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Abstract

This thesis focuses on problems of periodic homogenisation of families of elliptic and para-

bolic problems that are constituted by non-linear, monotone operators. A key di�culty in these

problems is the simultaneous presence of both fast and slow domains which characterise highly

heterogeneous materials. In analytical terms, one �nds that classical compactness theorems are

ruled out from the very outset making compensation techniques necessary. This works suggests

monotonicity as a method of compensation; however, this requires not only on having a re�ned

machinery of two-scale convergence available but also the availability of certain recovery se-

quences. We sketch a framework which allows to understand the compensation technique as

a modi�ed completion procedure provided the existence of recovery sequences can be estab-

lished. Unfortunately, this latter question could not be resolved in this work, besides its vital

importance to our approach.

Diese Dissertation behandelt Probleme der periodischen Homogenisierung welche durch el-

liptische und parabolische, nicht-lineare, monotone Operatoren gegeben sind. Eine Hauptschwi-

erigkeit besteht in der gleichzeitigen Gegenwart von schnellen und langsamen Gebietsbereichen

welche charakteristisch ist für stark heterogene Materialien. Aus analytischer Sicht zeigt sich,

dass klassische Kompaktheitsresultate hierbei nicht anwendbar sind, so dass Kompensations-

techniken grundlegende Bedeutung zukommt. Diese Arbeit erarbeitet Monotonie als eine sol-

che Technik, jedoch benötigt diese eine ausgereifte Maschinerie an Zweiskalenkonvergenz und

sogenannter Wiederherstellungsfolgen. Wir skizzieren einen Rahmen in welchem unsere Kom-

pensationstechnik als eine modi�zierte Vervollständigung aufgefasst werden kann, sofern die

Existenz von Wiederherstellungsfolgen gesichert ist. Leider bleibt deren Existenz im Rahmen

dieser Arbeit trotz deren Wichtigkeit o�en.
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Notation and conventions

• J ⊂ (0,∞) is a non-void, countable set ful�lling 0 ∈ 2; (J). Notably, J and its closure are

directed sets by the ordering ≤.

• Y → 0 stands for Y=
=→∞−→ 0 with (Y=)=∈N ⊂ J being a null sequence which contains all

elements of J.

• Throughout, (DY)Y∈J ⊂ ( , stands for a sequence indexed by J possessing elements in some

given set ( . Of course, one could equivalently write (DY= )=∈N; however, large parts of the

existing literature on two-scale convergence prefer the �rst way of notation.

• Domain always means a connected and open subset of R3 in the Euclidean topology.

• (Strong) Lipschitz regularity or �0,1
-regularity of a domain in R3 mean that its boundary

mΩ is a �0,1
-regular hypersurface. Note that for bounded domains Ω this condition is

strictly stronger than Ω being bi-Lipschitz homeomorphic to a [0, 1]3 .

• Y := R3/Z3 is the �at torus, tacitly equipped with the quotient topology.

• L(R3 ) denotes the f-algebra of Lebesgue measurable sets in R3 . Likewise, B(R3 ) is the

Borel measurable counterpart.

• L(Ω) is the f-algebra of Lebesgue measurable sets in Ω which stems from L(R3 ) by

restriction. One obtains B(Ω) from B(R3 ) analogously.

• L(Y) and B(Y) stem from their R3 -counterparts via pushforward along the projection

cY : R3 −→ Y.

• Ω+Y ,Ω
−
Y are auxiliary domains of a given domain. They can be de�ned for arbitrary sets in

R3 though. Ω±Y denotes both families of domains.

• T ∗Y is the unfolding operator which stems from the domain decomposition map TY . The

latter is successively de�ned on R3 �rst and extended afterwards to auxiliary domains of

domains Ω with compact, Lipschitz-regular boundary.

• B
a.e.∈ ( denotes ‘for almost all B ∈ ( ’.

• For ( ⊂ R3 and C ∈ R, (C := (0, C) × R, in particular, ΩC = (0, C) × Ω.

• DY
2F−⇀ D,DY

2B−→ D0 stand for weak and strong two-scale convergence as Y → 0.

Important: In this context, notations like ‘DY (G)
2F
⇀ D0 (G) +E (G,~)’ indicate dependencies

of variables of the functions involved. Yet, such convergence statements refer to conver-

gence in !? (Ω×Y) and not to be understood in a point-wise sense. In the given instance,

the fact that D0 is only G-dependent and independent of ~ is emphasised.
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Foreword

This thesis focuses on the theory and application of periodic homogenisation, one of the tech-

niques which constitute multi scale analysis, the puzzle of understanding the interplay of pro-

cesses of di�ering length scales.

As an illustration, consider ferromagnetism: by the Bohr–van Leeuwen theorem, ferromag-

netism is quantum mechanical in origin, yet its e�ects are visible even in astrophysics. In other

words, it is a phenomenon which originates on a length-scale well below 10
−9

metres and is

felt on scales well above 10
6

metres. The plain question is: what is happening on the quantum

mechanical scale, and how would this process transit �fteen magnitudes?

Tremendous obstacles must be expected as soon as elementary explanations fail. Besides

other shortcomings, considering molecules as magnetic dipoles yields magnetic energies of

10
−23

Joules, disqualifying any explanation attempt for an everyday magnet at room temperat-

ure. Consequently, another interaction must be responsible and most probably, it is very subtle.

Moreover, the abundance of roughly #� ≈ 10
23

molecules imposes another problem: not only

must one specify a process on the molecular scale with promising e�ects on the macroscale,

but in addition, a machinery of scale transition which can transit scales of magnitudes credibly.

Such machineries are roughly known as averaging, however, averaging suitably turns out to be

a immensely di�cult.

To the author’s best knowledge, there is neither a uni�ed theory nor a supreme theorem

available at present which grasp the matter in its entirety. Rather, di�erent problems require

di�erent approaches to explanations, and periodic homogenisation is one of them.

In this thesis periodic homogenisation is presented in two-fold fashion. On the one hand,

we will track its development in geometric and functional analytical terms. On the other hand,

applications stemming from non-linear partial di�erential equations would require a machinery

helping to disclose the actual mechanics at work. As one may easily anticipate, high contrast

media underline this need for a more re�ned framework. To this end, we will �rst revise the

conventional machinery of periodic homogenisation. Second, and as an application, we will

turn to a family of stationary quasi-linear problems generated by monotone operators. The

corresponding limiting procedure will exhibit a certain loss of monotonicity yielding pseudo-

monotonic behaviour. As a third step, we will sketch an extension of the limiting machinery to

a more abstract set-up. Assuming the existence of so-called recovery sequences, this machinery

is even be �exible enough to handle the parabolic analogue, as well, a task that is done as a forth

step.

For completeness’s sake it should be mentioned, that this thesis was originally presented in

April 2019 but the existence proofs for recovery sequences turned out to be wrong. Since this

grave error a�ected a major step in this thesis’s progress, a refurbishing was in order to adapt

and weaken the original results. Unfortunately, the author’s attempts to �x the wrong proofs

were unsuccessful.
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I. An introduction to periodic
homogenisation and two-scale
convergence

This chapter serves to introduce fundamentals of two-scales converges. Note that the �rst sec-

tion §1 is heuristic in nature; we will give rigorous de�nitions later on.

§1. Motivation: the origins of periodic homogenisation

Let us introduce periodic homogenisation, two-scale convergence and some related questions

by considering a model problem. On a open and bounded set Ω ⊂ R3 one considers a family of

problems, namely

(1.1a) − ∇ ·
[
�

(
G,
G

Y

)
: ∇DY

]
= 5 with DY |mΩ ≡ 0

for every Y ∈ J with J ⊂ (0,∞) being a countable set with 0 ∈ J. In structural terms, we require

that

(G,~) ↦−→ �(G,~) ∈ R3×3
B?3

is periodic in its ~-variable.(1.1b)

In addition, certain regularity assumptions are imposed on 5 and �. For the moment, let us

assume that both � and 5 are continuous and bounded. Furthermore, the values of � are re-

quired to be symmetric, positive de�nite matrices which are uniformly bounded from above

and uniformly bounded away from zero.

§1.1. Related real-world problems

There are numerous problems which fall into the framework of (1.1). In general, the periodic

argument of � allows to model a bulk Ω which is made up by a periodic and very �ne mixture

of di�erent materials. As it turns out, such con�gurations are not di�cult to �nd; in fact, they

are ubiquitous. Let us describe several instances.

Bone of vertebrates

Cancellous bone, also known as spongy bone or trabecular, is the internal tissue of skeletal bone

of vertebrate, and thus a very common and widespread structure. Roughly, it is a lattice struc-

ture that is largely made of calcium and phosphate, forming very �ne cavities. These cavities

host haematopoiesis, the generation of blood cells. Moreover, they are moderating fundamental

metabolic activities, in particular those which are linked to calcium or phosphate, a fact which

is made possible by the very �ne structure of the spongy bone. Its very large surfaces allows

1



I. An introduction to periodic homogenisation and two-scale convergence

considerable extents of blood vessels to interact with the surrounding bone structure, a process

which is indispensable for maintaining precise levels of calcium, which in turn is vital for the

cardiovascular system in total. More drastically speaking, severe disruptions of one’s calcium

levels will lead to cardiac arrest, a condition not deemed desirable.

Returning to spongy bone itself, note its mediating character. On the one hand, bone has

obvious mechanical duties, literally including the backbone itself. On the other hand, it has an

important metabolic task to ful�l. Both aspects are structurally opposing each other, the �rst

calls for solid structures, the second favours loose tissue. Consequently, a good compromise is

necessary and obviously, evolution has managed to provide a powerful solution by employing

a very clever geometry which yields both surface and stability.

For much more information on the genesis and functions of bone, see [BRM08], a standard

references on bone biology. In this context, monographs on histology like [LF99; Küh14] can

be very educational. Finally, let us note that trabecular bone and its functions are a matter of

ongoing research as is witnessed by [Lee+07] and the reference therein.

Concrete and its reinforcement

Historically, the idea of mixing di�erent materials for construction purposes can be traced back

to the late neolithic age, at least. Whereas clay bricks have been in use for roughly 10000

years from now on, the concept of reinforcing primitive air-dried bricks with straw is obviously

present in the second book of Moses. There, Israeli slaves are required to produce reinforced

bricks for the Egyptians; For more information on bricks, their history and their present day

use, see [Min06; Min09].

Later, air-dried bricks were mostly superseded by �re dried bricks which themselves lost their

leading role to the family of concrete. Of course, all sorts of concrete are composite materials: in

practice, the individual ingredients are not only very diverse, but ironically only of very limited

use to construction purposes by themselves. In simple terms, the resulting mixtures are al-

ways made of aggregate bound by cement and further optional additives. However, the precise

composition of the ingredients is vital for the resulting concrete’s properties. In fact, concrete is

indispensable for construction purposes nowadays and thus, it is subject to extreme wear, severe

strain and ever-growing demands for security precautions like �re prevention, noise prevention,

prevention of chemical degradation, thermal protection and so on. Evidently, there has always

been an interest in enhancing concrete for numerous, speci�c purposes: steel suggests itself

for increasing concrete’s tensile strength, and though it is widely used nowadays, the resulting

reinforced concrete is a delicate matter. Cement contains water which may corrode steel and is

subject to degradation by chemical reactions with air itself. Is it possible to guarantee the stabil-

ity of the resulting mixture over a long period of time, like 50 years and more? Moreover, steel,

cement and aggregate vary signi�cantly in relevant physical processes such as heat conduction:

how can one manage to arrive at a feasible and reliable mathematical description which is �t

for carrying out simulations of large constructions subject to signi�cant security demands? For

an engineer’s presentation, we refer to [Gjo09]. Mathematically rigorous work can be found in

[Pet07; Pet+08; PB09] and the references therein.

Flows through soil

A third instance is formed by problems which stem from �ows through soil. Besides rather in-

nocent examples as water �ow through soil, its most relevant motivation stems from ecological

2



§1. Motivation: the origins of periodic homogenisation

and economical questions. A �rst application stems from oil production: many oil reservoirs are

naturally fractured, making a su�ciently good understanding the �ow in such fractured contain-

ers necessary. Such matters motivated a lot of research initially, we name [Hor97] as a classical

resource which gathers and refers to signi�cant amounts of work. A more recent and highly

recommendable exposition on �ows through porous media is H. Hutridurga’s thesis [Hut13],

which considers very sophisticated related questions and includes numerical computations as

well, thus giving a full presentation of the subject.

Besides its economical importance, ecological questions arose, too. Over time economic pres-

sure to exhaust highly fractured oil reservoirs has increased considerably since more conven-

tional reservoirs are either depleted or do not o�er rising revenue. Thus, more re�ned technical

means are requested to handle such delicate reservoirs economically. However, one of the most

widespread techniques for such tasks, hydraulic fracturing, which is often referred to as frack-
ing, has stirred up a considerable debate on its possible contamination of ground water through

the fracking �uid injected into the soil. Even without political controversies, developing both

feasible and sensible computational models of �uid �ow in soil is quite di�cult. Yet, the pres-

ence of health concerns drastically increases the demands on the credibility of the simulation in

use; in particular, the policy of sitting things out is hardly satisfying nor is it helping anyone.

Of course, it is hard to underestimate the importance of simulations in the presence of a heated

political debate garnished by economical interests that a�ect all of society.

Another example of �uid �ow, especially on a longer time scale, comes from nuclear waste

management and its assessment of security. For instance, let us consider the deep geological

repository for high-level nuclear waste near Zheleznogorsk in the Nizhnekansky rock massif in

central Russia’s Krasnoyarsk region. Very involved simulations are trying to evaluate the risk

of the high-level wastes di�using into the nearby Yenisei river; we refer to [GPK18; SK12] and

the references therein. Evidently, a profound understanding of �ow in soil is desirable here, too.

As far as the author knows, conclusive simulations in this context are still lacking, though.

A closing word in mathematical terms

Let us emphasise that (1.1) relates to the problems just described – it does not o�er a com-

plete, perfect and exhaustive description. Naturally, this holds for other problems motivated by

di�erent contexts, as well. In general, mathematical modelling rather contributes to existing

knowledge by re�ning ideas and concepts or yielding sensible simulations; rarely is it possible

to describe real-world problems without simpli�cations.

In this context, let us stress that (1.1) relies on the idealisation that the problem at hand is

spatially aligned in periodic fashion. We shall accept this assumptions for two reasons: �rst, the

G-dependence of �(G,~) allows to weaken the periodicity assumption considerably, such that a

locally periodic con�guration is at hand.
1

Secondly, local periodicity assumptions themselves are

widespread and have brought about tremendous success. As a shining example consider solid

state physics where key results like Bloch’s theorem rest on the assumption that the crystal at

hand is made up of atoms which are arranged in periodical manner or at least in near-perfect

periodic manner, see [AM76] for a thorough presentation.

1
Of course, periodic media are locally periodic, as well.
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I. An introduction to periodic homogenisation and two-scale convergence

§1.2. Job description: homogenisation and periodic homogenisation

Let us return to more mathematical matters. Recall that (1.1) resembles a family of problems

indexed by Y ∈ J. The following questions on this family constitute the task of homogenisation.

a) Are there reasonable technical assumptions guaranteeing the solvability of (1.1) in a mean-

ingful way?

b) If so, are there suitable conditions such that a (sub-)sequence of solutions (DY)Y∈J converges

to some limit function D0 for J 3 Y → 0 in a sensible topological vector space?

c) If so, is it possible to relateD0 to the sequence of original problems? Ideally,D0 would solve

a ‘limit problem’ which can be linked to (1.1); ideally, by quantitative estimates.

Periodic homogenisation is a specialisation of homogenisation: it relies on a separation-of-

scales and a periodicity assumption. More speci�cally, one requires that the problem at hand

can be described well by macroscopic and microscopic variables, the latter being periodic. In

this context, the notions macroscopic and microscopic express the optimism that a su�ciently

accurate model can be obtained by using two families of variables, e.g. the macro-variables G and

the micro-variables ~, which are required to di�er in length scale signi�cantly. For instance, a

bone sample of some centimetres may be considered macroscopic, i.e. G su�ces to describe the

sample. In contrast, the aforementioned air cavities inhabit the sub-millimetre scale and thus

are deemed microscopic, i.e. ~ provides us with a sensible description. All this requires a gap of

signi�cant intermediate length scales.

A key motivation of homogenisation is the fact that the interplay of processes on a micro-

scopic level, may have a strong in�uence on the macroscale and vice versa. Yet, to �nd a precise

and appropriate description of this interplay of scales is extremely challenging.

Besides numerical simulations becoming increasingly realisable, the interplay of macroscale

and microscale mechanisms is often eluding brute force simulations quite subtly. As a very

simple example, consider simulating heat conduction of a bone tissue with its cavities being

�lled with water. Since we will return to this example later on, let us su�ce to say that even for

very small samples such simulations are very demanding. However, even if the computational

costs were moderate, and that is e�ectively never the case, then the resulting output would still

yield the problem of handling an over�ow of information. Even a full simulation would still
lead to the problem of isolating the relevant information reliably. Paradoxically, the portions of

information that are eventually disposable are most expansive to obtain.

In this state of a�airs, it is precisely homogenisation which steps up to avoid generating ‘too

much’ information by reducing the problems at hand to suitable limit problems which hopefully

carry the relevant information and not much more at reasonable costs.

Homogenisation and the importance of highly heterogeneous media

Homogenisation is receiving signi�cant attention since the 1970s and has made remarkable pro-

gress so far. Referring to the literature below, we quote two key results whose precise formula-

tions will be given later on:

a) For Y → 0,DY −⇀ D0 holds in� 1

0
(Ω) andD0 solves a limit problem which is connected (1.1).

However, establishing this link does require more re�ned tools than merely weak conver-

gence. It is among the merits of two-scale convergence to identify so-called correctors,

which are indispensable for formulating the limit problem.

4



§1. Motivation: the origins of periodic homogenisation

b) Depending on the original problem, two cases need to be distinguished: standard media

and highly heterogeneous media. The latter implies severe losses of compactness.

Let us address the matter of standard media and highly heterogeneous media �rst. There

are no conclusive criteria to decide whether a given composite is highly heterogeneous or not.

Rather, it is a question of material parameters and the amplitude of their oscillations. Let us

return to the example of heat conduction in bone marrow: roughly, the calcium salts forming

the collagen cavities conduct heat fairly well, with calcium’s thermal conductivity being roughly

2� ≈ 201, /(< ). In contrast, water’s thermal conductivity does not exceed 2, ≈ 0.5, /(< ).
The ratio of 2�/2, ≈ 10

2
can be considered as a high contrast which increases the di�culties

of a brute force simulation. To be more speci�c, besides the challenge of handling a macro-

scopic sample with microscopically oscillating properties, one must take care of the oscillations’

considerable amplitudes. In fact, the latter are quite an obstacle for the (numerical) condition

numbers of the corresponding numerical quadrature will be severely �awed. Moreover, this as-

pect cannot be ignored for the resulting sti�ness matrices inherit coe�cients of ill-conditioned

origin, a state that is hardly changed when considering non-linear problems and their linear-

isations. Coming to the point, it is the very matter of condition that neither more numerous

nor more accurate calculations are a remedy. Instead, one has to look for a reformulation of the

problem that is better behaved.

