
Design Optimization of IoT Models: Structured Safety
and Security Flaw Identification

Julia Rauscher () and Bernhard Bauer

Software Methodologies of Distributed Systems, University of Augsburg, Germany
{julia.rauscher,bauer}@informatik.uni-augsburg.de

Abstract. More and more devices are being interconnected, thus extending the
use of Internet of Things (IoT) systems. However, the larger the networks are the
more vulnerable and inscrutable they become. This is a significant challenge es-
pecially when IoT is used in safety- and security-critical areas. In these areas, a
flawless architecture must be guaranteed already in the design phase. Therefore,
a structured possibility is needed to scan models completely for vulnerabilities as
early as possible. We developed a pattern recognition framework (PRF) that en-
ables the definition of design patterns and anti-patterns. These patterns are used
for a holistic and automated identification of flaws in IoT models during design
phase and enable a design optimization.

Keywords: Internet of Things, design optimization, pattern recognition, safety,
security, by design, wellbeing

1 Introduction

In the age of digitalization there is an increasing number of devices which communicate
and interact with each other. This has led to networks including more independent de-
vices that can act and react in a uniquely identifiable and automated manner which are
known as Internet of Things (IoT) systems. These systems have two major characteris-
tics respectively challenges. First, they are increasing fast which creates complexity
including hidden vulnerabilities. According to [1] by 2025 there will be 75.44 billion
connected devices. Second, they aren’t self-contained. Hence, they are connected to the
internet that leads to possible cyber attacks and other threats. Therefore, IoT has to
handle IoT-specific security challenges like data transmission in sensor networks as
well as conventional issues like DOS attacks, eavesdropping or virus damages [2]. This
set of challenges can arise and occur on plenty times and points. However, studies have
shown that 50% of all flaws already emerge during the design phase [3]. Therefore, an
approach to recognize vulnerabilities by design is urgently required [4]. Especially in
safety- and security-critical areas these challenges are major concerns which require a
reliable investigation of possible accidents or threats as early as possible. One example
of the plenty application fields of IoT in safety- and security-critical systems is the
deployment in the medical field. Not only in hospitals but also in private use as medical

2

smart homes IoT is used in the medical or wellbeing sector. However, this entails dan-
ger as shown by examples like [5] or [6]. Manipulated baby monitors or captured im-
plantable cardiac devices represent highly critical elements which are difficult to alter
afterwards and need observations during design phase.

Since most approaches focus on software level there is a lack of model-based IoT
approaches. Additionally, the existing model-based approaches are either generic or
cannot be automated. Therefore, to address the above mentioned issues, we have de-
veloped a pattern recognition process to present a structured approach to define and
examine safety and security architectural patterns and anti-patterns. These are used to
identify flaws during the design phase automatically. Thereby, flaws which can be pre-
vented already before the run time are addressed. In addition, this approach enables
knowledge conservation of safety and security design challenges and the review of
large IoT systems. Since our process includes automated analysis parts, the complexity
of IoT systems can be handled.

After introducing the challenges of safety and security in IoT systems, the remaining
paper is structured as follows: To differentiate our approach from other concepts section
2 contains related work and background basics of allied fields. Afterwards, we will
present the pattern recognition framework and its details in four steps. Section 4 applies
an Ambient Assisted Living (AAL) use case to evaluate our diverse approach steps. An
outlook on further work and the conclusion completes the paper.

2 BACKGROUND AND RELATED WORK

As described above, most approaches that identify flaws through patterns are conducted
after the design phase. Accordingly, these approaches are software-based. Reference
[7] offers a review over the attempts to create code patterns to identify bad software
decisions. None of these attempts investigates the concept of patterns on architectural
level. Another concept of using design patterns in data-intensive systems offers [8].
Though, they aim in detecting design patterns for reverse engineering purposes and not
safety or security challenges. Approaches which include IoT and security by design are
e.g. [9] and [10]. Reference [9] proposes the application of AADL to be able to model
all security related information. Though, their framework doesn’t include automated
flaw identification possibilities. The work of [10] present the review of the usage of
security design patterns in IoT systems. However, like [7] these patterns are made for
software architectures. As is often the case, these two approaches do not consider
safety.

Analyses on architectural level are often used in other application fields as IoT al-
ready. For instance, enterprise architecture management (EAM) applies architecture
analyses for diverse goals and even for security analyses. An overview of the available
analyses is offered by [11]. E.g. the approaches of [12] [13] [14] use defense graphs or
extended influence diagrams to assess risks or other security concerns on design level.
However, these architecture analysis approaches are only conducted if the vulnerabili-
ties are already known. Therefore, an approach is required to identify these vulnerabil-
ities to enable the application of the assessment.

3

This literature research has revealed that all concepts are already successfully used,
but there is no approach which combines these concepts and applies them in the safety-
and security-critical IoT area.

3 PATTERN RECOGNITION FRAMEWORK

Designing an IoT system flawless and without weak points is an almost unmanageable
task. We developed an approach to support and simplify this task.

When planning the design or considering design changes two main issues occur.
First, designing the details highly depends on expert experience. However, experts are
not always available during design phase or afterwards if changes are required in the
model. Therefore, a possibility to preserve the knowledge is highly significant. The
second issue addresses the complex dependencies, interoperability and requirements of
the IoT system components. Hence, a manually verification of all included elements,
connections and features is not possible in a reasonable time.

