
Investigating Transactional Memory for High
Performance Embedded Systems?

Christian Piatka1, Rico Amslinger1, Florian Haas1, Sebastian Weis2,
Sebastian Altmeyer1, and Theo Ungerer1

1 University of Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany
{christian.piatka,rico.amslinger,haas,altmeyer,ungerer}

@informatik.uni-augsburg.de
2 TTTech Auto Germany GmbH, Emmy-Noether-Ring 16, 85716 Unterschleißheim

sebastian.weis@tttech-auto.com

Abstract. We present a Transaction Management Unit (TMU) for Hard-
ware Transactional Memories (HTMs). Our TMU enables three different
contention management strategies, which can be applied according to
the workload. Additionally, the TMU enables unbounded transactions in
terms of size. Our approach tackles two challenges of traditional HTMs:
(1) potentially high abort rates, (2) missing support for unbounded trans-
actions. By enhancing a simulator with a transactional memory and our
TMU, we demonstrate that our TMU achieves speedups of up to 4.2 and
reduces abort rates by a factor of up to 11.6 over the baseline implemen-
tation.

Keywords: Transactional memory · contention management · unbounded
transactions · embedded systems.

1 Introduction

c© Springer Nature Switzerland AG 2020

This is the accepted version of this paper. The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-52794-5 8.

Cite as: Piatka C., Amslinger R., Haas F., Weis S., Altmeyer S., Ungerer T. (2020) Investigating
Transactional Memory for High Performance Embedded Systems. In: Brinkmann A., Karl W.,
Lankes S., Tomforde S., Pionteck T., Trinitis C. (eds) Architecture of Computing Systems - ARCS
2020. ARCS 2020. Lecture Notes in Computer Science, vol 12155. Springer, Cham.
https://doi.org/10.1007/978-3-030-52794-5 8

To fully utilize multicores, the ability to generate efficient parallel code is essen-
tial. Because in-depth parallelization has proven to be very error prone, alter-
native synchronization mechanisms, such as transactional memories (TM) [12],
evolved to be a subject of research.

TMs protect critical sections of parallel code by monitoring the concurrent
read and write accesses performed within them. The hardware is responsible to
detect and resolve conflicts. This reliefs the programmer of the burden to consider
possible violations, such as race conditions, which might occur when manually
trying to improve the code in terms of performance (fine grained locking).

Implementations of hardware transactional memories were integrated into
commercial high performance chips from Intel and IBM. Despite their benefits,
current available commercial HTMs (e.g. Intel’s TSX) do not meet the high re-
quirements of embedded systems. Commercial HTMs statically implement con-
tention management strategies, which can lead to high abort rates. To meet the

? This project received funding by Deutsche Forschungsgemeinschaft (DFG).

https://doi.org/10.1007/978-3-030-52794-5_8
https://doi.org/10.1007/978-3-030-52794-5_8


2 C. Piatka et al.

high requirements concerning power consumption, embedded systems depend on
low abort rates. Another disadvantage of COTS HTMs is that they bound trans-
actions in several ways. The size of a transaction is limited by the capacity and
associativity of the L1 cache. In addition, transactions are aborted by events like
interrupts, which limits their duration. This can negatively impact performance
and complicates usability, leading to more programming errors, which is unac-
ceptable for embedded systems due to the increasing demands of computational
power and the scarce resources provided.

For our work, we developed two challenges: (1) Lowering abort rates by pro-
viding effective contention management. (2) Enabling unbounded transactions
in terms of size. We want to achieve these goals by implementing a Transaction
Management Unit (TMU). The main contributions of this paper are: (1) The
design of a flexible TMU, which enables the user to apply different contention
management strategies. (2) A solution to enable unbounded transactions, con-
sidering their size.

The rest of this paper is structured as follows: After giving an overview on
the state of the art of transactional memories, we will describe our TMU. In
the following section, our proposal is evaluated. At the end of this paper, we
discuss related work and conclude by summing up our results and describing
future work.

