stations that need to be visited, communicates in real-time with other devices

and stations using RFID technology, and dynamically computes the optimal route under

consideration of underlying constraints, e.g., MRI needs to be visited before surgery. The

individual treatment requirements are updated regularly based on the outcome of previous

stations and in line with the concept of value-based health care (VBHC) (see M2). The

treatment path is not limited to the boundaries of the hospital, but does also cover
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stations outside of the hospital such as rehab facilities and GPs. This results in increased

efficiency, lower waiting times, and higher flexibility. Decentralized, autonomous patient

flow is inspired by recent development in other industries. Starting as a simple RFID chip

in a diary processing plant, the stored specifications such as flavor and packaging could

be communicated in each production process directly to the respective machines so that

right cup size is selected and the yoghurt with the desired flavor is filled. In Audi’s plant

in Heilbronn, Germany, the Audi R8 is not moved on a traditional conveyor through the

assembly area, but transported on a dynamic automated guided vehicle (AGV) guided

by a laser scanner [56]. Asamoah et al. [8] showed that RFID-based information visibility

for scheduling of lab services in a hospital result in lower wait times and better resource

utilization.

4.2 Staff (S)

This area aggregates all dimensions that are directly related to the staff. In the hospital of

the future, staff attends immersive trainings (S2), use smart visualization and assistant

systems (S3), and mobile solutions (S4). Moreover, shortage of staff is reduced and

staff satisfaction increased thanks to smart staff scheduling (S1) as well as dedicated HR

initiatives (S5). The numbers in brackets refer to the unique identifier for the dimension

as depicted in Figure 5.

Smart staff scheduling (S1). In the hospital of the future, personnel shift scheduling is

done automated by software instead of highly-qualified personnel. The system computes

a schedule under consideration of qualifications, time and location, contract regulations,

fairness, training and development, and individual preferences that can be entered by the

staff. Furthermore, big data analytics and machine learning are used to generate valuable

insights and further increase quality and efficiency. This leads to better schedules, higher

staff satisfaction, and lower planning overhead costs. An example for automated staff

scheduling is the smart tool PLANFOX by XITASO Healthcare GmbH.
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Immersive training (S2). The staff in the hospital of the future is better prepared for

their tasks thanks to interactive and virtual training experiences. E-learning platforms

and shared knowledge databases help them to stay up-to-date, quickly acquire additional

qualifications, and learn from best practices of other hospitals. Realistic environments are

created using VR, AR, and simulations such that new tasks can be trained before patient

contact, e.g., planning and execution of complex surgeries to avoid complications. Some

of the positive impacts are a reduced ramp-up time of new staff, higher quality of care, and

higher patient safety. In Austria, the Niederösterreichischen Landeskliniken-Holding has

launched a medical knowledge database called eRef for education and training purposes

[57]. Elliman et al. [31] provide an overview of current developments for VR simulation

applied to the education for nurses and Yousaf et al. [106] present studies addressing

dementia education.

Visualization and assistant systems (S3). The staff is assisted by smart and in-

tegrated systems which show relevant information. This improves the staff satisfaction,

provides support during complex tasks, and enhances the process quality. For instance,

large electronic boards in the nursery room show real-time information about patients

in the wards, their health status, and pending tasks. A smart glass connected to an

expert system can support during repair and maintenance of medical equipment. While

conducting surgeries, smart glasses can support surgeons, e.g., by indicating where to cut

and where selected structures are located. The visualization and assistant systems can

also be accessed from remote, e.g., to ask an expert for another opinion during surgery.

Other examples are access control using face recognition, digital signage on rooms and

beds, voice authentication using to verify identity.

Mobile solutions (S4). Mobile solutions support the staff in the hospital of the future

and offer access to all required information regardless of the location. Employees can

access EHR for individual patients, directly communicate with other providers, visualize

performance metrics, and receive real-time updates. Moreover, some tasks that do not

require physical presence might also be performed from home. This leads to higher
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staff satisfaction, higher efficiency, higher flexibility, higher transparency, and reduced

response times. Some hospitals provide already mobile workstation for nurses. At the

Lukaskrankenhaus Neuss, the project Visite 3.0 has been rolled out to all nursing stations

providing access to patient information, medication, prescriptions, digital forms, x-rag

imaging, and lab results on tablets and mobile apps.

Staff acquisition and retention (S5). A professional, dedicated HR organization

becomes a major component of the hospital of the future. To attract more potential

employees, innovative and tailored recruiting campaigns are launched leveraging big data

insights. Employee-friendly working models are developed that give employees more free-

dom and flexibility, e.g., flex-time, job rotation, and home office. Overtime, night shifts,

and weekend work are balanced, monitored, and compensated adequately. Each em-

ployee is supported by a career advisor in order to discuss individual development paths,

show appreciation for good work, remove hurdles, and resolve potential conflicts. Other

possible tools to increase staff satisfaction include balanced staff schedules, anonymous

evaluation, digital innovations, online learning modules, continuous staff feedback, team-

building measures, bonus and benefits. It is the overarching goal to make working in a

hospital more pleasant, prevent staff shortage, and increase the motivation of employees.

4.3 Treatment and intervention (T)

This area aggregates all dimensions that are directly related to the core processes in

a hospital. Diagnostics are supported by machine learning methods (T2). Surgeries

are scheduled automatically (T1) and conducted by collaborative surgery robots (T3).

Telemedicine (T4) and precision medicine (T5) offer new possibilities for treatment and

care. The numbers in brackets refer to the unique identifier for the dimension as depicted

in Figure 5.

OR steering and resources management (T1). In the future, scarce and valu-

able resources such as OR capacity are allocated centrally by an IT-supported planning

Appendix A A Framework for the Hospital of the Future

68



system using optimization methods and big data analytics. Under consideration of un-

derlying constraints, preferences, and historic data, surgery schedules are optimized and

dynamically refined in case of unexpected changes. Besides the OR, also the impact on

downstream units such as intensive care units (ICUs), post-anesthesia care unit (PACU),

and wards is considered. The system tracks progress in real-time and provides medi-

cal decision support based on previous surgeries. Overall, we see a higher utilization

of scarce resources, better bed management, less waiting time, and reduced planning

overhead costs. In the literature, several approaches have been proposed in order to de-

velop tactical master surgery schedules [36], predict the duration of surgeries [97], predict

the inpatient mortality [76], or estimate the required PACU time for different surgical

procedures [34].

Advanced diagnostics (T2). Machine learning applications in diagnostics support ra-

diologists in the future to identify conditions such as heart disease, skin cancer, or injuries

earlier and more accurately. Medical imaging is one of the most effective and widespread

applications of data science in health care. Images such as x-ray scans, MRIs, and mam-

mographies are processed by machine learning algorithms to identify patterns and detect

anomalies such as tumors and artery stenosis. Classification and recommendations are

provided using big data analysis and comparison with benchmarks. Furthermore, also

genome-based diagnostics is an helpful tool to optimize the accuracy of the diagnosis.

Hospitals of the future collect and analyze all relevant data in one central competence

center for diagnostics to leverage the full potential. Thanks to the advanced diagnostics,

patient outcome is improved and workload of radiologists is reduced. Current state-of-

the-art models show a convincing performance and sometimes even outperform human

experts, e.g., diagnosis of irregular heart rhythms [77] and classification of malignant

lesions [32]. Additional examples are analysis of urine [5], identification of neurodegen-

erative diseases such as Alzheimer [51], diagnosis of retinopathy [35], and prediction of

chances to develop breast cancer [105].

Advanced robots in core processes (T3). Core processes in the future hospital such
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as intervention and care are performed or supported by advanced robots. In particular,

collaborative robots (cobots) that are equipped with accurate sensors, high definition

cameras, softer materials, and safety systems are well suited to work hand in hand with

humans. Care robots can carry and lift patients, interact with patients [11], communicate

lab results, and prepare patients for treatments such as MRI scans. Although they cannot

replace human carers since they are unable to replicate the humanizing dimension, they

support human nursers in their daily work. Surgery robots are characterized by a high

accuracy, no trembling, high repeatability, and low error rate and hence improve patient

safety and outcome particularly for complex interventions, e.g., removal of prostate tumor

and eye surgeries. Nanobots are tiny robots that are inserted in the bloodstream and

steered remotely. Since advanced robots support the staff with heavy and repetitive

tasks, we also see higher staff satisfaction. For example, the Da Vinci surgery robot is

already used by several hospitals, e.g., in urology and thoracic surgery [16]. Augsburg-

based company German Bionic develops and produces exoskeletons that can be used to

lift patients.

