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1. Introduction

The ground state of a many-body Hamiltonian may pass through a transition between phases
with very different properties under a change of model parameters. This process is usually accom-
panied by the symmetry change of ground states on both sides of the transition, the phenomenon
known as the spontaneous symmetry breaking. The phase with the lower symmetry is characterized
by the emergent macroscopic ordering of elementary building blocks of the system, technically
captured by an order parameter. Phenomenological models describing the physics of the symmetry
broken phase in terms of order parameters have proven very successful in the description of
various thermal and quantum phase transitions. In these models, critical parameters at which phase
transitions occur correspond to emergent non-trivial potential minima. They can be approached
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by variational techniques, which lead to a set of mean-field equations for all order parameters.
Sometimes, the ground states of a system are not uniquely determined by the order parameter
alone, as they may have additional topological ordering [1–3]. An important observation is that dif-
ferent phases of a degenerated ground state may be described by different topological field theories.
Usually in condensed matter physics the emergence of the topological Chern–Simons excitations has
not been considered in the broader context of symmetry breaking and phase transitions. To some
extend, this is the case for superfluid Helium, where 3He − A phase exhibits also a spontaneous
time reversal symmetry breaking among other spontaneously broken symmetries [4–6].
The phase of the wave function can play a crucial role for the properties of the related physical
system [7,8]. In particular, if this phase is associated with a topological invariant through the wind-
ing number, it may describe robust macroscopic properties. Examples in condensed matter physics
are the quantized Hall conductivity of electrons in 2d [2,3,9–14] and in quasi 1d structures [15].
Another example is the quantized transverse conductance of the supercurrent in the 3He − A-
phase of superfluid liquid Helium [4–6], and quantized conductivities of different anomalous Hall
effects [16–19]. In general, topological structures in 2 + 1-dimensional gauge field theories are
related to Chern–Simons terms, where the coefficient in front of the latter is related to a topological
invariant [20–25].
The idea that dynamical lattice degrees of freedom can be treated as effective gauge fields is
not new [26,27]. Here we study a system of monochromatic phonons minimally coupled to Dirac
fermions in 2D. As the electron–phonon coupling strength increases the system should approach a
transition into the structurally different phase. Our intention is to identify possible gapped phases,
the corresponding quasiparticles and observables. The connection with tight-binding models will
help us to link these phases to different lattice distortions, which lead to the formation of spectral
gaps with broken time reversal and sublattice symmetries. To emphasize the similarity of phonons
and gauge fields we consider the E1-optical phonon mode of a honeycomb lattice which represents
individual vibrations of the sublattices in opposite directions [28,29]. The number of modes is
therefore naturally restricted to 2 and there is no time-like component of the effective gauge field.
This resembles the popular in electrodynamics “light cone” gauge fixing n̂ · A⃗ = 0, with n̂ denoting a
unit vector pointing into the time direction [1]. It was shown in [30,31] that in such systems phonon
Chern–Simons excitations can be generated.

2. The model

The properties of tight-binding Hamiltonians which describe the motion of electrons on the
honeycomb lattice are well known and investigated in detail in the existing literature [32,33]. In
sublattice representation it reads

Hel =

∑
r,r′

h1;rr′c
†
r · σ1cr′ +

∑
r,r′

h2;rr′c
†
r · σ2cr′ =

∑
r,r′

c†
r · H0;rr′cr′ , (1)

with the Pauli matrices σµ reflecting the sublattice degree of freedom. The hopping matrix elements
are

h1;rr′ = −
t
2

∑
i=1,2,3

δr′,r+ai
+ δr,r′+ai

, (2)

h2;rr′ = −
t
2i

∑
i=1,2,3

δr′,r+ai
− δr,r′+ai

, (3)

where t denotes the hopping amplitude and {ai}i=1,2,3 are the nearest neighbor basis vectors on
a lattice. The Fourier components of the hopping matrices read h1(p) = −t

∑
i=1···3 cos(p · ai) and

h2(p) = −t
∑

i=1···3 sin(p · ai), and which gives for the kernel of the Hamiltonian

H0(p) = h1(p)σ1 + h2(p)σ2. (4)

The tight-binding Hamiltonian Eq. (1) is symmetric under time reversal HT
el = Hel, which translates

into the Fourier space as

H∗

0 (−p) = H0(p), (5)
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with the complex conjugation acting only on the sublattice space. A spectral gap appears in the
Hamiltonian in the form of the Dirac mass parameter [33] m

∑
r

c†
r σ3cr, and does not affect the

property (5).
The dynamics of two-component (in-plane) monochromatic phonons is governed by

Hph =

∑
µ=1,2

∑
r

1
2
(P2
µ;r + ω2A2

µ;r), (6)

with dispersionless frequency ω and operators of canonical momentum (P) and position (A)

Pµ;r = i
√
ω

2

∑
q

bµ,qe
iq·r

− b†
µ,qe

−iq·r] , (7)

Aµ;r =
1

√
2ω

∑
q

bµ,qe
iq·r

+ b†
µ,qe

−iq·r] , (8)

expressed in terms of bosonic operators bµ,r(b
†
µ,r) which annihilate (create) a phonon at position r.

Phonons interact with electrons via attachment to the lattice bonds

HI = U
∑
µ=1,2

∑
r

c†
r · Aµ;rσµcr, (9)

whereas the coupling parameter U can in principle be time dependent and describe a periodic
driving. In doing this one can open up new directions toward physics of emergent dynamical Floquet
topological phases [34,35] or non-equilibrium superconductivity [36–38].