Our approach of a pattern recognition framework (PRF) covers these both chal-
lenges. Thus, the PRF has multiple goals. To address the first challenge we created a
selection of required information about flaws, risks, avoidable design decisions and
possible impacts to offer a structured chance to enable a knowledge conservation. The
experience of the experts can be saved for later observations. Therefore, misplaned de-
sign mistakes, which already happened before, can be prevented in the design phase
during the design check. As the knowledge is conserved in textual readable form, every
team member is able to follow it independent of programming language knowledge. To
address the second challenge we translate the textual readable form into executable
code by using a domain specific language (DSL). Thus, the flaw analysis can be con-
ducted automatically and includes all components of the IoT system.

The knowledge conservation and flaw identification respectively recognition will be
conducted through design patterns and anti-patterns. Patterns represent positive and de-
sirable design choices that prevent vulnerabilities, e.g. a highly required authentication
mechanism. To recognize possible flawed modelling decisions, model components that
do not match these patterns are searched for. During this search, the model components
are examined for conditions of the unambiguous pattern definitions. Matches are only
displayed if they fulfill all pattern conditions to avoid false positive hits. By contrast,
anti-patterns represent negative and avoidable design choices that cause vulnerabilities.
The automated flaw identification looks for model components that match the anti-pat-
terns. Our framework enables to define generally applicable patterns which are suitable
to all IoT models. Though specifically designed patterns for individual IoT models are
also possible and required. When we speak of pattern in the following, this includes
anti-pattern as well. In addition, flaw identification and flaw recognition are used inter-
changeably as our concept is not related to the machine learning research field.

The application of the PRF is described below in four sections A-D. Section A ex-
plains the content of the PRF categories and attribute options, which are used to specify

4

the patterns and anti-patterns textually. Section B presents the pattern definition lan-
guage. Finally, sections C and D show the transformation of the patterns into code and
the automated, executable pattern recognition.

To illustrate the context, figure 1 provides an overview of the components and usage
of our PRF during design time. Independently of the domain, the creation of a model
requires a meta model. Therefore, we designed an IoT meta model which can be used
to depict IoT networks. This meta model is among others able to depict physical enti-
ties, like sensors, actuators or tags, and their virtual counterparts. Additionally, includ-
ing physical connections with their network specifications, protocol types and encoding
mechanism. Furthermore, services with operations, right management and authentica-
tion requirements can be presented. In addition, components for business details, stake-
holder and their users are contained. As described, the PRF (Section A) is applied to
define pattern and anti-pattern in textual readable form. The DSL (Section B), which is
based on the meta model, uses the fulfilled PRF parts, categories and values to config-
ure the pattern language. A pattern database stores the created patterns and anti-pat-
terns. Concurrently, a code generation process (Section C) produces executable code
for pattern services, i.e. flaw identification services. When a flaw identification is con-
ducted, the database and services are used to examine the IoT model (Section D).

Fig. 1. Structured definition and identification of flaws by using PRF

To realize our approach we need different technologies. Therefore, we use the
widely used concepts of EMF to model our IoT meta model. Our IoT models are de-
picted with the extension Eclipse Sirius [15], whereas the DSL and code generation are
conducted with the related concepts Xtext and Xtend. [16] [17]

A. Pattern Definition

Following, the components of the PRF are explained in detail with TABLE 1 to TABLE
7. As the PRF covers different issues, we need a safety PRF type and a security PRF
type. Both types consist of four pattern definition categories. However, the categories
vary depending on the PRF type. The structure of the different PRF types consists of:

• a Generic Part (TABLE 1),
• a Safety OR Security Challenge Part (TABLE 2 OR TABLE 3),
• a Safety OR Security Assessment Information Part (TABLE 4 OR TABLE 5),
• a Pattern OR Anti-Pattern Implementation Part (TABLE 6 OR TABLE 7).

5

The first three parts are used for knowledge conservation and for later flaw and risk
categorization or assessment. The fourth part will be used for the implementation details.

Attributes of the different parts are either of free text style that don’t underlay bounds
or of enumeration style. Enumerations are predefined sets of possible values.

Every PRF type starts by using a Generic Part, which is presented in TABLE 1 to
specify the conditions that are independent of safety or security specific characteristics.
To be able to identify the defined patterns in the pattern database an ID and name is
required. Apart from this a supercategory for the protected element is included. This
supercategory is used for pattern categorization within the pattern database and defines
the element type and category, as well as the user group type. The element to protect
categories are extracted of the IoT-A project. [18] These categories attempt to cover all
aspects of an interactive IoT system and were elaborated of a special IoT security archi-
tecture approach. Therefore, users, different kind of devices, software and hardware as-
pects are covered. Since the kind of hard- and software is decisive of the needed actions,
the type of physical connections and services is specified. These attributes are dependent
on the used meta model. To conduct analyses on diverse model levels, e.g. layered pro-
tection analysis, the affected layer of the pattern must be set. Most IoT architecture ap-
proaches use 3-4 layers. Since safety and security issues need a more specific categori-
zation, we chose a more detailed approach. For this purpose we used the layered archi-
tecture approach of [19] which consists of eight layers. We extended the approach by a
user layer. To determine the responsible stakeholder the location of vulnerability is spec-
ified. This attribute helps to divide the architecture decisions. The last attribute views
the disruption tolerance to categorize the sensitivity of the affected element. While tol-
erant and temporary tolerant elements perhaps can endure attacks, zero tolerant elements
are highly critical.