Telemedicine and remote care (T4). Advanced communication and visualization

technologies enable real-time consultation and treatment of patients without physical

presence of physicians and nurses. For some cases, human staff is not required at all and

the patient communicates directly with virtual chat bots, e.g., to schedule an appointment

or to conduct an initial consultation and collect required information before the face-to-

face consultation with an physician. We distinguish between three major application

areas, i.e., convenient in-home treatment, access to remote areas, and in the hospital. On

demand in-home treatment via video calls is an convenient option for initial consultations

and simple questions, chronic patients that need regular checks such as diabetics [59], and

postcare after being released from the hospital, e.g., families with premature birth. In

particular, preventive care and elderly care benefit significantly from telemedicine (also

see P2). In addition to video appointments, also test samples can be collected at home

and submitted to labs using drones, e.g., blood samples. Shin et al. [85] propose a mobile
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nucleic acid testing for sexually-transmitted infections such as Chlamydia. Telemedicine

is very useful for remote areas with limited access to health services [64] or patients

on the high seas. In the rural areas of Vorpommern-Greifswald in Germany, staff in

the ambulance can consult a remote emergency doctor using mobile communications to

transmit video signals and vital signs in real-time. In the hospital, ward rounds can be

completed digitally without the physical presence of nurses. Also, surgeons can involve

specialized experts during a treatment and ask them for their opinion on difficult cases

[72] or let them conduct a surgery from remote by actively controlling the surgery robot.

Precision medicine (T5). Correlating individual patient characteristics with big data

allows scientists to deliver precision medicine that is tailored to an individual patient’s

needs. For example, symptoms are be analyzed to narrow down a patient’s diagnosis

instead of applying the same set of tests to all patients. Furthermore, genomes are se-

quenced and analyzed to deliver more precise prescriptions and personalized treatments.

In oncology, the commonly used chemotherapy that affects all cells are replaced by per-

sonalized therapy and medication that is tailored to the cells affected by the tumor. For

this purpose, data on individual patient characteristics, national trends, and other data

sources need to be collected, stored, and processed in a centralized manner, e.g., a na-

tional patient database. Recognizing the fact that one size fits all does not hold true for

medication and care, precision medicine will have a significant impact on the delivery of

health care in the future. Already in 2015, Obama stated: “You can match a blood trans-

fusion to a blood type — that was an important discovery. What if matching a cancer

cure to our genetic code was just as easy, just as standard? What if figuring out the right

dose of medicine was as simple as taking our temperature?” 5. Leveraging the potential

of big data for precision medicine ensures the delivery of better patient care, increased

patient safety, and reduced health care costs [76, 71, 49, 99]. Within the last 10 years,

the costs and efforts to sequence a human genome have fallen significantly from USD 10

million and 10 months to USD 100 and 1 hour. Even today, we have initiatives such as
5https://obamawhitehouse.archives.gov/precision-medicine
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the National Institutes of Health’s 1000 Genome Project and companies like 23AndMe.

4.4 Logistics and supply (L)

This area aggregates all dimensions that are directly related to support processes in

the hospital such as logistics, supply chain, catering, and cleaning. The warehouse in

the hospital of the future is equipped with smart systems (L1) that enable automated

replenishment (L2) and autonomous transportation (L4). Some support processes are

conducted or supported by advanced robots (L3) and 3D printers (L5). The numbers in

brackets refer to the unique identifier for the dimension as depicted in Figure 5.

Warehouse smartification (L1). Devices, resources, and products in the hospital of

the future are integrated to cyber-physical systems using sensors and intelligent tools

to gather information and trigger actions. For example, rack laser barriers and RFID

gates are used in the warehouse to automatically scan and register in- and outcoming

goods. Employees are supported by smart systems such as pick by vision and wearables

for commissioning, encoding, and packaging tasks. This leads to efficient and transparent

processes and reduce the logistic efforts. Some application areas are unit dose systems in

the hospital pharmacy and sterile supply management, e.g., at UK Augsburg.

Automated replenishment (L2). Given the availability of cyber-physical systems

(see L1), automated replenishment of materials and automated ordering can be realized

in the hospital of the future. Sensors such as scale-triggered bins, cameras, or E-buttons

detect if materials reach the critical stock level and automatically trigger the order for

new materials. At the time of delivery, AGVs could pick up the new materials from the

truck and deliver them within the hospital to the location where the critical stock level

has been detected (see L4). Automated replenishment ensures process reliability, enables

real-time stock control and optimization, and reduced repetitive manual tasks. Examples

are boxes of bandages in the OR or mobile medication carts.

Advanced robots in support processes (L3). Support processes in the future hospi-
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tal such as in warehousing, catering, and cleaning are performed or supported by advanced

robots. Collaborative robots that are equipped with accurate sensors, high definition

cameras, softer materials, and safety systems are used in cases where robots and humans

directly work together. The mobile cobots are interconnected and can be easily pro-

grammed for new tasks. Possible application areas are unloading and commissioning of

supply in the warehouse, bin-picking of drugs enabled by advanced cameras, and clean-

ing of floors and windows. Advanced robots automate monotonous, repetitive tasks and

improve process efficiency, quality, and staff satisfaction. For example, some hospitals

already use unit dose systems in the hospital pharmacy to sort different types of phar-

maceuticals, commission them in small bags tailored to the patient’s medication plan,

and label the bag with name, room number, and time of usage. This use case could

be combined with AGVs for automated delivery (L4) and smart patient wristbands for

validation (P3).

Autonomous transportation (L4). In the future, transportation of materials, equip-

ment, and persons are automated by usage of autonomous vehicles. Indoor AGVs are

used to transport materials within the hospital, e.g., delivery of drugs and surgical instru-

ments from the warehouse to the OR, management of empty beds, delivery of clean bed

linen and meals. Pick-up from the AGVs can be realized with advanced robots (see L3).

Autonomous wheelchairs or beds are used to transport patients within the hospital (see

P5), e.g., from the check-in desk to the ward room. Autonomous ambulances and drones

are used as connection with other health care facilities and areas outside of the hospital,

e.g., transport the emergency doctor to the location of a car accident, collect transplants

from another hospital, and deliver corpse to the morgue. Autonomous transportation

automates monotonous tasks, reduce costs, and ensure higher speed and flexibility. In

remote areas, saving time can even save lives. AGVs for hospital logistics and automated

bed mover have been studied in the literature [9, 43]. The German ADAC currently

tests the usage of manned volocopter for air rescue 6. In Ghana, the government and
6https://presse.adac.de/meldungen/adac-stiftung/luftrettung/einsatz-von-volocopter.
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US-based Zipline currently establish the world’s largest medical drone network to deliver

blood suppliers, vaccines, and life-saving pharmaceuticals such as snake venom antiserum

to remote areas [18].

Additive manufacturing (L5). Additive manufacturing technologies such as rapid

prototyping, selective laser sintering, laser beam melting, and binder jetting are already

established in various industries, e.g., to manufacture complex parts in aerospace. Also

in clinical practice, it is used for selected applications and becomes more relevant in the

future [96, 21]. 3D printers using non-organic materials manufacture sterile supply items,

personalized prostheses, and complex parts for surgery. Moreover, tissue engineering and

bio printing offer entire new possibilities for organic parts, e.g., cardiac valves, hand bones,

and maxillofacial surgery. Using additive manufacturing, hospitals are able to produce

more complex parts with higher flexibility, personalize items for individual patients, and

save costs and time. For example, the UK Eppendorf-Hamburg already operates a 3D

printer to create models of hearts, bones, and lungs for training purposes. Scientists have

manufactured a 3D-printed, patient-specific heart using a human-tissue-based hydrogel

as ink which reduces the risk of rejection for the transplantation [68].

4.5 Management and organization (M)

This area aggregates all dimensions that are directly related to overarching managerial

and organizational topics. The hospital of the future is continuously improved (M1),

managed according to the principles of value-based health care (M2), and integrated

with other stakeholders in the health care system (M3). The numbers in brackets refer

to the unique identifier for the dimension as depicted in Figure 5.

Continuous improvements (M1). The guiding principle of continuous improvement

is incorporated in the hospital of the future. Various technologies and methods such

as sensors, feedback stations, and KPI monitoring are implemented with the goal to

continuously improve processes and perform more value-adding activities. As a result,
html
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we get more efficient processes, higher satisfaction of staff and patients, and reduced costs.

Some possible applications are feedback stations for patients, definition and monitoring

of KPIs for key processes, regular status updates for the hospital management, and

monthly ideation competitions in which employees actively contribute to a better working

environment and share their ideas (also see S5).

Value-based, patient-centered health care (M2).

While competition in today’s health care industry is often based on wrong incen-

tives, e.g., many and complex procedures, increasingly more providers start to distin-

guish themselves by delivering superior clinical outcomes. Outcomes-based competition

has “the potential to improve the value delivered by the entire health system” since

it focuses on “what really matters to patients and what ought to be the raison d’être

of any health system: delivering high-quality care in a cost-efficient fashion” [23] what

is referred to as value-based health care. According to Fung et al. [37], publicly re-

lease of performance data can stimulate the quality improvement activity in hospitals.

Clawson et al. [23] distinguish between three levels with increasing complexity and re-

sponsibility, i.e., using standardized outcome metrics to improve clinical practice, linking

reimbursement to outcomes, and managing the health outcomes for an entire population.