Let us note that the treatment of highly heterogeneous media is very appealing for modelling

purposes, though. A great lot of composite materials exploits the very fact that the ingredients

themselves are behaving very di�erently from each other. However, in mathematical terms,

highly heterogeneous materials – also known as the the high contrast regime – su�er from com-

pactness defects caused by very weak a priori bounds, a fact leading to drastic convergence

defects forming the fundamental di�culty of our work. Besides signi�cant applications remain-

ing poorly understood, a re�nement of the existing methods seems necessary in this respect.

Homogenisation versus periodic homogenisation

Naturally, the periodicity assumption is a signi�cant restriction such that periodic homogenisa-

tion is far from being a universal tool. However, there is little risk in claiming that presently there

is not a single homogenisation technique which can handle all problems alone. Periodic homo-

genisation does have its drawbacks and other techniques are more �t to handle certain problems;

as alternatives, let us name stochastic homogenisation, we refer to [GNO14] and the related works

and numerical homogenisation, referring to [PVV18; Pet16] and the literature named therein. A

third alternative originally stemming from the calculus of variations is homogenisation by the

means of Young measures and H-measures in particular; the monograph [Tar10] is an extensive

resource on this matter but as far as the author knows H-measures still await their numerical

realisation.

G. Nguetseng not only contributed greatly to periodic homogenisation, see theorem §7.1 be-

low, but also provided immense extensions in [Ngu03] and [Ngu04]. There, homogenisation

procedures are formulated as homogenisation structures in highly abstract form by the help of

�∗-algebras, yielding the notion of Σ-convergence. It must be mentioned, that Σ-convergence

forms an umbrella for both deterministic and stochastic methods, thus providing an impress-

ive uni�cation of the subject. Unfortunately, G. Nguetseng’s work seems to be little-noticed

at the time of this writing as related numerical implementations also await their realisation.

Nevertheless, analytical works employing homogenisation structures have been published, for
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I. An introduction to periodic homogenisation and two-scale convergence

instance, we refer to [HHR17] where Σ-convergence is used for homogenisation along �ows

of given vector �elds. Most admirably, Nguetseng’s school in Cameroon has �ourished against

great odds, we cite the collaborations [NW07; NSW10; Wou10; DW15; DT17] as representat-

ives for the impressive theoretic works developed around related questions like almost periodic
homogenisation.

Coming back to periodic homogenisation, one encounters an ironic situation: the prerequis-

ite of periodic homogenisation to have a geometric description of the problem at hand in both

macroscopic and microscopic terms is boon and bane: it allows tackling problems whose geo-

metry is both critical and known a priori. Returning to bone marrow again, it is well-known

that the lattice around the cavities is aligned along sensible axes of physical stress such that

geometry directs stability requirements, thus contributing to the femur being stable. Another

instance that makes critical use of geometry are reactions on interfaces. We do not elaborate on

this matter but refer to the research work of M. Neuss-Radu, M. Gahn and their collaborators,

naming [MN10; Neu14; GNK16; GNK18] as related instances.

§1.3. Outlook

This thesis aims at applying a well-established technique of non-linear analysis, the method

of monotone operators, to quasi-linear problems made up by periodic or locally periodic high

contrast media. More speci�cally, we start with the examination of an elliptic problem in the

framework of monotone operators. Realising that signi�cant amounts of compactness results

turn invalid, in particular the Rellich–Kondrachov embedding, we are in need of an alternative

method in order to carry out certain limiting procedures successfully. A close examination of

the latter underlines the importance of an improved understanding of the two-scale method.

We will start to consider parts of the two-scale method as a completion procedure similar to the

well-known Cauchy completion of metric or uniform spaces. It will turn out, that the availability

of recovery sequences will be a most decisive aspect. This work will outline certain peculiar-

ities in establishing the existence of such sequences that could not be overcome by the author.

Consequently, we will need to assume the existence of recovery sequences.

Assuming to have su�ciently many recovery sequences at hand, we will turn to investigate

the natural evolution problem counterpart of the foregoing elliptic case. Again, high contrast

media defects foil the use of classical methods, most notably the Aubin–Lions–Simon lemma.

In addition, two-scale convergence is intolerant to lacking spatial regularity and therefore, time

derivatives are basically unusable, a state of a�airs which is hardly helpful for limiting proced-

ures. In sum, the transfer of elliptic methods to a parabolic set-up is not straightforward but

there are conventional means for compensation, in particular Steklov averages.

Literature on periodic homogenisation and two-scale convergence

Let us complement our overview on the literature a little more. Homogenisation has received

considerable attention for decades. Important results were accomplished by the end of the 1970s,

see [LBP78] as a classical monograph, mainly on linear problems. However, also non-linear

examples were under consideration, see [MB82]. Note that the highly famous and now classical

device of compensated compactness originated from this context in [Mur78]. Throughout the

1980s, research on homogenisation thrived leading to [Ngu89] and [All92] as foundational works

on two-scale analysis.
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At the same time and throughout the 1990s, homogenisation �ourished remarkably with nu-

merous works being published on a multitude of problems. Let us name the monographs [OSY92;

ZKO94; Hor97; CP99; CD99] which gather large amounts of research on homogenisation and

modelling problems and similar questions. In addition, the 1990s witnessed the emergence of

periodic unfolding, culminating in [CDG02] and [CDG08].

Excluding elasticity theory for a moment, one may claim that by the end of the 2000s works

like [Pet07; PB08] had complemented the understanding of linear equations and systems, includ-

ing the highly heterogeneous type. As a result, large portions of the elliptic and parabolic linear

cases were understood su�ciently well, a fact which intensi�ed the treatment of non-linear

problems. This endeavour was advanced signi�cantly by [Vis06] and [Vis07b] which enhanced

two-scale techniques with classical tools from non-linear analysis such as monotonicity meth-

ods and compensated compactness methods. Among the pinnacles of two-scale convergence

and periodic homogenisation is [Vis07a] which successfully carried out the periodic homogen-

isation of a full Stefan problem in standard media. Thus, one may consider standard media to

be dealt with very successfully, even in the non-linear frame.

Of course, other non-linear problems received considerable attention, as well: [Ols08] focused

on monotone operators in connection with a multitude of di�ering homogenisation problems.

Very important contributions to elasticity theory were established in [Neu10]. [Sch13] is direc-

ted towards shape optimisation, whereas biological models were at the focus of [Gra13].

However, the treatment of non-linear, highly heterogeneous problems did not receive too

much attention. Very successful in the treatment of highly heterogeneous media was S. Reichelt,

see [Rei15] which contains a very thorough overview of the foregoing two-scale literature, too.

Let us conclude with referring to the works of A.-L. Dalibard whose works [Dal06; Dal09] con-

centrate on scalar conservation laws, a matter that can be deemed to possess maximal di�culty

without hesitation.

§2. Periodic homogenisation and two-scale convergence

Periodic homogenisation of (1.1) requires the notion of two-scale convergence, let us recall the

original de�nition from [Ngu89] and [All92] based on two-scale test functions. Throughout,

we will write Y := R3/Z3 for the �at torus such that a Z3 -periodic map 5 : R3 −→ R is in

one-to-one correspondence with a map 5̃ : Y −→ R. Nevertheless, periodicity and regularity

are subtly linked to each other and we will return to this aspect later. Throughout, Ω ⊂ R3 is

assumed to be a domain, that is an open and connected subset.
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I. An introduction to periodic homogenisation and two-scale convergence

De�nition §2.1: Two-scale convergence (original form)

A functionk ∈ !2 (Ω × Y) is an admissible two-scale test function if it su�ces∫
Ω

|k (G, G/Y) |2 3G Y→0−→
∬
Ω×Y

k (G,~) 3~3G.(2.1)

A sequence (DY)Y∈J ⊂ !2 (Ω) is two-scale convergent to D0 ∈ !2 (Ω × Y) if

(2.2)

∫
Ω

DY (G)k (G, G/Y) 3G
Y→0−→

∬
Ω×Y

D0 (G,~)k (G,~) 3 (G,~)

holds for all admissible two-scale test functions k ∈ !2 (Ω × Y). In this case we write

‘DY
2F−⇀ D0 in !2 (Ω × Y)’.

The above de�nition easily adapts to ? ∈ [1,∞] as it is not restricted to Hilbert spaces. Nev-

ertheless, the question which k ∈ !2 (Ω × Y) are actually admissible is subtle. It was shown

in [All92, Ch. 5] that one cannot expect all k ∈ !2 (Ω × Y) to be suitable by constructing a

pathological counter-example.

§2.1. Two-scale convergence and standard media

The following result is from [All92, Thm. 2.3] and employs a subspace of functions with con-

stants factored out: !?
(
Ω;, 1,? (Y1)/R

)
:=

{
5 ∈ !? (Ω;, 1,? (Y1)) : ∀G

a.e.∈ Ω :

∫
Y 5̃ (G,~) 3~ = 0

}
.
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§2. Periodic homogenisation and two-scale convergence

Theorem §2.1: Allaire’s periodic homogenisation theorem for standard media

Let 5 ∈ !2 (Ω) and assume � : Ω × Y −→ R3×3 to yield matrices which are sym-

metric, uniformly positive de�nite and uniformly bounded. Then, for every Y ∈ J
(1.1) is uniquely solvable by a function DY ∈ , 1,2

0
(Ω) and the sequence of solutions

(DY)Y∈J ⊂, 1,2
0
(Ω) is bounded independently of Y ∈ J such that for a subsequence again

denoted by Y ∈ J we have

DY −⇀ D0 in,
1,2
0
(Ω), and(2.3a)

∇DY
2F−⇀ ∇GD0 + ∇~D1 in !2 (Ω × Y;R3 )(2.3b)

for a ~-independent function D0 ∈ , 1,2
0
(Ω) and D1 ∈ !2 (Ω;, 1,2 (Y)/R). Finally, if the

coe�cients of � are admissible two-scale test functions, too, that is they ful�l

(2.4) lim

Y→0

∫
Ω

� (
G,
G

Y

)2 3G =

∬
Ω×Y

‖� (G,~)‖2 3 (G,~),

then the following limit problem is solved by (D0, D1):

−∇G ·

∫
Y

�(G,~) :
[
∇GD0 + ∇~D1

]
3~

 = 5 in Ω,(2.5a)

−∇~ ·
�(G,~) :

[
∇GD0 + ∇~D1

] = 0 in Ω × Y .(2.5b)

Proof. To begin with, solvability of (1.1) for all Y ∈ J is clear due to Lax–Milgram. A bound

on ‖DY ‖, 1,2
0
(Ω) follows from

1/2�‖DY ‖2
,

1,2
0
(Ω) ≤ ‖�∇DY · ∇DY ‖!1 (Ω) = ‖ 5 DY ‖!1 (Ω) ≤ 2% ‖ 5 ‖!2 (Ω) ‖DY ‖, 1,2

0
(Ω)(2.6)

employing the coercivity constant 2� > 0 and the Poincaré lemma’s constant 0 < 2? < ∞
being independent of Y ∈ J. Thanks to the bound, (2.3a) follows immediately. (2.3b) is a

two-scale re�nement of the former and due to [Ngu89; All92] which we will proof later on

in theorem §7.1 and theorem §7.2. Thanks to (2.4), one can pass to the limit Y → 0 in the

weak form of (1.1) leading to∬
Ω×Y

�(G,~)
[
∇GD0 + ∇~D1

]
·
[
∇Gi0 + ∇~i1

]
3~3G =

∬
Ω×Y

5 i03~3G(2.7)

for all (i0, i1) ∈ , 1,2
0
(Ω) × !2 (Ω;, 1,2 (Y)/R). Integration by parts yields (2.5a) if one

chooses i1 = 0 and (2.5b) for i0 = 0. �

Let us digress on (2.5) brie�y, which is often referred to as the decoupled problem. First, two-

scale convergence allows for the rigorous introduction of the micro-variable ~ ∈ Y which is

strongly linked to the corrector function D1 which in turn is determined by (2.5b). Finally, this

corrector function is contributing to the macroscopic problem in (2.5a).
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I. An introduction to periodic homogenisation and two-scale convergence

§2.2. Two-scale convergence and highly heterogeneous media

From a modelling perspective, (1.1) is suitable for composites made of materials having com-

parable properties of interest, e.g. comparable heat conductivity of two metals. As pointed

out in [PB08], signi�cant parameter di�erences suggest modifying (1.1) in order to treat the

encountered heterogeneities suitably. In fact, this is appealing for both applications’ and the-

oretical reasons. As a prototype, one might think of a composite of metal and silicate. Such

problems are formulated in terms of periodic homogenisation as a problem on a domain Ω in

periodic fashion.

More speci�cally, assume that a decompositionY1 ∪Y2 ∪ Γ = Y is given such thatY1 andY2
are open in Y and mY1 ∩ mY2 = Γ is Lipschitz-regular hypersurface. Denote the characteristic

functions ofY8 by j8 for 8 = 1, 2 such that Ω8Y := {G ∈ Ω : j8 (G/Y) = 1} de�nes subdomains Ω1

Y ,Ω
2

Y

that are assumed to have a su�ciently regular common interface ΓY . A prototypical boundary

value problem reads

(2.8) −
[
j1

(G
Y

)
+ j2

(G
Y

)
Y2

]
ΔDY + UDY = 5 with DY |mΩ ≡ 0,

for some U ∈ [0,∞). (2.8) can be interpreted as a heat di�usion process in Ω which is a composite

of a ‘fast domain’ in Ω1

Y and a ‘slow domain’ in Ω2

Y .

Theorem §2.2: Allaire’s theorem for high contrast media

Provided 5 ∈ !2 (Ω) holds, (2.8) is uniquely solvable by DY ∈, 1,2
0
(Ω) for every Y ∈ J but

the sequence (DY)Y∈J ⊂, 1,2
0
(Ω) is no longer bounded independently of Y ∈ J, we have

(2.9) ∃� ≥ 0 : ∀Y ∈ J : ‖DY ‖!2 (Ω) + ‖∇DY ‖!2 (Ω1

Y ) + Y‖∇DY ‖!2 (Ω2

Y ) ≤ �.

IfY1 is connected for all Y ∈ J, and if Γ is Lipschitz-regular then there existD0 ∈, 1,2
0
(Ω),

D1 ∈ !2 (Ω;, 1,2 (Y)/R) and E ∈ !2 (Ω;, 1,2
0
(Y2)) with

DY
2F−⇀ D0 + j2E in !2 (Ω), and(2.10a)

[j1 + Yj2] ∇DY
2F−⇀ j1

[
∇GD0 + ∇~D1

]
+ j2∇~E in !2 (Ω × Y;R3 ).(2.10b)

Moreover, (D0, D1, E) solve a limit problem that can be decoupled to yield:

−∇G ·

∫
Y1

∇GD0 + ∇~D1 3~
 + U

D0 +
∫
Y2

E (G,~) 3~
 = 5 in Ω,(2.11a)

−∇~ ·
[
∇GD0 + ∇~D1

]
= 0 in Ω × Y1,(2.11b)

−Δ~~E + U (D + E) = 5 in Ω × Y2,(2.11c)

®=Γ ·
[
∇GD0 + ∇~D1

]
= 0 on Γ.(2.11d)

Observe that both standard and high contrast media need two-scale convergence to formulate

the convergence properties of the gradients in (2.3b) and (2.10b) sensibly. In contrast to the

standard case where (2.3a) works with weak convergence only, the use of two-scale convergence

is inevitable in (2.10a).
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§2. Periodic homogenisation and two-scale convergence

Proof. We follow the original proof from [All92, Sec. 4], restricting to U = 0 without loss of

generality. First, the the Lax–Milgram lemma yields the solvability of the weak form of (2.8)

which reads

∀i ∈, 1,2
0
(Ω) :

∫
Ω

[j1 + Yj2] ∇DY · [j1 + Yj2] ∇i 3G =

∫
Ω

5 i 3G(2.12)

for every Y ∈ J. Taking i = DY one defers ‖DY ‖!2 (Ω) + ‖ [j1 + Yj2] ∇DY ‖!2 (Ω;R3 ) ≤ ‖ 5 ‖!2 (Ω)
which is precisely the claimed a priori bound. Next, one rewrites DY by DY = j1 (G/Y)DY +
j2 (G/Y)DY =: D (1)Y +D (2)Y and extends D

(8)
Y to all of Ω by extension with zero, writing D̃

(8)
Y . This

yields the weak form

∀i ∈, 1,2
0
(Ω) :

∫
Ω

∇D̃ (1)Y · ∇i 3G +
∫
Ω

Y∇D̃ (2)Y · Y∇i 3G =

∫
Ω

5 i 3G .(2.13)

Next, we claim that the a priori bounds yield the convergence statements (2.10a) and (2.10b)

by theorem §7.2 which we establish in the next section: there exists a subsequence again

denoted J 3 Y → 0 such that(
D̃
(1)
Y , D̃

(2)
Y

)
2F−⇀

(
D0 |Ω×Y1 (G), D0 |Ω×Y2 (G) + E (G,~)

)
in !2 (Ω × Y)2(2.14a)

(
∇D̃ (1)Y , Y∇D̃ (2)Y

)
2F−⇀

(
j1 (~)

[
∇GD0 (G) + ∇~D1 (G,~)

]
, j2 (~)∇~E (G,~)

)
in !2 (Ω × Y)23 .

(2.14b)

Next, we intent to insert an admissible two-scale test function of the form i (G,~) = i0 (G) +
Yi1 (G,~) + k (G,~) in the above weak formulation. To this end, we choose i0 ∈ �∞0 (Ω),
i1 ∈ �∞ (Ω;�∞ (Y1)/R) and k ∈ �∞ (Ω;�∞

0
(Y2)). Then, the original de�nition of two-

scale convergence can be used to arrive at an integral inequality for Y → 0, which can be

considered as the weak formulation of (2.11), namely

∬
Ω×Y1

[
∇GD0 (G) + ∇~D1 (G,~)

]
·
[
∇Gi0 (G) + ∇~i1 (G,~)

]
3G

+
∬

Ω×Y2

∇~E (G,~) · ∇~k (G,~) 3G =

∫
Ω×Y

5 [i0 +k ] 3G .
(2.15)

Now, one argues that by density of smooth functions, this weak form holds for all i0 ∈
,

1,2
0
(Ω), i1 ∈ !2 (Ω;, 1,2 (Y1)/R) andk ∈ !2 (Ω;, 1,2

0
(Y2)). Then, one can deduce (2.11), by

choosing test functions which are either independent of G or ~ or which vanish onY1 orY2,
respectively. �

§2.3. A roadmap for compactness theorems

Both theorem §2.1 and theorem §2.2 rest on ominous compactness theorems used to obtain

(2.3) and (2.10), respectively. Hardly as a surprise, such statements are among the most crucial

tools for the identi�cation of limit problems. Classically, both statements were given proven

using suitable two-scale test functions. As far as the author is aware of, (2.3) was established

in [Ngu89], with (2.10) being presented in [All92, Sec. 4]. Notice though that homogenisation

and compactness results relying on skilfully chosen test functions were around before, a very
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prominent instance being L. Tartar’s method of oscillating test functions which is extensively

described in [CD99, Ch. 8] and [Tar10, Ch. 10], the latter carrying out the homogenisation of

non-linear, monotone operators in standard media.

Returning to the results (2.3) and (2.10), one needs two ingredients to arrive at a suitable proof.

First, the two-scale convergence machinery itself must be developed, a task which we refer to

as the convergence machinery. We will prefer a functional analytical of two-scale convergence

which will be done by periodic unfolding.

Independently but linked to the convergence machinery is the geometric set-up of the domain

Ω in periodic terms. Again and for clarity’s sake, neither traditional two-scale convergence nor

periodic unfolding are necessary to decompose a domain suitably. Nevertheless, both are linked

in applications by the compactness theorems theorem §7.1 and theorem §7.2 we wish to develop.

