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Water waves in natural environments are typically broadband, nonlinear, and dynamic
phenomena. Taking concepts developed for slow light in optics, we address the challenge
of designing arrays to control the spatial distribution of wave energy, and amplify specific
frequencies from within target frequency bands at individual locations. Meter-scale wave-
flume experiments, in which incident waves interact with a chirped array of eight vertical
cylinders, demonstrate significant amplifications over a broad frequency range, as predicted
numerically and theoretically.
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I. INTRODUCTION

The ability of chirped (or graded) arrays to create slow light or sound waves, confine them, and
filter them spatially according to frequency is attractive for wave control. This is often connected
with rainbow trapping of light [1] or sound [2,3], and, when combined with the optical properties of
surface plasmon polaritons [4], has led to the development of surface dispersion engineering devices
based on chirped gratings [5] or tapered devices [6]. A recurring theme is that by using a graded
surface grating, different wavelengths are trapped at different locations. Improvements in design
and fabrication of nanopatterned metal surfaces, three-dimensional (3D) printing of surfaces, and
optimization of their optical and acoustic properties open new applications to exploit the effect in
light storage, energy harvesting, filtering, and delayed delivery for novel devices [7].

This comprehensive body of work, primarily in optics, plasmonics and electromagnetism, forms
a paradigm for the control of waves more broadly, and, for example, has been extended to the
field of elasticity [8–10], where it is used to generate mode-conversion devices that hybridize
surface waves to body waves. A feature less often exploited is that energy can accumulate in
regions where the group velocity tends to zero [11–13]. Assuming the local behavior in the array is
dominated by neighboring elements enables the implied local periodicity to predict band gaps (or
forbidden frequencies), and the band-gap edges determine a relation between local array properties
and frequencies at which group velocities are zero. This interpretation empowers the design of
broadband arrays with spatial filtering by frequency and localized amplification, and has recently
been taken into linear water-wave theory using an array of fixed bottom-mounted cylinders [14].
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At present, lensing techniques are the standard approach for controlling the spatial distribution
of water-wave energy, with a series of studies in the context of ocean-wave-energy harvesting
beginning with pioneering work in the early 1980s, e.g., Ref. [15]. Lenses formed from arrays
of hundreds of fixed bottom-mounted cylinders have been proposed, using superlensing concepts,
created by negative refraction [16], biconvexivity [17,18], and gradient indexing [19]. Experimental
realizations of the lenses have been made on the millimetric scale, with focal points created several
to tens of wavelengths behind the lenses, in which amplitude amplifications of approximately
factor two and weak dependence of the focal location on wave frequency have been reported. A
conceptually different sort of water-wave lens formed by an annular structure of radial slits has
also been proposed, using ideas from transformation optics, with experimental realization at the
millimetric amplitude scale, achieving amplitude amplification up to factor three [20].

In this Rapid Communication, we address the pressing question of whether it is possible to
take advantage of generic rainbow-trapping concepts in a (potentially nonlinear and dissipative)
water-wave system, to yield large amplifications of chosen frequencies at well-separated locations.
We do so through careful experimentation on waves of length-order meters, interacting with an array
of eight identical fixed bottom-mounted cylinders of radius 0.25 m arranged along the centerline of
a 1.49-m-wide, 54-m-long, 1.6-m-tall wave flume, and with chirped spacing, similar to Ref. [21]
but with the cylinder spacing increasing in the incident wave direction (Fig. 1). The cylinders span
the full height of the flume, which is filled with water to 1.1 m depth. A hinged wavemaker at one
end of the flume generates incident waves, and those transmitted through the array are absorbed by
a passive beach, which reflects <1% of the energy reaching it (in the frequency range of interest).

II. RESULTS

A. Band-gap theory and numerical simulations

Analysis of doubly periodic infinite arrays—with periodicity in the propagation direction (x
direction) matching the local cylinder spacing, and the periodicity in the transverse direction
matching the flume width (analogous to the walls)—yields valuable information to guide the
experimental tests. The band diagram for the doubly-periodic array (i.e. dispersion curves; see
Supplemental Material [23]) associated with the third spacing [Fig. 2(a)] shows well-defined band
gaps, with the first two bands well separated from the more densely arranged bands above, and
informs choices of incident frequencies. We choose to operate towards the upper end of the second
band as the wavelength is smaller than on the first band, so the waves scatter more strongly from the
cylinders, travel more slowly, and are in deep water relative to the wavelength. The second band is
very flat close to the upper band edge over a large range of wave numbers, generating a high density
of states, and enabling us to harness the “flat-band slow light,” thereby reducing dispersion [22].