Table 1. PRF Generic Part
Pattern Recognition Framework

Generic
ID *free text*

Name *free text*
Component Supercategory: Element to protect

Element Type *free text*
User Group *free text*

Element category Choice: Physical Person, Communication Channel, Leaf of
Devices, Intermediate Devices, Backend, Infrastructure, Service,
Facilities

HW *free PhysicalConnection type*
SW *free Service type*

Architecture layer Choice: One layer of IoT Layered Architecture
Location Choice: Local or Cloud

Disruption tolerance Choice: Tolerant, Temporary tolerant, Zero tolerant

 Next definition step is the Safety or Security Challenge Part. TABLE 2 defines the
specific characteristics security challenges bring along to vulnerabilities. The intent and
risk represent the aim and risk of loss of possible attacks. To classify the type of attack
the STRIDE categorization is used. [20] The letters represent: Spoofing, tampering, re-
pudiation, information disclosure, denial of service and elevation of privilege. For in-
stance, a distinction is made between spoofing and tampering that are indications how
to prevent a weak point. As the goal of attack needs classification as well, an enumera-
tion for attack goals is provided, which is inspired by [21]. It is distinguished whether

6

an attack aims at perhaps less critical information disclosure or in destroying/manipulat-
ing a whole network or functions. A capture attack tries to get control or access of an
IoT device or critical data. This attack does not necessarily have direct impacts. How-
ever, they enable other attacks like DDDD (Disrupt-Degrade-Deny-Destroy). DDDD
aims at affecting a system and disabling important functions. These goals bring along
manipulation and attacks on diverse points. All these categories are used for assessment
and database usage, too.

Table 2. PRF Security Challenge Part
Security Pattern Recognition Framework

Security Challenge
Intent *free text*
Risk *free text*

Classification Choice: STRIDE: Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, Elevation of privilege

Attack Goal Choice: Capture, Disrupt-Degrade-Deny-Destroy, Manipulation,
Information Disruption, Host Attack, Network Attack

 As described above, every security PRF category has a corresponding safety cate-
gory which includes safety specific characteristics (TABLE 3). Within this part the fault
and fault class are determined. The fault attribute describes the possible origin of failure.
Whereas the fault classes define the possible type of failure. These classes range from
hardware causes like attrition to software or logical causes like interface issues or mis-
calculation. In addition, the hazard describes the consequences of possible faults which
can also be classified. For instance, the types distinguish between simple failures, com-
plete outages, single service losses or a system corruption. External problems can be
mentioned as well, however these issues are difficult to prevent. Though, countermeas-
ures or security measures can be taken into consideration. These both enumeration cat-
egories are extracted of [22].

Table 3. PRF Safety Challenge Part
Safety Pattern Recognition Framework

Safety Challenge
Fault *free text*

Hazard *free text*
Classification Choice: Failure, Outage, External Problem, Loss of Service, Sys-

tem Corruption
Fault Class Choice: Attrition, Energy, Calculation, Change Impact, Configu-

ration Management, Data, Interface, Logic, Omission, Timing,
Initialization

 After specifying the Generic and Safety/Security Challenge Parts the details for fur-
ther assessments of possible risks or hazards can be determined.

The assessment information of security flaws is shown in TABLE 4. Since assess-
ment information can vary by domain and review reason, the details can be registered
free without restrictions. Privacy is often related to security and is taken into considera-
tion during assessment as well. Therefore, personally identifiable information (PII) can
be mentioned to ensure attention to this aspect. The Assessment Information Part has a
supercategory as well, to describe the possible direct impacts and their estimated conse-
quences. These values are based on probability values and are subject to estimations or
previous experiences. As direct impacts can vary widely depending on the system an
exemplary choice range is given in the framework. The most important aspects are se-
curity typical issues like availability, functionality, manipulation of nodes and disclosure
of data or structure aspects that allow further attacks. However, the range can be just

7

extended. For every direct impact an estimated probability value can be assigned. E.g.
‘Availability 30% down’. These values refer to the defined elements to protect of the
Generic Part and are used for further impact analyses. Next to direct impacts, also indi-
rect impacts exist. These kinds of impacts are more difficult to estimate and often not
obvious. Therefore, the type of indirect impacts can be chosen freely and offer hints for
system architects for further design decisions. Related to the impacts is the seriousness
of attacks. We extracted our categories from [23] as these are typically used distinctions.
An attack can be catastrophic and cause complete system failure, as a critical attack gen-
erate issues in important parts, which e.g. are connected with confidential data. Marginal
or negligible attacks create threats with moderate or conquerable impact. Attacks with
no severity are more or less insignificant as they are not attack critical nodes or data. As
last attribute of the Security Assessment Information Part, the security requirements are
chosen. These requirements include the typical CIA (confidentiality, integrity and avail-
ability) security aspects. Since these aspects do not cover all possible IoT issues, the
enumeration was extended. For instance, authentication and non-repudiation was added.
Authentication is one of the most important and vulnerable aspects of IoT as this process
enables the interaction with devices and the access to important data. Whereas non-re-
pudiation is required to ensure the traceability of actions, measurements and node exten-
sions.