2.1. Functional integral representation

The coherent state functional integral representation of the zero temperature partition function
corresponding to the model Hamiltonian

H = Hel + Hph + HI (10)

reads

Z =

∫
D[ψ†, ψ, A] exp{−S[ψ†, ψ, A]}, (11)

with the Euclidean lattice action

S[ψ†, ψ, A] = Sel[ψ
†, ψ] + Sph[A] + SI[ψ

†, ψ, A]. (12)

The elements of the action are

Sel[ψ
†, ψ] =

∑
r,r′

∫
dτ ψ†

r (τ )[∂τσ0 + H0;rr′ ]ψr′ (τ ), (13)

Sph[A] =
1
2

∑
µ=1,2

∑
r

∫
dτ

{
[∂τAµ;r(τ )]

2
+ [∇rAµ;r(τ )]

2
+ ω2A2

µ;r(τ )
}
, (14)

SI[ψ
†, ψ, A] = U

∑
µ=1,2

∑
r

∫
dτ Aµ;r(τ )ψ

†
r (τ )σµψr(τ ). (15)

Here ψ = (ψ1, ψ2) represents a two-component time and position dependent Grassmann spinor
with the component index referring to the sublattice. In this representation, the model resembles
the standard two-dimensional Su–Schrieffer–Heeger (SSH) model of electron–phonon interac-
tion [39] with phonons coupling to the electron currents [40,41]. In contrast to the conventional
SSH model our phonons are dispersionless, which allows us to make the crucial approximation by
dropping the kinetic term (∂τAµ)

2
+ (∇rAµ)

2. The physical picture of this approximation consists
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in neglecting the slow dynamics of heavy lattice ions due to thermal fluctuations close to the
absolute zero of temperature in comparison to the induced dynamics due to the interaction with
band electrons. This approximation is justified only if phonons have a relatively large spectral gap,
which is the case for optical phonon branches of honeycomb lattices [29,42–44].

2.2. Effective low-energy model

The low-energy part of the spectrum of H0 defined in Eq. (4) is characterized by two Dirac cones
at K

±
, which represent Fermi quasiparticles with different chiralities and introduces an additional

discrete degree of freedom into the model. This requires operating in the space of 4 × 4 complex
matrices Σij = σi ⊗ σj, i, j = 0, 1, 2, 3. In total there are 15 traceless matrices corresponding to
a particular representation of the group of SU(4)-transformations and a 4-dimensional unit matrix
Σ00. For any complex 4 × 4-matrix Q there is a unique decomposition Q = QijΣij. Using this
notation the effective low-energy Hamiltonian reads

HW(p) = p1Σ01 + p2Σ32. (16)

A reasonable translation of the property (5) for the low-energy Hamiltonian is Σ02H
T
W(−p)Σ02 =

HW(p) for the time reversal and Σ33HW(p)Σ33 = −HW(p) for the sublattice (or chiral) symme-
try [45].

While in the lattice model defined in the previous paragraph, the phonon field is attached to
the lattice bonds, in low-energy approximation it is attached to each sublattice and accounts for
the scattering between both Dirac nodes. This is dictated by the properties of the C6v group [28,31]
and models the E1-in-plane optical modes. The spectrum of these modes reveals a weak alteration
over the entire Brillouin zone [29,42,43], which makes it possible to model them in the form
of dispersionless monochromatic lattice vibrations. The effective low-energy Hamiltonian which
describes the Dirac fermions coupled to the in-plane phonons in 2D reads

H = i∂⃗ · j⃗ + A⃗ · Π⃗, (17)

where we assembled two particular subsets with twoΣ-matrices each to vectors j⃗ = {Σ01,Σ32} and
Π⃗ = {Σ13,Σ20}. The set j⃗ couples to the kinetic energy of fermions, while Π⃗ to the two-component
phonon field A⃗. The corresponding Euclidean action becomes:

S[A, ψ†, ψ] =
1
2g

A⃗ · A⃗ + ψ†
·
[
∂τΣ00 + H

]
ψ, (18)

where ψ = (ψ11, ψ12, ψ21, ψ22)
T are the complex Grassmann fields with the first index referring to

the sublattice and the second to the respective Dirac point, and H is given in Eq. (17). The coupling
constant g ∼ U2/ω2 is related to the inverse frequency of monochromatic phonons [28,30]. The
correlation functions of currents can be obtained from the generating functional

W[A] = log⟨exp{−S[A]}⟩
ψ†ψ,A (19)

by repeating variations with respect to the fields A = {α⃗, β⃗}, S[A] is the action (18) augmented by
an auxiliary source term

ψ†
[α⃗ · j⃗ + β⃗ · Π⃗]ψ = α⃗ · J⃗ intra + β⃗ · J⃗ inter (20)

with introduced intranodal and internodal current operators

J⃗ intra = j⃗ = {Σ01,Σ32}, J⃗ inter = Π⃗ = {Σ13,Σ20}. (21)

The averaging operator ⟨· · ·⟩
ψ†ψ,A denotes the functional integration over all degrees of freedom.

Field α is the external gauge field while field β could be an external mechanical modulated
strain field. Particularly interesting for symmetry broken phases are non-vanishing average currents
(µ = 1, 2)

J̄ intraµ,r = −
δ

δαµ,r A=0

W[A], (22)



                                                   5

J̄ interµ,r = −
δ

δβµ,r A=0

W[A]. (23)

Following the procedure developed in Ref. [31], we integrate out the bosonic field A⃗, which creates
a four-fermion interaction term. The latter can be decoupled anew by 4 × 4 matrix fields Q:

1
2g

A2
µ + Aµψ

†Πµψ → −
g
2

(
ψ†Πµψ

)2
=

g
2
tr

(
Πµψψ

†)2
→

1
2g

trQ2
µ + iψ†QµΠµψ, (24)

where the summation over µ = 1, 2 is understood and the decoupling field decomposes as
Qµ = Qij

µΣij. The full action in this representation reads

S[Q, ψ†, ψ] =
1
2g

trQ2
µ + ψ†

·
[
G−1
0 + iQµΠµ

]
ψ, G−1

0 = ∂τΣ00 + i∂⃗ · j⃗. (25)

Now we can integrate out the fermions to arrive at the bosonic action

S[Q] =
1
2g

trQ2
µ − tr log

[
G−1
0 + iQµΠµ

]
. (26)

3. Saddle-point analysis

3.1. Effective potential

In simplest mean field approximation we replace quantum fields Qµ in action (26) by corre-
sponding spatially uniform classical background fields Mµ

Veff =
1
2g

trM2
µ − log det

[
G−1
0 + iMµΠµ

]
. (27)

To provide a spectral gap, the gap parameter must couple to a matrix which does not commute
with the low-energy Hamiltonian HW in Eq. (16). Technically this prevents singularities on the
real axis in the Green’s functions. This restricts our freedom to M1 = (∆Σ01 + mΣ20)/2 and
M2 = (∆Σ32 − mΣ13)/2, such that

iMµΠµ = mΣ33 +∆Σ12, (28)

which indeed anticommutes with HW. There are two further matrices which anticommute with HW:
Σ03 and Σ22. It is easy to see though, that the self-consistent equations for the respective order-
parameters are unstable. For Σ03 this is demonstrated in Ref. [31], while the case of Σ22 is ruled
out in Appendix A.