Standardized and risk-adjusted outcome metrics are developed by organizations such as

the International Society of Arthroplasty Registries and the International Consortium for

Health Outcomes Measurement constituting a solid foundation for data analytics, e.g.,

for the Australian researchers that identified problems with DePuy’s articular surface re-

placement (ASR) metal-on-metal implant in 2009 [24]. Reimbursement is already linked

to outcome in some cases such as GlaxoSmithKline testing experimental pharmaceuti-

cals for chronic obstructive pulmonary disease with the NHS in the UK and the Stock-

holm county council establishing OrthoChoice as reimbusement system for hip and knee

arthroplasty in Sweden. According to Clawson et al. [23], some US-based single-provider

integrated-delivery institutions such as Kaiser Permanente, Intermountain Healthcare,

and the Geisinger Health System come closest to manage the entire population health
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since they are payer and provider, prioritize preventive care, and use only treatments

with proven value. German prostate-cancer center Martini-Klinik continuously improves

its performance by analyzing health outcomes data resulting in superior outcomes - which

are significantly better than German average - and consequently to the highest patient

volumes for radical prostatectomies worldwide.

Value chain integration (M3). The future health care system is composed of a dy-

namic, integrated network structure in which various providers coexist and cooperate,

i.e., excellence centers for complicated interventions, day clinics for routine tasks, out-

sourcing of clinical services such as in radiology, remote treatment at home, gyms and

external care solutions [30]. As part of this system, hospital departments are integrated

within the hospital and with other stakeholders outside of the hospital such as GPs, labs,

rehab facilities, suppliers, payers, morgues, and smart homes. They exchange informa-

tion, coordinate health services, collaborate closely, discuss opinions, engage and evaluate

each other. Traditionally separated departments within a hospital such as medical tech-

nology, IT, and building technology merge to one integrated center with shared data and

clear responsibilities. While today’s imaging data and lab results are stored and analyzed

in various departments such as radiology, pathology, and clinical labs, in the future,

one centralized diagnostic competence center is established leveraging the full potential

of all data. Partnerships, strategic alliances, and close collaborations enable different

providers to organize in flexible and distributed network structures, to specialize on core

competences, and provide a holistic delivery of health services for the population (see

M2). For example, while today’s emergency rooms (ERs) are filled with non-emergency

patients with minor issues, in the future, all patients are admitted at a central check-in

area and referred to suitable providers such as GPs, day clinics, specialized clinics, or

ERs. The value chain integration ensures better data availability, higher efficiency, re-

duced response time, higher patient safety, and better quality of care. For example, in

some countries such as Finland, Canada, and Australia, various health providers share

a common HIS. In Sweden, outcomes for individual types of intervention are analyzed
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and patients shifted to the hospital with higher survival rates, e.g., from Karolinska

hospital to Danderyd hospital. Other applications include German IVENA system for

interdisciplinary communication, Agfa’s platform called EngageSuite to connect different

stakeholders, or the partnership between Kaiser Permanente and Fresenius Medical Care

to deliver high-quality care for renal-failure patients.

4.6 Data and control (D)

This area aggregates all dimensions that are directly related to usage of data which

are key in the future. In the hospital of the future, data is gathered by smart sensors

and processed on centralized hospital information systems (D1) allowing to analyze big

data (D4), simulate and optimize processes (D5), track the location of devices and people

(D3), and realize a paperless documentation. The numbers in brackets refer to the unique

identifier for the dimension as depicted in Figure 5.

Centralized HIS and data warehouse (D1). Data in the hospital of the future is

managed in a centralized hospital information system, also referred to as digital twin,

and accessible via user-friendly interfaces. The centralized HIS combines systems such as

radiology information system (RIS) and PACS and is connected to cloud-based software

services and a storage solution for long-term archiving. The integration of additional

information and services such as real-time tracking data create a digital representation

of physical and non-physical elements in the hospital, e.g., buildings, rooms, patients, or-

gans, and contracts. According to Kuhn [55], digital twins contain relevant information

for existing and not-yet-existing objects and have the purpose to facilitate information

exchange, realize virtual planning, and simulate properties of functional and physical na-

ture. The system is not limited to individual hospitals, but share with various providers

and other stakeholders in the health system. Structured digitization of all paper-based

documents and gathering of additional data, e.g., by installing sensors, are prerequisites

for the HIS. The highest priority is given to data security (see E2) to avoid cyber attacks

and leakage of personal information. For example, advanced user right management,
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differential privacy [104], and knowledge-constrained access control can contribute to

preserve privacy for patients’ information [107]. The centralized HIS enables big data

analysis, facilitate mobile accessibility, and create transparency. For example, the Char-

ité in Germany has rolled out centralized data management for kidney diseases, in some

countries such as Finland, Canada, and Australia, various health providers share a com-

mon HIS, and in the United States, the EHR usage has been increased significantly by

posing penalties in line with the HITECH act.

Smart, paperless documentation (D2). As confirmed in our survey, most of a hos-

pital’s processes are not yet automated, a lot of documentation is still done on paper, and

paperwork is very time-consuming, e.g., physicians spend roughly one-third of their time

on paperwork. In the future, all documentation in the hospital is processed paperless and

automated, e.g., appointments, doctor’s letter, diagnostic findings, lab results, account-

ing, tax, care documentation, prescriptions, medication plans, internal status reports,

and reports for payers and authorities. Digital documentation creates processes without

media interruption and lays the foundation for further processing such as data analytics

(D4). Virtual agents and chatbots can be applied to answer simple service queries and

narrow down more complex questions. This results in less bureaucracy, less time spent

on monotonous paperwork, and higher efficiency of processes. Moreover, it eliminates hu-

man errors such as unclean handwriting and lost notes [100]. Already today, medication

plans are submitted in digital form to the hospital pharmacy, paper-based documents are

digitized using natural language processing (NLP), physician notes are encoded to make

them searchable, and audio systems are used to record information.

Real-time tracking (D3). In the hospital of the future, rooms, mobile devices, and even

persons are equipped with technologies such as RFID and GPS to localize and track them

in real-time. This allows for instance to find an available ultrasound device, localize the

closest cardiologist, and get an overview of the location of nearby ambulances. Abkari et

al. [1] study real-time locating techniques in a hospital environment. Real-time locating

and tracking services reduce manual work, create transparency, and serve as foundation
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for big data analytics, simulation, and optimization. Possible applications are automated

time recording of staff, real-time monitoring of patient flow, improved bed management,

and route planning for ambulances and meal delivery. For example, ambulances are

equipped with location-tracking devices to control traffic lights [44], patients are located

using smart wearables or cameras to guide them through the hospital [54], and ORs are

monitored to trigger cleaning services as soon as a patient leaves the OR.

Big data and analytics (D4). Big data and analytics seem to be made for health care

given the fact that about one third of the world’s stored data is gathered in this indus-

try, e.g., electronic medical records, clinical trials, drug administration data, operations

logs, insurance billing, regulatory compliance, and more recently also genomics data and

real-time information from monitoring devices such as cameras, location-trackers, and

wearables. Analyzing large amounts of data provides a insights and a deeper under-

standing of a hospital such that bottlenecks can be mitigated and processes optimized.

We distinguish between the four stages of descriptive, diagnostic, predictive, and pre-

scriptive analytics. Advanced methods such as machine learning, pattern recognition,

and in particular deep learning [41, 58] are well suited to do so offering an almost in-

definite variety of possible applications: predictive maintenance to prevent break-downs

of machines, automated adjustment of lighting and HVAC to save energy, prediction

of occupancy levels and readmission rates to make processes more efficient and provide

better health care, and detection of anomalies in historical data to prevent fraud, wast,

and abuse. Besides operational improvements, big data analytics is also essential for

many other applications such as advanced diagnostics (T2), precision medicine (see T5),

and preventive care (see P2). Big data and analytics show a variety of positive impacts

such as reduced break-downs, improved stability, and tailored medicine and care. For

example, IBM and Mayo Clinic processed 4.4 million patient records and obtained better

diagnostic results, a Texas hospital analyzed data to identify high-risk cardiac patients

resulting in a reduced readmission rate from 26 % to 21 %[7], and Bermejo et al. [14]

developed a model to prevent early readmission of COPD patients.
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Simulation and optimization (D5). Based on the structured data in the centralized

HIS, processes in the hospital are modeled, simulated, and optimized in order to provide

decision support for the hospital management. For example, the processes in an operating

room can be simulated to identify bottlenecks, optimize the scheduling, and evaluate the

impact of modifications. Moreover, the entire patient flow through the hospital can be

simulated and updated with real-time data. Also, methods from the field of process

mining can be applied [98]. Simulation and optimization make processes more efficient

and save both time and costs. For example, extensive work has been done in the fields

of case mix planning [46], ICU management [10], and various applications using Data

Envelopment Analysis (DEA) [53].

4.7 Infrastructure (I)

This area aggregates all dimensions that are directly related to hospital buildings and

equipment. Hospitals of the future are modular, integrated buildings (I1) equipped with

standardized systems (I3) and running sustainable operations (I2) adapted to the care

needed in the future, e.g., palliative care. The numbers in brackets refer to the unique

identifier for the dimension as depicted in Figure 5.

Modular, integrated buildings (I1). Agile planning methods and modular designs

are the leading principles when building the hospital of the future. Architects and con-

struction engineers construct buildings that are flexible, resilient, and robust and ensure

to stay compatible with a variety of systems that will be used in 20 years. The building

consists of several “simple and slim” modules with an interchangeable design to allow for

dynamic modifications, expansions, and repurposing in response to future developments.