Table 4. PRF Security Assessment Information Part
Security Pattern Recognition Framework

Assessment Information
Assessment Information *free text*

PII *free text*
Probable Direct Impacts Supercategory: Estimated Consequences

Impacts Choice: Disclosure, Manipulation, Availability, Functionality
Values *free probability values*

Indirect Impacts *free text*
Severity Choice: Catastrophic, Critical, Marginal, Negligible, Non

Security Requirements Choice: Confidentiality, Integrity, Availability, Manipulation Re-
sistance, Privacy, Authentication, Non-Repudiation

 The counterpart of the security assessment displays the Safety Assessment Infor-
mation Part, which is shown in TABLE 5. Some aspects are equal to the security assess-
ment. However, these aspects are not included in the Generic Part as the values of equal
attributes still depend on safety or security specific issues. First attribute of the safety
assessment also defines the free information details depending on the domain and as-
sessment reason. Since there are several possible reasons, also multiple information can
be set. Likewise, a supercategory for elements to protect is included for estimating the
consequences of direct impacts. The enumeration of impacts can be extended as well.
These impact categories overlap with security impacts since safety and security are re-
lated and cannot be separated completely. Impacts on functionality and availability can
cause life-threatening behavior, whereas reliability represent the correct outcome of
safety-critical actions. Like the security assessment, safety will be assessed with esti-
mated probability values, too. Since the knowledge on this point also comes largely from
experts, knowledge conservation is important. A more critical aspect of safety assess-
ment are indirect impacts as these can cause new safety-critical aspects that can harm
human beings. Equally, this challenge is often dependent on experience as well. Safety
patterns require other categories for assessment like security since they cover the well-
being of users. The severity divides between deathly, serious, e.g. internal injuries, and
non-serious accidents. [24] Depending on this division, the patterns are ranked in a

8

higher priority within design decisions. An approach to rate the likelihood of occurrence
is offered by [23]. Which frequency corresponds to which category depends on the in-
ternal guidelines. However, the rough categorization are frequent and probable occur-
rences for highly possible accidents, whereas less possible accidents are divided in oc-
casionally and improbable. Improbable accidents are defined, because the likelihood of
occurrence can change in the future. Since safety brings along its own needs, we specify
safety requirements. For instance, typical requirements are the ability of recovery of de-
vices or functions, redundancy of sensitive elements and data/device integrity to ensure
right calculations/services.

Table 5. PRF Safety Assessment Information Part
Safety Pattern Recognition Framework

Assessment Information
Assessment Information *free text*
Probable Direct Impacts Supercategory: Estimated Consequences

Impacts Choice: Functionality, Availability, Reliability
Values *free probability values*

Indirect Impacts *free text*
Severity Choice: Death, Serious Injury, Non serious Injury, No Injury

Likelihood of occurrence Choice: Frequent, Probable, Occasional, Improbable
Safety Requirements Choice: Recovery, Redundancy, Failure Resistance, Availability,

Data Integrity, Device Integrity

Until this point, the pattern definitions create the basis for the knowledge conserva-
tion. Therefore, following parts are responsible for the implementation and automated
flaw detection. Additionally, the implementation parts are not safety or security specific.
However, they are pattern or anti-pattern intrinsic. Thus, the implementation part of pat-
terns defines positive design decisions that prevent accidents or threats. By contrast, the
implementation part of anti-patterns specifies negative design decisions, which cause
exploitable or erroneous vulnerabilities. TABLE 6 presents the Pattern Implementation
Part that is used to design a desirable architecture. For documentation reasons a textual
solution initiates the implementation details. On this occasion a short description of the
concrete element, relation and attribute types should be given. This description is dis-
played after the flaw identification to explain the discovery and to prevent misconcep-
tions. A supercategory includes the specification of required combinations of nodes, at-
tributes and their relations. These combinations represent the elements to protect and
their risks. Before specifying the concrete elements, an algorithm is set. How the ele-
ments are dealt with and are used for the identification depends on these algorithms. For
instance, nodes’ attributes can need comparison with other conditions or a simple sum-
mation of nodes is required. Section C is reliant on these algorithm types to conduct the
code generation appropriate. Following the concrete node, relation and attribute types
are defined. The available types depend on the used IoT meta model. All depictable
elements and characteristics must be selectable to check the whole IoT model and to
define patterns for all aspects. All nodes connected to the pattern must be selected. Ac-
cordingly, the next step is to select the relations that connect these nodes. Finally, the
attributes which the nodes must fulfil to be affected by the pattern are selected. To high-
light the flaw, the last point of the PRF is a textual documentation of the exact flawed
feature.

9

Table 6. PRF Pattern Implementation Part
Safety/Security Pattern Recognition Framework

Implementation
Solution *free text*

Implementation Supercategory: Required "Node X Attribute X Relation" Combi-
nation

Pattern Algorithm *free text* (examples: Summation of nodes)
Node2Node Choice: Available Node types

Node2Relation Choice: Available Relation types
Node2Attribute Choice: Available Attribute types

Flaw *free text*

Our last part of the PRF is shown in TABLE 7 and is the counterpart of the pattern
implementation. The Anti-Pattern Implementation Part is similar to the pattern defini-
tion. However, as an avoidable design will be described not a solution will be docu-
mented. Thus, a security-specific anti-pattern explains a vulnerable design, while a
safety-specific anti-pattern documents a hazardous design. Both variants are used for
documentation and explanation after the flaw recognition in the IoT model. Furthermore,
there is also a supercategory for the required combination of node, attribute and relation
types as stated above. The process starts in the same way as mentioned before with a
pattern algorithm definition. As before, the algorithm is responsible for further code gen-
eration activities and the general handling with the defined elements. Following the con-
tained meta model types are chosen including the related connections and features. Once
again, the flaw characteristic description of the element to protect finishes the PRF anti-
pattern section.