2 State of the Art

A transaction is a sequence of instructions that is monitored by the transac-
tional memory system. The beginning and the end of a transaction are usually
marked by special instructions. To ensure a correct execution of the program,
the transactional memory system has to ensure that every transaction fulfills the
following three criteria: (1) Transactions have to be executed atomically, which
means that they commit or abort as a whole. (2) Transactions have to run iso-
lated, which means that they do not impact each other. (3) The transactional
executions have to be serializable, which means that a sequential execution with
a matching output exists.

To fulfill these criteria, the transactional memory system has to ensure that
values, which are consumed in a transaction, are not modified by another trans-
action running in parallel. For this purpose, read and write accesses in a transac-
tion are logged at cache line granularity in a read and write set. A conflict occurs
whenever a write access of a transaction tries to manipulate a cache line, which
is already added to the read or write set of a competing transaction. A conflict
also occurs, when a read access tries to read a cache line already contained in
the write set of another transaction. To keep track of read and write accesses
inside of transactions, HTMs usually utilize the cache coherence protocol.

If a conflict is detected, it has to be resolved by the HTM, by aborting all
but one of the conflicting transactions. This involves setting back all the memory
modifications performed during the transactions (rollback). Additionally, the



Investigating TM for High Performance Embedded Systems 3

read and write sets have to be cleared and the register files have to be restored.
Afterwards, the aborted transactions have to be restarted.

Another source of transactional aborts are physical limits of the hardware,
or interrupts. Physical restrictions are usually based on the size or associativity
of the L1 caches, which are used to store the transactional read and write sets.
Most HTM systems do not implement any mechanisms to allow the read or write
set to overflow the size or associativity of the cache. This limits the transactions
in terms of consumed and modified cache lines. Interrupts limit a transaction
concerning its duration. Frequent transaction aborts because of physical limits
or interrupts can be critical for the performance, since a significant amount of
work has to be discarded.

Due to these physical restrictions, a programmer usually has to provide an al-
ternative path of execution utilizing different synchronization mechanisms, which
are not affected by physical hardware boundaries. The fallback path is a weak
spot for transactional memories. It uses alternative synchronization, which can
be error prone and reduce performance, depending on the depth of paralleliza-
tion. Additionally, it takes away one of the main advantages, which is the easy
usability, because the fallback path increases the complexity of the parallel code.
Providing an efficient alternative would render transactional memory superflu-
ous.

3 Transaction Management Unit

In this section, we first describe the implementation and the hardware setup of
our system. Afterwards, we give a short overview of the selection of contention
management strategies we implemented. At the end of this section, we explain
how our solution is able to support unbounded transactions concerning their
size.

3.1 Hardware Integration

As depicted in Figure 1, our TMU is integrated into the shared L2 cache. We
consider a multicore system with N cores (we assume N≤16). The TMU moni-
tors the execution and collects as well as provides data concerning the transac-
tions. To be able to favor a transaction over others, our TMU is able to store
priorities. Four (log2 16) bits are needed at most to be able to save a specific
priority for every core. The priority of a transaction can be specified by the
programmer at transaction start. The default priorities are the core IDs. In or-
der to store priorities, timestamps, or performance counters, our TMU provides
a 64 bit value. The timestamps can be set at different times (e.g. transaction
start, transaction commit, etc.) depending on the conditions of the contention
management strategy. Performance counters provide information concerning the
transactional execution, e.g. the number of committed transactions. To mark
whether a transaction runs unbounded, the TMU provides an additional bit per
core. The TMU consists of a memory, which stores information, relevant for



4 C. Piatka et al.

Core 1 · · · Core N

I$ D$ I$ D$

L2$
TMU

Fig. 1. The multicore system we consider consists of up to 16 cores. Each core has a
private L1 instruction cache as well as a private L1 data cache. The TMU is integrated
into the L2 cache and is able to monitor the messages relevant for the transactional
execution.