The minus sign between both terms in Eq. (27) suggests a competition between them. For small
g the first term dominates and the effective potential has the shape of a convex hull as it is shown
in the left panel of Fig. 1. As the interaction becomes larger, both terms become comparable in
size until the second term destroys the convexity of the potential. The determinant can be readily
evaluated giving

log det
[
G−1
0 + iMµΠµ

]
=

∫
d3Q
(2π )3

log
[
∆4

+ 2∆2(Q 2
− m2) + (Q 2

+ m2)2
]
, (29)

where Q 2
= q20 + q2. The argument of the logarithm is not indifferent to the interchange of m and

∆, which suggests the anisotropy of the potential. All integrals diverge and we need to perform
the integrations up to a spherical cutoff. The potential landscape plotted in the right panel of Fig. 1
reveals a high, yet discrete symmetry. Visually one observes four angular minima, corresponding
to two stable phases with degenerated vacua separated from each other by potential walls. On
the ridge of the potential one recognizes a fourfold degenerated saddle point like structure, which
corresponds to the unstable states with strong tendency to decay in one of both stable phases. The
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Fig. 1. Left panel: Low-energy landscape of the mean-field free energy for g/gc < 1 with the only minimum at m = 0 = ∆.
Right panel: Low-energy landscape of the mean-field free energy with visible barriers between stable phases. The model
parameter is chosen to give γ = g/gc ∼ 3.5.

∆- and the m-phase are associated with extra terms in the tight-binding Hamiltonian (1) in real
space representation:

HTB;rr′ +∆σ2 cos(G · r)δr,r′ , (30)

where G = K+ − K−, and

HTB;rr′ + imσ3
3∑

j=1

(δr′,r+cj − δr′,r−cj ), (31)

{cj}j=1,2,3 denoting nearest neighbor basis vectors on one sublattice [9,46]. The ∆-phase is charac-
terized by a strain field which modulates with the nodal wave vector G (modulated strain phase),
while the m-phase is a flux phase that is commensurate with one sublattice (Haldane phase). Both
phases are subject to time reversal and sublattice symmetry breaking.

The minima corresponding to both phases are equally deep, i.e. the phases are evenly likely to
emerge. A natural question to ask is therefore, if this observation points to a possible symmetry
between both phases. Then there would be a unitary transformation which maps one vacuum on
another and vice versa. It is indeed possible to construct a unitary transformation which transforms
Σ12 on Σ33, i.e.

T †Σ12T = Σ33. (32)

Explicitly we get

T †
=

1
2

⎛⎜⎝ 1 −i 1 −i
1 i 1 i
1 −i −1 i
1 i −1 −i

⎞⎟⎠ , T =
1
2

⎛⎜⎝ 1 1 1 1
i −i i −i
1 1 −1 −1
i −i −i i

⎞⎟⎠ . (33)

The transformation T † is not a symmetry of the bare electronic Hamiltonian, nor of the mean-field
Hamiltonian, but because of its unitarity leaves the eigenvalues unchanged.

Technically, the simplest way to break the symmetry between both stable ground states is by
a perturbation which anticommutes with the bare electronic Hamiltonian Eq. (16). This property
guaranties, that the determinant of the perturbed Hamiltonian remains rotationally invariant which
greatly simplifies the calculations. If the perturbation mimics the order parameter, i.e. it couples
either to Σ12 or Σ33 matrix, playing the role of the remanent density of respective fields, then
the strain phase (order parameter ∆) is energetically more preferable and even the Z2-symmetry
between the both minima is violated, as it can be seen in the right panel of Fig. 2. The two other
possible perturbations couple to either Σ03 or Σ22 and favor the flux phase (order parameter m).
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Fig. 2. Two examples for broken symmetry between both ground states. Upper row, left panel: Two perturbations which
anticommute with the bare electronic Hamiltonian make the ∆-phase less pronounced compared to the m-phase. They
couple to matrices Σ03 (staggered chemical potential) and Σ22 . Upper row, right panel: The situation which favors the
∆-phase can be realized with two further perturbations which anticommute with the bare electronic Hamiltonian. The
couple to Σ33 and Σ12 phases. Depending on the sign of the perturbation, the degeneracy between the two symmetric
minima is lifted as well.

In this case the Z2-degeneracy of the ground state remains present, cf. left panel of Fig. 2. On the
lattice the corresponding contributions to the Hamiltonian are: if Σ03 is chosen

δH (1)
p = u1σ3δr,r′ , (34)

and if Σ22

δH (2)
p = iu2σ2 sin(G · r)δr,r′ , (35)

where G = K+ − K−.

3.2. Solution of the saddle-point equations

A more detailed picture of the symmetry breaking follows from the solutions of mean field
equations. They are obtained if potential (27) is varied with respect to Mα:

Mα = igΠα

[
G−1
0 + iMµΠµ

]−1

rr
. (36)

Inserting the order parameter matrix in (36), performing the frequency integration from −∞ to
+∞ and the radial integral up to the cutoff Λ, related to the band width we get

m ±∆ = γ (m ±∆)
[√

1 + (m ±∆)2 − |m ±∆|

]
, (37)

where γ = gΛ/2π and m and ∆ are rescaled in units of Λ. First we notice that m = ∆ might be a
solution for both + , as well as trivially for − sign. This also includes m = 0 = ∆ case. For + sign,
the non-trivial solutions are extracted from

1 = γ [

√
1 + 4m2 − 2|m|], (38)

which exists only if the interaction strength exceeds a critical value of the order of inverse band
width γ = g/gc ⩾ 1, gc = 2π/Λ

|m| = |∆| =
γ 2

− 1
4γ

Θ(γ − 1). (39)

This solution corresponds to the state which is visible on the ridge of the phase separating walls in
Fig. 1. This state is stable only classically (mean-field) and is destroyed by quantum fluctuations as
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it will be shown below. Further solutions are there for m ̸= 0, ∆ = 0 and for m = 0, ∆ ̸= 0. For
∆-phase we get

|∆| =
γ 2

− 1
2γ

Θ(γ − 1), (40)

and the same for m-phase. These solutions correspond to the four angular minima visible in Fig. 1.
They turn out to be stable against quantum fluctuations as well.