Table 7. PRF Anti-Pattern Implementation Part
Safety/Security Pattern Recognition Framework

Implementation
Vulnerable/ Hazardous Design *free text*

Implementation Supercategory: Required "Node X Attribute X Relation" Combi-
nation

Pattern Algorithm *free text* (examples: Summation of nodes)
Node2Node Choice: Available Node types

Node2Relation Choice: Available Relation types
Node2Attribute Choice: Available Attribute types

Flaw *free text*

 The presented categories and their enumerations are adaptable and extensible if the
used domain requires other topics or values to define or review the model.

B. Pattern Specific Language

Through section A the PRF contained categories and values have been clarified. At this
stage, however, the defined patterns and anti-patterns cannot yet be used for automatic
flaw detection. Therefore, the patterns must be configured using a DSL. As the domain
of our approach is pattern detection, we use Xtext to create a pattern definition lan-
guage. The patterns are stored in the database in this form. Following, we describe the
structure and rules of this DSL.

Our language contains all parts described in section A and is also structurally ori-
ented towards them. The presented category choices are realized with Xtext respec-
tively Ecore enumerations. These can be extended at this point as well, if the analyzed
IoT model requires changes. To enable the full configuration of patterns and complete
review of IoT systems, the DSL also contains the IoT meta model elements including

10

all node types, attribute types, relation types and type enumerations. If other safety or
security specific features are needed, these can be added on our pattern definition lan-
guage, too. Since the language cannot be presented fully, by means of code examples
an insight should be given.

Figure 2 displays a code extraction of a Xtext pattern definition including the initial
feature patterntype within the initial start rule ‘PatternDefinitionFramework’ (Line 5-
7). The Xtext rule ‘PatternType’ (Line 9-11) delegates either to the rule ‘Securi-
tyPattern’, ‘SafetyPattern’, ‘SecurityAntiPattern’ or ‘SafetyAntiPattern’. We consider
the rule ‘SecurityPattern’ exemplarily that starts with a keyword. The rule contains four
features each adding one of the PRF parts which are available to choose from. Each of
the other rules that are delegated from ‘PatternType’ are structured in this way, how-
ever, with its customized choice range.

Fig. 2. Xtext code to define the PRF as DSL

 Afterwards the rules for the generic part, challenge parts, assessment information
parts and implementation parts are defined. To offer an insight in one of these parts
figure 3 views the rule ‘AssessmentInformationSecurityPart’ to configure the assess-
ment details. The rule contains multiple features and keywords (introduced in TABLE
4). These features are labelled as identifier, String value or a kind of enumeration. The
feature securityRequirements can add an arbitrary number of values, as several re-
quirements can be needed. The feature directImpacts is a special feature as it is a type
of the rule ‘ProbableDirectImpacts’ (Line 109-116). This rule configures impacts which
can be chosen from security or safety impact enumerations. As impacts don’t neces-
sarily appear these values are optional. The concrete values are described with the rule
‘Change’ and an Integer probability. This rule enables to depict the direction (up or
down) of changes.

Fig. 3. Xtext code to define the Security Assessment Information Part

11

As last part the implementation parts must be specified with Xtext rules. Figure 4
displays exemplarily a rule for safety anti-patterns. The hazardous design can be de-
scribed with a String value, whereas the implementation elements themselves depend
on the ‘Implementation’ rule. Every rule feature requires an identifier for identification
reasons, as well as the type. The conditions and correlations of pattern elements are
defined with keywords like ‘if’, ‘then’ or ‘equals’. A flaw is determined with specific
nodes that were defined with the ‘Implementation’ rule.

Fig. 4. Xtext code example of the Anti-Pattern Implementation Part

Beside the described or mentioned rules, enumerations, PRF specific rules and meta
model rules are components of the pattern definition language.

C. Pattern Service Generation

After concluding the first two manually conducted steps the theoretical pattern defini-
tion is completed. To enable the automated flaw identification, applicable pattern ser-
vices are required. To transform the structured, defined patterns and anti-patterns into
executable code an automated code generation will be conducted. Part four (TABLE 6
and TABLE 7) contains the required implementation details to enable the recognition
of patterns or anti-patterns in a model. The transferred details of a DSL (Section B) are
translated automatically into the needed services through the functions of Xtend. As
described before in section A, the code generation acts depending on the chosen pattern
algorithm. Once, a pattern or anti-pattern was defined and saved in the pattern database,
an automated code generation is conducted and saved as well. Therefore, every speci-
fied and saved pattern can be used for design optimization immediately. This code
generation process is provided for all kind of pattern.

D. Pattern Identification

The last step of our PRF represents the final automated identification of vulnerable or
hazardous design flaws in IoT models. The created services (Step C) will be used to
analyze and optimize the design automated. The results of the pattern recognition pro-
cess depend on the kind of defined pattern. In case of identification of an anti-pattern
all elements and relations, which match with the definition, are highlighted as they are
follow a negative design decision. However, if a pattern identification is conducted to
recognize flaws, only the elements that are not matching the definition are highlighted,
as the definition represent desirable design. Every IoT Model that complies with the
developed IoT meta model can use the content of the pattern database to detect flaws.