the transactional execution of each core. The information stored depends on the
applied strategy. To resolve a conflict, the TMU takes the core ID of the core
running the transaction, which detected the conflict, as well as the core IDs of
the cores running the conflicting transactions, as an input. After comparing the
corresponding data, the TMU signals to abort the transaction that detected the
conflict, or the conflicting transactions. We carefully upper bound the hardware
costs, when considering a 16 core multicore, by:

memories = 2 × 16 × 65 bit = 260 byte (1)

comparators = 2 × 16 × 65 bit = 260 byte (2)

extra charge (bit vector, buffer, etc) = 504 byte (3)

= 1024 byte

Based on this approximation, we assume that our approach consumes less
than 0.05% of the space provided by a 2 MB L2 cache.

3.2 Contention Management Strategies

Whenever a conflict between two running transactions occurs, the responsibility
for resolving the conflict is handed over to the TMU. Depending on the strategy,
the priority, a timestamp, or the number of commits are stored in the TMU.
After comparing the relevant data, the TMU determines which of the conflicting
transactions are aborted. We implemented three strategies:

priority : The transaction with the higher priority is allowed to continue. This
strategy allows to enforce an ordered commit of the transaction and a prior-
itization of a transaction over others. We would like to utilize this strategy
in the future to enable various real-time strategies (e.g. mixed criticality).



Investigating TM for High Performance Embedded Systems 5

timestamp [17]: The transaction, that started first can carry on. Taking the
timestamp of a transaction into account reduces the indeterminism concern-
ing the aborts and guarantees progress.

commit : The transaction on the core, which committed fewer transactions is
able to continue. This strategy leads to a more balanced execution, because
cores, which were not able to commit transactions, are favored when conflicts
occur.

Unbounded transactions always overrule the contention management strat-
egy.

3.3 Unbounded Transactions

Transactions have to abort whenever a transaction’s read or write set exceeds
the size or associativity of the L1 cache. Therefore, most HTMs have to provide
a fallback mechanism consisting of an alternative execution path. This does not
only make it harder for the programmer to write efficient and correct code, it
can also be crucial for performance because of the loss of already computed
work. The TMU monitors the transactional execution and sets a bit whenever a
transaction is forced to run in unbounded mode. Whenever the bit is set, conflicts
are resolved favoring the unbounded transaction. Therefore, the transaction will
never be aborted, which means it does not have to be rolled back. Since it is
guaranteed that the transaction will succeed, the backup version of the cache
line is not needed, which allows the transaction to use the entire cache hierarchy.
The TMU can only support one unbounded transaction at the time. If another
transaction or thread tries to perform a conflicting access, the TMU takes actions
to suppress them, e.g. by stalling the core.

4 Evaluation

For the implementation of our approach, we utilized the gem5 simulator [4].
We selected the STAMP benchmark suite [6] to evaluate our approach. In this
section we will describe in detail our evaluation methodology followed by the
presentation of our results.

4.1 Simulation Methodology

The gem5 [4] is a cycle accurate processor simulator. It offers the possibility to
choose an instruction set architecture out of a selection such as ARMv7, x86,
etc. Furthermore, the periphery can be configured freely. The configuration of
our system is described in Table 1. We chose this configuration, as it models
a contemporary embedded multicore. High-performance embedded systems as
smartphones exhibit similar specifications.

Due to the long run times entailed by the large input set of the STAMP
benchmark suite [6] and the authors’ recommendation to use the smaller input
configuration for simulators, we chose to do our evaluation with the small input
configuration depicted in Table 2.



6 C. Piatka et al.

Table 1. system configuration

Num CPUs {1,2,4,8,16}
Microarchitecture ARM Cortex-A15

L1 data cache 32KB

L1 data cache assoc. 8

L2 cache 2MB

L2 assoc 16

Cache Coherence directory-based

Table 2. benchmark configuration

Benchmark Parameters

bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2

genome -g256 -s16 -n16384

intruder -a10 -l4 -n2038 -s1

kmeans -m40 -n40 -t0.05 -i inputs/random2048-d16-c16.txt

labyrinth -i inputs/random-x32-y32-z3-n96.txt

ssca2 -s13 -i1.0 -u1.0 -l3 -p3

vacation -n2 -q90 -u98 -r16384 -t4096

yada -a20 -i inputs/633.2

4.2 Baseline Transactional Memory System

For our baseline, we implemented a transactional memory system into the ARM-
based gem5 simulator [4]. The implementation of the interface is similar to those
offered by Intel TSX [13] and the newly announced ARM TME [3].