4. Quantum fluctuations

Expanding Eq. (26) to the second order in the fluctuations around ground states of respective
phases we get

SG[Q] = tr
1
2g

Q2
µ −

1
2
GQαΠαGQβΠβ , (41)

which can be brought further into the conventional quadratic form

SG[Q] =

∫
d3P
(2π )3

Q⃗1
Q⃗2

T

P

A B
C D

P

Q⃗1
Q⃗2 −P

(42)

with the vector fields

Q⃗i =
(
Q00

i ,Q
01
i ,Q

02
i ,Q

03
i ,Q

10
i ,Q

11
i ,Q

12
i ,Q

13
i ,Q

20
i ,Q

21
i ,Q

22
i ,Q

23
i ,Q

30
i ,Q

31
i ,Q

32
i ,Q

33
i

)
,

i = 1, 2.
(43)

The kernel matrix of the quadratic form, (i.e. inverse bosonic propagator matrix)

Π −1(P) =
A B
C D

P
(44)

is a 32 × 32 matrix, i.e., each matrix block itself is a 16 × 16 matrix. In accord with the intuitive
picture drawn from the analysis of the effective potential, the momentum-independent terms in
Gaussian action (42) (which are commonly called the Proca matrices) of both m-phase and ∆-phase
are indeed strictly positive, while in the mixed phase between them with m = ∆ ̸= 0 found
in Eq. (39) there are negative eigenvalues, rendering this phase unstable, cf. Appendix B. Because
the Proca matrix has no zero eigenvalues the kernel matrix in (42) can be inverted even for zero
momentum. An astonishing fact about the Proca matrices is that some of their elements sum up
to multiples of γ−1, cf. Appendix B. In calculating the Hall conductivities, Proca matrices guarantee
the convergence of the functional integral but their elements do not appear in the ultimate result.

In exploring the structure of the gradient expansion we restrict our analysis to the linear terms
only. In the usual three-dimensional electrodynamics it is referred to as the induced Chern–Simons
terms [20–23]. These terms have several important properties: they are odd under time-reversal and
because they are not associated with any length scale they represent pristine topological excitations
with both scale and conformal invariance. Because of these qualities they are believed to represent
the effective field theoretical description of the quantum Hall effect [13]. In our formalism things
are getting more involved. At first glance the frequency dependent part of what is going to become
the Chern–Simons tensor reads

S(0)
CS =

∫
d3P
(2π )3

p0Q
ab
µ,PQ

αβ

ν,−P Pµνab|αβ , (45)

where

Pµνab|αβ =
i
2
Tr

∫
d3Q
(2π )3

G(Q )ΣabΠµG(Q )G(Q )ΣαβΠν (46)

=
i

32π
Tr

{
Σ̂

(
ΣabΠµΣαβΠν −ΣαβΠνΣabΠµ

)}
, (47)
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with Σ̂ = sgn(m)Σ33 in m-phase and Σ̂ = sgn(∆)Σ12 in ∆-phase. For spatial components we get
at first

SCS =

∫
d3Q
(2π )3

Qab
µ,PQ

αβ

ν,−P pi · T
i,µν
ab|αβ , (48)

where

T i,µν
ab|αβ =

1
2
Tr

∫
d3Q
(2π )3

G(Q )ΣabΠµG(Q )jiG(Q )ΣαβΠν (49)

= −
1

32π
Tr

{
Σ̂

(
ΣabΠµjiΣαβΠν −ΣαβΠν jiΣabΠµ

)}
. (50)

A decisive simplification of the above expressions becomes possible with the knowledge of certain
distinct features of Σ-matrices. The full set of 16 Σ-matrices subdivides into four subsets of four
matrices each, with three of them anticommuting among each other and the fourth commuting with
all. Calling them Λa

i with a = 1, 2, 3, 4 and i = 0, 1, 2, 3 and imposing the normalization condition
Tr[Λa

0Λ
a
1Λ

a
2Λ

a
3] = 4 for all a, the subsets become

Λ1
= {iΣ00,−Σ01,−Σ32,−Σ33}, Λ

2
= {−iΣ21,Σ20,−Σ13,Σ12}, (51)

Λ3
= {Σ30,−iΣ31, iΣ02,−iΣ03}, Λ

4
= {−iΣ11,Σ10,Σ23,−Σ22}. (52)

One recognizes that Λ1 and Λ2 include vectors j⃗ and Π⃗ of the model defined in (17). Linear terms
of gradient expansion of the action (41) in both phases can be brought into the form structurally
similar to the conventional Chern–Simons terms. The crucial difference is that rather than in terms
of single components of Q-fields, the Chern–Simons-like structures appear in terms of

Λa
i = Tr[Λa

i (QµΠµ)] (53)

for each set Λa. In m-phase it resembles the conventional Chern–Simons terms, giving one Chern–
Simons term for each set

Sm
CS = SmϵijkΛ

a
i · i∂jΛ

a
k, (54)

where the dot-product implies the integration over the entire 3d space–time, i, j, k = 0, 1, 2, and
Sm = sgn(m)/64π . The fact that in Eq. (54) the derivatives with respect to spatial degrees of
freedom appear alongside with the temporal can be interpreted as the restoration of the full gauge
invariance, which formally lacks in action Eq. (18) [30].