Computed steady-state linear free-surface responses around the array, driven by monochromatic
incident waves, are shown in Figs. 2(c) and 2(d). The almost flat dispersion curve acts to slow
the wave within the array, and the cylinder spacings at which the band gap causes propagation to
cease are predicted [Fig. 2(b)]. The linear theory for an infinite array, implicitly assuming adiabatic
grading of the array (based on the gradual grading of cylinder spacing, where adjacent spacings
differ by <10%), is remarkably accurate in its predictions even for merely eight cylinders. Moreover,
the amplitude amplifications in the cylinder spacings before propagation ceases are factors 9 and 17
for ω = 6.50 rad s−1 [wavelength 1.46 m; Fig. 2(d)] and ω = 6.60 rad s−1 [wavelength 1.41 m;
Fig. 2(c)], respectively.

B. Wave-flume experiments

Given the predictions of such large amplifications at precise locations, the wave-flume experi-
ments are used to explore the limitations of linear theory, and whether assumptions, such as ignoring
viscosity, surface tension, and wave breaking, alter these predictions in practice. We probe the
resonant modes using regular incident waves of angular frequencies ω = 6.50 and 6.60 rad s−1
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FIG. 1. (a) Wave-flume experimental setup, involving a chirped array of eight identical cylinders, with
spacing increasing in the incident wave direction. (b) Side-view photograph showing cylinders 3–6, including
probes in cylinder spacings.

[for comparison with theoretical responses in Figs. 2(c) and 2(d)], and amplitude ainc = 0.01 m.
An incident wave of frequency ω = 3.24 rad s−1 and amplitude ainc = 0.03 m, which exists on the
first band and does not intersect a band edge, is also tested. Eulerian point measurements of the
free-surface elevation are recorded at the center of each of the first six spacings (Fig. 2 suggests
the maximum response will be approximately centered between cylinders). Linear time-series
responses for ω = 6.50 and 6.60 rad s−1 [Figs. 3(d)–3(i)] show large amplifications in spacing 3 and
spacing 2, respectively, and minimal transmission farther along the array, consistent with theoretical
predictions. Further, similar mode shapes to those predicted by linear theory were observed, as
indicated by the wetted surface of the cylinders [Fig. 3(j)]. In contrast, the incident wave at frequency
ω = 3.24 rad s−1 propagates through the array almost unchanged [Figs. 3(a)–3(c)].
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FIG. 2. (a) Band diagram (dispersion curves) of symmetric modes for infinite array, using third cylinder
spacing for x periodicity, where the abscissa covers wave-number space for normal incidence in the first
irreducible Brillouin zone from in phase (�) to out of phase (X ), and red shading indicates the second
band gap. The inset shows the eigenmode on the second band at �, as indicated by the red star. (b) Red
shading shows the evolution of the second band gap as the cylinder spacing increases along the array, where
spacing is interpolated between spacing midpoints and extrapolated at the ends. (c), (d) Model predictions of
free-surface-elevation modulus |η|, normalized by the incident amplitude ainc, for regular incident waves with
angular frequency (c) ω = 6.60 rad s−1 and (d) ω = 6.50 rad s−1. Dashed curves connecting (b) with (c) and
(d) indicate theoretical predictions of zero group velocity, where ω = 6.60 rad s−1 (upper dashed, magenta
curve) and ω = 6.50 rad s−1 (lower dashed, orange curve) enter the band gap.
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FIG. 3. (a)–(i) Linearized experimental time series for regular incident waves at frequency (a)–(c) ω =
3.24 rad s−1, (d)–(f) ω = 6.50 rad s−1, and (g)–(i) ω = 6.60 rad s−1, with responses shown in selected spacings,
and where t = 0 is the incident wave arrival time. (j) Photograph of resonant mode shape in spacing 3 for
ω = 6.50 rad s−1. (k)–(n) Experimental time series for focused incident wave packet in spacings 1–4 (solid
blue curve), with corresponding incident packets superimposed (solid gray curve). The insets show spectral
decompositions of responses.
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FIG. 4. (a) Experimental and (b) numerical amplitude transfer functions, at wave probe locations along the
array (shown as constant in each spacing). Gray strips represent spatial locations of cylinders 1–7.

Focused incident wave packets are used to investigate the overall spectral structure of the
response. The propagating linear free-surface signal created at the wavemaker is

ηinc(τ ) = Ainc

∑
n {S(ωn) cos(kn x0 − ωn τ )}

∑
n S(ωn)

, (1)

where Ainc = 0.045 m is the nominal amplitude, x0 = −24 m is the mean wavemaker position
relative to the linear focal point, τ is time relative to linear focus time, kn is the wave number, and S is
a Gaussian with standard deviation σ = 0.15 rad s−1 and mean ωp = 6.03 rad s−1, i.e., a frequency
on the second band. The linear focus position is 2 m into the array and the sum is over 210 equally
spaced components. Figures 3(k)–3(n) show raw surface-elevation time-series responses in spacings
1–4, with the corresponding incident series superimposed for comparison (from tests without
cylinders). The insets show the response amplitude spectra in 0.04 rad s−1 frequency bins, from
the (discrete) Fourier transform of the surface-elevation time series, η̂ = |F (η)|. The spectral peak
occurs on the second band, and is frequency downshifted from 6.66 ± 0.02 to 6.42 ± 0.02 rad s−1

over spacings 1–4, consistent with the theoretical predictions (cf. Fig. 2). Moreover, the small
responses for frequencies above the peaks in spacings 2–4 are consistent with the theoretical
predictions of the second band gap [Fig. 2(b)].