Shorter distances and travel times are enabled by clustering areas that belong together

and limiting the height of buildings to 4-5 floors. Above all, future buildings are designed

around patient needs instead of today’s specialist departments, e.g., a dedicated center

offering all health services for respiratory diseases, and promote the well-being of patients,

e.g., a pleasant hotel feeling in admission area and wards. Examples are hybrid ORs and
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fully variable rooms that can be used for various levels of care intensity.

Sustainability (I2). Driven by increased environmental awareness, ecologically sus-

tainable operations and efficient usage of energy, materials, and resources play a major

role for the hospital of the future. Smart systems monitor, analyze, and control energy

consumption in the building using sensors and big data analytics, e.g., HVAC (see I4).

Where applicable, disposable and plastic items such as gloves are replaced with reusable

items made from eco-friendly materials. Enhancements such as energy-efficient buildings,

LED lighting, and improved waste management not only improve the hospital’s image

and increase satisfaction, but also save the planet’s valuable resources and reduce costs.

Standardization and interoperability (I3). Systems, equipment, and interfaces in

the hospital of the future are standardized and interoperable with each other. Hospitals

avoid isolated solutions, compare different suppliers, and promote open-source software.

Open application programming interfaces (APIs), standardized technology, and accessible

standards create a new ecosystem [95]. The compatibility between different systems

provides equal access to all suppliers. Lower entry barriers increase competition among

the suppliers, e.g., innovative start-ups enter the market, giving hospitals the freedom to

purchase each individual item from the respective best supplier and integrate all items by

plug-and-play to a working system. For example, up-to-date patient entertainment can

be connected as add-on to a smart bed independent of the supplier.

Hospital smartification (I4). Devices, resources, and products in the hospital of

the future are integrated to cyber-physical systems using sensors and intelligent tools

to gather information and trigger actions. The so-called smartification of buildings and

equipment facilitates the realization of various use cases. For example, doors are equipped

with access control systems using RFID or face recognition. Smart systems monitor, an-

alyze, and control energy consumption in a building using sensors and big data analytics,

e.g., HVAC (see I2). In a ward room, the patients can control windows, blinds, heating,

light, and nurse call via voice recognition systems such as Amazon’s Alexa. Smart beds
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provide the staff with useful information such as care and cleaning history. Visitors are

supported by smart signage systems that guide them through the hospital. This leads to

efficient and transparent processes, enable real-time monitoring, and increase satisfaction

of staff and patients. For example, Wibbeling et al. [101] describe smart beds and the

German start-up hospimatix upgrades ward rooms with sensors and control systems.

4.8 Evaluation of HoF dimensions

The proposed framework organizes the full range of technological, social, and organiza-

tional innovations that constitute the hospital of the future along 32 dimensions. We have

asked the survey participants to evaluate those dimensions by importance and maturity

level (on a scale from low (0) to high (4), respectively). Figure 6 depicts the resulting

evaluation matrix where the colors indicate the areas and the numbers refer to the unique

identifier of the dimensions as described above. The location of a dimension in the evalu-

Figure 6: Evaluation of HoF dimensions.

Appendix A A Framework for the Hospital of the Future

82



ation matrix reflects the respective maturity and importance. In particular, the left side

of the matrix indicates lower importance while the right side indicates higher importance.

Analogously, the bottom half indicates lower maturity while the top half indicates higher

maturity. Consequently, the following recommendations are obtained for the quadrants

of the evaluation matrix:

1. Deprioritize Dimensions in the top left quadrant should be deprioritized to be able

to focus the efforts on more relevant topics instead.

2. Monitor for changes Dimensions in the bottom left quadrant should be monitored

closely to be able to react in case they become more relevant in the future.

3. Need for action Dimensions in the bottom right quadrant should be advanced with

great efforts in order to build up adequate capabilities.

4. Become master Dimensions in the top right quadrant should be further strengthened

and professionalized to become best-in-class.

The survey results depicted in Figure 6 reveal that almost all dimensions show need

for action. Although the participants evaluated their importance as rather high, the

hospitals’ capabilities are rather limited. Value chain integration (M3), OR steering

and resources management (T1), and smart staff scheduling (S1) were evaluated as most

relevant. Patient participation (P4) and decentralized, autonomous patient flow (P5) were

evaluated as least relevant. Continuous improvements (M1) show the highest maturity,

while patient participation (P4) shows the lowest.

4.9 Enablers (E)

In order for the vision to become reality, hospitals need to address several prerequisites.

As confirmed in our survey, most hospitals struggle to build momentum and do not

feel well prepared (27 % completely or almost unprepared, 20 % only a little prepared).

Furthermore, participants highlight that they need additional and qualified staff, a shift

of mindset of the staff, i.e., acceptance, motivation, courage, and support, high quality

Appendix A A Framework for the Hospital of the Future

83



training to master the transformation, sufficient funding, as well as a clear vision, strategy,

roadmap, and governance structure. Consequently, we have distilled four enablers that are

most critical for the implementation of use cases in any of the framework’s 32 dimensions,

i.e., employees & skills (E1), IT infrastructure & data security (E2), strategy & roadmap

(E3), and people engagement & governance (E4). On the journey towards the hospital

of the future, hospitals need to ensure first and foremost that all of those four enablers

are addressed.

Employees & skills (E1) As confirmed in our survey, shortage of staff is one of the

most critical challenges in today’s hospitals. For a successful transition to the hospital of

the future, hospitals need to ensure sufficient numbers of employees such as physicians,

nurses, IT experts, and administrative staff. Only with sufficient, qualified, and motivated

staff, there will be capacity to develop, implement, and professionalize the applications.

Moreover, many innovations in the hospital of the future are driven by technology. A

number of jobs in the future require technical competencies such as IT and medical tech-

nology, but also quality management, logistics, supply chain, and health care operations

management. Given the rapidly changing environment, also social competencies such

as learning capacity and problem solving become more important. Consequently, it is

essential that employees stay up-to-date and human factors represent no limitation [94].

Hiring new employees is a challenging task given the limited financial resources and the

so-called fight for talents, i.e., only 3 % of data scientists in the US work in health care.

Besides hiring new employees, hospitals also need to develop an approach to training and

qualifying existing staff in order to retain them in the long term.

IT infrastructure & data security (E2) IT infrastructure & data security are ma-

jor challenges in most hospitals. Since many applications in the hospital of the future

rely on data, a solid and reliable IT infrastructure is crucial for success. In particular,

up-to-date hardware and software needs to be provided along the entire process from

data gathering, i.e, sensors, cameras, and wearables, over connectivity, i.e., ubiquitous

WLAN, to central data storage and analytics capabilities. Data needs to be organized,
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governance rules established, and compatibility ensured. Cloud services offer the pos-

sibility to outsource storage and computations to virtual machines. Data security is a

major concern if it comes to health care data. In particular, patient-related information

such as imagery, prescriptions, genomic data, or EHRs is very sensitive and often a prime

target for cyber attacks. According to a recent study [13], almost two third of all Ger-

man hospitals have already become victims of cyber attacks. Prominent incidences such

as 2006’s hacker attack to blackmail German Lukaskrankenhaus with ransomware [91]

or 2019’s global leak of more than 16 millions of PACS data [39] (also see [92]) vividly

demonstrate the high risk and the far-reaching consequences. Consequently, data secu-

rity in hospitals needs to be treated with utmost caution and ensured by a variety of

measures such as advanced encryption, modern firewalls, separated network structures, a

rigorous update policy, an external data security officer, a dedicated security operations

center, and a set of policies, rules, and standards, e.g., an effective risk access control

model [84]. Network structures and data exchanges should be continuously monitored

with AI-powered anomaly detection algorithms (see D4). The new field of data ethics

becomes more important, e.g., patients sovereignty over their data needs to be ensured.

Patients at Stanford Medical School can decide whether to contribute their data to a

research database which is stored on a cloud run by the US-based start-up Oasis Lab and

secured with smart contract-software and blockchain technology. When training machine

learning models and running big data analytics, data scientists should consider federated

and privacy-preserving approaches such as differential privacy [104] providing a math-

ematical guarantee that it is impossible to infer from any outcome to any individual’s

data [29], i.e., Germany-based apheris AI.

Strategy & roadmap (E3) The strategy for implementing the hospital of the future

must be anchored as a key element in the overall hospital strategy. Most hospitals lack

a clear strategic vision and a holistic target picture which is essential to manage the

transformation process in a structured manner and to engage the staff (see E4). Only a

bold vision and strong commitment of the hospital management enable cultural change
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which is essential to change the system [3]. The target picture as well as the structured

framework presented in this study are intended to serve as guidance for the development

of a strategic vision. Section 5 provides some useful recommendations for the usage of

the framework and the development of a roadmap.

People engagement & governance (E4) As confirmed in our survey, lack of accep-

tance and responsibility, missing motivation and courage, required time and efforts, and

missing support of the management are among the most common obstacles. Some par-

ticipants also expressed their concern of blindly relying on machines (also see [62]), lack

of social contacts, inhuman medicine, and dismissals. Changing the culture of staff is

essential for a successful transformation to the hospital of the future [3, 94]. Providing

high quality training for the employees is not only important to close the gaps to the

required capabilities (see E1), but also to motivate the employees, take away concerns

and fears, and master the transformation and change process. While the entire hospital

organization transforms from today’s specialist departments to a more patient-centered

structure (see I1), also for the realization of the vision, organizational structures and pro-

cesses need to be put in place, e.g., a dedicated team that ensures the overall progress,

clear responsibilities for each dimension, regular meetings and status updates, and tai-

lored benefit structures. In particular, the management must lead with a clear vision (see

E3), show courage, and shift from an authoritarian to a more advisory leadership style.