To this end, we will proceed in three steps, starting with the introduction of periodic unfolding

which is followed by supplying more re�ned notions of two-scale convergence. As a third step,

we will tend geometric issues related to the boundary value problems under consideration.

§3. Convergence machinery I: definition of periodic
unfolding

By 1990 an interest to develop alternative descriptions of two-scale convergence had been sparked

by problems involving reiterated periodic homogenisation and functional analytical consider-

ations. [ADH90] can be considered as the forerunner of an e�ort which culminated in the de-

velopment of periodic unfolding. Besides its more geometric intuition, periodic unfolding also

allowed to formulate two-scale convergence in well-known functional analytical terms, making

it our method of choice.

Let us �x some notation: again, the �at 3-torus is given byY := R3/Z3 and c := cY : R3 −→
Y denotes the corresponding quotient map. A set� ⊂ Y is open in the quotient topology onY if

its pre-image c−1 (�) ⊂ R3 is open in the standard Euclidian topology on R3 . The quotient map

is a local �∞-di�eomorphism and surjective since c (. ) = Y holds for . := [0, 1)3 . To sum up,

Y is a compact �∞-manifold carrying the quotient topology induced by c .

§3.1. Two-scale decomposition of the whole space

The presentation of periodic unfolding given here follows [CDG08; MT06] and [Vis06]. Let

us begin by noticing that for every Y > 0 every G ∈ R3 can be uniquely decomposed as

G = Y ( [G/Y]Z3 + {G/Y}Z3 ) with [G]Z3 := (bG8c)38=1 ∈ Z3 and {G/Y}Z3 := G/Y − [G/Y]Z3 ∈ . .

Heuristically, one interprets Y [G/Y]Z3 as the macroscopic portion of G and Y{G/Y}Z3 as the mi-

croscopic contribution; roughly, this is motivated by |G − Y [G/Y]Z3 |R3 ≤ Y.
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§3. Convergence machinery I: de�nition of periodic unfolding

De�nition §3.1: Periodic unfolding in R3

The two-scale decomposition map TY,R3 , in short TY , is given by

(3.1) TY,R3 : R3 × Y −→ R3 (G,~) ↦−→ TY,R3 (G,~) := Y ( [G/Y]Z3 + ~) .

The periodic unfolding operator T ∗Y is given by pulling back with TY , more speci�cally

(3.2)

{
T ∗Y :

{
D : R3 −→ (

}
=: (R

3 −→ (R
3×.

[G ↦→ D (G)] ↦−→
[
(G,~) ↦→ T ∗Y (D) (G,~) := D ◦ TY (G,~)

]
for some set ( .

Let us consider a standard example: DY (G) = sin(2cGY−^) for G ∈ R and ^ ∈ R. Unfolding

leads to T ∗Y (DY) (G,~) = sin

(
2cY1−^ (bG/Yc + ~)

)
which turns into T ∗Y (DY) (G,~) = sin(2c~) if

^ = 1. Thus, periodic unfolding manages to simplifyDY considerably provided the oscillations are

correctly captured by the microvariable~. In contrast, for ^ ≠ 1 periodic unfolding is essentially

ine�ective.

Next, we will consider some technical measurability properties. To �x notation, we write

L(R3 ) for the f-algebra of Lebesgue measurable sets in R3 , which stems from the Borel f-

algebra B(R3 ) by completion, i.e. by setting _3 (/0) = 0 for all /0 ⊂ / ∈ B('3 ) with _3 (/ ) = 0

such that /0 ∈ L(R3 ). One can obtain a similar constructs for Y by pushing forward the

Lebesgue measure from R3 to Y via _3
.
(�) := _3

R3
(c−1 (�) ∩ . ) for � ∈ L(Y) := {" ⊂ Y :

c−1 (") ∩. ∈ L(R3 )}. For additional background material and more sophisticated approaches,

most notably the Haar integral on compact Lie groups, consider [AE09; Bou64; Edw65; HS65].

Finally, let two measurable spaces ((8 , Σ8 ) with 8 = 1, 2 be given. Σ1⊗Σ2 is the smallest f-algebra

of subsets of (1 × (2 which is generated by sets of the form "1 ×"2 with "8 ∈ Σ8 for 8 = 1, 2.

Do note that even if the "8 are complete, Σ1 ⊗ Σ2 does not have to be so.

Lemma §3.1: Measurability properties on R3

For all� ∈ L(R3 ) we have T −1Y (�) ∈ L(R3 ) ⊗ L(Y). Therefore, the periodic unfolding

of a Lebesgue measurable map is Lebesgue measurable. In addition, periodic unfolding

respects zero sets, that is, if /1 ⊂ R3 with _3 (/1) = 0, then _23 (T −1Y (/1)) = 0 holds, too.

Proof. The measurability statement is due to T −1Y (�) being the union of a product of Y-cubes

covering� with the preimage of a Lebesgue measurable set under the local di�eomorphism

c , namely

T −1Y (�) =
⋃

I∈[�/Y ]

[
[Y (I + . )] × c−1 (� ∩ [Y (I + . )])

]
.(3.3)

The zero set statement now follows, too: since c−1 maps /1 on a product of a union of cubes

with zero sets in Y, which is a zero set due to Fubini’s theorem. �
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§3.2. Two-scale decomposition of a domain’s auxiliary domains

The problem

Applying periodic unfolding to subsets of R3 is not straightforward due to the lack of match

encountered near the boundary. More explicitly, T −1
n,R3
(Ω) = T −1Y (Ω) ) Ω ×Y holds in general,

even for bounded �∞-domains. For instance, let Ω = �1 (0) ⊂ R3 and G ∈ �Y (mΩ) ∩ Ω with

(G̃, ~) ∈ T −1Y (G). As one may �gure out by a brief sketch, one encounters cases like G̃ ∉ Ω or

TY (G̃, ~) ∉ Ω for some ~ ∈ Y, see �gure I.1 for an illustration.

T −1Y (Ω) ) Ω × Y would not be too bad if it would not actually cause us trouble; of course, it

does, the situation is as follows. Say we suspect a sequence (DY)Y∈J ⊂ !1 (Ω) to possess oscilla-

tions that can be resolved nicely with periodic unfolding. WritingFY = T ∗Y (DY) for the moment,

it is clear by the foregoing considerations that supp(FY) ⊄ Ω×Y holds in general, as T −1Y (Ω) is

strictly greater than Ω×Y. Since T −1Y (Ω) is rather awkward, it is tempting to stick withFY |Ω×Y
instead. However, as pointed out in [MT06, Ex. 2.3], this is not a good idea.

Explicit construction of an defective sequence

Following [MT06], one can construct a sequence (DY)Y∈J ⊂ !1 (Ω) explicitly whose periodic

unfolding restricted to Ω ×Y cuts o� considerable parts of the function. The idea is to consider

an approximation to the identity, centred at GY ∈ Ω with dist(GY , mΩ) → 0 such that T −1Y (GY) ∉
Ω × Y. More explicitly, set

[X (~) := X−3[ (~/X) and [ (~) := j�1 (0) (~) exp
(
−1

1 − |G |2

)
∈ �∞

0
(R3 )(3.4)

such that supp([X ) = �X (0) and ‖[X ‖!1 (R3 ) = 1 for X > 0. Then, a defective sequence can be

made from

DY := 0Y[X (G − GY)(3.5)

with X = Y12345, your favourite sequence (0Y)Y∈J ⊂ R, and some (GY)Y∈J ⊂ Ω. Returning to

�gure I.1 again, take Ω = �1 (0) ⊂ R3 and GY = (1−Y) (−
√
1/3, . . . ,−

√
1/3) to arrive at a sequence

(DY)Y∈J that vanishes under periodic unfolding restricted to Ω × Y. Thus, ‖T ∗Y (DY)‖!1 (Ω×Y) = 0

and at the same time ‖DY ‖!1 (Ω) = |0Y | hold, with (0Y)Y∈J being arbitrary.

A possible resolution

A compensation of the lacking boundary match is due to [CDG02; CDG08; Cio+12; MT06] where

Ω is approximated by two open domains Ω−Y and Ω+Y , we write Ω±Y in short, which we call auxil-
iary domains of Ω. The latter are tailor-made to ful�l TY (Ω±Y ×Y) = Ω±Y such that unambiguous

meaning can be given to TY : !0 (Ω±Y ) −→ !0 (Ω±Y ×Y). By Ω−Y ⊂ Ω ⊂ Ω+Y one aims at transferring

a suitable periodic unfolding concept onto Ω, as well.

To begin, let us write / := [0, 1]3 and int[�] for the interior of a given set � ⊂ R3 , i.e. the

union of all subsets of � which are open in R3 . The following, somewhat technical de�nition is

exempli�ed in �gure I.1 below.

14



§3. Convergence machinery I: de�nition of periodic unfolding

Ω = BR(0)

x1

x2

ε

Ω−
ε

Λ+
ε

Ω = BR(0)

x1

x2

ε

Ω−
ε

Λ+
ε

Figure I.1.: The domain Ω = �' (0) ⊂ R2 is approximated in terms of the grid YZ2; only Ω−Y and

Λ+Y are drawn. Here, Y = '/# for some # ∈ N.
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I. An introduction to periodic homogenisation and two-scale convergence

De�nition §3.2: Auxiliary domains

The inner and outer (Y-dependent) auxiliary domains of an open set Ω ⊂ R3 are denoted

Ω−Y and Ω+Y respectively, and are given through the following cascade of de�nitions:

'−Y (Ω) :=
{
I ∈ Z3 : Y (I + / ) ⊂ Ω

}
& '+Y (Ω) :=

{
I ∈ Z3 : Y (I + / ) ∩ Ω ≠ ∅

}
,(3.6a)

Ω−Y := int


⋃

I∈'−Y (Ω)
Y (I + / )

 & Ω+Y := int


⋃

I∈'+Y (Ω)
Y (I + / )

 ,(3.6b)

Λ−Y := Ω \ Ω−Y & Λ+Y := Ω+Y \ Ω−Y .(3.6c)

By construction, the sets Ω±Y are open, Lebesgue measurable and ful�l Ω−Y ⊂ Ω ⊂ Ω+Y for all

Y > 0. So, Ω±Y form several sequences, namely

a)

(
Ω±Y

)
Y∈J, a sequence of open �∞-submanifolds of R3 ,

b)

(
mΩ±Y

)
Y∈J, a sequence of closed subsets of R3 which are no manifolds in general, and

c)

(
Ω±Y

)
Y∈J

, also a sequence of closed subsets of R3 which again are neither manifolds nor

manifolds with corners in general.

Proposition §3.1: Convergence of auxiliary domains

Let Ω ⊂ R3 be an open set with compact, �0,1
-regular boundary, then the aforemen-

tioned sequences can be considered to converge to subsets of Ω in the following manner:

a) (Ω±Y )Y∈J Hausdor�-converges to Ω in R3 , i.e. for co�nitely many Y > 0 we have

Ω±Y ⊂ �3Y (Ω) and Ω ⊂ �3Y (Ω±Y ) together with the vanishing of the corresponding

Hausdor�-metric in R3 :

3R
3

� (Ω
±
Y ,Ω) := inf

{
X > 0 : Ω±Y ⊂ �X (Ω) ∧ Ω ⊂ �X (Ω±Y )

}
≤ 3Y → 0.(3.7a)

b)

(
mΩ±Y

)
Y∈J Hausdor�–converges to mΩ in R3 , too: for co�nitely many Y > 0

mΩ±Y ⊂ �3Y (mΩ) and mΩ ⊂ �3Y (mΩ±Y ) hold and the corresponding Hausdor�-metric

vanishes as

3R
3

� (mΩ
±
Y , mΩ) ≤ 3Y → 0 holds.(3.7b)

c) Thanks the regularity assumption on mΩ we infer

0 ≤ _3 (Λ+Y ) + _3 (Λ−Y )
Y→ 0−→ 0.(3.7c)

Furthermore, the domains Ω±Y satisfy the cone property but not the uniform cone

property. In particular, Ω±Y generally fail to be strong Lipschitz domains. However,

_3
(
mΩ±Y

)
= 0 holds for all Y > 0 and mΩ±Y has an outward unit normal vector ℋ

3−1
-

almost everywhere.
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§3. Convergence machinery I: de�nition of periodic unfolding

Figure I.2.: The two-bricks set fails to be a Lipschitz domain due to the point I.

Proof. Keeping

√
3 = diam(/ ) in mind, the Hausdor�-convergence statements follow from

the construction of the Ω±Y in a geometric manner: to show (3.7c) we focus on Λ+Y as Λ−Y ⊂ Λ+Y .

As mΩ is a Lipschitz-regular, compact manifold of codimension 1, there are �nitely many,

R3 -open and bounded sets *1, . . . ,* which cover mΩ together with uniformly bi-Lipschitz

continuous chart maps q1, . . . , q which locally map*8 ∩Ω to q8 (*8 ∩Ω) = {G ∈ +8 : G= < 0}
for an open and bounded neighbourhood +8 ⊂ R3 of 0 ∈ R3 . Thus, the problem reduces to

establishing that these recti�ed parts of the boundary vanish when covered with cubes of

the form Y/ that are aligned in some manner which can be arbitrary. Fortunately, it is quite

obvious to see that is indeed the case: since q8 (*8 ∩ mΩ) = {G ∈ +8 : G= = 0} is a linear

hypersurface and the cover of Y/ -cubes has Lebesgue measure proportional to Y3diam(+8 ).
Also, q−18 preserves this proportionality. Finally, this procedure can be done for all*1, . . . ,* 

along mΩ such that the statement follows.

Next, to see that Ω±Y satis�es the cone property, notice that / = Y [0, 1]3 does and so do

unions of translations along Z3 of / and their interiors for every �xed Y > 0.

To see that the uniform cone property can fail, consider the two-brick set depicted in �gure I.2

which is given by/ ∪(41+/ )∪ (42+/ )∪ (42+43+/ ) ⊂ R3 for 48 being the 8-th canonical unit

vector. The two-brick set fails to be a manifold in I = (1, 1, 1); a back-of-an-envelope sketch

can be very useful in this matter, too. The moral is that as long as two-bricks con�gurations

cannot be ruled out satisfactorily – at least the author knows not how to do so at present –

and so the uniform cone property must be expected to collapse.

Concerning _3
(
mΩ±Y

)
= 0, observe that _3 (Ym/ ) = 0 is obvious for every Y > 0. Moreover,

since mΩ is assumed to be compact, so is mΩ±Y for every Y > 0. Thus, mΩ±Y consists of a �nite

union of Y-hypercubes isometric to [0, Y]3−1 × 0. Now, the _3 -claim is elementary. Finally,

the Y-hypercubes touch at worst on an (3 − 2)-dimensional edge since (3 − 1)-dimensional

faces are glued together by construction. However, every Y-hypercube has a outward normal

unit vector ℋ
3−1

-almost everywhere and this transfers to mΩ±Y . �

Presumably, the sets Ω±Y inherit both connectedness and the segment condition from their

original domain Ω for Y ∈ (0, Y0] with Y0 = Y0 (Ω) > 0 being small enough. If so the sets Ω±Y
behave very reasonable although not being Lipschitz-regular: following P. W. Jones [Jon81],

the Ω±Y are (n, X)-domains which possess extension operators for Sobolev functions, c.f. [Jon81,

Thm. 1] and enjoy the density of �∞ (R3 )-functions, c.f. [Jon81, Sec. 4]. Both properties lead

to the conclusion that Sobolev spaces, 1,?
on domains Ω±Y are suitably linked to both, 1,? (Ω)

and , 1,? (R3 ). Unfortunately, [AF03] is not very extensive about (n, X)-domains, V. Maz’ya’s

[Maz11] being a more suitable resource. Concerning traces on mΩ±Y , one may consider more
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I. An introduction to periodic homogenisation and two-scale convergence

recent works on traces, for instance traces for d-sets, see H. Triebel’s [Tri01, Ch. 9] and [Tri06,

Thm. 7.16], or traces of �+ -functions, see [AFP00; Maz11].

Anyway, since we are not going to use the Ω±Y to de�ne the oscillating coe�cients, we refrain

from elaborating on this matter. More important to our applications is the realisation that since

each Ω±Y is made up by periodicity cells, we have the following results.

Lemma §3.2: Invariance of Ω±Y under TY

Let Ω ⊂ R3 be a domain with compact Lipschitz-regular boundary. Then the auxiliary

domains are preserved under the two-scale decomposition map, which means that for

every Y > 0 we have T −1
Y,R3

(
Ω±Y

)
= Ω±Y × Y.

Proof. Without loss of generality we only consider Ω+Y ≠ ∅. To show T −1
Y,R3

(
Ω±Y

)
⊂ Ω±Y × Y,

decompose G ∈ Ω+Y as G = Y [G/Y]Z3 +Y{G/Y}Z3 = TY (G, {G/Y}Z3 ) = TY (G̃, {G/Y}Z3 ) with G̃ ∈ R3
su�cing [G̃/Y]Z3 = [G/Y]Z3 . By construction any such G̃ are contained in Ω+Y and for almost

all G ∈ Ω one even has G ≠ TY (G̃, ~) for all ~ ∈ Y if [G̃/Y]Z3 ≠ [G/Y]Z3 .

Conversely, let (G,~) ∈ Ω±Y × Y then TY (G,~) ∈ Ω±Y holds by the very de�nition of Ω±Y given

in (3.6) and therefore the claim is established. �

Thanks to the foregoing lemma, restricting periodic unfolding to auxiliary domains is well-

justi�ed. We will write !0 (Ω±Y ;ℬ) for the vector space of all L(Ω±Y ) − B(ℬ)-measurable maps

from Ω±Y to ℬ.

De�nition §3.3: Periodic unfolding on auxiliary domains

Let Ω ⊂ R3 be a domain with compact Lipschitz boundary and Y > 0. The periodic

unfolding operator (on auxiliary domains) Ω±Y is given via the restriction of the periodic

unfolding operator on R3 as given in de�nition §3.1, that is

T ∗
Y,Ω±Y

: !0 (Ω±Y ) −→ !0 (Ω±Y × Y) E ↦−→ T ∗
Y,Ω±Y
(E) :=

(̃
E ◦ TY,R3

)
(G,~)|Ω±Y ×Y,(3.8)

with Ẽ being the extension of E by zero outside of Ω. Note that _3 (mΩ±Y ) = 0 is used here,

too. Also, measurability issues are postponed to lemma §3.3. Besides, one abbreviates

T ∗
Y,Ω±Y

by T ∗Y in most instances.

Lemma §3.3: Banach valued periodic unfolding

Referring to de�nition §3.3, let ℬ be a Banach space. One can extend T ∗
Y,Ω±Y

to ℬ-valued

functions in order to get

T ∗
Y,Ω±Y ,ℬ

: !0 (Ω±Y ;ℬ) −→ !0 (Ω±Y × Y;ℬ)(3.9)

which we denote by T ∗Y , again, provided there is no ambiguity.

Proof. Recall lemma §3.1 and the fact that L(Ω±Y ), stems from L(R3 ) by restriction, i.e. � ∈
L(Ω±Y ) ⇐⇒ ∃�̃ ∈ L(R3 ) : � = �̃∩ Ω±Y . Now, let 5 : Ω±Y −→ℬ be given and extend it to all

of R3 by zero, making a L(Ω±Y ) − B(ℬ)-measurable function L(R3 ) − B(ℬ)-measurable.