C. Broadband response: Experimental and numerical agreement

A transfer function is defined as

A = η̂

η̂inc
where η̂inc = |F (ηinc)|, (2)

to quantify amplitude amplifications over the frequency spectrum. Figure 4 shows the amplitude
transfer function calculated from the numerical model (for which A = |η|/ainc) and from focused
wave group experiments [averaged over the test shown in Figs. 3(k)–3(n) and tests with a shifted
peak frequency ωp = 6.55 rad s−1 and shifted amplitude Ainc = 0.029 m]. The experimental and
numerical transfer functions are in excellent agreement, notwithstanding the expected larger and
sharper amplifications in the numerical model. The amplifications on the second band are evident,
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FIG. 5. (a)–(d) Experimental (solid orange curve) and numerical (solid blue curve) amplitude transfer
functions in spacings 1–4. (e) Combined experimental transfer functions for spacings 1–6 (solid orange curve)
with envelope (gray shaded region), and amplification boundary (dashed black curve).

along with the spectral downshift along the array. Cognate amplifications are also shown for the first
band (see Supplemental Material [23] Fig. S3).

Figures 5(a)–5(d) emphasize the numerical–experimental agreement for spacings 1–4. The
broadband amplification given by the array is illustrated in Fig. 5(e), which shows the experimental
transfer functions for spacings 1–6, and with the envelope indicated by the gray shading. The major-
ity of the envelope lies well above the boundary A = 1, which divides amplification (A > 1) from
suppression (A < 1), with the only interval experiencing suppression from 7.45 to 8.10 rad s−1.
The maximum amplifications are ≈5, and occur on the second band, with corresponding energy
amplifications >20. Amplifications >3 also occur over multiple frequency intervals, giving energy
amplifications ≈10.

D. Resonance timescales

In Figs. 5(a)–5(d), the numerical and experimental transfer functions overlap, except at the
most resonant peaks, where the numerical predictions are larger and sharper than the experimental
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realizations. The discrepancies at the resonances are expected, as the numerical model neglects
dissipative and nonlinear phenomena. However, the discrepancies are also attributed to difficulties
in capturing the full resonance timescales during the experiments, as the time series (Fig. 3)
are truncated just prior to the point when waves reflected by the array, then rereflected by the
wavemaker, return to contaminate the results. This results in the experimental data underestimating
the maximum amplifications.

In the regular wave tests [Figs. 3(a)–3(i)], the resonances have timescales longer than the
test window available (Supplemental Material [23] Fig. S1) so amplitudes are still increasing
towards a steady state at the end of the window, and the maximum possible amplifications are
not achieved [Figs. 3(e), 3(g) and 3(h)]. Numerical simulations do not suffer from contamination
by spurious reflections, and suggest substantial increases in amplitude from 50 to 100 s (35% for
ω = 6.50 rad s−1 and 55% for ω = 6.60 rad s−1), and comparable increases from then until the
steady states are reached for t > 300 s (Supplemental Material [23] Fig. S2), although it is likely
that viscous dissipation would result in smaller increases in the experiments if the test windows
could be elongated. Similarly, in the focused packet tests [Figs. 3(k)–3(n)], truncation of the time
series cuts off the slow resonant decays, so that the maximum amplifications are not captured in the
mapping to frequency space (i.e., by the Fourier transform).

III. SUMMARY

We have presented results from wave-flume experiments that demonstrate localization and
amplification of water waves along a chirped array of bottom-mounted cylinders, despite the
challenges of working with highly resonant systems in a finite-length flume. Linear theory was
shown to predict the amplification spectrum accurately in frequency-distance space, including peak
resonance locations and spectral downshifts along the array. Moreover, even for the rather small
array of eight cylinders used, the amplification locations, at which the group velocity slows to zero,
were shown to be consistent with the band structure of infinite periodic arrays using local cylinder
spacings. The outcomes suggest future strategies for ocean-wave-energy harvesting by arrays should
consider taking advantage of the broadband response and precise control demonstrated here. We
have not attempted a parametric study to optimize such an array; this will be a future undertaking.
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