For the ∆-phase we get two morphologically different terms. The first one resembles the
generalized multi-field Chern–Simons term [25]

S∆CS = S∆ϵijkKabΛ
a
i · i∂jΛ

b
k, (55)

where upper indices run only over a, b = 1, 2 and diagonal elements of symmetric tensor K are zero.
Effectively it connects the intranodal and internodal currents with each other. The two remaining
matrix sets Λ3 and Λ4 interact with each other in an unexpected way

S̃∆CS = S∆Kab

[
Λa

3 · i∂iΛ
b
i − Λb

i · i∂iΛ
a
3

]
, (56)

where i = 0, 1, 2 and a, b = 3, 4. The two terms (55) and (56) are hardly discussed in context of
induced Chern–Simons terms [13,23]. From Eq. (54) and (55) it is possible to construct a generalized
Chern–Simons-like tensor for both phases. For this we retain only two Pauli sets Λ1 and Λ2 which
are connected to the effective model (17) in the sense that they contain both intra- and internode
currents. With α, β = 1, 2 we can combine them in one single expression

SCS = ϵijkTcdΛ
c
i · i∂jΛ

d
k, (57)

where the diagonal elements of the symmetric tensor Tcc = sgn(m)/64π and non-diagonal ones
Tcd = sgn(∆)/64π . Together with the Proca matrices of respective phases given in Appendix B,
Eq. (57) is used to calculate the topological response function specific to each identified phase.
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4.1. Generalized Hall response

We introduce a generalized current–current correlation function

⟨Jcx,µJ
d
y,ν⟩ψ†ψ,A =

δ

δAd
y,ν

δ

δAc
x,µ A=0

W[A], (58)

where ⟨· · ·⟩
ψ†ψ,A denotes the normalized functional integration with respect to the action in Eq. (18)

and W[A] the generating functional of current–current correlator functions defined in Eq. (19). The
lower current indices refer to the position and time coordinates of the local current on the lattice
(x, y) and to their spatial direction (µ, ν). Upper indices (a, b) refer to the type of the current and
distinguish between inter- and intranode currents. The index combination c = d = 1 corresponds
to the correlator of usual intranodal currents,

⟨(ψ†jµψ)x(ψ
†jνψ)y⟩ψ†ψ,A →

1
4γ 2 ⟨Tr

(
jµΠaQa

)
x
Tr

(
jνΠbQb

)
y⟩Q →

1
4γ 2 ⟨Λ1

µ,xΛ
1
ν,y⟩G, (59)

where in the second term we brought it into the Q-matrix representation and introduced in the
third Λ-notation according to Eq. (53). The operator ⟨· · ·⟩Q denotes the average over the non-
linear action Eq. (26) while ⟨· · ·⟩G over its Gaussian approximation Eq. (41). In the same manner
we recognize that c = d = 2-case represents the correlator internodal currents. The response in
the ∆-phase with c = 1, d = 2 and vice versa represents correlators over products of an intra- and
an internodal current flowing in perpendicular directions. With all four terms we get for Eq. (58)

⟨Jcx,µJ
d
y,ν⟩ψ†ψ,A ≈

1
4γ 2 ⟨Λc

µ,xΛ
d
ν,y⟩G . (60)

The physical content of this correlator is simple: We create a local current density of the sort c at
position x in direction µ. Then we measure the local current of type d at position y in direction ν.
This suggests that not only correlators between pairs of intra-(inter-)node currents are possible, but
also mixed correlators of the type ⟨J intrax,µ J intery,ν ⟩. With explicit knowledge of Proca matrices for each
phase and of the generalized Chern–Simons term Eq. (57), the correlator of each two currents can
be evaluated giving to linear order in gradient expansion, cf. Appendix C

1
4γ 2 ⟨Λc

i,rΛ
d
j,r ′⟩G = 32Tcdiϵijk∂kδ(r − r ′). (61)

In deriving this expression we used the fact that some elements of the Proca matrices sum up to
multiples of γ−1. This means that while the presence of the Proca matrix is absolutely indispensable
in order to carry out the functional integration over the Q-fields, its elements do not appear in the
correlator.

The current–current correlator is related to the Hall conductivity via the Kubo formula [47]

σ̄ cd
µν = lim

ω→0

2π
ω

∫
d3x

[
e−iω(x0−y0) − 1

]
⟨Jcx,µJ

d
y,ν⟩ψ†ψ,A. (62)

Going through the algebra we ultimately find

σ̄ cd
µν = 64πTcdϵµν . (63)

Diagonal elements of (63) give the quantized response sgn(m)ϵµν in the m-phase and the two off-
diagonal components give the quantized response sgn(∆)ϵµν of the∆-phase. c = d = 1 corresponds
to the usual intranodal Hall conductivity of two Dirac cones, while c = d = 2 represents the
average of two internodal currents, which gives the internodal Hall conductivity. The response in
the ∆-phase with c = 1, d = 2 and vice versa represents the averages over products of an intra-
and an internodal current flowing in perpendicular directions, which too has a quantized response.



                                                   11

5. Discussions

The low-energy behavior of free fermions on the honeycomb lattice is determined by separated
spectral nodes. Because of these one can distinguish between currents directly linked to each node,
i.e. the intranodal currents, and those between the nodes, i.e. the internodal currents. The system
of such fermions coupled to the in-plane phonons can be formally interpreted as a gauge field
theory. At sufficiently large electron–phonon interaction strength a transition into a structurally
different lattice phase takes place, as visualized in Fig. 1. We identify two distinct ground states with
order parameters which break both the time reversal and the sublattice symmetries. The effective
phonon model exhibits the Chern–Simons-like terms in both phases with coefficients related to
quantized Hall conductivities. A similar effect of spontaneous time-reversal symmetry breaking was
previously discussed for a time-periodic driven quantum system, where also a topological state
with non-zero Chern numbers was observed [34]. The similarity of the two cases is reflected by the
mean-field Hamiltonian (30), which agrees with the effective Floquet Hamiltonian in low energy
approximation [34,35]. This indicates that the time-dependent phonon field plays a similar role as
a time-periodic driving field.
For the experimental observation of the proposed effects we suggest the following setup: the
measurement could be performed on a suspended tightened graphene sample which must be
sufficiently flat in order to rule out disorder due to ripples and out-of-plane phonon modes. The in-
plane phonon modes could be generated mechanically by applying modulated strain with variable
frequency on the sample and by adjusting carefully the strain frequency to the energy of the
E1- mode. Estimations based on ab-initio calculations vary between 0.15–0.2 eV [28,43], which is
well within the range of infrared Raman scattering technique [44]. In order to measure the Hall
conductivities a weak electric gradient should be applied to the sample. In the case of the ∆-
phase, both electric and strain fields should be applied in the same direction to create the proposed
quantized response.
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Appendix A. Exclusion of ∆2 parameter