By lemma §3.1 we have T −1Y : L(R3 ) −→ L(R3 ) ⊗ L(Y) and for every � ∈ B(ℬ)
(T ∗Y (5 ))−1 (�) = T −1Y (5 −1 (�)) holds. As 5 is su�ciently measurable 5 −1 (�) ∈ L(R3 ) holds,
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§3. Convergence machinery I: de�nition of periodic unfolding

using the extended function already. Alas, this shows that T ∗Y (5 ) is L(R3 ) ⊗L(Y) −B(ℬ)-
measurable.

Moreover, since T −1Y inherits the invariance of zero sets, T −1Y (Ω±Y ) = Ω±Y × Y holds up to

zero sets, making (G,~) ↦−→ T ∗Y (5 ) (G,~) a well-de�ned map on Ω±Y × Y as claimed. �

Proposition §3.2: Isometry of T ∗
Y,Ω±Y

Referring to de�nition §3.3, T ∗
Y,Ω±Y

has the following invariance property:

∀D ∈ !1 (Ω±Y ;ℬ) :
∫
Ω±Y

D (G) 3G =

∬
Ω±Y ×Y

T ∗
Y,Ω±Y
(D) (G,~) 3~3G .(3.10)

As a consequence, T ∗Y : !? (Ω±Y ;ℬ) −→ !? (Ω±Y × Y;ℬ) is an isometry for ? ∈ [1,∞],
i.e.

∀D ∈ !? (Ω±Y ;ℬ) : ‖D‖!? (Ω±Y ;ℬ) = ‖T
∗
Y (D)‖!? (Ω±Y ×Y;ℬ) .(3.11)

Proof. First, observe that for ? ∈ [1,∞), (3.11) follows from (3.10), so let us address the latter

by choosing D ∈ !1 (Ω±Y ;ℬ). Since our measurability issues have been settled in lemma §3.3,

we obtain the following transition formula by calculation:

∫
Ω±Y

D (G) 3G =
∑

I∈'±Y (Ω)

∫
Y (I+. )

D (I + ~) 3~

= Y3
∑

I∈'±Y (Ω)

∫
I+.

D (YI + Y~) 3~ =

∬
Ω±Y ×Y

T ∗Y (5 ) (G,~) 3~3G
(3.12)

which relies on TY (Ω±Y × Y) = Ω±Y from lemma §3.2 and G ↦−→ I = [G]Z3 being constant

inside of every Y (I + . ) so that G ↦−→ TY (G,~) is piecewise constant.

For the case ? = ∞, observe that |D |ℬ coincides with a bounded, R-valued function D̃ on all of

Ω±Y \/ for a zero set / ⊂ Ω. Additionally, unfolding respects zero sets, i.e. _23 (T −1Y (/ )) = 0,

and is surjective onto Ω±Y . Thus, the pullback of D̃ and |D |ℬ by TY neither changes the match

of two functions almost everywhere, nor does it change the bound of D̃. �

§3.3. Two-scale decomposition of a domain

We are now in place to de�ne periodic unfolding for suitable domains, namely open connec-

ted sets with compact, Lipschitz-regular boundary. The plan is simple: unfolding !? (Ω) yields

spaces T −1Y (!? (Ω)) ⊂ !? (Ω+Y × Y) and the latter ‘converges’ suitably to !? (Ω × Y).
To avoid confusion we distinguish two tasks. First, using a suitable convergence notion that

we specify later, one may take Ω−Y ↗ Ω to establish !? (Ω−Y ) ↗ !? (Ω), a procedure that carries

over to Ω−Y ×Y ↗ Ω×Y and !? (Ω−Y ×Y) ↗ !? (Ω×Y), as well. Likewise, one can do the same

for Ω+Y ↘ Ω with !? (Ω+Y ) ↘ !? (Ω) and Ω+Y × Y ↘ Ω × Y with !? (Ω+Y × Y) ↘ !? (Ω × Y),
respectively.

One the other hand, one may consider sequences of the form (FY)Y∈J withFY ∈ T ∗Y (!? (Ω)) for

every Y ∈ J. An example from [MT06] can be interpreted as showing that the space of sequences

obtained by periodic unfolding is strictly greater than just takingFY ∈ !? (Ω×Y). Thus, !? (Ω×
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I. An introduction to periodic homogenisation and two-scale convergence

Y)N is the wrong space for this endeavour, with !? (R3 × Y)N being a more promising candidate.

We will return to this matter shortly, de�ning periodic unfolding on Ω �rst. Seeming rather

unorthodox at �rst glance, we will employ the notion of a bundle to do so.

De�nition §3.4: Two-scale decomposition bundle of Ω

For Ω ⊂ R3 open with a compact, Lipschitz-regular boundary, the two-scale decompos-

ition (bundle) of Ω is given by(∏
Y∈J

Ω+Y × Y,
∏
Y∈J

Ω+Y , (TY)Y∈J

)
(3.13)

with the Cartesian product of sets

∏
Y∈J Ω

+
Y ×Y being the total space over the base space∏

Y∈J Ω
+
Y together with the following J-indexed family of two-scale decomposition maps

that constitute the corresponding projections:


TY,Ω+Y : Ω

+
Y × Y −→ Ω+Y

(G,~) ↦−→ TY,Ω+Y (G,~) := Y
[
G
Y

]
+ Y~.

(3.14)

The induced periodic unfolding operators (on Ω)

(
T ∗Y

)
Y∈J read


T ∗Y,Ω : !0 (Ω) −→ !0 (Ω+Y × Y)

[G ↦→ E (G)] ↦−→
[
(G,~) ↦→ T ∗

Y,Ω (E) (G,~) := Ẽ
(
TY,Ω+Y (G,~)

) ]
,

(3.15)

denoting by Ẽ the extension of E by zero. As the domain is usually clear from the context,

we shall only write TY and T ∗Y for simplicity’s sake.

Naturally, the above de�nition carries over to Y > 0 instead of Y ∈ J.

Lemma §3.4: Banach values

Complementing de�nition §3.4, letℬ be a Banach space such that the periodic unfolding

operator T ∗
Y,Ω can be extended to a map T ∗

Y,Ω,ℬ : !0 (Ω;ℬ) −→ !0 (Ω+Y × Y;ℬ) which,

again, is usually shortened to T ∗Y .

Proof. Considering functions extended by zero, the statement is entirely due to lemma §3.3.

�
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Proposition §3.3: Isometry of T ∗
n,Ω,ℬ

Referring to de�nition §3.4 and lemma §3.4,

!? (Ω;ℬ) 3 D ↦−→ T ∗Y (D) = T ∗Y,Ω,ℬ ∈ !
? (Ω+Y × Y;ℬ) is linear, and(3.16)

∀D ∈ !1 (Ω;ℬ) :
∫
Ω

D (G) 3G =

∫
Ω+Y

D̃ (G) 3G =

∬
Ω±Y ×Y

T ∗
Y,Ω+Y
(D) (G,~) 3~3G(3.17)

hold for every Y > 0 with D̃ being the extension of D by zero outside of Ω. Consequently,

the following isometry property holds for T ∗
n,Ω,ℬ : !? (Ω;ℬ) −→ !? (Ω±Y × Y;ℬ) with

? ∈ [1,∞]:

∀D ∈ !? (Ω;ℬ) : ‖D‖!? (Ω;ℬ) = ‖T ∗Y (D)‖!? (Ω±Y ×Y;ℬ) .(3.18)

Proof. Again, the measurability issues are settled already, and (3.17) follows directly from

(3.10) asD ↦→ D̃ does not alter the integral, being an isometry itself and (3.17) infers (3.18). �

Remark §3.1: Warning

An statement fully analogous to proposition §3.2 with Ω±Y being replaced by Ω in both

(3.17) and (3.18) is wrong! Unfortunately, (3.5) shows that there do exist D ∈ !? (Ω;ℬ)
with ‖D‖!? (Ω;ℬ) = ‖T ∗Y (D̃)‖!? (Ω±Y ×Y;ℬ) ≠ ‖T ∗Y (D̃)|Ω×Y ‖!? (Ω×Y;ℬ) .

Corollary §3.1:

Isometric images of closed sets are closed and so,

T ∗Y (!? (Ω;ℬ)) :=
{
5 ∈ !? (Ω+Y × Y;ℬ) : ∃D ∈ !? (Ω;ℬ) : T ∗Y (D) = 5

}
.(3.19)

is a closed subspace of !? (Ω+Y × Y;ℬ) ⊂ !? (R3 × Y;ℬ) for every ? ∈ [1,∞].

Proof. Every converging sequence (T ∗Y (D=))=∈N ⊂ T ∗Y (!? (Ω;ℬ)) is a Cauchy sequence,

such that ‖T ∗Y (D=) − T ∗Y (D<)‖!? (R3×Y;ℬ) → 0 for =,< → ∞. Since T ∗Y is an isometry this

implies that (D=)=∈N is a Cauchy sequence in !? (Ω;ℬ) already. Since the latter is complete,

∃D ∈ !? (Ω;ℬ) : ‖D= − D‖!? (Ω;ℬ) = ‖T ∗Y (D=) − T ∗Y (D)‖!? (R3×Y;ℬ) → 0 for = →∞. �

§4. Convergence machinery II: definition of two-scale
convergence

This section will supersede two-scale convergence’s original de�nition §2.1. We shall refor-

mulate two-scale convergence in terms of periodic unfolding. The main reason to do so is the

resulting functional analytic conciseness which allows us to retrieve the classical two-scale com-

pactness theorems of G. Allaire and G. Nguetseng in a very natural manner.

Since periodicity is linked to smoothness properties of functions, we shall begin with the

de�nition of periodicity notions in the context of varying regularity. Throughout, (ℬ, | · |ℬ) will

stand for an arbitrary Banach space. Of course, in all relevant applications ℬ will be required

to be separable in order to have ‘su�ciently many’ non-trivial, measurable functions at hand.
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I. An introduction to periodic homogenisation and two-scale convergence

§4.1. Periodic distributions and functions

A function D : R3 −→ ℬ is Z3 -periodic if it is invariant under translation by vectors from Z3 .

Writing g~ (D) = D ( · + ~) for ~ ∈ R3 , this can be formulated as

D : R3 −→ℬ is Z3 -periodic⇐⇒ ∀I ∈ Z3 : gI (D) = D.(4.1)

Likewise, one may consider equivalence classes of Z3 -periodic functions which are invariant

under gI almost everywhere in R3 . Moreover, any Z3 -periodic function is in one-to-one corres-

pondence with a function D̃ : Y −→ ℬ. Naturally, periodicity with respect to grids di�erent

from Z3 make sense as well; these are linked by a simple change of coordinates.

Now, observe that a non-trivial, in�nitely di�erentiable, Z3 -periodic function D is not a test

functions in R3 – test functions being elements of �∞
0
(R3 ;ℬ) – due non-compact support in

R3 . In principle, this inconvenience can be overcome in two-fold fashion: either one realigns the

notion of test functions or one rearranges the domain of de�nition. In essence, both approaches

are equivalent in the sense that the resulting function spaces are isomorphic in a canonical and

topological way, we refer to [Tri83, Ch. 9] for a full discussion. Since we have been working

with the �at torusY := R3/Z3 already, we shall stick with the approach of changing the domain

when de�ning distributions that are periodic an a speci�c variable, our reference on distributions

being [Sch55; Sch57; Sch58].

De�nition §4.1: Periodic test functions

Let Ω ⊂ R3 be an open set. The (vector) space of ℬ-valued test functions on Ω × Y, is

given by

�(Ω × Y;ℬ) := �∞
0
(Ω × Y;ℬ) := {D ∈ �∞ (Ω × Y;ℬ) : supp(D) ⊂⊂ Ω × Y} .(4.2)

Clearly, one can consider D ∈ �(Ω × Y;ℬ) as a ℬ-valued, smooth function on Ω × R3 , Z3 -

periodic in its second argument. Realise that for Ω = ∅ �(Y;ℬ) = �∞ (Y;ℬ) due to Y being

compact.

So far, �(Ω × Y;ℬ) is a vector space without topology. Let us specify the inductive (locally

convex) limit topology which we recall for convenience’s sake. One starts with an ascending

sequence (Ω: ):∈N of compact subsets of Ω with ∪:∈NΩ: = Ω. (Ω: ):∈N induces a countable

family of semi-norms on �∞ (Ω × Y;ℬ), namely

(4.3) d:,ℓ (D) := max {|(�UD) (G,~) |ℬ : (G,~) ∈ Ω: × Y, |U | ≤ ℓ} for :, ℓ ∈ N.

As shown in lemma §4.1 below,ℰ(Ω×Y;ℬ) := (�∞ (Ω×Y;ℬ), {d:,ℓ }:,ℓ∈N) is not only locally

convex, but even a Fréchet space in which the spaces �(Ω:×Y;ℬ) form an ascending sequence

of closed subspaces. The inductive limit topology is de�ned as the �nal topology of the inclusion

maps ]: : �(Ω: ×Y;ℬ) ↩−→ �(Ω ×Y;ℬ). This means that* ⊂ �(Ω ×Y;ℬ) is open if and

only if ]−1
:
(* ) is open in �(Ω: × Y;ℬ) for every : ∈ N.

In fact, the semi-norms {d:,ℓ }:,ℓ∈N also yield a uniform structure which is transferred by the

inductive limit uniform structure. In hands-on terms, one �nds that a sequence (i: ):∈N ⊂
�(Ω × Y;ℬ) is Cauchy if and only if{

∃< ∈ N : ∀: ∈ N : supp(i: ) ⊂ Ω< ∧ ∀ℓ ∈ N : d<,ℓ (i8 − i 9 )
8, 9→∞
−→ 0.(4.4)
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For ℬ = R, endowing �(Ω ×Y;R) with the locally convex topology and the uniform structure

that stem from the inductive limit construction yields a complete Montel space. In particular, it

has non-trivial, continuous linear forms and is re�exive, being no Fréchet-space though.

De�nition §4.2: Periodic distributions

The space of ℬ-valued distributions on Ω × Y is given by

�
′(Ω × Y;ℬ) := ℒ(�(Ω × Y;R);ℬ)(4.5)

equipped with the topology of uniform convergence on bounded sets. Throughout, one

usually drops the codomain if ℬ = R, writing only �
′(Ω×Y) instead of �

′(Ω×Y;ℬ).

As before, one can consider �
′(Ω ×Y;ℬ) as ℬ-valued distributions on Ω ×Y that are ‘Z3 -

periodic in their second argument’, requiring to say what a periodic distribution should be in

the �rst place. Yet, we do not elaborate on this matter any further, see [Tri83, Ch. 9] for further

reference. The following lemma complements the foregoing de�nition.

Lemma §4.1: Metrisability ofℰ

Writing d: := d:,: , 3 (D,F) := ∑
:∈N 2

−:
arctan(d: (D −F)) is a metric on ℰ(Ω × Y;ℬ)

whose induced topology coincides with the topology given by the family of semi-norms

(d:,ℓ ):,ℓ∈N. Moreover, ℰ(Ω × Y;ℬ) is a Fréchet space then.

Proof. First, observe that both families (d: ):∈N and

(
d:,ℓ

)
:,ℓ∈N are countable, so, it is su�-

cient to consider sequences. Secondly, the two families of metrics are equivalent onℰ in the

sense that they yield the same convergent sequences, a fact made possible by dropping the

requirement of compactness of support, see (4.4). Thirdly, let 3 (D=, D)
=→0−→ 0, then we have

0 ≤ arctan(d: (D= − D)) ≤ 2
:3 (D=, D)

=→0−→ 0 for every : ∈ N, from which d: (D − D=)
=→0−→ 0

follows.

Conversely, let∀: ∈ N : d: (D=−D)
=→0−→ 0 hold, and let X0 > 0 be given. Since 0 ≤ arctan(~) ≤

c/2 for all ~ ≥ 0, there exists " = " (X0) ∈ N0 such that

∑
:≥" 2

−:
arctan(d: (D= −D)) ≤ X0.

Thus, the metric’s series can be truncated as 3 (D=, D) ≤
∑
:≤" 2

−:
arctan(d: (D= − D)) + X0.

Now, for = ≥ # (X0) we have arctan(d: (D= − D)) ≤ X0/2, for : = 0, . . . , " which infers

3 (D=, D) ≤ 5X0 for = ≥ # (X0) +" (X0).
Forℰ(Ω ×Y;ℬ) to be a Frécht space, one needs to verify local convexity of the topology –

which is obvious due to metrisibility –, translation invariance of the metric itself – obvious

as well – and completeness. For the last assertion, it su�ces to consider a Cauchy sequence

(D=)=∈N ⊂ ℰ(Ω × Y;ℬ) which can even be reduced to ( |D= |ℬ)=∈N ⊂ ℰ(Ω × Y;R). As

customary for completeness proofs, one resorts completeness ofR by pointwise convergence.

Thus, a candidate function |D | is in reach and di�erentiability of D can be veri�ed without

pain thanks to the very strong convergence properties available from the semi-norms d: . �

§4.2. At last: definition of two-scale convergence

Here, we present the de�nition of two-scale convergence based on periodic unfolding for !? -

functions. We do stress though, that periodic unfolding does require !1
loc

-regular functions. For

the purpose of less regular objects, one has to resort to an adaptation of the original de�nition.

Let us start with distributions.
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De�nition §4.3: Two-scale convergence of distributions

A sequence ()Y)Y∈J ⊂ �
′(Ω;ℬ) is strongly two-scale convergent in the sense of distri-

butions to ) ∈ �′(Ω × Y,ℬ) for J 3 Y → 0 if we have

(4.6) ∀i ∈ �(Ω × Y) : |)Y (i (G, G/Y)) −) (i (G,~)) |ℬ
Y→0−→ 0,

and (weakly) two-scale convergent in the sense of distributions to ) ∈ �′(Ω × Y,ℬ)

(4.7) ∀i ∈ �(Ω × Y), 1 ′ ∈ ℬ′ : 1 ′ ()Y (i (G, G/Y)) −) (i (G,~)))
Y→0−→ 0,

writing simply )Y
2B−→ ) in �

′(Ω × Y;ℬ) and )Y
2F−⇀ ) in �

′(Ω × Y;ℬ), respectively.

Since T ∗Y (i) ∉ �(R3 × Y) holds for any non-trivial i ∈ �(Ω × Y), periodic unfolding is

rather mis�t for the foregoing de�nition. Alas, this classically �avoured de�nition circumvents

auxiliary domains altogether.

Contrasting the classical de�nition, we will use periodic unfolding for su�ciently regular

functions as it clearly indicates where the two-scale topology actually comes from, namely from

!? (R3 × Y;ℬ) together with periodic unfolding. This information is not retrievable in the

original de�nition §2.1.

De�nition §4.4: Two-scale convergence of functions

Let Ω ⊂ R3 be an open set with compact, Lipschitz-regular boundary. For ? ∈ [1,∞],
a sequence (FY)Y∈J ⊂ !? (Ω;ℬ) is strongly two-scale convergent (in !? ) to a function

F ∈ !? (Ω × Y,ℬ) for J 3 Y → 0 if we have

(4.8) T ∗Y (FY) = T ∗Y,Ω (FY) −→ F in !? (R3 × Y;ℬ),

and (weakly) two-scale convergent (in !? ) toF ∈ !? (Ω × Y,ℬ) if

(4.9) T ∗Y (FY) = T ∗Y,Ω (FY) −⇀ F in !? (R3 × Y;ℬ)

holds, with ‘weakly’ being replaced by ‘weakly*’ if ? = ∞. Finally, we will mostly write

FY
2B−→ F in !? (R3 × Y;ℬ) andFY

2F−⇀ F in !? (R3 × Y;ℬ), respectively.