The evaluation matrix in Figure 7a depicts the relative importance and maturity for

each of the four discussed key enablers (on a scale from low (0) to high (4), respectively).

All four enablers were evaluated as important, but lack maturity. IT infrastructure &

data security (E2) was rated most important while - next to employees & skills (E1) -

also showing the highest level of maturity. For each of those two enablers, a more detailed

evaluation is presented in Figure 7b and Figure 7c, respectively. In employees & skills

in Figure 7b, we distinguish between technical (depicted in blue) and social (depicted

in orange) competencies. Employees with IT skills were evaluated as most important,
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Figure 7: Evaluation by importance and maturity for (a) the four key enablers and
deep-dives for (b) employees & skills as well as (c) IT infrastructure & data security.

quality management skills show the highest maturity, and robotics skills were evaluated

with rather low importance and maturity. According to the survey, the gaps between

required skills and existing capabilities are planned to be closed mostly via training of

employees (48 % of participants) followed by hiring of new employees (23 %). Narrowed

down to individual skills, hiring particularly applies for IT skills (43 %) and training is

more suited for social competencies (on average 56 %), i.e., for learning capacity (71 %).

Among the IT infrastructure & data security in Figure 7c, all topics - except for cloud

services - were rated as highly important with data security & connectivity being the

most important ones.

5 Deriving implications

In the previous section, we presented a conceptual framework for the hospital of the

future. Given the pressing challenges and the fast-changing environment, hospitals need

to move quickly to address all four key enablers, develop a long-term vision, and conduct

many pilots. This will help hospitals to familiarize with the new concept, initiate a

cultural change, attract qualified employees, build up strong partnerships, and gain first

hands-on experiences.

For practitioners who wish to use our framework as guidance, we propose a four-step

approach to get started. First, managers should involve key persons in their hospital,
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conduct interviews, and collect all relevant information to assess the status quo. The pur-

pose of these initial investigations is to identify current pain points and key challenges

and learn about already existing use cases, pilots, and planned projects. The experiences

of all relevant groups such as management, physicians, nursery, and IT should be repre-

sented. Second, the current maturity level for each of the 32 HoF dimensions should be

assessed. In order to do so, a dedicated questionnaire is processed in discussion rounds

with the hospital management. Each dimension is divided into several aspects whose

status needs to be assessed with one of the following scores: 0 (not started), 1 (piloted), 2

(applied), 3 (routine), or 4 (mastered). Filling out the entire questionnaire will result in

an average maturity score between 0 and 4 for each HoF dimension. The overall maturity

level of a hospital can be illustrated by indicating the score for each dimension in a radar

chart as depicted in Figure 8. Augmenting the maturity level in the radar chart by a line

Figure 8: Radar chart to assess maturity of a hospital.

for the target level will help to identify areas for development and draw a target picture

similar to the one in Figure 4. Since the starting point as well as the aspirations differ

significantly between hospitals, also a hospital’s target level is individual and needs to be

decided on in management discussions. It is important to note that there is no need to

achieve the highest score in every dimension. In fact, the target level should rather be
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tailored to the needs and aspirations of the individual hospital. Third, the derived radar

chart might also be used to compare the maturity level with other hospitals. Benchmark-

ing creates transparency, identifies best-in-class hospitals, and offers valuable insights to

learn from each other. The maturity level depicted in Figure 8 is based on the results

from the survey and serves as first indication for an industry benchmark. Fourth, based

on the maturity assessment and the defined target level, hospital managers will be able

to derive a tangible implementation roadmap. It is the merit of using the framework that

the timeline, tasks, and responsibilities can be broken down to areas, dimensions, and

individual use cases. This structure might also help to set up a governance structure.

To ensure a successful transformation and leverage the full potential, a center for health

care operations and analytics with link to the IT department, top management, and the

individual medical departments should be established.

Moreover, the framework enables researchers to categorize their work into one of the

32 dimensions, develop structured literature overviews, and uncover research gaps. The

four-step approach will be beneficial in order to initiate and coordinate joint research

projects with hospitals, identify new opportunities, and facilitate communications be-

tween researchers and practitioners.

6 Conclusion

Mainly driven by big data and analytical power, health care is on the cusp of a new

era which has implications for providers, payers, medical technology companies, and

biopharma companies, as well as for patients and technology companies. This comes

at the right time for hospitals, since they face a variety of organizational, medical, and

financial challenges such as lack of staff and lack of funding that – similar to the smart

factory – can be mitigated by these innovations. The hospital of the future in 2040

will be characterized by digitization, integration, automation, and personalization in

both support processes as well as core processes using cyber-physical systems and data
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analytics. Not few hospitals have already started to discuss and implement first use

cases such as EHR or surgery robots, however, most hospitals still lack a holistic strategy

on the way to become a hospital of the future. We found that hospital managers have

high ambitions to enhance their hospital and expect significant benefits, but they are

struggling to build momentum. To make the hospital of the future more tangible, we

developed the conceptual HoF framework structured in 32 dimensions along seven areas

and based on four enablers as foundation. The framework is based on latest scientific

findings as well as an extensive survey representing the perspective of hospital managers,

physicians, nursery, and IT leaders.

This study is intended as guidance for hospital managers to navigate the transforma-

tion in a structured manner. The high-level target picture facilitates strategic discussions,

the HoF framework helps to structure the use cases, and each HoF dimension is described

in detail and enhanced with examples from scientific literature and practice. Furthermore,

we proposed a four-step approach and a radar chart as supporting tool for self-assessment

and benchmarking. To make the most of the transformation to the new era, hospitals

must prepare themselves, develop a clear strategy, and secure the right talents and data.

The presented HoF framework is based on scientific literature as well as insights

obtained from our survey. Going forward, the framework needs to be tested and detailed

in practice. In our future work, we will conduct several field studies with selected hospitals

to assess their current maturity and derive a roadmap tailored to their needs. A global

survey will be beneficial to underpin our findings beyond the scope on Germany. The

experience gained from those field studies and the global survey will enable us to further

refine the HoF framework. This would also allow us to quantify required investments,

running costs, and expected upsides for the concept. We plan to set up an extensive

benchmarking database which can be accessed online and provides insights per region,

hospital type, and hospital size. Eventually, it is our intention to encourage further

research and practical studies in this area to support hospitals on their transition towards

the hospital of the future.
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Appendix B

Predicting ICU Bed Occupancy for
Integrated Operating Room
Scheduling via Neural Networks

The contribution [47] has been accepted for publication in “Naval Research Logistics”,
which is ranked in category B in the VHB-JOURQUAL3 ranking [2].

J. Schiele, T. Koperna, and J. O. Brunner. Predicting ICU Bed Occupancy for Inte-
grated Operating Room Scheduling via Neural Networks. Naval Research Logistics,
2020. doi: 10.1002/nav.21929
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Implications at the Operational Level
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Predicting Surgical Durations and Implications at the
Operational Level

Abstract

The operating room is the most critical resource and a major cost driver of a hos-

pital. In times of increased economic pressure, it is of utmost importance to ensure an

efficient management of the operating room environment. When scheduling surgeries at

the operational level, clinicians consider several aspects such as estimated utilization of

operating rooms, under- and overtime of staff, and the impact on downstream units. To

do so, they rely on accurate predictions of surgical durations and operational implica-

tions. However, the predictions in most hospitals are based on either expert estimates or

simple averaging methods making them prone to inaccuracy. In this study, we present a

new multi-objective approach based on artificial neural networks that is able to predict

various perioperative durations as well as operational implications with great practi-

cal relevance. Our model leverages a variety of patient-related, procedure-related, and

operations-related factors some of which are derived from individual patient paths. The

required input data is commonly available in most hospitals. We evaluate the model with

7 years of real world data covering more than 150,000 surgeries at Universitätsklinikum

Augsburg, a German tertiary care hospital having 1,700 beds and serving all surgical

specialties. Developed in close collaboration with the operating room management, the

proposed model will be of great practical value and could support clinicians in their

decision making.

Keywords: Surgical duration; surgery scheduling; length of stay; operating room;

efficiency; prediction; machine learning; artificial neural network

Submission: December 30, 2019
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1 Introduction

Most countries around the globe spend a significant share of their gross domestic product

on health care, particularly for hospitals. Figure 1 illustrates the United States’ health

expenditures in 2016 (3.3 trillion USD), of which hospitals account for nearly one third

(1.1 trillion USD) [4]. Hence, “pressures to make operating margins will continue to be at

the forefront of most hospital and health system leaders’ minds” [31] - particularly, since

it seems that nothing “will stop public spending on health care from rising” [34]. Being

Figure 1: United States’ health expenditures 2016 in trillion USD.

the core of a hospital, the operating room (OR) is one of the most expensive resources

[9] causing around 40% of the hospital expenditures (see Figure 1) [5, 26]. While OR

costs vary significantly between countries, hospitals, and procedures [28], an average

OR hour in the United States accounts for roughly 4,000 USD [25, 36] and an average

cancelled hour corresponds to roughly 1,500 USD in lost revenues [6, 7, 27]. Consequently,

efficient utilization of the OR is of particular interest. A significant share of expenditures

can be eliminated by addressing overtreatment, failures in coordination, administrative

complexity, fraud and abuse [2] and by scheduling surgeries more efficiently [14].