Using the ansatz

M1 =
∆1

2
Σ01 − i

∆2

2
Σ31 +

m
2
Σ20, M2 =

∆1

2
Σ32 − i

∆2

2
Σ02 −

m
2
Σ13, (A.1)

with which

M = iMµΠµ = mΣ33 +∆1Σ12 +∆2Σ22. (A.2)

we get to the set of mean-field equations

Mα = igΠα

[
G−1
0 + M

]−1
rr . (A.3)

Projecting both sides on the subspaces of the composite order parameter we get for each α

m =
g
2
TrΣ33

[
G−1
0 + M

]−1
rr , (A.4)
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∆1 =
g
2
TrΣ12

[
G−1
0 + M

]−1
rr , (A.5)

∆2 = −
g
2
TrΣ22

[
G−1
0 + M

]−1
rr , (A.6)

which becomes after inverting the inverse propagator matrix

m = 2mg
∫

d3Q
(2π )3

q20 + q2 + m2
−∆2

1 −∆2
2

m4 + 2m2(q20 + q2 −∆2
1 −∆2

2) + (q20 + q2 +∆2
1 +∆2

2)2
, (A.7)

∆1 = 2∆1g
∫

d3Q
(2π )3

q20 + q2 − m2
+∆2

1 +∆2
2

m4 + 2m2(q20 + q2 −∆2
1 −∆2

2) + (q20 + q2 +∆2
1 +∆2

2)2
, (A.8)

∆2 = −2∆2g
∫

d3Q
(2π )3

q20 + q2 − m2
+∆2

1 +∆2
2

m4 + 2m2(q20 + q2 −∆2
1 −∆2

2) + (q20 + q2 +∆2
1 +∆2

2)2
. (A.9)

If there are any mutually independent non-trivial solutions for ∆1 and ∆2 then they follow from

1 = 2g
∫

d3Q
(2π )3

q20 + q2 − m2
+∆2

1 +∆2
2

m4 + 2m2(q20 + q2 −∆2
1 −∆2

2) + (q20 + q2 +∆2
1 +∆2

2)2
, (A.10)

1 = −2g
∫

d3Q
(2π )3

q20 + q2 − m2
+∆2

1 +∆2
2

m4 + 2m2(q20 + q2 −∆2
1 −∆2

2) + (q20 + q2 +∆2
1 +∆2

2)2
, (A.11)

i. e. only one of them can be true and they cannot be fulfilled together. The two possibilities are

∆1 = 0, ∆2 ̸= 0; (A.12)

∆2 = 0, ∆1 ̸= 0. (A.13)

The scenario of Eq. (A.13) is discussed in the main text. Here we consider the scenario of
Eq. (A.12), i. e. ∆1 = 0 and ∆2 = ∆ is finite. The system of Eqs. (A.7)–(A.9) reduces to

m = 2mg
∫

d3Q
(2π )3

q20 + q2 + m2
−∆2

m4 + 2m2(q20 + q2 −∆2) + (q20 + q2 +∆2)2
, (A.14)

∆ = −2∆g
∫

d3Q
(2π )3

q20 + q2 − m2
+∆2

m4 + 2m2(q20 + q2 −∆2) + (q20 + q2 +∆2)2
, (A.15)

which upon integrating the frequency and angles becomes

m =
g
8π

∫ Λ2

0
dq2

[
m −∆√

q2 + (m −∆)2
+

m +∆√
q2 + (m +∆)2

]
, (A.16)

∆ =
g
8π

∫ Λ2

0
dq2

[
m −∆√

q2 + (m −∆)2
−

m +∆√
q2 + (m +∆)2

]
. (A.17)

Summing and subtracting them we get

m +∆ =
g
4π

∫ Λ2

0
dq2

m −∆√
q2 + (m −∆)2

, (A.18)

m −∆ =
g
4π

∫ Λ2

0
dq2

m +∆√
q2 + (m +∆)2

. (A.19)

While the limit ∆ = 0, m ̸= 0 is well defined, another limit m = 0, ∆ ̸= 0 is not (left hand
side is negative, right hand side is positive) which suggests that the ∆-phase cannot exist alone. It
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remains to check the case of coexistence of both parameters, which arises as the solution of

m ±∆ = γ (m ∓∆)
[√

1 + (m ∓∆)2 − |m ∓∆|

]
, (A.20)

which appears after integrating the momenta and rescaling all quantities as m → Λm, ∆ →

Λ∆, γ = gΛ/2π . The expression in the squared brackets is positive, i. e. the full equation has
any sense only if the sign of m ±∆ and m ∓∆ are the same, which for positive m and ∆ suggests
|m| > |∆|. Below we assume both sides to be positive . Rewriting it as

m ±∆

γ
+ (m ∓∆)2 = (m ∓∆)

√
1 + (m ∓∆)2, (A.21)

and squaring both sides we get

1
γ 2 (m ±∆)2 = (m ∓∆)2 1 −

2
γ
(m ±∆) . (A.22)

Separating terms which are unique in the sign from those appearing with ± we find

m2
+∆2

γ 2 − 1 −
2m
γ

(
m2

+∆2)
−

4m∆2

γ 2 = ∓
2∆
γ

m
γ

+ m2
+∆2

+ γm 1 − 2
m
γ

,

(A.23)

which can only make sense if both sides vanish individually. Left hand side yields

∆2
= −m2 1 − γ 2

+ 2γm
1 − γ 2 − 2γm

, (A.24)

while right hand side gives

∆2
= −

m
γ

[1 + γ 2
− mγ ]. (A.25)

Equating both right hand sides yields

|m| =
1 − γ 4

4γ
, (A.26)

i. e. it is semi-positive if γ ⩽ 1 and predicts a non-physical phase for small γ . Moreover, plugging
it back yields for ∆

∆2
= −

1 − γ 4

16γ 2 γ 4
+ 4γ 2

+ 3
]
, (A.27)

which is negative for γ ⩽ 1. But this means that ∆ is imaginary which conflicts with the
requirement for the effective Hamiltonian to be Hermitian. Hence the order parameter ∆2 must
be excluded from the further consideration.