Our baseline HTM detects and resolves conflicts eagerly: Conflicts are de-
tected instantly when the conflicting memory access occurs (in contrast to de-
tecting them at commit time). When a conflict occurs, the transaction, that
detects the conflict, aborts to resolve it.

We provide a fallback path with regular POSIX Thread synchronization in
our baseline implementation. In our baseline as well as in the runs supported
by our TMU, a transaction is executed in the fallback path, if the attempt to
execute the transaction failed 100 times. Trying to re-execute a transaction for
100 times makes sense, because the execution of a transaction in the fallback
path prohibits the other cores to execute work. Whenever the read or write of
a transaction in our baseline exceeds the L1 cache, it is directly executed in the
fallback path.

4.3 Analysis

We evaluated the STAMP benchmark suite [6]. Figure 2 depicts the evaluation of
the eight STAMP benchmarks bayes, genome, intruder, kmeans, labyrinth, vaca-
tion, ssca2 and yada. Each graph depicts three lines. All lines show the absolute
speedup compared to the reference execution (one core, no synchronization). We
focused on the region of interest, which are the parts executed by transactions,



Investigating TM for High Performance Embedded Systems 7

because they can be quite small compared to the entire benchmark, making it
difficult to show the effects of our work. We calculated the speedup as shown by
equation 4.

speedup =
reference execution time

examined execution time
(4)

The labeling of the lines in Figure 2 indicates whether the line represents the
baseline execution or a contention management strategy combined with un-
bounded transactions.

12 4 8 16
0

2

4

6

sp
ee

d
u
p

bayes

baseline

timestamp+unb.

commit+unb.

12 4 8 16
0

2

4

6

genome

12 4 8 16
0

2

4

6

sp
ee

d
u
p

intruder

12 4 8 16
0

2

4

6

kmeans

12 4 8 16
0

2

4

6

labyrinth

12 4 8 16
0

2

4

6

cores

sp
ee

d
u
p

ssca2

12 4 8 16
0

2

4

6

cores

vacation

12 4 8 16
0

2

4

6

cores

yada

Fig. 2. Results of the execution of the STAMP benchmark suite [6]. For five of the
benchmarks we were able to achieve speedups. For the benchmarks genome, intruder
and yada we improved performance compared to the baseline implementation.

In the following, we describe in detail the behavior of the evaluated bench-
marks:



8 C. Piatka et al.

bayes: For the benchmark bayes, we were able to beat the baseline execution
for most executions. Up to 62 unbounded transactions are executed, which
shows that it is beneficial to implement unbounded transactions concerning
their size. We are able to achieve the best speedup for the execution with
four cores and the timestamp strategy. Considering the entire run time of
the benchmark, the part in which transactions were executed, is extremely
short.

genome: The benchmark genome scales quite well. Our system produces the
same results as the baseline. The features of the TMU become relevant for
the executions with eight and sixteen cores. For these runs, we are able to
significantly lower the number of aborted transactions. In these executions,
transactions are started, which do not fit in the L1 cache and therefore have
to be executed in the fallback path. Because of our TMU, we are prepared
for these cases and are able to continue without having to abort them.

intruder : For the benchmark intruder, we made similar observations as with
the benchmark genome. The main difference is that the positive effects of
our extensions only take effect for the execution with sixteen cores. For this
execution, the baseline contention management strategy performs so poorly,
that we are able to lower the abort rate by a factor of 11.6. Within the
execution of the benchmark, no transaction faces a capacity problem, which
means we achieve the speedup only through better contention management.