Accurate predictions of surgical durations are essential for an efficient OR manage-

ment. Both overestimating as well as underestimating surgical durations bear undesirable

consequences. The former is associated with idle time and up to 60% higher costs of staff

[38], low utilization of OR and other resources, lost revenues, and longer indirect wait-

ing times of patients, i.e., the duration between time of request and appointment. The

latter is associated with staff overtime, need for rescheduling and cancellation of subse-
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quent surgeries (which affects 10 − 40% of elective surgeries [32]), negative impact on

downstream units, ramification on patient outcomes, and longer direct waiting times of

patients, i.e., the duration between appointment and actual surgery. However, deriv-

ing accurate predictions for surgical durations is a complex endeavor for several reasons,

particularly due to inherent uncertainty and diversity in processes, specialties, staff ca-

pabilities, and patient characteristics [8, 12]. Uncertainty is introduced by factors that

are not known a priori, e.g., unexpected bleeding, whereas diversity refers to factors that

are known a priori, e.g., patient age, emergency status, and type of procedure. In today’s

hospitals, predictions are either based on expert estimates or on historical averaging given

electronic health records. The former is often biased by financial incentives, psychologi-

cal pressure, and convenience [1, 32, 24], seizes numerous man-hours of valuable medical

staff, and often results in inaccurate predictions, i.e., overestimation in 32% and under-

estimation in 42% of the time [21]. The latter is formed as arithmetic mean of historic

procedure durations for an “average patient”, neglects patient-specific factors such as age,

sex, and emergency status, and yields only slightly better predictions [43]. A data-driven

model that integrates the critical factors, predicts the surgical durations, and supports

experts in their decision making could improve the accuracy [42, 9] and would be of great

practical value.

Within the last decades, a vast amount of research has been done in the field of

surgical scheduling [3], however, the problem of predicting surgical durations comprises

only a minor fraction of the literature and just recently started to get more attention (see

Figure 2). Most notably, Strum et al. [37] compare log-normal and normal distributions to

model surgical durations, Tuwatananurak et al. [40] apply a proprietary machine learning

algorithm, and Fairley et al. [11] present a machine learning approach for a pediatric

hospital. Overall, we identified 114 papers in this field and distinguished between six

areas according to their main focus as depicted in Figure 2, namely literature reviews

(9 papers), probability distribution fitting (13), expert prediction assessments (6), data

mining and machine learning models (68), scheduling and sequencing (12), and others.
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Figure 2: Recent literature addressing the prediction of surgical durations.

The individual characteristics of a surgical case not only determine the duration for

which the operating room is occupied, but also have an influence on further perioperative

durations, the further course of a patient’s postoperative stay in the hospital, and even

the subsequent, post-hospital treatments required. Ultimately, these are the metrics that

contribute to the efficiency of a hospital. Given accurate predictions, these implications

can well be considered during decision making at the operational level to improve the

quality of surgery scheduling. It is the purpose of this study to leverage patient-related,

procedure-related, and other operations-related factors in order to derive accurate predic-

tions. Our contribution is a new multi-objective classification model based on artificial

neural networks that is able to predict multi-class labels for six different metrics with

great practical relevance, i.e., operating room duration, incision suture duration, anes-

thetist duration, postoperative unit, postoperative length of stay (LOS), and discharge

type. Unlike other approaches, we also consider features that are derived from the indi-

vidual patient path, e.g., the preoperative LOS. The model is generalizable and can also

be applied to other hospitals since it is based on input data that is commonly available in

most hospitals. We evaluate the model with real world data covering more than 150,000

surgeries from 125,000 patients within 2010 to 2016 and present convincing numerical

results. We believe that the proposed model is of great practical value and could support

clinicians in their decision making.
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The paper at hand is organized in four sections. In this Section 1, we set up the context

and stated the objectives of our work. Section 2 describes the underlying data of the ref-

erence hospital, explains the used methodology, and proposes our general multi-objective

prediction model based on neural networks. In Section 3, we present the numerical re-

sults for the study. Eventually, we discuss our findings, limitations, and future work in

Section 4.

2 Methods

In this section, we propose our prediction model to predict surgical durations and impli-

cations of a surgery at a hospital’s operational level. The problem at hand corresponds to

finding a computable function x 7→ f(x) = y that maps an input vector x, i.e., patient-

related, procedure-related, and operations-related features, to an output vector y, i.e.,

surgical durations and operational implications of the surgery. However, the relationship

between inputs and outputs is not trivial and hence, it is difficult to develop an explicit

model. Instead, we use machine learning to learn the relationship from a large data

set with m ∈ M = {1, . . . ,M} historic samples
(
x(m), y(m)

)
, i.e., surgical cases, where

xn, n ∈ N = {1, . . . , N}, describes the features and yo the corresponding multi-class

labels for o ∈ O = {1, . . . , O} outputs. In the following, we describe the underlying data

source, definition of features and labels, pre-processing steps, training and evaluation of

the machine learning based model, and implementation details.

The data for this study was retrieved from the hospital information system of our

partner hospital, Universitätsklinikum Augsburg, a 1,700-bed, maximum-care university

hospital located in Southern Germany. Our work is based on two sources of input data

covering seven years from 2010 to 2016, namely surgery records containing timestamps

and further details about surgical interventions and supporting unit records containing

timestamps and further details about admission, transfers, and discharge of patients.

Given the unique identifier for each patient, we are able to interlink the two data sources
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and reconstruct the path through the hospital for each individual patient. Based on

our experience, these data sets are commonly available in most hospitals and can be

retrieved directly from the hospital information system, e.g., Agfa Healthcare Orbis in

the reference hospital. For this study, we exclude samples with missing information

and restrict the analysis to the most common procedure types. In total, we consider

M = 151,767 surgical cases covering P = 125,191 distinct patients. This comprehensive

data set as well as our close cooperation with key stakeholders of the reference hospital

provide a solid foundation for our approach. The study at hand has no external funding

source.

After deliberation with the hospital management, we use patient-related, procedure-

related, and operations-related parameters as input for the predictive model. As patient-

related variables we consider patient age, gender, patient type, emergency status, and

admission type. Procedure-related variables are International Classification of Procedures

in Medicine (ICPM) code, OR type, and surgical specialty. Operations-related variables

refer to the number of previous surgeries, the preoperative LOS in the hospital, the

origin unit before being transferred to the OR, the weekday, and the time of the day.

We distinguish between continuous features and categorical features. Table 1 depicts the

continuous features (n = 1, n = 2, n = 3) including their means and standard deviations

for three data sets. Note that the entire data set is divided into training set (60% of

Table 1: Continuous features considered in this study and their representations for the
samples in the training set, validation set, and test set.

n ∈ N Continuous feature Training (60%) Validation (20%) Test (20%)

1 Patient age, y 60.8± 21.6 60.8± 21.4 60.9± 21.5
2 Previous surgeries, count 0.5± 1.6 0.5± 1.7 0.5± 1.6
3 Preoperative LOS, min 3761.2± 9204.4 3721.8± 9348.0 3784.6± 9653.6

Note: Values are means ± standard deviations before oversampling and normalization. LOS =
length of stay.

all samples), validation set (20%), and test set (20%) to avoid bias during training and
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evaluation of the model. There is no significant difference between the realizations within

those three sets. In order to obtain values for features n = 2 and n = 3, we reconstruct

each individual patient path and determine the location for each time during the hospital

stay. Table 2 shows the categorical features considered in this study. We apply one-

Table 2: Categorical features considered in this study and their representations for the
samples in the training set.

n ∈ N Categorical feature Representation

4− 5 Gender Female (46.6), Male (53.4)
6− 7 Patient type Inpatient (80.4), Outpatient (19.6)
8− 10 Emergency status Elective (77.7), Urgent (16.5), Emergency (5.8)
11− 16 Admission type Regular (57.6), Work (2.5), Traffic/sport (0.0),

War-disabled (0.0), Emergency (20.0), Others (19.9)
17− 138 Procedures, ICPM 5-787 (3.0), 5-790 (2.7), 5-361.03 (2.2), 5-144.5a (2.4), etc.
138− 144 OR type Central (39.5), Roof (28.3), South (12.7),

Uro/Endo (2.1), Sectio (1.8), Others (15.6)
145− 157 Specialty Trauma surg. (17.0), Ophthalmologic surg. (15.3),

Urology (12.3), Cardio. surg. (10.0), Vascular surg. (9.3),
General surg. (9.1), Gynecology (7.5), ENT (7.2),
Dermatology (5.9), Neurosurg. (4.2), Pediatrics (2.2),
Oral surg. (0.1), Radiotherapy (0.0)

158− 162 Preoperative unit Ward (72.7), Outside (20.0), ICU (3.4), ED (2.9), IMC (0.9)
163− 169 Weekday Mon (19.4), Tue (19.3), Wed (19.0), Thu (19.4),

Fri (19.7), Sat (1.7), Sun (1.5)
170− 173 Time of day Morning (54.4), Afternoon (37.1), Evening (4.3), Night (4.2)

Note: Values in brackets are percentages before oversampling and normalization. There was
no significant difference between training, validation, and test sets. ICPM = International
Classification of Procedures in Medicine; OR = operating room; ENT = ear-nose-throat, ICU
= intensive care unit; ED = emergency department; IMC = intermediate care unit.

hot encoding to convert the categorical variables into integers. For example, we convert

the parameter ‘Gender’ with values ‘Female’ and ‘Male’ into two binary features called

‘Female’ and ‘Male’ with values {0, 1}, respectively. The values in brackets refer to the

occurrence as percentage in the training set. In order to ensure a sufficient sample size for

each procedure type, we restrict the analysis to the 122 most common procedure types.