Appendix B. Structure of the Proca term

The Gaussian action is defined by Eq. (19) in the main part

SG[Q] = Q⃗r · Π −1
rr ′ Q⃗r ′ , (B.1)

where the real vector field Q⃗r = (Q⃗1, Q⃗2)
T
r

Q⃗i =
(
Q00

i ,Q
01
i ,Q

02
i ,Q

03
i ,Q

10
i ,Q

11
i ,Q

12
i ,Q

13
i ,Q

20
i ,Q

21
i ,Q

22
i ,Q

23
i ,Q

30
i ,Q

31
i ,Q

32
i ,Q

33
i

)
,

i = 1, 2.
(B.2)



14                                                    

The matrix D−1
rr ′ is different for each phase. Below we give Proca matrices for all phases.

1. m-phase:

Π −1(Q = 0) = M1

(
e1,1 + e4,4 + e10,10 + e11,11 + e17,17 + e20,20 + e26,26 + e27,27

)
+ M2

(
e2,2 + e9,9 + e24,24 + e31,31

)
+ M3

(
e3,3 + e8,8 + e12,12 + e15,15 + e18,18 + e21,21 + e25,25 + e30,30

)
+ M4

(
e5,5 + e14,14 + e19,19 + e28,28

)
+ M5

(
e6,6 + e7,7 + e13,13 + e16,16 + e22,22 + e23,23 + e29,29 + e32,32

)
− iD1

(
e1,32 + e4,29 + e6,27 − e7,26 + e10,23 − e11,22 − e13,20 − e16,17

− e17,16 − e20,13 − e22,11 + e23,10 − e26,7 + e27,6 + e29,4 + e32,1
)

− D2

(
e2,31 − e5,28 − e9,24 − e14,19 − e19,14 − e24,9 − e28,5 + e31,2

)
.

Explicitly, the matrix elements are

M1 =
2
γ

+
1

2
√
1 + m2

, M2 =
2
γ

+ 2m −
1 + 2m2

√
1 + m2

, M3 =
2
γ
,

M4 =
2
γ

− 2m +
1 + 2m2

√
1 + m2

, M5 =
2
γ

−
1

2
√
1 + m2

,

D1 =
1

2
√
1 + m2

, D2 = −2m +
1 + 2m2

2
√
1 + m2

.

(B.3)

The difference in comparison to representation in Ref. [31] is explained by the fact that some
of the matrix elements given there happen to vanish by integration. The matrix elements
fulfill following equalities:

M1 + M5 =
4
γ
, M1 − D1 =

2
γ

= M5 + D1 (B.4)

M2 + M4 =
4
γ
, M2 + D2 =

2
γ

= M4 − D2. (B.5)

The eigenvalues of the Gauss matrix for this case are

Em
1···28 =

2
γ
, Em

29,30 =
2(3 + γ 2)
γ + γ 3 , Em

31,32 =
2(γ 2

− 1)
γ + γ 3 . (B.6)

2. ∆-phase:

Π −1(Q = 0) = M1

(
e1,1 + e10,10 + e17,17 + e26,26

)
+ M2

(
e2,2 + e9,9 + e24,24 + e31,31

)
+ M3

(
e3,3 + e12,12 + e21,21 + e30,30

)
+ M4

(
e4,4 + e11,11 + e20,20 + e27,27

)
+ M5

(
e5,5 + e14,14 + e19,19 + e28,28

)
+ M6

(
e6,6 + e13,13 + e22,22 + e29,29

)
+ M7

(
e7,7 + e16,16 + e23,23 + e32,32

)
+ M8

(
e8,8 + e15,15 + e18,18 + e25,25

)
+ iD1

(
e1,32 − e7,26 + e10,23 − e16,17 − e17,16 + e23,10 − e26,7 + e32,1

)
+ D2

(
e2,31 − e9,24 − e24,9 + e31,2

)
+ D3

(
e3,30 + e12,21 + e21,12 + e30,3

)
− iD4

(
e4,29 + e6,27 − e11,22 − e13,20 − e20,13 − e22,11 + e27,6 + e29,4

)
+ D5

(
e5,28 + e14,19 + e19,14 + e28,5

)
.
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The matrix elements are

M1 =
2
γ

+
1

2
√
1 +∆2

, M2 =
2
γ

+ 2∆−
1 + 2∆2

√
1 +∆2

,

M3 =
2
γ

−∆+
∆2

√
1 +∆2

,

M4 =
2
γ

−∆+
1 + 2∆2

2
√
1 +∆2

, M5 =
2
γ

−∆+

√
1 +∆2,

M6 =
2
γ

+∆−
1 + 2∆2

2
√
1 +∆2

,

M7 =
2
γ

−
1

2
√
1 +∆2

, M8 =
2
γ
,

D1 = −
1

2
√
1 +∆2

, D2 = 2∆−
1 + 2∆2

2
√
1 +∆2

, D3 = ∆−
∆2

√
1 +∆2

,

D4 = −∆+
1 + 2∆2

2
√
1 +∆2

, D5 =

√
1 +∆2 −∆,

(B.7)

We notice following most important equalities which are fulfilled by the matrix elements:

M1 + M7 =
4
γ
, M1 + D1 =

2
γ

= M7 − D1 (B.8)

M4 + M6 =
4
γ
, M2 − D2 =

2
γ

= M4 − D4. (B.9)

The stability matrix has the following eigenvalues :

E∆1···26 =
2
γ
, E∆27,28 =

4
γ
, E∆29,30 =

4
γ + γ 3 , E∆31,32 =

2(γ 2
− 1)

γ + γ 3 . (B.10)

Last two eigenvalues are related to the order parameter of the phase ∆ in Eq. (17) in the
main part.