kmeans: For the benchmark kmeans, we were not able to outperform the base-
line. The reason for this is that no transaction, for any execution, faces a ca-
pacity problem, which means no unbounded transaction has to be executed.
Additionally, the benchmark has hardly any conflicts, which eliminates the
grounds of what we can improve.

labyrinth: The baseline execution for the benchmark labyrinth is below one,
because the benchmark launches fairly big transactions, which do not fit in
the L1 cache and cause the transaction to abort and execute in the fallback
path. The already achieved computational progress is discarded, which is
why the baseline execution falls below one. For this benchmark, our work
is beneficial. We manage to raise the speedup above the baseline execution
and one.

ssca2 : The benchmark ssca2 behaves similar to the benchmark kmeans. Hardly
any of the almost 50000 committed transaction aborts. None of the transac-
tions faces an issue with the capacity of the L1 cache.

vacation: The observations, which can be made for the benchmark vacation, are
similar to those of the benchmarks kmeans and ssca2. Of the 4097 committed
transactions, a maximum of only about 490 transactions aborts. Addition-
ally, all of the transactions fit into the L1 cache, which is why no unbounded
transactions are needed.

yada: The baseline execution for the benchmark yada suffers from a lot of con-
flicts, due to poor contention management. To commit around 4900 trans-
actions, up to 33590 aborts occur. Additionally, some transactions face a
problem with the capacity of the L1 cache. Therefore, the TMU handles up
to 170 unbounded transactions, which is beneficial to performance and al-



Investigating TM for High Performance Embedded Systems 9

lows us to improve the baseline execution with both strategies. Additionally,
we are able to achieve speedups bigger than one.

In Figure 3, we depicted the number of aborts for every benchmark of the
STAMP benchmark suite [6]. The line labeled as baseline depicts the baseline
execution. The other lines represent an execution with a contention management
strategy. Because we want to show the benefits of the implemented contention
management strategies, we disabled the unbounded transactions for this evalu-
ation.

For most of the benchmarks, we are able to lower the number of the aborts.
Especially for executions with 8 and 16 cores. For these executions, the con-
tention management strategy of the baseline performs poorly and we are able to
reduce the number of aborts significantly for some benchmarks.

For the benchmarks, which already had a low abort rate, our strategies were
not beneficial and sometimes even caused more aborts (e.g. ssca2 ). Our strategies
perform best, when the contention between the transactions is high.

Our evaluation showed that our work is beneficial to a transactional memory
system in terms of performance and abort rates.

5 Related Work

There are some proposals describing how to handle unbounded transactions e.g.
[2,7,8,14]. In this section we describe and discuss solutions for similar problems.

The authors of [5] focused on unbounded transactions. They proposed a
permissions-only cache, which allows large transactions by only tracking read
and write bits without the corresponding data. Once the permissions-only cache
overflows, which rarely happens according to the authors, one of two proposed
implementations, to handle unbounded transactions, can be utilized. The first
proposal called ONE-TM-Serialized only allows one overflowed transaction at
a time and stalls the other cores. ONE-TM-Concurrent allows several concur-
rent transactions to run in parallel, although only one transaction can run in
overflowed-mode. Due to a LogTM-style [14] baseline transactional memory sys-
tem, the authors’ proposal is also able to survive interrupting actions performed
by the operating system. In contrast to our proposal, the authors of [5] do
not consider to include contention management strategies. Like us, the authors
also provide extra hardware, by applying a permissions-only cache to each core,
whereas we want to provide a more central piece of hardware at L2 cache level.