Again, we stress the concept of separating convergence structures from the actual function

space under consideration. For instance, for FY ∈ !? (Ω;ℬ) one has T ∗Y (FY) ∈ !? (Ω+Y × Y;ℬ)
with !? (Ω+Y ×Y;ℬ) ↩−→ !? (R3 ×Y;ℬ) by extension by zero. Thus, !? (R3 ×Y;ℬ)’s primary

role is to supply a topology. It does not mean that FY was assumed to be some element from

!? (R3 ;ℬ) in the �rst place – this is true if and only if FY is extended by zero. Instead, it is our

very aim to establish that a two-scale limit is indeed an element of !? (Ω×Y;ℬ), a fact which is

not entirely obvious when abandoning the sets Ω and Ω×Y when turning to auxiliary domains

where periodic unfolding works nicely.
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Corollary §4.1: Equivalent notions

Let ? ∈ (1,∞) andℬ both re�exive and separable. Then, classical two-scale convergence

and two-scale convergence via periodic unfolding coincide.

Proof. We revisit the original de�nition §2.1 withk ∈ �0 (Ω × Y;ℬ) and use (3.17) to get∫
Ω

FY (G)k (G, G/Y) 3G =

∬
R3×Y

T ∗Y (FY) (G,~)k̃ (TY (G,~), ~) 3~3G(4.10)

which exploits the multiplicative property T ∗Y (01) = T ∗Y (0)T ∗Y (1) of periodic unfolding.

Now, if (FY)Y∈J is two-scale convergent in the original sense to F0 ∈ !? (Ω × Y) then (4.10)

converges to

∬
Ω×Y F0 (G,~)k (G,~) 3~3G . At the same time, k (TY (G,~), ~)

Y→0−→ k (G,~) in

!?
′ (R3 × Y;ℬ) due to its uniform continuity, a fact that is revisited in section §5 later on.

Ruling out ? = 1, the subspace

{
T ∗Y (k ) : k ∈ �0 (Ω × Y;ℬ)

}
is dense for every Y > 0 in

T ∗Y (!?
′ (Ω;ℬ)) given in corollary §3.1. Foiling the use of ? = ∞, one can rewrite T ∗Y (FY) −⇀

F0 ∈ !? (Ω × Y;ℬ) as

∀i ∈ !?′ (R3 × Y;ℬ′) :
∬
R3×Y

(
T ∗Y (FY) −F0

)
i 3~3G −→ 0(4.11)

such that equivalence is shown. �

Remark §4.1: Periodicity defect and smoothness

Periodicity is linked to a minimal degree of smoothness, for illustration consider . =

[0, 1)3 andY = R3/Z3 where !? (Y) ' !? (. ) and, 1,? (Y) (, 1,? (. ) holds in general.

Similarly, T ∗Y (,
1,?

;>2
(R3 )) ?⊂ !?

;>2
(R3 ;, 1,? (Y)) needs to be adjusted to

∀? ∈ [1,∞) : T ∗Y (,
1,?

;>2
(R3 )) ⊂ !?

;>2
(R3 ;, 1,? (. ))

Thus, sensible periodicity cannot be expected by mere unfolding, a circumstance dubbed

periodicity defect, for a deeper discussion see [Rei15].

§4.3. A description in categorical terms

Here, we want formalise the exhaustion procedure underlying periodic unfolding with the help

of category theory. Though the latter is not particularly esteemed among analysts at present,

we assert that it does help in providing decent and handy formulations of the procedures and

structures under consideration, making things a little more well-arranged. We will keep the ne-

cessary machinery at an absolute minimum, referring to appendix A for elementary de�nitions

and examples.

The underlying directed sets

Recall that we assumed to be given an open set Ω ⊂ R3 with compact, �0,1
-boundary. The

auxiliary domains provide the con�gurations Ω+Y ↘ Ω and Ω−Y ↗ Ω in the sense that ∩Y∈JΩ+Y =
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∪Y∈JΩ−Y = Ω holds. In fact, this isotone families of set provide the following property

∀Y1, Y2 ∈ J : ∃Y3 ∈ J : Y3 ≤ Y1, Y2 ∧

Ω+Y1 ∩ Ω+Y2 ←−↪ Ω

+
Y3

Def.⇐⇒ Ω+Y3 C+ Ω
+
Y1
,Ω+Y2

Ω−Y1 ∪ Ω−Y2 ↩−→ Ω−Y3
Def.⇐⇒ Ω+Y1 ,Ω

+
Y2
C− Ω+Y3 .

(4.12)

Thus, both families of sets (Ω±Y )Y∈J are directed sets when endowed with the preorders C± in-

duced by set inclusions. For

[
{Ω} ∪ (Ω+Y )Y∈J,C+

]
one can consider Ω as an least element. Like-

wise, Ω is the maximum element of

[
{Ω} ∪ (Ω−Y )Y∈J,C−

]
.

However, since {Ω} is not contained in (Ω±Y )Y∈J it rather plays the role of an element in a

suitable completion. In fact, one can follow this direction by perceiving

[
{Ω} ∪ (Ω±Y )Y∈J,C±

]
as

semi-lattices that can be completed via the Dedekind–MacNeille completion, see [AHS04, 21H]

for a full exposition (in categorical terms).

In a more simple manner, one can identify Ω as inductive and projective limit of families of

sets. This notion will be suitable to be carried over the corresponding function spaces which is

why prefer it, next to its simplicity.

The auxiliary domains’ categories and their limits

Now, both

[
(Ω±Y )Y∈J,C±

]
can be thought of as categories �± with$1 (�±) = (Ω±Y )Y∈J and morph-

ism given by set inclusions or orderings:

Mor�±

(
Ω±Y1 ,Ω

±
Y2

)
:=


Ω+Y1 ↩−→ Ω+Y2 for Ω+Y1 C+ Ω

+
Y2
,

Ω−Y1 ↩−→ Ω−Y2 for Ω−Y1 C− Ω
−
Y2
,

∅ else.

(4.13)

Again, this is motivated by supplying morphisms if and only if set inclusions hold, thus rephras-

ing orderings as morphisms. Obviously, �± are small categories and thus they can be embedded

into Set (via the forgetful functor) with �+ forming a projective system and �− yielding an

inductive system there.

Lemma §4.2: Auxiliary domains and limits

Considering �± as a diagram in Set we obtain

lim proj

Y→0

Ω+Y = Ω = lim ind

Y→0

Ω−Y .(4.14)

Those who are familiar with category theory may argue the statement is trivial by common

folklore. Nevertheless, we deem such proofs non-standard in the given context so we do give

a proof. Proofs of limit and co-limit constructions always need to verify two aspects: �rst,

the cone property2
also known as source property or its counterpart the co-cone or target property

and second, universality which states that the desired object is unique up to isomorphisms of

the category under consideration. Note that a Set-isomorphism is a bijection of sets, whereas a

Di�-isomorphism is a di�eomorphism, for instance.

2
This notion is purely categorical. It has no relation at all to the cone property of Euclidean domains Ω ⊂ R3 .
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Proof. We assume Ω±Y2 C± Ω±Y1 and write ]1,2, ]1, ]2 ]̃1,2, ]̃1 and ]̃2 for inclusion maps between

Ω,Ω±Y1 and Ω±Y2 . Consider the following two diagrams.

(4.15)



Ω+Y1 Ω−Y1

Ω / and /̃ Ω

Ω+Y2 Ω−Y2

]1

]12

k1

!Ψ?

k̃1

k̃2

!Ψ̃?
]̃1

]̃2

]2

k2

]̃12

The sets /, /̃ and their morphisms k1,k2, k̃1, k̃2 are relevant only to universality and can be

ignored when addressing the cone and co-cone property.

So, to show the cone property in the left diagram, one needs to verify that ]1,2 ◦ ]1 = ]2 holds.

This is trivially the case. The co-cone property on the right is treated in very same manner.

Second, let us turn to universality. Here, one assumes the existence of another cone or co-

cone intending to show that unique maps Ψ or Ψ̃ exist that factor the maps as shown in the

diagrams.

Let us deal with the diagram on the right. For every G ∈ ΩY2 we have ]̃1 ◦ ]̃1,2 (G) = ]̃2 (G) and

k̃2 (G) = k̃1 ◦ ]̃1,2 (G) by assumption. Now, one tries to de�ne Ψ̃ by the relation

Ω 3 Ĝ ↦−→ Ψ̃(Ĝ) := k̃ (G)(4.16)

assuming Y ∈ J to be such that ∃G ∈ Ω−Y : Ĝ = ]̃ (G) together with a morphism k̃ : Ω−Y −→
/̃ . Of course, the resulting relation does not need to be a well-de�ned function this way.

Fortunately, it precisely the commutativity of the embedding maps ]̃1, ]̃2, ]̃1,2 that yields this

desirable property and in addition, the universality property.

We conclude with arguing that the diagram on the left hand side can be handled in the very

same fashion. �

Having limits in Set is of fundamental nature: though it is not the category we are actually

after, it will serve to provide suitable candidates for limits in more appropriate categories. Indeed,

this is no coincidence from an abstract point of view: vast amounts of analysis take place in the

topos of sets. Other branches of mathematics are lead to alternative topoi for their own reasons,

most prominently algebraic topology, see [Ble17]. We do not digress on this matter any further,

but refer to [Gol84] for a classical and very decent overview instead.

Function spaces regarded as functors

Functors describe correspondences among categories and their morphisms. It will be convenient

to consider !? -spaces as functors from a modi�ed category of measure spaces to the category

of Banach spaces. In more detail, the standard category of measure spaces Measure having

measure spaces (l, Σl , `l ) as objects and measure preserving maps as morphisms, is rather

badly behaved. One encounters several technical issues which are irrelevant to our endeavour

making it mis�t for us. Rather, we intend to augment �± as a directed systems of measure spaces

in a very straightforward and elementary fashion that suits our purpose.
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To this end, let Measure∗ be the category of measure spaces (l, Σ, `) as objects with morph-

isms 5 : (l1, Σ1, `1) −→ (l2, Σ2, `2) that satisfy

5 −1 (Σ2) ⊂ Σ1 , 5 (Σ1) ⊂ Σ2 and ∀� ∈ Σ1 : `1 (�) = `2 (5 (�)) .(4.17)

�± can be embedded into Measure∗ canonically: one attaches to each Ω±Y ∈ �± the f-algebra

L(Ω±Y ) stemming from L(R3 ) by restriction to Ω±Y and the measure _3|Ω±Y
. One veri�es e�ort-

lessly that embedding maps ]1,2 : Ω
±
Y1
↩−→ Ω±Y2 ful�l (4.17).

Lemma §4.3

�± form diagrams in Measure∗ whose projective and direct limit is (Ω,L(Ω), _3|Ω).

Proof. Verifying (Ω,L(Ω), _3|Ω) as cone or co-cone, respectively, is trivial due to the imbed-

ding maps being restrictions of the identity map.

To show universality of the co-cone, we reconsider (4.15) as a diagram in Measure∗. It is suf-

�cient to show that the factorisation map de�ned via (4.16) is a Measure∗-morphism,taking

into account that the maps k̃1 and k̃2 are assumed Measure∗-morphism. However, this is

easily veri�ed.

Treating universality of the cone accordingly, one obtains the desired result. �

Next, we can specify a twofold association: assume Ω±Y1 C± Ω
±
Y2

so that there is an embedding

]±
1,2 : Ω

±
Y1
↩−→ Ω±Y2 and Y1 ≤ Y2 holds. Clearly, the map(

Ω±Y ,L(Ω±Y ), _3|Ω±Y
)
↦−→ !?

((
Ω±Y ,L(Ω±Y ), _3|Ω±Y

)
;ℬ

)
= !? (Ω±Y ,ℬ)(4.18)

makes sense and yields a Banach space for ? ∈ [1,∞] and a given Banach space ℬ. Of course,

the foregoing holds with Ω in place of Ω±Y . Complementing the map of measure spaces to Banach

spaces, we need to associate a map ^±
1,2 to every ]±

1,2. Of course, this is provided by extending

functions by zero outside of their domain, yielding

]±
1,2 ↦−→

[
!? (Ω±Y1 ,ℬ)

^±
1,2

↩−→ !? (Ω±Y2 ,ℬ)
]

D ↦−→ ^±
1,2 (D) :=

D on Ω±Y1

0 else,

(4.19)

if and only if ]±
1,2 : Ω

±
Y1
↩−→ Ω±Y2 exists in the �rst place. Again, one can replace some Ω±Y with Ω

itself since the latter constructions rely on the presence of embeddings and Ω−Y C−ΩC+Ω
+
Y holds

for all Y > 0. Furthermore, the preceding aspects apply to the functor !? ( · × Y,ℬ) instead of

!? ( · ,ℬ) as well. We have the following result.
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Proposition §4.1

!? ( · ;ℬ) and !? ( · × Y;ℬ) can be understood as functors mapping Measure∗ into

Ban1. The respective images of �± under both functors yield diagrams in Ban1 whose

limits fromMeasure∗ are preserved continuously and co-continuously which means that

we have

lim proj!? (Ω+Y ;ℬ) = !? (Ω;ℬ) = lim ind!? (Ω−Y ;ℬ)(4.20)

in Ban1, together with

lim proj!? (Ω+Y × Y;ℬ) = !? (Ω × Y;ℬ) = lim ind!? (Ω−Y × Y;ℬ).(4.21)

Proof. The statements can be shown just like in the foregoing proofs. Following [Cas10,

Sec. 4.2], one can use a direct description of limits and co-limits in Ban1, for instance
lim proj!? (Ω+Y × Y;ℬ) =

{
(DY)Y∈J : ∀Y ∈ J : DY ∈ !? (Ω+Y × Y;ℬ)
∧ supY∈J ‖DY ‖ < ∞
∧ ∀Y1, Y2 ∈ J : Ω+Y1 C+ Ω

+
Y2
=⇒ ^+

1,2 (DY1 ) = DY2
}(4.22)


lim ind!? (Ω−Y × Y;ℬ) =

{
(DY)Y∈J : ∀Y ∈ J : DY ∈ !? (Ω−Y × Y;ℬ)
∧ supY∈J ‖DY ‖ < ∞
∧ ∃Y1 ∈ J : ∀Y2 ∈ J : Ω−Y1 C− Ω

−
Y2
=⇒ ^−

1,2 (DY1 ) = DY2
}(4.23)

for the case of (4.21), and similarly for (4.20). The descriptions in (4.22) and (4.23) yield

Banach spaces as well and it is straightforward to verify that the resulting spaces are Ban1-

isomorphic, i.e. there is a isometric, linear homeomorphism to !? (Ω ×Y;ℬ) and !? (Ω;ℬ),
respectively. Notice the pivotal role played by proposition §3.1 and by (3.7c) in particular. �

Interlude: a warning on extensions

It should not come as a big surprise, that,
1,?

0
( · ,ℬ) can be considered as a functor in like-

wise fashion, though we shall only work with ℬ = R= when encountering Sobolev spaces. In

stark contrast, the readers’ will certainly anticipate that the situation is extremely involved for

, 1,? ( · ,ℬ). Ω−Y and Ω need to verify geometric restrictions in order to secure the existence

of suitable extension operators: Unless one works with,
1,?

0
( · ,ℬ) one cannot simply extend

functions by zero without sacri�cing weak di�erentiability.

In this respect, recall that E. Stein’s famous construction of an (total) extension operator � :

, :,? (* ) −→, :,? (R3 ) for all : ∈ N and ? ∈ [1,∞) holds under the assumption that* ⊂ R3 is

a strong local Lipschitz domain, c.f. [Ste70]. Whereas such regularity conditions on Ω are very

well acceptable, the Ω−Y simply not regular enough for Stein’s extension operator.

So, category theory mirrors this subtle peculiarity of Sobolev space theory; a state of a�airs

that suits our paradigma of category theory being a tool to formulate preexisting knowledge

conveniently. As mentioned before, one may resort to extension operators for (n, X)-domains

from [Jon81] instead.
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Conclusion – a sandwich lemma interpretation

We have seen in (3.5) that a direct application of T ∗Y to Ω is problematic. Fortunately, the situ-

ation is redeemed by proposition §4.1 which essentially resembles a sandwich lemma: starting

from Ω−Y ⊂ Ω ⊂ Ω+Y we have seen that this monotone arrangement is preserved by the !? -

functors such that

!? (Ω−Y ,ℬ) ⊂ !? (Ω,ℬ) ⊂ !? (Ω+Y ,ℬ) and

!? (Ω−Y × Y,ℬ) ⊂ !? (Ω × Y,ℬ) ⊂ !? (Ω+Y × Y,ℬ)

hold. Proposition §4.1 then yields that the spaces !? (Ω±Y × Y,ℬ) converge to !? (Ω × Y,ℬ)
in a rigorous sense, namely as limits and co-limits in Ban1 and besides, the same is true for

!? (Ω±Y ,ℬ) converging to !? (Ω,ℬ).

Quite relevant to us is the circumstance that T −1Y (Ω) is inconvenient to describe but it cer-

tainly is a subset ofT −1Y (Ω+Y ) by construction. Lemma §4.3 formalises the procedure of squeezing

Ω in between the auxiliary domains Ω±Y and proposition §4.1 carries squeezing over to the res-

ulting !? -spaces, as well. Let us �x this result in a new subsection.

§4.4. Asymptotic convergence properties of periodic unfolding

The trivial embedding map � : !? (Ω;ℬ) −→ !? (Ω × Y;ℬ) is given by � (D) (G,~) := D (G)
and as customary, �̃ (D) = � (D̃) ∈ !? (R3 × Y;ℬ) is its extension by zero outside of Ω × Y or

Ω, respectively. Seeming rather unimpressive at �rst glance, the next result will turn out to be

pivotal.

Proposition §4.2: Asymptotic convergence of T ∗Y

Let Ω ⊂ R3 be open with compact, Lipschitz-regular boundary and ? ∈ [1,∞). T ∗Y =

T ∗
Y,Ω,ℬ converges to � in the following sense:

∀D ∈ !? (Ω;ℬ) :
T ∗Y (D) − �̃ (D)

!? (R3×Y;ℬ)

Y→0−→ 0.(4.24)

For ? = ∞ the statement is wrong in general.

Proof. To address (4.24) for ? < ∞, let D ∈ !? (Ω × Y;ℬ) be given. To every X > 0 there

exists DX ∈ �(Ω × Y;ℬ) with ‖D − DX ‖!? (Ω×Y;ℬ) ≤ X , c.f. [Ama03, 1.3.6 Thm]. If we can

show (4.24) for DX , then the statement follows for D due to



‖�̃ (D) − T ∗Y (D)‖!? (R3×Y;ℬ) ≤
 �� (D − DX )

!? (R3×Y;ℬ)

+
 �� (DX ) − T ∗Y (DX )

!? (R3×Y;ℬ)
+

T ∗Y (DX − D)!? (R3×Y;ℬ)
= 2 ‖D − DX ‖!? (Ω×Y;ℬ) +

 �� (DX ) − T ∗Y (DX )
!? (R3×Y;ℬ)

Y→0−→ 2X

(4.25)

which employs the isometry property of periodic unfolding (3.18) and extension by zero.
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Turning to DX itself, let us employ Fubini’s theorem and R3 =
∑
I∈Z3 (YI + Y [0, 1)3 ) to expand

the integral under consideration.