3. Coexisting phase m = ∆:

Π −1(Q = 0) = M1

(
e1,1 + e10,10 + e17,17 + e26,26

)
+ M2

(
e2,2 + e9,9 + e24,24 + e31,31

)
+ M3

(
e3,3 + e12,12 + e21,21 + e30,30

)
+ M4

(
e4,4 + e11,11 + e20,20 + e27,27

)
+ M5

(
e5,5 + e14,14 + e19,19 + e28,28

)
+ M6

(
e6,6 + e13,13 + e22,22 + e29,29

)
+ M7

(
e7,7 + e16,16 + e23,23 + e32,32

)
+ M8

(
e8,8 + e15,15 + e18,18 + e25,25

)
+ A1

(
e1,10 − e7,16 + e10,1 − e16,7 − ie1,23 + ie7,17 − ie10,32 + ie16,26

+ ie17,7 − ie23,1 + ie26,16 − ie32,10 + e17,26 − e23,32 + e26,17 − e32,23
)

+ A2

(
e2,9 + e9,2 − e2,24 + e9,31 − e24,2 + e31,9 − e24,31 − e31,24

)
+ A3

(
e3,30 + e12,21 + e21,12 + e30,3

)
+ iD1

(
e1,32 − e7,26 + e10,23 − e16,17 − e17,16 + e23,10 − e26,7 + e32,1

)
+ D2

(
e2,31 − e9,24 − e24,9 + e31,2

)
− iD3

(
e4,29 + e6,27 − e11,22 − e13,20 − e20,13 − e22,11 + e27,6 + e29,4

)
+ D4

(
e5,28 + e14,19 + e19,14 + e28,5

)
.

Each quantity in the Proca matrix means

A1 =
1 −

√
1 + 4m2

4
√
1 + 4m2

,
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A2 =
1
2

1 + 4m − 2
√
1 + 4m2 +

1
√
1 + 4m2

,

A3 = −
1

6m2

[
1 −

√
1 + 4m2 + 2m2

(√
1 + 4m2 − 2m

)]
.

Matrix elements A1···3 appear only as consequence of coexisting order parameters m and ∆.

M1 =
2
γ

+
1 +

√
1 + 4m2

4
√
1 + 4m2

,

M2 =
2
γ

+
1
2

4m − 1 − 2
√
1 + 4m2 +

1
√
1 + 4m2

,

M3 =
2
γ

+
1

6m2

[
1 −

√
1 + 4m2 + 2m2

(√
1 + 4m2 − 2m

)]
,

M4 =
2
γ

−
1

12m2

[
1 −

√
1 + 4m2 − 4m2

(√
1 + 4m2 − 2m

)]
,

M5 =
2
γ

− 2m +

√
1 + 4m2,

M6 =
2
γ

+
1

12m2

[
1 −

√
1 + 4m2 − 4m2

(√
1 + 4m2 − 2m

)]
,

M7 =
2
γ

−
1 +

√
1 + 4m2

4
√
1 + 4m2

,

M8 =
2
γ
.

where (and further on) m is defined in Eq. (17) in the main part.

D1 = −
1 +

√
1 + 4m2

4
√
1 + 4m2

,

D2 =
1
2

4m − 1 − 2
√
1 + 4m2 +

1
√
1 + 4m2

,

D3 = −
1

12m2

[
1 −

√
1 + 4m2 − 4m2

(√
1 + 4m2 − 2m

)]
,

D4 =

√
1 + 4m2 − 2m.

The stability matrix has following eigenvalues

E1···26 =
2
γ
, E27,28 =

4
γ
, E29,30 =

8
3γ

1 + 2γ
(1 + γ )2

, E31 =
2(γ 2

− 1)
γ + γ 3 (B.11)

the latter related to the order parameter defined in Eq. (17) in the main text. However, the
last remaining eigenvalue

E32 = −2 +
2
γ

(B.12)

is negative for all γ > 1.

Appendix C. Evaluation of the current–current correlator

Here we evaluate Eq. (61) for the case of usual electronic currents. This correlator is zero in the
∆-phase but finite in the m-phase, i.e. we have to chose c = d = 1 and i = 1, j = 2

1
4γ 2

(
Λ1

1,rΛ
1
2,r ′ =

4
γ 2

(
iQ12

1rQ
21
1r ′ − iQ21

2rQ
12
2r ′ − Q12

1rQ
12
2r ′ − Q21

2rQ
21
1r ′

)
. (C.1)
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Performing the functional integration we get
1

4γ 2 ⟨Λ1
1,rΛ

1
2,r ′⟩G

=
4
γ 2

∫
d3Q
(2π )2

eiQ (r−r ′) 1
2

Π 26,10(q0) + Π 7,23(q0) + iΠ 26,23(q0) − iΠ 7,10(q0)
]
,

(C.2)

where the factor 1/2 appears because of the Gauss integral, and the propagator is defined as inverse
kernel matrix from Eq. (42)

Π (Q ) =
A B
C D

−1

Q
. (C.3)

In m-phase we get to linear order in q0 via a direct evaluation

2
γ 2 Π 26,10(q0) + Π 7,23(q0) + iΠ 26,23(q0) − iΠ 7,10(q0)

]
≈ −sgn(m)

2
γ 2

q0
4π

(M1 + M5)
2

(M1M2 +∆2)2
(C.4)

= −sgn(m)
q0
2π
, (C.5)

where the equalities Eq. (B.4) were used. Hence we finally obtain for the correlator

1
4γ 2 ⟨Λ1

1,rΛ
1
2,r ′⟩G ≈ −

sgn(m)
2π

∫
d3Q
(2π )2

eiQ (r−r ′) q0 =
sgn(m)
2π

i∂τ δ(r − r ′). (C.6)

Calculating correlators for all index combinations and bringing them into a compact form we get
Eq. (61).
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