The authors of [9] adapted an HTM for embedded systems, focusing on energy
consumption and complexity. In this proposal, the authors evaluate different
cache structures and three different contention management schemes (eager, lazy,
forced-serial), concerning their complexity and energy consumption. The authors
also provide a mechanism to support overflowing transactions (exceeding cache
limits) by running them in serial mode. Because the authors are very sensitive for
complexity, they only allow a simple execution mode for unbounded transactions.
Therefore, running a transaction in serial mode means that all other CPUs get



10 C. Piatka et al.

12 4 8 16

0

2

4

6

·103

a
b

o
rt

s

bayes

baseline

timestamp

commit

12 4 8 16

0

1

2

3

·103
genome

12 4 8 16

0

1

2

·105

a
b

o
rt

s

intruder

12 4 8 16

0

1

2

3

·102
kmeans

12 4 8 16

0

1

2

·103
labyrinth

12 4 8 16

0

3

6

9

·101

cores

a
b

o
rt

s

ssca2

12 4 8 16

0

2

4
5

·102

cores

vacation

12 4 8 16

0

1

2

3

4

·104

cores

yada

Fig. 3. We were able to reduce the number of aborts for most of the benchmarks.
Especially the benchmarks, for which a lot of aborts were saved (genome, intruder,
etc.), achieved significant speedups, which can be observed in Figure 2.

suspended. The overflowed transaction can now run isolated and is able to utilize
the complete memory hierarchy. Our approach differs from [9], because we focus
on performance and abort rates. Therefore, we provide a more complex execution
mode for unbounded transactions. Furthermore, we offer several different and
more complex contention-management strategies.

The work describing the most relevant contention management policies focus
on software transactional memories (STM) [10,11,16,17]. Later work has applied
some of these contention management strategies to HTMs e.g. [15]. The authors
developed a new HTM, which provides several extra features. In contrast to
our work, the authors focused on executing an operating system, which made it
necessary to implement a more complex HTM. The authors focused, concerning
the contention management strategies, on finding a well performing policy in



Investigating TM for High Performance Embedded Systems 11

most of the cases. This makes sense, since the best working policy is workload
dependent, as also mentioned by the authors.

6 Conclusion and Future Work

In our work, we present a TMU, which is located in the shared L2 cache and
costs approximately less than 0.05% of the space of a 2 MB L2 cache. We provide
three different contention resolution policies and enable unbounded transaction.
In our evaluation, we did not consider the contention management strategy,
which enables priorities, because in our perspective it would not produce any
interesting results concerning its execution time. The priority strategy will be of
more focus in our future work. By our evaluation with the gem5 simulator [4]
and the STAMP benchmark suite [6], we show that the TMU is beneficial for
performance and is able to reduce the number of aborted transactions.

The work we present in this paper is the foundation to employ several other
features. To further increase performance, we also would like to enable thread-
level speculation, which will utilize the TMU to ensure correct execution. Our
research also concerns fault tolerance utilizing transactional memory [1], where
we will also consider investigating the use of the TMU. Because safety is a major
issue for embedded systems, we want to try to utilize our TMU to enable mixed
criticality and real time for hardware transactional memories.

References

1. Amslinger, R., Weis, S., Piatka, C., Haas, F., Ungerer, T.: Redundant exe-
cution on heterogeneous multi-cores utilizing transactional memory. In: Archi-
tecture of Computing Systems - ARCS 2018. pp. 155–167. Springer, Cham.
https://doi.org/10.1007/978-3-319-77610-1 12

2. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: 11th International Symposium on High-Performance
Computer Architecture. pp. 316–327. https://doi.org/10.1109/HPCA.2005.41

3. ARM Ltd.: Transactional memory extension (TME) intrinsics, https:

//developer.arm.com/docs/101028/0009/transactional-memory-extension-

tme-intrinsics

4. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A.,
Hestness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K.,
Shoaib, M., Vaish, N., Hill, M.D., Wood, D.A.: The gem5 simulator 39(2), 1–
7. https://doi.org/10.1145/2024716.2024718

5. Blundell, C., Devietti, J., Lewis, E.C., Martin, M.M.K.: Making the fast case com-
mon and the uncommon case simple in unbounded transactional memory. In: Pro-
ceedings of the 34th Annual International Symposium on Computer Architecture.
pp. 24–34. ISCA ’07, ACM. https://doi.org/10.1145/1250662.1250667