‖�� (DX ) − T ∗Y (DX )‖!? (R3×Y;ℬ) = ∬
R3×Y |D̃X (G) − D̃X (TY (G,~)) |

?

�
3~3G

=

∫
.

∑
I∈Z3

∫
YI+Y.

|D̃X ( ~̂ ) − D̃X (TY (~̂, ~)) |?� 3~̂3~

=

∫
.

∑
I∈Z3

∫
Y.

|D̃X (YI + ~̂ ) − D̃X (TY (YI,~)) |?� 3~̂3~

=

∫
.

Y3
∑
I∈Z3

∫
.

|D̃X (YI + Y~̂ ) − D̃X (YI + Y~)) |?� 3~̂3~

≤ Y3
∑
I∈Z3

∫
.

∫
.

����� supY (I+. )
D̃X − inf

Y (I+. )
D̃X

�����? 3~ 3~̂
≤ Y3

∑
I∈Z3

����� supY (I+. )
D̃X − inf

Y (I+. )
D̃X

�����?
Y→0−→ 0

(4.26)

Convergence to 0 for Y → 0 is only due to uniform continuity of D̃ as there are ∼ Y−3 cubes

YI+Y [0, 1)3 to sum over. Using Hölder’s inequality for sums, one can estimate the last term by

∼ � supI∈Z3 | supY (I+. ) D̃X − infY (I+. ) D̃X |? for some �xed constant� ≥ 0 which depends upon

' > 0 such that supp(DX ) ⊂⊂ �' (0). The second term measures the maximum oscillations

on all cubes which vanish for Y → 0.

Finally, for the failure of TY −→ � on !∞, consider Ω = (−1, 1) ⊂ R = ℬ andD (G) = sin(1/G)
which clearly su�ces D ∈ !∞ (Ω), just as T ∗Y (D) ∈ !∞ (Ω × Y). Let Y � 1 be �xed for the

moment to consider G= = Y/2= such that [G=/Y] = [1/2=] = 0 for = ≥ 1 and insert G= into

FY (G,~) := |D (G) − T ∗Y (D) (G,~) | yielding

FY (G=, ~) = | sin(2=/Y) − sin(1/(Y~)) |.

Keeping ~ ∈ Y = c ( [0, 1)) in mind, it is straightforward to see that 0 ≤ ess supΩ×Y FY ≠ 0

must hold. Finally, neither a smaller Y nor removing _1-zero sets around 0 resolves this defect

which relies on the essential singularity of D at G = 0. �

§5. Admissible two-scale test functions

The partial di�erential equations we encounter will invoke coe�cient functions of the form

G ↦−→ 5Y (G) := 5 (G, G/Y, A, ®B) for a given function 5 : Ω×Y ×R×R3 −→ℬ. For several reasons

such coe�cient functions 5Y are related to the following problem. Assume !? (Ω;R3+1) 3 DY
2B−→

D in !? (R3 × Y;R3+1) with DY = (D0,Y , D1,Y , . . . , D3,Y) and D = (D0, D1, . . . , D3 ) ∈ !? (Ω × Y;R3+1),
under which conditions on 5 can we infer{

FY (G)
2B−→ 5 (G,~,D0 (G,~), D1 (G,~), . . . , D3 (G,~)) in !? (R3 × Y;ℬ)(5.1)
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I. An introduction to periodic homogenisation and two-scale convergence

for G ↦−→ FY (G) := 5 (G, G/Y,D0,Y (G), D1,Y (G), . . . , D3,Y (G))? Notice that the notation used in (5.1)

is sloppy, indeed. We do mean actual functions and not their values. This notation serves to

illustrate which variables are present.

It turns out that ℬ is not really the problem. Severe defects already occur for ℬ = R. In fact,

the question raised in (5.1) is inherently linked to the admissibility of two-scale test functions

encountered in de�nition §2.1. Let us recall G. Allaire’s famous counter-example function given

in [All92, Prop. 5.8] which serves as a defective prototype violating (5.1).

Proposition §5.1: Allaire’s counter-example

There exist a �∞-domain Ω ⊂ R3 , a function 5 : Ω × Y −→ R and a null sequence J

such that (5.1) does not hold. Consequently, this function is not an admissible two-scale

test function, i.e. limY→0

∫
Ω
5 (G, G/Y) 3G ≠

∬
Ω×Y 5 (G,~) 3~3G .

Proof. Choose Ω = (0, 1),Y = R/Z, and set 5 (G,~) := jA (G,~) withA being Allaire’s defect

set given by

A := {(G,~) ∈ Ω × Y : ~ = {G/Y}Z = G/Y − bG/Yc} for Y = 1/= and = ∈ N} .(5.2)

Clearly, we have _2 (A) = 0 as A is the countable union of straight lines which are _2-zero

sets in Ω × Y. Therefore, we have 5 (G,~) = 0 for _2-almost all (G,~) ∈ Ω × Y but 5Y (G) :=
5 (G, G/Y) = 1 for every G ∈ Ω. Consequently, we have ‖ 5 ‖!1 (Ω×Y) = 0 and ‖ 5Y ‖!1 (Ω) =

‖T ∗Y (5Y)‖!1 (Ω+Y×Y) = 1 for every Y = 1/=. �

Several aspects of Allaire’s counter-example are worthwhile to be discussed. First, the defect-

iveness of jA does depend on the speci�c choice of Y = 1/=. If one constructs A in (5.2) using

Y = 1/= but inserting another null sequence [= → 0 into jA (G, G/[), one can derive almost ar-

bitrary results ranging from avoiding the defect altogether (jA (G, G/[) = 0 almost everywhere

in Ω) to matching it perfectly again (jA (G, G/[) = 1 almost everywhere in Ω).

Secondly, G. Allaire’s original example given in [All92, Prop 5.8] actually di�ers slightly from

our presentation. The di�erence is as follows: The set A is originally constructed by open

stripes made by lines with non-zero width. In more detail, for every Y ∈ J the lines given by

~ = {G/Y} is given a width proportional to Y3. This is su�cient to arrive at an open, dense set

in Ω × Y without full measure, i.e. _2 (Ω × Y \ A) > 0. Although the original con�guration

produces the same defect, we prefer no width at all since we think it distracts from the actual

problem. More speci�cally, by giving the lines no width at all one arrives at A being a zero

set. Most importantly, this allows to modify any function 6 ∈ !1 (Ω × Y) on a zero set to

make it violate (5.1). In particular, proposition §5.2 below ensures that every �0
-function is

admissible but modifying it on A turns it into defective function. Consequently, we �nd that

the equivalence classes in !? -spaces are neither suitable for admissible test functions nor for (5.1)

at all! For further discussion, let us �x some nomenclature that is to supersede de�nition §2.1,

too.
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De�nition §5.1: Two-scale test functions

Let Ω ⊂ R3 be open, ? ∈ [1,∞), ℬ be a Banach space. For a function 5 : Ω × Y −→ℬ

with [5 ] ∈ !? (Ω ×Y;ℬ) we set 5Y (G) := 5 (G, G/Y) for all G ∈ Ω and Y ∈ J. Let us de�ne

the following two conditions.

A.1) We call 5 a two-scale test function in the sense of Allaire or simply an Allaire

function (in !? (Ω × Y;ℬ)) if (5Y)Y∈J ful�ls

lim

Y→∞
‖ 5Y ‖!? (Ω;ℬ) = ‖ 5 ‖!? (Ω×Y;ℬ) .(5.3)

A.2) 5 is an admissible two-scale test function (in !? (Ω × Y;ℬ)) if independently of

the positive null sequence Y ∈ J the following two requirements are met: T ∗Y (5Y) ∈
!? (Ω × Y;ℬ) holds for co�nitely many Y ∈ J and 5Y

2B−→ 5 in !? (Ω × Y;ℬ) i.e.

lim

Y→0

T ∗Y (5Y) − 5̃ 
!? (Ω+−×Y;ℬ)

= 0(5.4)

is in e�ect.

As readers will notice, A.1) is the original de�nition from [All92] whereas A.2) is a special-

isation of the former. Again, the task of characterising Allaire functions is precarious, and only

su�cient conditions are known, namely Caratheodory functions and products of Allaire func-

tions, see [All92, Sec. 5] for the original discussion. Preferring to circumvent such tedious a�airs,

we claim that A.2) is actually what one should be after. Our reasons are threefold:

1. A.1) curls up certain measurability issues concerning 5Y . For instance, �xing a speci�c

positive null sequence Y ∈ J and placing non-measurable Vitali sets from [0, 1] ⊂ R on

the lines of Allaire’s defective setA from (5.2) yields a set that is in L(Ω ×Y) but not in

L(Ω) ⊗ L(Y)3. Naturally, this carries over to jA that becomes measurable with respect

to L(Ω × Y) − B(R). but not with respect to L(Ω) ⊗ L(Y) − B(R). Consequently,

jY (G) := jA (G, G/Y) is not L(Ω) − B(R)-measurable for any Y ∈ J.

2. As mentioned before, A.1) places decisive importance on the sequence Y ∈ J in use. Ignor-

ing measurability issues for a moment, this behaviour is deemed pathological by us for

modelling reasons. Referring to the use of two-scale test functions as coe�cient functions

in applications, c.f. theorem §2.1 and theorem §2.2, the asymptotic behaviour of a math-

ematical model should not decisively depend on the null sequence in use unless there is

convincing reason to do so.

3. Allaire’s original de�nition of two-scale convergence from de�nition §2.1 reads

lim

Y→0

∫
Ω

DY (G)k (G, G/Y) 3G =

∬
Ω×Y

D (G,~)k (G,~) 3~3G

for every Allaire functionk ∈ !2 (Ω × Y). Periodic unfolding interprets this de�nition as

a weak convergence statement of (T ∗Y (DY))Y∈J ⊂ !2 (R3 ×Y). Since (kY)Y∈J is a non-trivial

sequence itself, the above product can only be expected to converge sensibly if signi�cant

3L(Ω×Y) is the smallest completef-algebra containing L(Ω) ⊗L(Y) . The latter is the smallestf-algebra containing

product sets � × � ∈ L(Ω) × L(Y) . L(Ω) is the completion of B(Ω) , the f-algebra of Borel sets, c.f. [HS65].
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I. An introduction to periodic homogenisation and two-scale convergence

additional information is available on either both (T ∗Y (DY))Y∈J and (kY)Y∈J or on (kY)Y∈J
alone. The �rst alternative is extremely involved with compensated compactness being its

most famous prototype. On the other hand, if (kY)Y∈J is strongly two-scale convergent,

the product’s limit is behaving just as it should, at least for ? ∈ (1,∞): a weakly two-scale

convergent sequence (DY)Y∈J would yield convergence of the products.

To identify a suitable family of functions that su�ce A.2), two task are in order. First, measur-

ability issues need to be addressed. Second, the continuity condition (5.4) is under consideration.

So, for Y > 0 let wY : Ω −→ Ω ×Y be given by wY (G) := (G, cY (G/Y)). Analogous to the �nal

topology one can de�ne the �nal f-algebra or pushforward f-algebra of L(Ω) along (wY)Y>0 as

the �nest f-algebra Σ ∈ % (% (Ω × Y)) (on Ω × Y) such that every wY is L(Ω) − Σ-measurable.

Lemma §5.1: Description of Σ

The �nal f-algebra Σ of L(Ω) along (wY)Y>0 coincides with the �nal f-algebra ΣY of

L(Ω) along wY for every Y > 0. Moreover, for every �xed Y0 > 0 we have:

Σ =
⋂
Y>0

{
� × � ⊂ Ω × Y : w−1Y (� × �) ∈ L(Ω)

}
=

⋂
Y>0

{
� × � ⊂ Ω × Y : � = c. (Y−1�) with � ∈ L(Ω)

}
=

⋂
Y>0

ΣY = ΣY0 = L(Ω) ⊗ L(Y),

(5.5)

writing Y−1� := {G ∈ R3 : ∃0 ∈ � : G = 0/Y}.

Proof. First, notice that w−1Y commutes with set operations, and therefore Σ? :={
� × � ⊂ Ω × Y : w−1Y (� × �) ∈ L(Ω)

}
∈ % (% (Ω ×Y)) is a f-algebra in Ω ×Y. Moreover,

Σ? maximal by construction: any f-algebra Σ∗ with Σ? ⊂ Σ∗ and FY being measurable with

respect to L(Ω) − Σ∗ must be contained in Σ?. Consequently, Σ? = ΣY .

Secondly, let us �xed Y > 0 for the moment. Our claim reads ΣY = L(Ω) ⊗ L(Y). Since

ΣY ⊂ L(Ω) ⊗ L(Y) is obviously the case, we must make sure that at least all product sets

� × � are in ΣY for � ∈ L(Ω), � ∈ L(Y). Considering F−1Y (� × �) = � ∩
(
Yc−1Y (�)

)
,

one clearly has a section of sets in L(Ω) which is again in L(Ω). This argumentation is

independent of the speci�c Y > 0, and depends solely on �3 being a di�eomorphism and cY
being a local di�eomorphism which preserve Borel sets and Lebesgue null sets. Thus, we

have ΣY = L(Ω) ⊗ L(Y) for all Y > 0, from which it follows that ∩Y>0ΣY = ΣY0 is true for

every �xed Y0 > 0.

Finally, claiming that Σ can be characterised as the intersection of all ΣY stems from two

arguments: arbitrary intersections of f-algebras yield a f-algebra, and Σ is maximal in the

sense that there can be no larger �nal f-algebra of the family (wY)Y>0. �

Lemma §5.1 concludes that a reasonable candidate for a two-scale test function must be

L(Ω) ⊗ L(Y) − B(ℬ)-measurable and concerning measurability, this condition is sharp, as

can be seen by placing Vitali sets on the stripes ofA. Independently, Allaire’s counter-example

function jA is even B(Ω) ⊗B(Y) −B(R)-measurable, its defectiveness being no measurability

issue.
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To address (5.4), the superposition operators’ slightly non-orthodox point of view will be

helpful. Doubtlessly, [AZ90] is the single, authoritative resource of this �eld which is why we

adhere to it, too.

The main idea is to regard (5.1) and its likes as superposition operators, also known asNemytskii
operators. Thanks to (3.17), one may rewrite (5.1) as

(TY (G,~), DY) ↦−→ N5 (TY (G,~), DY) := 5 (TY , ~,DY)(5.6)

withN5 being the Nemytskii operator induced by 5 . Now, (5.4) can be interpreted as asking for

N5 to be continuous at (83Ω×Y, D) along the sequence (TY (G,~), DY)Y∈J.
Referring to [AZ90, Ch. 1], there are two main issues of concern. First, N5 should yield

measurable functions, a matter that is extremely subtle in general and not fully solved to date.
4

Fortunately, lemma §5.1 places us in an extremely favourable special case, though. Secondly,

continuity conditions inherit the foregoing subtleties such that most conditions for pointwise

continuity or continuity everywhere of a superposition operator only work within the function

class of Shragin functions5
which is quite large but not fully exhaustive. We refrain from giving

a de�nition which can be found in [AZ90, Sec. 1.4] together with related discussions. Aiming to

avoid several tedious technical de�nitions, let us cut a long story short by stating that lemma §5.1

places us in the context of Shragin functions from the very outset.

As a result, we may retreat to classical results concerning continuity. The following result is

an adaptation of [AZ90, Thm. 1.5].

Proposition §5.2: Continuity of Nemytskii operators

Provided 5 is a Shragin function then its induced superposition operator N5
is continuous at (83Ω×Y, D) if and only if 5 is continuous on the subset

{(83Ω×Y, D) (G,~) : (G,~) ∈ Ω × Y}.

For clarity’s sake, two aspects need to be emphasised. First, proposition §5.2 restricts itself to

the periodic unfolding perspective. As is known due to [All92, Sec. 5], 5 being continuous in its

~-argument is su�cient as well, but this takes place in a related but di�erent set-up. Second and

to make matters even more confusing, Allaire’s admissible test functions can form an algebra if

ℬ is one. Most prominently, one can show that 5 (G)6(~) is an Allaire function. Heuristically,

this stems from both functions being admissible by themselves and carrying this over to the

product function.

Without going into too much detail, we will therefore restrict to functions that are Cara-

theodory functions with respect to both their G-arguments and their D-arguments.

§6. Periodic description of highly heterogeneous media

For the boundary value problems which we are going to encounter, a suitable description of

highly heterogeneous, periodic materials is necessary. In general, this step can be problematic if

additional boundary conditions on the interface are to be imposed. We will discuss this matter

here in brief and as a second step, we will establish a convenient solution for�1
-regular domains

by classical transversality theorems from di�erential geometry. In a third subsection we will

4
To the author’s best knowledge, of course. Lamentably, the research on superposition operators seems to have faded.

5
I. V. Shragin’s notion stems from 1971 and has not been outperformed to date.
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r

Figure I.3.: This photograph shows a single nuclear fuel element made of 41 fuel rods. Several

elements are combined and inserted in a nuclear moderator medium.

return to our original of specifying geometric conditions necessary for a neat treatment of the

problems in chapter II and chapter III. Thus, impatient readers may skip subsection §6.1 and

subsection §6.2.

§6.1. Peculiarities of periodic decompositions

Let us fall back for a moment to a classical problem that is closely linked to homogenisation of

strong heterogeneities, namely the homogenisation of media with periodicly distributed, tiny

holes. This family of problems is in a way the twin of highly heterogeneous media and of course

a worthwhile matter of its own. As references let us name the classical work [LBP78], [CP99]

which is certainly among the most established and extensive resources of this �eld, and the very

recent [Höp16] which covers a wide range of di�cult problems, as well.

A digression on media with tiny holes

To begin with, the link of tiny holes and strong heterogeneities is rather simple: the slow medium

is replaced by tiny holes which exhibit some prescribed behaviour, mostly either by Dirichlet or

Neumann conditions. To give an impression, one of the original motivations came from nuclear
fuel elements as depicted in �gure I.3 and �gure I.4. For rather obvious reasons, one wishes

to predict heat conduction inside of such nuclear elements. These nuclear elements are made

of nuclear fuel rods, long, slim rods which are clustered in large numbers, and inserted into

some nuclear moderator, hopefully water or less favourably carbon. The rods are tailor-made

to contain pre-manufactured nuclear fuel pellets whose heating properties are relatively easy to

understand. So, the rods’ thermal behaviour can be estimated well in the �rst place such that

one uses the resulting data as prescribed boundary values on the tiny holes’ boundaries.

Most crucially, both tiny holes and slow media are associated to a fast medium by a given

interface. In technical terms, if one intends to work with Sobolev spaces, 1,? (Ω) with ? ∈ (1,∞)
then the interface’s regularity becomes vital to the mathematical description: besides boundary

conditions imposed on mΩ, there are considerable applications with interplay on the interfaces

of the media; for instance, recall the trabecular interface of bone and blood vessels. No matter

whether di�ering materials or holes are present, one needs sensible notions of traces to give

sense to such procedures.

The classical regularity condition for traces of, 1,?
-functions is to ask for a Lipschitz hyper-

surface, c.f. [AF03, Thm. 5.36]. However, even the most elementary and smooth domains can
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Figure I.4.: A single nuclear fuel element illustrated schematically.

easily yield strongly degenerated geometries. In what follows, we shall adopt the point of view

of manifolds since it is a suitable notion of discussing the emerging issue. Recall that every open

set of R3 is a �∞-submanifold of R3 which is a smooth manifold itself. Moreover, every strong

Lipschitz domain’s boundary is a Lipschitz manifold by de�nition. As customary, smooth will

always stand for �∞-regular.