12

4 Evaluation

After explaining the details of the PRF we demonstrate the application to evaluate our
approach steps. As described before the usage of IoT in medical cases implicate safety-
and security-critical aspects. Therefore, we designed a smart home in manner of an
AAL use case for elderly. To create an approved use case for evaluation we take into
consideration the approaches of [25], [26] and [27]. As the devices in our AAL smart
home aiming in prevention, it is a wellbeing use case. We define medical devices as
wellbeing devices if their main purpose is monitoring, tracking or detecting, i.e. pre-
vention, and do not have direct impact on the body. Figure 5 shows the rough structure
and contained devices respectively infrastructure. In our smart home an elderly resident
is monitored through multiple devices with different locations and goals throughout the
house. For instance, the defibrillator is a fully implanted device to monitor the heart,
whereas the insulin pump is a kind of wearable to measure the current insulin level. The
other devices are located in diverse places, as the fall detector is positioned in every
room and the mobile phone and pillbox vary. To collect and process the data two kind
of cloud respectively gateway are included. In addition, the smart home is connected
with diverse stakeholder with different goals and rights, like ambulance for critical sit-
uations or relatives who may inform about the resident. The network details of our use
case were presented in [19].

Fig. 5. AAL use case scenario used for evaluation

Our detailed AAL use case architecture and dependencies are modelled based on the
developed meta model for IoT systems. Figure 8 shows an excerpt of the IoT system of
our AAL use case which conforms to our meta model. In this excerpt some of the in-
cluded devices with their physical connections, services and users are depicted.

To evaluate the sections A-D of chapter III, we will present two challenges. For
these challenges we will define a pattern respectively an anti-pattern with our PRF to
validate the structured way of knowledge conservation. Afterwards, the patterns will
be transferred into DSL to enable the code generation for the flaw identification ser-
vices. To present the added value of our framework, we show the results of the auto-
mated flaw identification process applied on our AAL use case model. Following, two
safety respectively security challenge examples are considered in detail:

 Example 1 (Security): IoT devices with limited space and energy are easy
entry points for cyber attacks as the encryption is missed or neglected

 Example 2 (Safety): Authentication can be a safety issue if life-saving
functions are blocked by these methods

13

For example 1 a pattern will be defined and example 2 is covered through an anti-
pattern definition. For both example challenges the PRF is used to define the pattern
respectively anti-pattern. TABLE 8 shows the pattern definition of example 1. The pat-
tern receives an ID and the name ‘Lightweight devices without encrypted communica-
tion’. The affected devices in our use case are defibrillators which are a kind of well-
being IoT devices and a leaf of devices. These are only used for monitoring reasons as
they are wellbeing devices and not medical devices in our use case. To communicate
with other devices or gateways a Bluetooth connection is applied. As described before
a monitoring service is required which can be affected. Since IoT devices are the basis
of every IoT system they are on in the bottom of the layered architecture (Thing Layer).
However, the location of security attack can be either local or in a cloud. As the defib-
rillator is only a wellbeing device it is temporary tolerant towards attacks. The security
challenge aims in capturing and changing private data on the communication way that
can cause the theft of PII and manipulated analyses results, as the attack can be classi-
fied as tampering and the attacker’s goals are capture and manipulation. To assess the
impacts of this kind of attack the integrity must be taken into consideration to evaluate
the correctness of the measured cardiac conditions. Since the alteration of data can
have impacts on the functionality most likely, an estimated change of 70% down is
expected. In addition, other health recommendations are affected since the holistic
health status is impacted as well. Altered cardiac measurements are of a critical nature
as these data are used for long-term analytics, e.g. atrial fibrillation monitoring. Secu-
rity requirements which are affected through a possible attack are confidentiality, in-
tegrity, manipulation resistance and privacy.

Table 8. Pattern Definition of Security Example 1
Pattern Recognition Framework

Generic
ID 876543

Name Lightweight devices without encrypted communication
Component Supercategory: Element to protect

Element Type WellbeingIoTDevice (Defibrillators (monitor cardiac conditions))
User Group Patients

Element category Choice: Leaf of Devices
HW Bluetooth Connection
SW Monitoring Service

Architecture layer Choice: Thing Layer
Location Choice: Local, Cloud

Disruption tolerance Choice: Temporary tolerant
Security Challenge

Intent Capture private information, Change of data on comm. way
Risk Theft of PII, Manipulate data and change analysis results

Classification Choice: Tampering
Attack Goal Choice: Capture, Manipulation

Assessment Information
Assessment Information Integrity

PII Cardiac Condition, Measurement values
Probable Direct Impacts Supercategory: Estimated Consequences

Impacts Choice: Functionality
Values 70% down

Indirect Impacts Impact on other health recommendations
Severity Choice: Critical

Security Requirements Choice: Confidentiality, Integrity, Manipulation Resistance, Pri-
vacy

14

After we conserved the knowledge of the security attack we define the implementa-
tion details to recognize the vulnerability (TABLE 9). The solution for our example 1
is based on the recommendation of [25]. They suggest prohibiting devices with weak
or no encryption algorithms the direct communication to a cloud. These devices should
use a field gateway as an intermediary. The field gateway will encrypt the data and
deliver them to the analytic cloud. Therefore, the pattern recognition uses an attribute
validation algorithm to check the types of used gateway. The included nodes are of
node types WellbeingIoTDevice, PhysicalConnection, Encryption and Gateway.
Node2Relation specifies the relations between the chosen node types. In addition, the
nodes must have corresponding attributes to be included in the pattern. Wellbe-
ingIoTDevices have to be of the deviceType: Defibrillator, whereas their PhysicalCon-
nections must use a Bluetooth protocol. If the encryptionType is undefined, the Gate-
ways have to be of the type FieldGateway. However, if the gatewayType is not of type
FieldGateway a vulnerable design is present.