6. Chi Cao Minh, JaeWoong Chung, Kozyrakis, C., Olukotun, K.: STAMP:
Stanford transactional applications for multi-processing. In: 2008 IEEE
International Symposium on Workload Characterization. pp. 35–46.
https://doi.org/10.1109/IISWC.2008.4636089

https://doi.org/10.1007/978-3-319-77610-1_12
https://doi.org/10.1109/HPCA.2005.41
https://developer.arm.com/docs/101028/0009/transactional-memory-extension-tme-intrinsics
https://developer.arm.com/docs/101028/0009/transactional-memory-extension-tme-intrinsics
https://developer.arm.com/docs/101028/0009/transactional-memory-extension-tme-intrinsics
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/1250662.1250667
https://doi.org/10.1109/IISWC.2008.4636089


12 C. Piatka et al.

7. Chuang, W., Narayanasamy, S., Venkatesh, G., Sampson, J., Van Biesbrouck, M.,
Pokam, G., Calder, B., Colavin, O.: Unbounded page-based transactional memory.
In: Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems. pp. 347–358. ASPLOS XII,
ACM. https://doi.org/10.1145/1168857.1168901

8. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid
transactional memory. In: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems. pp.
336–346. ASPLOS XII, ACM. https://doi.org/10.1145/1168857.1168900

9. Ferri, C., Wood, S., Moreshet, T., Iris Bahar, R., Herlihy, M.: Embedded-TM: En-
ergy and complexity-effective hardware transactional memory for embedded mul-
ticore systems 70(10), 1042–1052. https://doi.org/10.1016/j.jpdc.2010.02.003

10. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention management. In:
Fraigniaud, P. (ed.) Distributed Computing. pp. 303–323. Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg. https://doi.org/10.1007/11561927 23

11. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional con-
tention managers. In: Proceedings of the Twenty-fourth Annual ACM Sympo-
sium on Principles of Distributed Computing. pp. 258–264. PODC ’05, ACM.
https://doi.org/10.1145/1073814.1073863

12. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for
lock-free data structures. In: Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture. pp. 289–300. ISCA ’93, ACM.
https://doi.org/10.1145/165123.165164

13. Intel Corporation: Intel Transactional Synchronization Extensions (Intel TSX)
Overview, https://software.intel.com/en-us/cpp-compiler-developer-

guide-and-reference-intel-transactional-synchronization-extensions-

intel-tsx-overview

14. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: LogTM:
log-based transactional memory. In: The Twelfth International Sympo-
sium on High-Performance Computer Architecture, 2006. pp. 254–265.
https://doi.org/10.1109/HPCA.2006.1598134

15. Rossbach, C.J., Hofmann, O.S., Porter, D.E., Ramadan, H.E., Aditya, B.,
Witchel, E.: TxLinux: Using and managing hardware transactional mem-
ory in an operating system. In: Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles. pp. 87–102. SOSP ’07, ACM.
https://doi.org/10.1145/1294261.1294271

16. Scherer, W.N., Scott, M.L.: Advanced contention management for dynamic soft-
ware transactional memory. In: Proceedings of the Twenty-fourth Annual ACM
Symposium on Principles of Distributed Computing. pp. 240–248. PODC ’05,
ACM. https://doi.org/10.1145/1073814.1073861

17. Scherer, W.N., Scott, M.L.: Contention management in dynamic software transac-
tional memory pp. 70–79 (2004)

https://doi.org/10.1145/1168857.1168901
https://doi.org/10.1145/1168857.1168900
https://doi.org/10.1016/j.jpdc.2010.02.003
https://doi.org/10.1007/11561927_23
https://doi.org/10.1145/1073814.1073863
https://doi.org/10.1145/165123.165164
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-intel-transactional-synchronization-extensions-intel-tsx-overview
https://doi.org/10.1109/HPCA.2006.1598134
https://doi.org/10.1145/1294261.1294271
https://doi.org/10.1145/1073814.1073861

	Investigating Transactional Memory for High Performance Embedded Systems