Degenerated intersections of manifolds

The decomposition of a given domain Ω into periodic potions Ω1

Y and Ω2

Y relies on intersections,

however, this type of set operation does not preserve regularity properties particularly well.

Let us describe the problem more technically. Again, we invoke the �at d-torus Y := R3/Z3
which is a compact, 3-dimensional�∞-manifold with a projection map cY : R3 −→ Y which is

a local di�eomorphism.

Given a decomposition ofY into two disjoint, open subsetsY1,Y2 with a common Lipschitz-

regular boundary Γ, one can expand each Y8 to all of R3 by periodicity and decompose R3 into

R38,Y := {G ∈ R3 : cY (G/Y) ∈ Y8 } for 8 = 1, 2 for Y > 0 and ΓR3 ,Y := mR
3
1,Y = mR

3
2,Y . So, the domain

Ω can be decomposed into Ω8,Y := Ω ∩ R38,Y for 8 = 1, 2. Alas, this can lead to Ω1,Y or Ω2,Y having

irregular boundary, even for co�nitely many Y > 0.

Let us give an an elementary illustration for Y = 1: assume Ω = �2 (241) and R3
2,Y = �Y (�)

for 41 = (1, 0, . . . , 0) ∈ R3 and a grid � = Y (41 + 3Z3 ). Figure I.5 shows this con�guration for

3 = 2, 3 via a plot produced via GeoGebra 6.0, see [Hoh+18]. The decomposition of Ω into Ω1

Y

and Ω2

Y now yields a boundary that is irregular near the origin: not only is Lipschitz-regularity

itself lost, but even worse, neither does the resulting set ful�l the segment nor the weak cone

condition. Finally, this defect holds for every Y ≠ 0!
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Figure I.5.: Intersections of manifolds do not preserve regularity in general.

In broader terms, the problem at hand is that Di� , the category whose objects are smooth

manifolds and smooth maps as morphisms, is well-known to behave badly under set operations

such as intersections and pull-backs. In addition, these defects are not only linked to smoothness

issues, they are also connected to the concept of manifolds itself. Basically, at the time of writing

and to the author’s best knowledge, two possible remedies are conceivable: �rst, one may pass

to more general objects that behave better under set operations. Alternatively, one may try to

identify conditions under which the aforementioned defects do not occur. The �rst approach is

currently being developed with manifolds with corners, generalised smooth spaces and polyfolds
evolving as a suitable notions, we refer to [Mic80; Joy10], [BH09] and [HWZ17] as references.

However, following this route is technically overburdening to the author. Instead, we arrive at

the well-known su�ciency criterion of transversality which we consider next.

§6.2. Transversality of manifolds

This subsection will present the concept of transversality from conventional di�erential topo-

logy, together with a number of relevant results, all of which are purely classical. Afterwards,

we will employ the machinery to justify that for bounded �1
-domains one can always resolve

the irregularities described above.

Definitions and classical results

Let us recall the classical concept of transversality, which we take from [Bou07], [GP74, Ch. 2]

and [Hir76, Sec. 3.2]. So, let three�1
-manifolds "1, "2, # be given such that only "1 is allowed

to be a manifold with boundary and "2 is a submanifold of # . One calls a map 5 ∈ �1 ("1, # )
transverse to "2 if

3 5< ()<"1) +)5 (<)"2 = )5 (<)# holds for all< ∈ 5 −1 ("2) ⊂ "1,(6.1)

writing for instance)<"1 for the tangential space of"1 at< and 3 5< being the total di�erential

at<. The raison d’être of transversality is given in the following proposition.
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Proposition §6.1: Transversality theorems

a) If both 5 : "1 −→ # and 5 |m"1
: m"1 −→ # are transverse on "2 then 5 −1 ("2)

is a �1
-submanifold of "1 with boundary m"1 ∩ 5 −1 ("2) and codim(5 −1 ("2)) =

codim("2).

b) R. Thom’s transversality theorem:

{5 ∈ �1 ("1, # ) : 5 is transverse to "2} is comeagre and dense in�1 ("1, # ) with

respect to the compact-open topology and the Whitney topology of �1 ("1, # ).

c) Parametric transversality theorem:

Let ( be a3B -dimensional�1
-manifold without boundary and let � ∈ �1 ("1×(, # )

be such that � and � |m"1×( are transverse to "2 in # . Then for the family of �1
-

maps given by

< ↦−→ 5B (<) := � (<, B) for B ∈ (

the following holds for _3( -almost every B ∈ ( : 5B and 5B |m"1
are transverse to "2.

Proof. For the �rst statement see [GP74, p. 60, ] or [Hir76, Thm. 1.4.2], the second statement

can be found in [Tho54] or [Hir76, p. 74]. Observe that parametric transversality theorem

employs the identity m("1×() = (m"1)×( which holds only if m( = ∅. A proof the statement

itself is given in [GP74, p. 68] �

Remark §6.1

Thom’s transversality theorem originally invokes jets and is therefore signi�cantly more

general. So, we presented a more simple form.

Secondly, much of the literature on di�erential geometry and transversality is written for

�∞-manifolds, a fact that is no severe obstacle for �1
-manifolds with boundary. These

can be equipped with an equivalent �∞-regular di�erential structure that is unique up

to �∞-di�eomorphisms. Since the boundary of a manifold is tacitly endowed with a

corresponding di�erential structure, the same argument applies to it, too.

Unfortunately, all these arguments break down for Lipschitz-regular boundaries,

c.f. [Gri85]. due to the break down of the implicit function theorem, an indispensable

cornerstone of smooth di�erential geometry.

For convenience’s sake, a basis for neighbourhoods of the compact-open topology and Whit-

ney topology of �1 ("1, # ) of a �xed 5 ∈ �1 ("1, # ) can be described as follows.

a) The neighbourhoods of 5 in the compact-open topology �1 ("1, # ) are generated by sets

of the form{
6 ∈ �1 ("1, # ) : 6( ) ⊂ + ∧ ‖k+ ◦ 5 ◦ −k+ ◦ 6 ◦ q−1* ‖�1 (q* ( ) ;Rdim# ) ≤ X

}
(6.2)

for X ∈ (0,∞], chart maps q* : * ⊂ "1 −→ Rdim"1
, k+ : + ⊂ # −→ Rdim# with * ,+

open and  ⊂ * compact in "1.
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I. An introduction to periodic homogenisation and two-scale convergence

Figure I.6.: Just as R. Thom’s transversality theorem claims, an arbitrarily ‘small’ perturbation

su�ces to resolve all transversality issues completely.

b) Similarly, the neighbourhoods of 5 in the Whitney topology �1 ("1, # ) are generated by

the sets{
6 ∈ �1 ("1, # ) : 6( 8 ) ⊂ +8 ∧ ‖k+8 ◦ 5 ◦ −k+8 ◦ 6 ◦ q−1*8 ‖�1 (q*8 ( 8 ) ;Rdim# ) ≤ X8

}
(6.3)

for a countable family of X8 ∈ (0,∞), chart maps q*8 : *8 ⊂ "1 −→ Rdim"1
, k+8 : +8 ⊂

# −→ Rdim# with *8 ,+8 open and  8 ⊂ * compact in "1 such that 8 ∈ N and the

respective charts are locally �nite.

Finally, let us remark that both topologies coincide if "1 is compact. The latter is responsible

for asking for Ω to be bounded. An extension to unbounded domains is not entirely ruled out,

though, our restriction is due to keeping things simple and brief.

Applying Thom’s theorem to periodic decompositions

First, let us revisit �gure I.5 with 5 being the embedding ] : Ω = "1 ↩−→ # = R3 . Clearly, 5

fails to be transverse to "2 = mR3
2,Y in 0 ∈ mΩ making the link of transversality to our problem

quite apparent. Moreover, Thom’s theorem suggests that only a ‘tiny’ modi�cation of ] would

be necessary to �x this situation. For instance, perturbing ] slightly to get G ↦→ G − X41 for some

0 < X � 1 resolves everything in a deus ex machina manner, as depicted in �gure I.6.

As we have seen, already a tiny translation was enough to rule out all problems, a fact that

is paraphrased by the parametric transversality theorem with � (<, B) = ] (<) + B for B ∈ R3 . So,

let us apply the parametric transversality theorem to yield a su�ciently well-behaved periodic

decomposition, at least for a bounded �1
-domain Ω. To this end, assume that for some A ∈ N

both "1 = Ω ⊂ R3 and Γ ⊂ Y are �A -regular submanifolds, with Ω ⊂ R3 being a bounded

and open submanifold of R3 and Γ being a closed submanifold of Y. Consequently, Y1 and Y2
inherit Γ’s �A -regularity just as R3

1,Y , R
3
2,Y and "2 = ΓR3 ,Y do. In fact, by construction Ω, R3

1,Y and

R3
2,Y are open submanifolds of R3 and thus even �∞-submanifolds of codimension 0 since open

submanifolds of a smooth manifold inherit its regularity. Moreover, "2 = ΓR3 ,Y is obviously a

closed �A -submanifold of R3 .

Next, since R3
1,Y and R3

2,Y are open submanifolds with codimension 0 the imbedding 5 = ] :

"1 = Ω ↩−→ # = R3 is always transverse to both R3
1,Y and R3

2,Y regardless of Y > 0; this follows

from openness since )G� = )GR
3

holds for every G ∈ � = Ω,R3
1,Y ,R

3
2,Y . Consequently, every
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§6. Periodic description of highly heterogeneous media

open map 5 ∈ �A (Ω;R3 ) = �3 ("1, # ) is transverse to � = Ω,R3
1,Y ,R

3
2,Y , shifting the main issue

to transversality of the boundary sets m"2 = mΩ and "2 = ΓR3 ,Y . There, we proceed as follows:

for ( = R3 = # de�ne

� : "1 × ( −→ # (<, B) ↦−→ ] (<) + B(6.4)

which is clearly a submersion making � and �m"1×( transverse to "2. Then, the parametric

transversality theorem from proposition §6.1 infers the following result.

Lemma §6.1: domain shifting lemma

Every bounded�1
-domain Ω can be translated by a vector B ∈ R3 such that its translation

intersects with ΓR3 ,Y such that the resulting subdomains Ω8Y = (Ω + B) ∩R38,Y are bounded

�1
-manifolds for any Y ≠ 0.

Proof. If 5 = 50 and 5 |m"1
are transverse to "2 there is nothing to show, so assuming this is

not so, let us construct an embedding that is su�ciently close to 50 in the Whitney topology.

First, since � = �3R3 |"1

+ �3R3 we have �� = 2�3R3 such that the image of �� is always R3 .

Consequently �� ful�ls (6.1), making � and �m"1×( transverse to "2 as necessary for the

parametric transversality theorem. Then, 5B (<) := 5 (<) + B and 5B |m"1
are transverse to "2

for _3 -almost every B ∈ R3 . Fixing a suitable B ∈ R3 makes 5 −1B ("2) a submanifold of "1.

Since 5B is a translation in R3 of an embedding, it is an embedding itself. Likewise, one may

apply 5B to "1 and 5 −1B ("2) yielding that 5B (Ω) ∩"2 is a submanifold of 5B (Ω) = Ω + B . �

By lemma §6.1 we are now in the nice situation that

a) either ] |mΩ is transverse to ΓR3 ,Y such that ΓR3 ,Y ∩ Ω is a submanifold of Ω and so Ω1

Y and

Ω2

Y are a �1
-manifolds with �1

-regular boundary.

b) Alternatively, we translate Ω by a vector B ∈ R3 such that ] |mΩ+B is transverse to ΓR3 ,Y ,

making ΓR3 ,Y ,Ω
1

Y and Ω2

Y �
1
-manifolds, again. In fact, _3 -almost every B ∈ R3 is suitable

for such a translation.

Pitfalls of strong Lipschitz domains and manifolds with corners

To sum up, we have ensured that�1
-regular bounded domains can be decomposed conveniently

in periodic fashion. The question whether this carries over to strong Lipschitz domains con-

sidered as the more genera manifolds with corners, c.f. P. Michor’s work [Mic80], is notoriously

subtle though. The breakdown of the implicit function theorem has far-reaching consequences,

for instance, as L. Nielsen points out in [Nie81, Sec. 7], the �rst statement of proposition §6.1

fails, so that the preimage of a transverse map no longer needs to be a manifold at all. Rather,

additional conditions must be imposed to ensure that the corresponding faces, edges, vertices

and so on do not cause additional defects. [Nie81] seems to be the only work on this matter the

author is aware of. As a rule of thumb it can be said that the implicit function theorem organises

the connection between the strata of a manifold – that is the cascade of the interior of a man-

ifold, the relative interior of its boundary, the relative boundary of the boundary, and so on –

sensibly and its breakdown below �1
-regularity requires to organise the strata of the manifold

manually.

Nevertheless, astounding generalisations of R. Thom’s transversality theorem to manifolds

with corners can be found in [Mic80, Sec. 6]. In any instance, expanding transversality theorems
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I. An introduction to periodic homogenisation and two-scale convergence

to manifolds with corners is a largely open �eld that receives insu�cient attention, even besides

the recent work of D. Joyce in [Joy10] which seems to revive the matter a little.

Returning to periodic decompositions of manifolds, let us conclude this subsection by point-

ing out that other works assume that the domains Ω8Y are su�ciently regular. M. Höpker gath-

ers several related assumptions that are commonly used in [Höp16, Sec. 3.2], including a rich

reference to related works and a wide range of applications. There, both perforated Lipschitz

domains and high contrast media are considered, such that Ω2

Y either represents tiny holes or a

slow medium. The working assumption is that Ω1

Y is assumed to be a Lipschitz domain for all Y

in question, see [Höp16, 3.2.1.c)] for details. Realise that lemma §6.1 is precisely the justi�cation

of this assumption for �1
-regular domains, making M. Höpker’s assumption completely sound

for such domains. Moreover, this state of a�airs encourages that a similar vindication should be

obtainable for Lipschitz domains, too.

§6.3. Admissible domains – requirements and assumptions

Here, we return to our original endeavour, let us start with a de�nition.

De�nition §6.1: Admissible decompositions

As customary, we write Y = R3/Z3 for the �at torus. A decomposition of the form

Y1 ∪ Y2 ∪ Γ = Y(6.5)

is an admissible decomposition of the periodic cellY ifY1 andY2 are open sub-manifolds

ofY, withY1 ≠ ∅ and Γ = mY1∩mY2 being a Lipschitz sub-manifold ofY of codimension

1. Moreover, we will write j8 := jY8 : Y −→ {0, 1} for 8 = 1, 2. Note that Y2 = ∅ is

allowed.

Given an admissible decomposition of Y, its resulting periodic decomposition of a do-

main Ω ⊂ R3 is given for 8 = 1, 2 and Y ∈ J by

Ω8Y := {G ∈ Ω : j8 (G/Y) = 1} and ΓY :=
(
mΩ1

Y ∩ mΩ2

Y

)
\ mΩ.(6.6)

A given resulting periodic decomposition of a bounded domain Ω ⊂ R3 is called an

admissible periodic decomposition of Ω if Y1 is connected and if the asymptotic negli-

gibility condition holds:

lim

Y→0

_3
(
Λ+Y

)
= 0.(6.7)

Referring to de�nition §6.1, we have Ω = Ω1

Y ∪ Ω2

Y ∪ ΓY for every Y > 0 by construction and

therefore independently of the speci�c choice of the null sequence in use.

Moreover, Γ being su�ciently regular is necessary to establish a compactness theorem §7.2.

We will need trace operators to be available on Γ and Lipschitz-regularity is well-known to be

su�cient in this respect. We do not exploit more re�ned methods of trace operators on less

regular sets, c.f. [Tri06; AFP00]. Nevertheless, we can establish the following result.
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§6. Periodic description of highly heterogeneous media

Proposition §6.2

Let Ω ⊂ R3 be a domain with �1
-regular boundary, then without loss of generality we

may assume that ΓY is a�1
-regular hypersurface. If mΩ is compact then limY→0 _

3
(
Λ+Y

)
=

0 holds, too.

Proof. The regularity statement about ΓY follows from lemma §6.1 by translating Ω to Ω + B
for some B ∈ R3 \# and _3 (# ) = 0. The second statement was discussed in proposition §3.1.

�

Let us comment on some aspects of de�nition §6.1 and related admissible results.

a) As encountered beforehand, Ω1

Y is considered as the standard or fast medium, and may not

necessarily be fully homogeneous itself. Alas, it has to behave ‘su�ciently homogeneous’.

In particular, its properties are drastically di�erent from the slow medium displayed by

Ω2

Y .

b) Of course, one can work with Y2 = ∅ altogether, thus working on a locally periodic me-

dium which is ‘relatively’ homogeneous. However, in this instance much better results

are attainable, for instance [Vis07a].

c) Non-trivial admissible periodic decompositions of domains do exist. For instance let Ω =

(0, 1)3 and set Y2 := c (�X ( [1/2, . . . , 1/2]) )) ⊂ Y for some X < 1/2, together with Y1 :=

int[Y \ Y2]. See [Pet07, Sec. 2.2] for a thorough discussion.

d) The requirement of co�nitely manyY1 to be connected stems from gradient compactness

theorems which we present below. This condition cannot be weakened.

e) Regularity requirements on Γ are indispensable. However, asking for ΓY may be necessary

in other applications than ours where various reactions between the slow and the fast

domain are to be modelled. For instance, see [Gra13; GP14] and the references therein.

f) Our approach is deterministic in nature. In this respect, let us point to stochastic unfolding,

a merge of periodic unfolding with stochastic methods, developed in [HNV18; NV18].

§6.4. The two-scale gradient

De�nition §6.1 asks forY1 to be connected for co�nitely many Y ∈ J. In fact, this requirement is

necessary to identify two-scale limits of sequences of gradients appropriately, a task addressed

in theorem §7.2. Concerning gradients under two-scale convergence, it will be convenient to

de�ne the following weight function

gY (G) := j1 (G/Y) + Yj2 (G/Y)(6.8)

_3 -almost everywhere in R3 . The purpose of gY is to keep account of whether or not G ∈ Ω is

in Ω1

Y or in Ω2

Y when combined with ∇ yielding

∇Y := gY (G)∇(6.9)

which we call two-scale gradient (subordinate to the given periodic decomposition of Ω). For

instance, for a function G ↦−→ FY (G) := F (G, G/Y) given by a more regular function (G,~) ↦−→
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I. An introduction to periodic homogenisation and two-scale convergence

F (G,~) ∈ �1 (Ω × Y;R) we have

∇YF (G, G/Y) = j1 (G/Y)
[
∇GFY +

1

Y
∇~FY

]
+ j2 (G/Y)

[
Y∇GFY + ∇~FY

]
.(6.10)

Observe that we have T ∗Y (gY) (G,~) −→ jR3×Y1 in !∞ (R3 × Y) such that gY can be considered

as a multiplier.

§7. Two-scale convergence and derivatives – compactness

Convergence statements in some suitable sense are among the very essence of analysis and

usually, both the statements and the precise sense itself are quite an issue. In the presence of

the (full) axiom of choice, compactness is a very customary but non-constructive device to bring

about convergence statements, though the author wonders whether sequential compactness can

be attained with the countable axiom of choice, too. Anyway, since two-scale analysis extends

conventional calculus by an additional microscale, one may hope to retrieve compactness results

analogous to the single-scale case.