Table 9. Pattern Definition of Security Example 1
Pattern Recognition Framework

Implementation
Solution Device with weak encryption algorithm has to use a field gateway

to connect with a cloud gateway
Implementation Supercategory: Required "Node X Attribute X Relation" Combi-

nation
Pattern Algorithm Attribute Validation

Node2Node Choice: WellbeingIoTDevice, PhysicalConnection, Encryption,
Gateway

Node2Relation Choice: physicalconnection, encryption, peereddevice
Node2Attribute Choice: deviceType: Defibrillator, protocol: Bluetooth, encryp-

tionType: undefined, gatewayType: FieldGateway
Flaw Flaw: gatewayType= not FieldGateway

After a pattern was defined to prevent security challenges like example 1, the pattern

will be transformed into the DSL. Following, we present a Xtext extract of an anti-
pattern for example 2 (Figure 6) and afterwards another snippet of the transformed ex-
ample 1 (Figure 7).

As mentioned above we define an anti-pattern for our safety example 2. This nega-
tive design decision plans multi-way authentication methods before enabling ambu-
lance calls. Therefore, we use the Xtext rule ‘SafetyAntiPattern’. Figure 6 shows the
transformed PRF for the Generic Part, Safety Challenge Part and Safety Assessment
Information Part. For the generic information the ID, name, component details and
the other categories were transformed. E.g. as an ambulance call corresponds to an act-
ing service of a mobile phone, a 3G connection is required and the affected layer is the
SensingActingLayer. The DSL also transformed the safety challenge information like
possible hazard (Help cannot be contacted in time) and classification of this (Loss of
Service). As last part of the knowledge conservation of our safety anti-pattern the as-
sessment information are transformed. As a service authentication implies confidenti-
ality changes this feature will be used for assessment. Depending on the used authenti-
cation method indirect impacted misuse of ambulance calls can happen. The implemen-
tation part of the anti-pattern specifies the hazardous design of 2-way authentications
connected with ambulance calls.

15

Fig 6. Defined Safety Anti-Pattern Xtext code example 2

 The same transformation has to be conducted for example 1. Figure 7 displays
the implementation part of our security pattern, whereas lines 52-66 show the condi-
tional pattern rule. As described above if a WellbeingIoTDevice with a Physical Blue-
tooth Connection has no defined Encryption then the Gateway has to be a FieldGate-
way, otherwise a flaw exists.

Fig. 7. Defined Security Pattern Implementation Xtext code example 1

Afterwards, the DSLs of example 1 and 2 are translated into pattern services, i.e.
flaw identification services, with Xtend to enable their automated usage. In addition,
they are stored in the pattern database.

Since the pattern definition process is finished, we are able to evaluate our last con-
cept step: The flaw identification and model optimization. Figure 8 shows our modelled
and analyzed AAL use case with all included physical entities, physical connections,
services, clouds, stakeholder, users and their relations among themselves. The elements

16

are colorized depending on their layer type. To optimize this model we apply our auto-
mated flaw identification process through the execution of the generated services with
Eclipse Sirius Services which highlight the vulnerable elements and their relations in
red color: The flaw identification services found the elements and relations
‘PhyCo_Hub2Defi’, ‘SHDefibrillator’ and ‘SHIoTHub’ as this design is not matching
our positive design pattern for IoT devices without adequate encryption types and the
used gateway type, as ‘SHIoTHub’ is not a field gateway. As well, identified weak-
nesses are e.g. ‘PhyCo_AmbulanceCall’, ‘Ambulance Call_Service’ and
‘SHSmartPhone’. As the service ‘Ambulance Call_Service’ requires a multi-way au-
thentication and endangers residents, this design matches our negative anti-pattern def-
inition of blocked ambulance calls.

After applying the pattern recognition the avoidable design decisions can be opti-
mized. The evaluation of our concept was conducted exemplarily on a medical use case.
However, the application of the framework is able be deployed in all domains of IoT to
optimize the design and identify design smells.

Fig. 8. Flaw identification within the AAL use case model

17

5 Conclusion

In the previous sections, we presented our approach to identify design flaws. While
section A, B and D are already realized, implemented and applied successfully, section
C is still in progress. Therefore, the next step of future work includes the change of
semi-automated code generation to a fully automated code generation process. In addi-
tion, to deal with safety and security flaws completely further action is required after
the identification. Therefore, future work should include also the assessment of design
flaws to evaluate the impacts or severity in detail for diverse quality attributes. Refer-
ence [19] already designed a first approach to assess model designs. For this purpose,
the approach will be adapted and extended in the future. In addition, to simplify the
analysis of already existing IoT systems and the extraction of their models, architecture
mining can be considered.

In this paper, we presented an approach to address the issue of safety and security
vulnerabilities in IoT systems. As IoT often is applied in safety- and security-critical
systems, like medical smart homes, the system must be optimized in the design phase
already. Therefore, we introduced our pattern recognition framework which enables the
preservation of design knowledge and the structured and automated way to identify
flaws in models. The framework consists of four steps. First, the patterns and anti-pat-
terns, which represent desirable or avoidable design, were defined in structured parts.
There are parts for generic details, for safety- or security specific information of chal-
lenges or assessments and for implementation details to consider the concrete elements
and their conditions. Second, a domain specific language was used to realize the defined
patterns and anti-patterns. To enable the automated detection of these patterns within
the IoT model, a code generation happened in the next step. The last step of our frame-
work represented the identification of vulnerabilities through the defined pattern recog-
nition services. The applicability of our approach was evaluated by an AAL use case.
Therefore, we were able to identify two vulnerable design decisions of the IoT system
before threats could occur.