In fact, we include all full-digit ICPM codes that appeared at least 500 times, merge the

remaining ICPM codes based on their first 5 digits, and also include all 5-digit ICPM
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codes with at least 500 samples. The features n = 170 to n = 173 are derived from the

starting time of the respective surgery using 7am, 12pm, 5pm, and 8pm as thresholds.

Having defined the input features, each sample shall now be complemented with the

respective output values. The proposed model is able to predict three different surgical

durations (o = 1, o = 2, o = 3) as well as three operational implications of the surgery

(o = 4, o = 5, o = 6) as depicted in Table 3. As common for multi-class classification

Table 3: Labels considered in this study and their representations.

o ∈ O Multi-class label Representation

1 OR duration Q1 (≤ 27 min), Q2 (46), Q3 (72), Q4 (118), Q5 (> 118)
2 Incision suture dur. Q1 (≤ 11 min), Q2 (24), Q3 (42), Q4 (79), Q5 (> 79)
3 Anesthetist dur. Q1 (≤ 60 min), Q2 (86), Q3 (118), Q4 (178), Q5 (> 178)
4 Postoperative unit Ward, IMC, ICU, Others
5 Postoperative LOS Q1 (≤ 0 days), Q2 (1), Q3 (4), Q4 (8), Q5 (> 8)
6 Discharge type Treatment completed, Completed and postoperative

treatment planned, Transfer to other hospital,
Discharge to rehab/care, Death, Others

Note: Values before oversampling. Values in brackets indicate the threshold for the quantiles,
e.g., Q2 (46) refers to the range between 27 min and 46 min. OR = operating room; dur. =
duration; IMC = intermediate care unit; ICU = intensive care unit; LOS = length of stay.

problems, we define a multi-class label y(m)
o for each output o ∈ O with values y(m)

o,c ∈ [0, 1]

for c ∈ Co classes. For example, if the patient in sample m = 1 is transferred to the ward

after surgery, the multi-class label for output o = 4 is obtained as y(1)
o=4 =

[
1 0 0 0

]T

.

The OR duration is computed as difference between the arrival of a patient in the OR

and the maximum of either the end of the procedure or the end of the anesthesia time.

For the first output (o = 1), we then use the 0.2-, 0.4-, 0.6-, and 0.8-quantiles to define

the five classes c ∈ Co=1 for the multi-class label, i.e., yo=1,c ∈ [0, 1],∀c ∈ {1, . . . , 5}.

The respective quantiles in minutes are shown in Table 3. The multi-class label for the

second output (o = 2) is defined as the quantiles for the duration between incision and

suture of the surgery. The anesthetist duration (o = 3) describes the duration between

arrival and departure of the anesthetist. Note that surgical cases without anesthesia are

neglected for the computations on o = 3 leading to a smaller effective sample size of
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N3 = 114,911. The postoperative downstream station to which a patient is transferred

after surgery can be reconstructed from the individual patient path and is categorized as

‘Ward’, ‘IMC’ (intermediate care unit), ‘ICU’ (intensive care unit), or ‘Others’ resulting

in the multi-class label with values yo=4,c ∈ [0, 1],∀c ∈ {1, . . . , 4} for the fourth output

(o = 4). The classes for the fifth output (o = 5) are defined as quantiles for the duration

between end of the surgery and discharge from the hospital. Depending on the type of

discharge from the hospital, a patient is categorized into one of seven classes resulting in

yo=6,c ∈ [0, 1],∀c ∈ {1, . . . , 7}. The aforementioned features together with the respective

multi-class labels form the samples that serve as foundation for our machine learning

based model which we describe in the following.

The classification of each surgery case sample into one of the considered classes for

each output is done by an artificial neural network (ANN) model. Within the last decade,

machine learning based approaches, particularly ANNs, have gained momentum across

many industries. They serve as powerful classifiers in health care, e.g., to detect skin

cancer [10], to predict pneumonia [17], to classify airborne pollen [35], and for other

computer-aided diagnosis applications [31, 39], and serve as medical decision support

at the operational level of a hospital, e.g., to assess perioperative cardiac risks [20],

identify patients at high risk of postinduction hypotension [23], and predict implantation

outcome of individual embryos [41]. ANNs are well suited for the prediction of surgical

durations by learning the relationship between features and outputs from historic data.

A comprehensive overview on deep learning is provided in [15] and [22]. Figure 3 depicts

a schematic representation of our proposed ANN model. The model consists of one input

layer which is defined by the number of features, i.e., N = 173 for this study, several

output layers, i.e., O = 6, each of which represents the respective multi-class label and

is defined by the number of classes in this label, and finally a number of hidden layers

l ∈ Lo consisting of several neurons. A neuron represents the basic building block of an

ANN and it is characterized by three mathematical operations. In each neuron, the dot

product between its input vector x and its internal weight vector w is computed and
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Figure 3: Schematic representation of artificial neural network model with O = 6 outputs.

a bias b is added (see Eq. 1). Then, an activation function g(z) is applied to the term

resulting in the prediction ŷ (see Eq. 2).

z = wxT + b (1)

ŷ = g(z) (2)

Due to the lack of a well-established theoretic protocol to determine an ANN’s topology

[30], we experimented with different numbers of neurons in the hidden layers and tuned

the hyperparameters on the validation set until we ended with a powerful model. Hence,

the model computes a prediction ŷo for each multi-class label yo,∀o ∈ O, with the

objective to minimize the loss function that describes the deviation between predicted

and measured values. We used the Adam optimizer [19] with log loss, an initial learning

rate of α = 10−4, and E = 100,000 epochs to train the multi-layer perceptron classifier

iteratively [13, 16, 18]. As evaluation metric, we use the unweighted average of the class-
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specific F-measures (F1) being defined as the harmonic mean between recall and precision

for each class. The class-specific precision is defined as the share of true positives, i.e.,

all samples of the respective class that were correctly labeled, and all predicted positives,

i.e., including samples that were wrongly assigned to the respective class in Eq. (3).

Precision =
True positives

True positives + False positives (3)

Eq. (4) defines the class-specific recall as the share of true positives and all positives, i.e.,

including samples that were wrongly not assigned to the respective class.

Recall = True positives
True positives + False negatives (4)

The proposed ANN model to classify surgical durations and operational implications

was implemented with scikit-learn in Python [33]. For data processing, we use Pandas,

NumPy, SciPy, Matplotlib, and scikit-learn. After having selected features and labels,

we perform oversampling in case of unbalanced classes, encode the categorical features

with category_encoders’s OneHotEncoder, and use scikit-learn’s train_test_split

to split the resulting data set randomly into three subsets, i.e., Mtrain samples are as-

signed to the training set (60%), Mval samples to the validation set (20%), and Mtest

samples to the test set (20%). Afterwards, each feature is scaled and normalized indi-

vidually with scikit-learn’s MinMaxScaler such that it is in the range between zero

and one. When fitting the estimator, we only use the training set in order to prevent a

spillover of information, i.e., the constants computed with the training set are also used

to scale the validation and test set. Scores and confusion matrices are computed using

scikit-learn’s metrics. Pre-processing and training of the ANN were performed on a

dedicated simulation node equipped with 56 physical Intel(R) Xeon(R) Platinum 8176

cores with enabled hyperthreading.