Acknowledgment

Electronic Component and Systems for European Leadership (ECSEL) supported the
development of this approach within the project CPS4EU (Grant Agreement Number
826276).

References

1. S. R. Department, “Internet of Things (IoT) connected devices installed base worldwide
from 2015 to 2025,” 2020. [Online]. Available: https://bit.ly/38TUYgO. [Accessed: 25-Feb-
2020].

2. G. A. N. Gang and L. U. Zeyong, “Internet of Things Security Analysis,” 2011.
3. J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems the

Right Way. (Addison-Wesley Professional Computing Series). 2011.

18

4. J. Rauscher and B. Bauer, “Safety and security architecture analyses framework for the in-
ternet of things of medical devices,” 2018 IEEE 20th Int. Conf. e-Health Networking, Appl.
Serv. Heal. 2018, pp. 3–5, 2018.

5. RAPID7, “HACKING IoT: A Case Study on Baby Monitor Exposures and Vulnerabilities,”
2015. [Online]. Available: https://bit.ly/1JC9jfS. [Accessed: 24-Feb-2020].

6. FDA, “Cybersecurity Vulnerabilities Identified in St. Jude Medical’s Implantable Cardiac
Devices and Merlin@home Transmitter: FDA Safety Communication,” 2017. [Online].
Available: https://bit.ly/2qqkgiA. [Accessed: 18-Feb-2020].

7. M. Zhang, T. Hall, and N. Baddoo, “Code Bad Smells: a review of current knowledge,” J.
Softw. Maint. Evol. Res. Pract. 23.3, pp. 179–202, 2011.

8. M. Zanoni, F. Perin, F. A. Fontana, and G. Viscusi, “Pattern detection for conceptual schema
recovery in data-intensive systems,” J. Softw. Evol. Process, 2014.

9. P. A. Wortman, F. Tehranipoor, N. Karimian, and J. A. Chandy, “Proposing a Modeling
Framework for Minimizing Security Vulnerabilities in IoT Systems in the Healthcare Do-
main,” pp. 185–188, 2017.

10. W.-T. Lee and P.-J. Law, “A Case Study in Applying Security Design Patterns for IoT Soft-
ware System,” pp. 978–1, 2017.

11. J. Rauscher, B. Bauer, and M. Langermeier, “Characteristics of Enterprise Architecture
Analyses,” Proc. Sixth Int. Symp. Bus. Model. Softw. Des., pp. 104–113, 2016.

12. T. Sommestad, M. Ekstedt, and P. Johnson, “Combining defense graphs and enterprise ar-
chitecture models for security analysis,” Conf. EDOC 2008, pp. 349–355, 2008.

13. M. Ekstedt and T. Sommestad, “Enterprise architecture models for cyber security analysis,”
2009 IEEE/PES Power Syst. Conf. Expo., pp. 1–6, 2009.

14. P. Johnson, R. Lagerström, P. Närman, and M. Simonsson, “Extended influence diagrams
for enterprise architecture analysis,” EDOC, pp. 3–12, 2006.

15. EMF, “Eclipse EMF,” 2020. [Online]. Available: https://bit.ly/3bUNnjU. [Accessed: 24-
Feb-2020].

16. R. Gronback, Eclipse modeling project: a domain-specific language (DSL) toolkit. Pearson
Education, 2009.

17. Xtend/Xtext, “Xtend/Xtext,” 2020. [Online]. Available: https://bit.ly/2HQcaIc. [Accessed:
30-Jan-2020].

18. F. Carrez, “Internet of Things – Architecture IoT-A Deliverable D1.5-Final architectural
reference model for the IoT v3,” no. 257521, 2013.

19. P. Lohmüller, J. Rauscher, and B. Bauer, “Failure and Change Impact Analysis for Safety-
Critical Systems: Applied on a Medical Use Case,” Lect. Notes Bus. Inf. Process., 2019.

20. Microsoft, “Microsoft STRIDE,” 2007. [Online]. Available: https://bit.ly/37SKuwE. [Ac-
cessed: 17-Feb-2020].

21. M. J. Covington and R. Carskadden, “Threat implications of the Internet of Things,” Int.
Conf. Cyber Conflict, CYCON, pp. 1–12, 2013.

22. D. R. Wallace and R. D. Kuhn, “Failure Modes in Medical Device Software: an Analysis of
15 Years of Recall Data,” Int. J. Reliab. Qual. Saf. Eng., vol. 08, no. 04, pp. 351–371, 2001.

23. Department of Defense USA, “Department of Defense Standard Practice System Safety
Amsc,” Mctechsystems.Com, no. February 2000, pp. 1–98, 2012.

24. IEC, “Standard 62304, Medical device software — Software life cycle processes,” 2006. .
25. Microsoft, “Microsoft Azure IoT Reference Architecture,” pp. 1–61, 2018.
26. A. Dohr, et al. "The internet of things for ambient assisted living." 2010 seventh international

conference on information technology: new generations. IEEE, 2010.
27. G. Pires, et al. "VITASENIOR-MT: a telehealth solution for the elderly focused on the in-

teraction with TV." 2018 IEEE 20th Healthcom, IEEE, 2018.