Appendix C Predicting Surgical Durations

119



3 Results

We use unweighted average precision (UAP), unweighted average recall (UAR), and un-

weighted average F-measure (UAF) to evaluate the performance of our classification

model. Assuming that all classes of a multi-class label are equally important, we choose

the unweighted scores as performance metrics. In total, 91,059 training samples are used

to train the predictive model, 30,354 validation samples are used to select the best hyper-

parameters of the model, and 30,354 test samples are used to evaluate the performance

of the model. Table 4 shows the selected hyperparameters as well as the resulting perfor-

mance on the test set for each of the six outputs. Overall, we run various computations

with different hyperparameters of the model. We use the tuple r = (o, h) ∈ R = O×H as

unique identifier for a particular run with set output o ∈ O and set ANN hyperparame-

ters h ∈ H. Table 4 shows the models achieving the best performance. For the prediction

Table 4: Performance of selected models on the test set.

r ∈ R Output ANN hyperparameters UAP UAR UAF
(1, 1) OR duration [10:10], Adam, ReLu 59.7 58.7 59.1
(2, 1) Incision suture duration [10:10], Adam, ReLu 58.4 57.5 57.5
(3, 1) Anesthetist duration [10:10], Adam, ReLu 55.8 55.6 55.4
(4, 2) Postoperative unit [100:50:25], Adam, ReLu 97.2 97.4 97.2
(5, 1) Postoperative LOS [10:10], Adam, ReLu 62.0 60.9 60.1
(6, 2) Discharge type [100:50:25], Adam, ReLu 84.3 84.8 84.2

Note: Performance values are percentages. [x : x] describes the number of hidden layers and
number of nodes per layer in the ANN topology. ANN = artificial neural network; UAP =
unweighted average precision; UAR = unweighted average recall; UAF = unweighted average
F-measure; OR = operating room.

of the OR duration (o = 1), we configure the ANN model with a topology of two hidden

layers with 10 neurons each, ReLu activation, and the Adam optimizer (h = 1). We

achieve an UAP(1,1) of 59.7%, an UAR(1,1) of 58.7%, and an UAF(1,1) of 59.1% on the test

set which significantly outperform a random classification model with respective values of

20.0% for five classes C1 = 5. We use the subscript r = (1, 1) to indicate that the perfor-
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mance metrics relate to the first run, i.e., prediction of the OR duration using the [10:10]

ANN model. The three surgical durations (o = 1, o = 2, o = 3) show a similar perfor-

mance with the anesthesist duration showing the lowest performance in all three metrics.

The three surgical implications (o = 4, o = 5, o = 6) show even better performance with

UAFs of at least 60.1% and up to 97.2%. The performance for the postoperative unit in

r = (4, 2) with an UAP(4,2) of 97.2%, an UAR(4,2) of 97.4%, and an UAF(4,2) of 97.2%

is particularly good. Our model also achieves high accuracy for the prediction of the

discharge type, i.e., UAP(6,2) = 84.3%, UAR(6,2) = 84.8%, and UAF(6,2) = 84.2%, despite

having more classes, i.e., C6 = 6 The computation time for the training of the ANN model

varies significantly depending on output and ANN hyperparameters, i.e., from 460 min

for r = (3, 1) up to 131 hours for r = (6, 2).

In order to study a model’s performance for each individual class of the multi-class

output, we use a normalized confusion matrix. In a confusion matrix, each row represents

the share of instances in an true class and each column represents the instances in a

predicted class. The values are normalized per true label, i.e., per row, such that the

diagonal shows the class-specific recall. Figure 4 depicts the confusion matrices for the

surgical durations (o = 1, o = 2, o = 3). In the confusion matrix for the OR duration

Figure 4: Normalized confusion matrices for our model showing predicted vs. measured
(a) operating room duration, (b) incision suture duration, and (c) anesthetist duration.
The percentage of possible instances is shown as color scale and noted in each square.

depicted in Figure 4a, samples in ‘Q1’ (≤ 27 min) are classified particularly well showing

a recall of 74.5%. However, samples in ‘Q3’ show a slightly worse performance (45.2%)

Appendix C Predicting Surgical Durations

121



since it is often confused with ‘Q2’ (25.7%) and ‘Q4’ (22.6%). Similarly, also for o = 2 in

Figure 4b and for o = 3 in Figure 4c, the class ‘Q1’ (≤ 11 min and ≤ 60 min, respectively)

shows best performance, i.e., 74.0% and 77.3%, and the class ‘Q3’ the worst, 33.5%

and 32.8%, respectively. Figure 5 depicts the confusion matrices for the operational

implications of a surgery (o = 4, o = 5, o = 6). The confusion matrix for the postoperative

Figure 5: Normalized confusion matrices for our model showing predicted vs. measured
(a) postoperative unit, (b) postoperative LOS, and (c) discharge type. The percentage
of possible instances is shown as color scale and noted in each square. Note: LOS =
length of stay; Compl. = treatment completed; Postop. = completed and postoperative
treatment planned; Trans. = transfer to other hospital; Rehab = discharge to rehab/care.

unit depicted in Figure 5a confirms that all classes are predicted particularly well showing

recalls from 91.5% (‘Ward’) up to 99.8% (‘IMC’). Also, the postoperative LOS (o = 5) is

predicted particularly well with a recall of up to 76.8% for class ‘Q1’. However, class ‘Q4’

shows a rather bad performance of 24.1% being confused very often with ‘Q3’ (27.2%) and

‘Q5’ (34.8%). Most classes of discharge types (o = 6) are predicted with high accuracy,

only the class ‘Treatment completed’ with a recall of (58.9%) is often confused with the

class ‘Completed and postoperative treatment planned’ (21.9%).

4 Discussion

In the paper at hand, a new multi-objective classification model based on ANNs for

the prediction of various surgical durations and operational implications was presented.

We showed that patient-related, procedure-related, and operations-related parameters
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retrieved from the hospital information system can be used as features for an ANN model

in order to predict multiple multi-class labels. In particular, also individual patient paths

were reconstructed to incorporate features and labels that go beyond the time in the OR.

Applied to an extensive data set from Universitätsklinikum Augsburg, the proposed model

achieved convincing results, i.e., UAFs of at least 55.4% up to 97.2%. The prediction of

the postoperative unit (o = 4) shows the highest UAF which might partly result from

the fact that this output comprises only C4 = 4 different classes, i.e., ‘ICU’, ‘IMC’,

‘Ward’, and ‘Others’. The prediction of the anesthetist duration (o = 3) shows the

lowest UAF which might be due to the smaller sample size of N3 = 114,911 containing

patients that undergo anesthesia as well as unreliable documentation. For all outputs,

the model significantly outperforms a random classification model with values of 25.0%

for four classes (o = 4), 20.0% for five classes (o = 1, o = 2, o = 3, o = 5), and 16.7%

for six classes (o = 6), respectively. No comparison of our results with the literature was

possible since we were unable to identify a similar multi-objective classification model for

surgical durations and operational implications.

In order to evaluate and compare the predictive performance of the overall model,

we propose to use aggregated versions of the performance metrics. Given the hyperpa-

rameters ho,∀o ∈ O, for each output o, we use h = (h1, . . . , hO) to describe the overall

model. The weighted aggregated versions are defined as aggregated UAP (AUAP) in

Eq. 5, aggregated UAR (AUAR) in Eq. 6, and aggregated UAF (AUAP) in Eq. 7

AUAPh =

∑
o∈O κoUAP(o,ho)∑

o∈O κo

(5)

AUARh =

∑
o∈O κoUAR(o,ho)∑

o∈O κo

(6)

AUAFh =

∑
o∈O κoUAF(o,ho)∑

o∈O κo

(7)

where the relative importance of each output is adjusted with the weight κo ∈ K,∀o ∈ O.
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Those metrics might be helpful to find the best model for individual preferences in terms

of output relevance. In case of equally important outputs, i.e., κo = 1,∀o ∈ O, the

proposed model using the hyperparameters ho for each output as depicted in Table 4

achieves an AUAP of 69.6%, an AUAR of 69.1%, and an AUAF of 68.9%.

The limitations of our study pave the way for future research. We see mainly five

directions to enhance the proposed approach in the future. First, the integration of

additional features might further improve the predictive power of the model. Medical

history, previous diagnosis results, patient weight, patient height, and known risk factors

are just a few of the examples for additional patient-related features. Similarly, room

numbers and used medical equipment could be integrated as procedure-related features

and season, workload, and occupancy levels in downstream units as operations-related

features. Additionally, the incorporation of staff-related features such as name of sur-

geon, seniority of surgeon, size of surgical team, name of anesthetist, and number of

conducted surgeries would be a valuable extension of the model, however, they might

also interfere with data protection regulations. Second, the development of customized

performance metrics might help to tailor the predicted outcome to individual preferences.

For example, weighting the classes of each multi-class label would allow to increase the

predictive power for some selected classes, e.g., for very long surgical durations or for high

congestion periods. Master et al. [29] introduced a customized loss function that does

not penalize the deviation below or above a certain predicted duration, e.g., predicted

durations below 15 min or above 60 min. Third, future work should compare the aggre-

gated performance metrics achieved by our model with the ones achieved by ANN models

with different hyperparameters and also with other machine learning based models such

as support vector machines. Fourth, the incorporation of the proposed prediction model

in an optimization framework might help to derive optimal surgery schedules for various

objectives, e.g., minimize the daily overtime or minimize the daily number of surgeries

that generate ICU patients. One might define a weighted objective function based on

the predictions ŷo, o ∈ O, and minimize it with metaheuristics, e.g., a genetic algorithm.
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Fifth, the proposed model should be applied and tested by clinicians in practice accom-

panied by a detailed assessment of their experiences with the supporting tool. Also, the

comparison of the predictive performance of our model with their manual predictions

might generate valuable insights.

It is our intention to encourage the usage of historic data and machine learning based

methods to derive more accurate predictions for the implications of surgeries at the

operational level. Ultimately, this will improve the quality of surgery schedules, save

valuable staff time, and enhance the efficiency in the OR and beyond. We hope that the

proposed model proves useful to inform better decisions.
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