All of the results presented here are classical, though we include very mild extensions which

are tailor-made for our purposes. Classical resources on two-scale compactness are [Ngu89],

[All92, Sec. 1 & 4], and [CDG08, Sec. 3]. In addition, we refer to [PB08, Sec. 3] and [Vis06] as

additional supplements. For our purposes we will distinguish two cases: �rst, we shall retrieve

sequential weak compactness in the weak topology for !? -spaces for ? ∈ (1,∞). Secondly, we

shall investigate sequences of gradients: there, the situation will be more subtle.

§7.1. Compactness without derivatives

The next result was originally established by G. Nguetseng in [Ngu89], re�ned by G. Allaire in

[All92] and reformulated by D. Cioranescu, A. Damlamian and G. Griso [CDG02] via periodic

unfolding.

Theorem §7.1: Nguetseng’s compactness theorem

Let ? ∈ (1,∞), ℬ be re�exive and separable and Ω be a domain with compact, Lipschitz-

regular boundary. Every bounded sequence (DY)Y∈J ⊂ !? (Ω;ℬ) has a subsequence that

is weakly two-scale convergent:

∃D0 ∈ !? (Ω × Y;ℬ), J ⊃ J′ 3 Y ′→ 0 : DY′
2F−⇀ D0 in !? (R3 × Y;ℬ).(7.1)

The result holds for ? = 1 if (T ∗Y (DY))Y∈J is uniformly integrable and _3 (Ω) < ∞.

Recall that in (7.1) the actual limit is D̃0, our notation being slightly sloppy at this point.

Proof. Periodic unfolding is an isometric map and so the sequence (T ∗Y (DY))Y∈J is bounded in

!? (R3 ×Y;ℬ). As re�exivity of ℬ carries over to !? (R3 ×Y;ℬ), sequential compactness of

bounded sets in the weak topology is due to the Banach–Alaoglu and the Eberlein–Šmulian

theorems. Thus, (T ∗Y (DY))Y∈J has a subsequence weakly converging to some E0 ∈ !? (R3 ×
Y;ℬ). To show E0 = D̃0 for some D0 ∈ !? (Ω × Y;ℬ) consider supp(E0) ⊂ Ω × Y which

follows from supp(T ∗Y (DY)) ⊂ Ω+Y ×Y and the latter converges to Ω×Y by proposition §3.1.
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Since _3 (mΩ) = 0 holds, one may infer ∃D0 ∈ !? (Ω × Y;ℬ) such that D̃0 = E0 which was to

show.

Turning to ? = 1, the boundedness of Ω implies that Ω×Y is bounded such that the measure

space (Ω+Y0 × Y,L(Ω
+
Y0
× Y), _23 ) has the Dunford–Pettis property and contains co�nitely

many Ω+Y , too. Moreover, since ℬ is re�exive, the Dunford–Pettis theorem holds almost ver-

batim, c.f. [DJ77, p. 101]. Then, the dual space of !1 (Ω × Y;ℬ) is canonically isomorphic

to !∞ (Ω × Y;ℬ′). Combining the Dunford–Pettis and the Eberlein–Šmulian theorems, a

sequence is sequentially compact in the f (!1, !∞)-topology if and only if it is uniformly

integrable. However, periodic unfolding respects uniform integrability by (3.17). The state-

ment then follows by arguing similarly as for ? > 1 that the weak limit is supported only on

Ω × Y. �

§7.2. Two-scale compactness of derivatives – a guiding example

The considerations for gradients are signi�cantly more involved that the foregoing result. Let

us give a motivation for our rather speci�c setting. The applications in chapter II and chapter III

will lead to the following situation: we are given a bounded �0,1
-regular domain Ω on which

we consider boundary value problems or initial–boundary value problems that depend on Y ∈ J.
Under suitable conditions, one can guarantee solvability of the problems at hand for every Y ∈ J,
and so, there is a sequence of solutions (DY)Y∈J made of elements of suitable function spaces. The

elliptic setting will lead to (DY)Y∈J ⊂ , 1,? (Ω), the parabolic regime will yield mixed regularity

spaces of the form (DY)Y∈J ⊂ !? ( [0,) ];, 1,? (Ω)) ∩, 1,?′ ( [0,) ];, 1,? (Ω) ′) for ? ∈ (1,∞). Since

we want to investigate the behaviour of (DY)Y∈J for Y → 0, a priori estimates independent of

Y play a key role. As it will turn out, the fast domain will behave quite conveniently, yielding

bounds on DY and ∇DY on Ω1

Y that are independent of Y. In stark contrast, the slow domain’s

bounds are Y-independent only for DY and Y∇DY but not for ∇DY . Moreover, one can argue that

this situation is sound from a modelling perspective and thus, one cannot hope to improve the

given bounds.

Let us illustrate the matter of concern a little by considering two sequences on Ω = (0, 2c):{
DY (G) = sin(G) + Y sin(G/Y) + Y sin(G)
FY (G) = sin(G) + sin(G/Y) + Y sin(G/Y) + Y sin(G).

(7.2)

Letting Y → 0 one �nd DY −→ sin(G) in !? (0, 2c). In contrast, the same is impossible for FY ,

∇DY = cos(G) + cos(G/Y) + Y cos(G/Y) and ∇FY = cos(G) + 1/Y cos(G/Y) + cos(G/Y) + Y cos(G) due

to the presence of terms that depend on G/Y. Now, periodic unfolding steps up to yield
T ∗Y (DY) (G,~) = sin(TY (G,~)) + Y sin(~) + Y sin(TY (G,~)) −→ sin(G),
T ∗Y (FY) (G,~) = sin(TY (G,~)) + sin(~) + Y sin(~) + Y sin(TY (G,~)) −→ sin(G) + sin(~),
T ∗Y (∇DY) (G,~) = cos(TY (G,~)) + cos(~) + Y cos(TY (G,~)) −→ cos(G) + cos(~),

for Y → 0 in !? (0, 2c). However, T ∗Y (∇FY) = cos(TY (G,~))+1/Y cos(~)+Y cos(~)+Y cos(TY (G,~))
is clearly divergent. Fortunately and of fundamental importance, it was pointed out in [PB08]

that applications actually impose a scaling on the gradient sequences ofFY . For modelling reas-

ons, one simply does not encounter ∇FY but rather Y∇FY which behaves much better since

T ∗Y (Y∇FY) (G,~) =Y cos(TY (G,~)) + cos(~) + Y2 cos(~) + Y2 cos(TY (G,~)) −→ cos(~)
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holds in !? (0, 2c), stemming from the elementary identity ∇~T ∗Y (FY) = T ∗Y (Y∇FY).
Summing up, (DY)Y∈J can be considered to be asymptotically independent of the micro-variable

~, whereas the gradient does contain information encoded exclusively by ~. On the other hand,

(FY)Y∈J is asymptotically ~-dependent itself and oscillations on the microscale foil macroscopic

regularity. Of course, the very same oscillations can be su�ciently regular on the microscale.

§7.3. Two-scale compactness of gradients – unfolded spaces

Analogously to corollary §3.1 one can consider the space of periodically unfolded Sobolev func-

tions which is again a Banach space itself.

Proposition §7.1: Unfolded, 1,?-spaces

Let Ω ⊂ R3 be a domain with compact and Lipschitz-regular boundary, ? ∈ [1,∞) and

- ⊂ , 1,? (Ω) be a closed subspace, e.g. - = ,
1,?

0
(Ω). In addition, we assume that a

periodic decomposition of Ω is at hand yielding a two-scale gradient ∇Y as de�ned in

(6.9). Then, periodically unfolding (D,∇YD) component-wisely for D ∈ - yields

T ∗Y (- ) :=
{
(F0,F1) ∈ !? (Ω+Y × Y)1+3 : F0 = T ∗Y (DY),F1 = T ∗Y (∇YD)

}
(7.3)

which is a closed subspace of !? (Ω+Y × Y)1+3 .

Proof. First, - is assumed to be closed and the isometric embedding - 3 D ↦−→ (D,∇D) ∈
!? (Ω)1+3 yields a closed subspace-1. (D,∇D) ↦−→ (D,∇YD) is no isometry but but stems from

the linear isomorphism on !? (Ω)1+3 given by (F0,F1) ↦−→ (F0, gYF1). This isomorphism

preserves closed sets and therefore the image of its restriction to -1 is a closed subspace

denoted -2. Finally, periodic unfolding is an isometry by (3.18). �

Remark §7.1: Sobolev embeddings

D ↦−→ (D,∇D) embeds, 1,? (Ω) in !? (Ω)×!? (Ω)3 � !? (Ω)1+3 which is handy for show-

ing completeness of Sobolev spaces. Of course, it is the holy grail of Sobolev space the-

ory that even, 1,? (Ω) ↩−→ !?
∗ (Ω) ×!? (Ω)3 works with ?∗ being the Sobolev exponent

such that the Rellich–Kondrachov theorem can be inferred. Our applications will yield

bounds on ‖∇YDY ‖!? (Ω) and these are strong enough to ensure DY ∈ , 1,? (Ω) for �xed

Y > 0 but the situation degenerates completely for Y → 0. Unfortunately, the estimates

in question cannot be improved such that in parts only distributional derivatives can be

expected, foiling weak di�erentiability of possible (two-scale) limits. Consequently, the

classical compactness machinery is unavailable and anisotropic Sobolev spaces are no

simple remedy here for they do require minimal amounts of regularity of the derivatives

to yield relevant embedding theorems, c.f. [Tri06, Ch. 5].

§7.4. Two-scale compactness of derivatives – a theorem

First, the aforementioned identity

T ∗Y (Y∇GD) (G,~) =
(
∇~T ∗Y (DY)

)
(G,~) almost everywhere in Ω+Y × Y(7.4)
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e�ectively allows to ask for the derivative of the micro-variable. Keep in mind that periodic

unfolding violates regularity: even for F ∈ �∞
0
(Ω) only T ∗Y (F) ∈ !? (Ω;, 1,? (. )) with . =

[0, 1)3 can be expected and in general, T ∗Y (F) ∉ !? (Ω;, 1,? (Y)), recalling that periodicity

notions are linked to smoothness.

Second, our compactness theorems on gradients will only consider ℬ = R< for < ∈ N;

the following result will only employ R1 but taking �nite products yields the vectorial case,

too. More re�ned results invoking in�nite-dimensional spaces ℬ are conceivable but are tied to

very subtle technical discussions since integration by parts plays a key role such that a Stokes

theorem for Banach valued functions must be considered; we want to avoid such inconveniences

here.

Though working with gradients, no compactness theorems about the strong topology are go-

ing to be derived. All we can hope for are weak sequential compactness statements. For the next

statement recall !?
(
Ω;, 1,? (Y1)/R

)
:=

{
5 ∈ !? (Ω;, 1,? (Y1)) : ∀G

a.e.∈ Ω :

∫
Y 5̃ (G,~) 3~ = 0

}
.

Theorem §7.2: Two-scale compactness of gradients

Let ? ∈ (1,∞) and Ω ⊂ R3 be a bounded domain with an admissible periodic decom-

position and a�0,1
-regular boundary. If a sequence (DY)Y∈J ⊂, 1,? (Ω) admits the bound

(7.5)

{
∃� > 0 : ∀Y ∈ J : ‖DY ‖!? (Ω) + ‖∇YDY ‖!? (Ω)3 ≤ �

then there exist three functions D0, D1, E in the vector spaces


D0 ∈, 1,? (Ω)

E ∈ !?
(
Ω;,

1,?

0
(Y2)

)
D1 ∈ !?

(
Ω;, 1,? (Y1)/R

)(7.6)

together with a subsequence Y ′ ∈ J′ ⊂ J such that for Y ′→ 0 the following convergence

results hold.

T ∗Y′ (DY′) −⇀ D0 + E in !? (R3 × Y),(7.7a)

T ∗Y′ (∇Y′DY′) −⇀ j1
[
∇GD0 + ∇~D1

]
+ j2∇~E in !? (R3 × Y)3 .(7.7b)

Often, we will denote Y ′ ∈ J′ by Y ∈ J again.

Proof. Let us depart from the decomposition DY = DY |Ω1

Y
+ DY |Ω2

Y
which is de�ned almost

everywhere in Ω and extend both portions to all of Ω by zero to get DY = �DY |Ω1

Y
+�DY |Ω2

Y
and

∇YDY = �∇DY |Ω1

Y
+ �Y∇DY |Ω2

Y
, accordingly. Now, (7.5) makes Theorem §7.1 applicable to each

portion. This brings about the existence of a subsequence again denoted by Y ∈ J with


∃E0 ∈ !? (Ω × Y) : EY := �DY |Ω1

Y

2F−⇀ E0 in !? (R3 × Y),
∃F0 ∈ !? (Ω × Y) : FY := �DY |Ω2

Y

2F−⇀ F0 in !? (R3 × Y),
∃00 ∈ !? (Ω × Y)3 : 0Y := �∇DY |Ω1

Y

2F−⇀ 00 in !? (R3 × Y)3 ,
∃10 ∈ !? (Ω × Y)3 : 1Y := �Y∇DY |Ω2

Y

2F−⇀ 10 in !? (R3 × Y)3 .

(7.8)
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I. An introduction to periodic homogenisation and two-scale convergence

From this point on, it remains to specify the limit functions and their relations as claimed.

The general procedure is to set out from some weak convergence result like

∀Φ ∈ !?′ (R3 × Y) :
∬
R3×Y

T ∗Y (EY)Φ3G3~
Y→0−→

∬
R3×Y

E0Φ3G3~
(7.9)

and use suitable test functions to derive characterisation results, for instance let Φ = T ∗Y (iY)
for some i ∈ �(Ω × Y) – (iY (G) := i (G, G/Y))Y∈J is strongly two-scale convergent to i in

!? (R3 × Y) – and use (3.17) and to arrive at

lim

Y→0

∫
Ω

EY (G)i (G, G/Y) 3G =

∬
Ω×Y

E0 (G,~)i (G,~) 3G3~
(7.10)

which is Allaire’s original de�nition of two-scale convergence; the latter is often a little more

convenient to manipulate when working with derivatives. Now, the idea is to show desirable

properties by choosing (iY)Y∈J suitably and to argue by density to arrive at the �nal results.

Step 1: E0 and 00. First, both E0 and 00 vanish on Ω × Y2 since they are weak limits of

sequences that vanish there, a property that can be carried over easily considering smooth

test functions. To characterise the gradient structure of 00 we take ®i ∈ �(Ω × Y1)3 and

mime (7.10) to get

−
∫
Ω

DY (G)
[
∇G · ®i (G, G/Y) +

1

Y
∇~ · ®i (G, G/Y)

]
3G =

∫
Ω

∇DY (G) · ®i (G, G/Y) 3G(7.11)

by the chain rule and integration by parts. Recall, that ∇G · ®i (G,~) :=
∑3
8=1 mG8i (G,~) and

its likes denote the divergence operators with respect to the speci�ed variables. Multiplying

(7.11) with Y and passing to the limit yields

0 =

∬
Ω×Y

E0∇~ · ®i 3G3~
(7.12)

for all ®i ∈ �(Ω × Y1)3 which infers ∇~E0 ≡ 0 in Ω × Y1 by density of test functions in

!? (Ω × Y1)3 such that E0 (G,~) ≡ E0 (G), i.e. E0 is constant in ~. Reconsidering (7.11) with

®i ∈ �1 :=
{
®i ∈ �(Ω × Y1)3 : ∇~ · ®i ≡ 0

}
and passing to the limit leads to

∀®i ∈ �1 :

∬
Ω×Y

E0∇G · ®i 3G3~ =

∬
Ω×Y

00 · ®i 3G3~
(7.13)

since ∇G · ®i (G, G/Y) is strongly two-scale convergent to ∇G · ®i (G,~) ∈ �(Ω ×Y1). Choosing

®i (G,~) ≡ ®i (G), i.e. independent of its ~-variable, quickly infers ∇E0 = 00 in �
′(Ω) which

can be speci�ed to ∇E0 =
∫
Y 00 3~ ∈ !

? (Ω), so E0 ∈ , 1,? (Ω). To introduce the two-scale

corrector ∇~D1 we proceed as follows. First, de�ne a norm

‖ ®i ‖∗ := ‖ ®i ‖!?′ (Ω×Y1)3 + ‖∇G · ®i ‖!?′ (Ω×Y1) +
∇~ · ®i 

!?
′ (Ω×Y1)(7.14)

and let �0 denote the completion of �(Ω × Y1)3 under the resulting uniform structure.

Clearly, the image of �1 in �0 has a closure in �0 denoted by �2 which is strictly smaller
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§7. Two-scale convergence and derivatives – compactness

than �0. Furthermore, both divergence operators ∇G ·,∇~ · have an extension to all of �0 as

they are continuous and so, we have two operators ∇G ·,∇~ · : �0 −→ !?
′ (Ω × Y1).

By density, (7.13) infers (∇G · ) ′ (E0) = 00 in � ′
2
. It is rather straightfor-

ward to see that �2 must contain all ~-gradients, i.e. the closure of the set{
®i ∈ �(Ω × Y1)3 : ∃D ∈ �(Ω × Y1) : ∇~D = ®i

}
, a result that makes crucial use of compact

supports. Moreover, it is a quite a non-trivial result – see [Are+15, Thm. 13.9] – that if Ω ×Y1
is connected, bounded and has Lipschitz-regular boundary then the remaining kernel is made

up by constant functions only and thus isometrically isomorphic to R. Consequently, we

have

∃D1 ∈ !?
(
Ω;, 1,? (Y1)/R

)
: 00 = ∇GE0 + ∇~D1 in !? (Ω × Y1)3(7.15)

and D1 is well-de�ned up to a constant.

Step 2: F0 and 10. Take i ∈ �(Ω × Y2)3 in (7.11) multiplied with Y to get

−
∫
Ω

DY (G)
[
Y∇G · ®i (G, G/Y) + ∇~ · ®i (G, G/Y)

]
3G =

∫
Ω

Y∇DY (G) · ®i (G, G/Y) 3G(7.16)

which converges for Y → 0 to

−
∬

Ω×Y2

F0 (G,~)
[
∇~ · ®i (G,~)

]
3G3~ =

∬
Ω×Y2

10 (G,~) · ®i (G,~) 3G3~
(7.17)

for all ®i ∈ �(Ω × Y2)3 , inferring ∇~F0 = 10 withF0 ∈ !? (Ω;, 1,? (Y2)).
Step 3: The interface Γ. Since E0+F0 and 00+10 are de�ned _23 -almost everywhere in Ω×Y,

having disjoint supports outside of Γ we need to investigate the latter in order to arrive at a

globally regular function. So, let us revisit (7.16) with ®i ∈ �(Ω×Y)3 . For Y → 0 we retrieve
∀®i ∈ �(Ω × Y)3 : −

∬
Ω×Y

j2 (~)∇~F0 (G,~) · ®i (G,~) 3G3~

=

∬
Ω×Y

[
j1 (~)E0 (G) + j2 (~)F0 (G,~)

] [
∇~ · ®i (G,~)

]
3G3~.

(7.18)

Again one integrates (7.18) by parts, invoking that inside of Ω for 8 = 1, 2 the outward normal

unit vectors on Y8 – we denote these by ®=8 – ful�l ®=1 = −®=2. We arrive at

∀®i ∈ �(Ω × Y)3 : 0 =

∫
Ω

∫
mY1

®=1 (~) · i (G,~) [F0 (G,~) − E0 (G)] |mY1 3ℋ
3−1 (~) 3G(7.19)

inferring [F0 (G,~) − E0 (G)] |mY1 = 0 forℋ
3−1

-almost all~ ∈ mY1 = mY2 (in the sense of traces

on mY1). Thus, for _3 -almost all G ∈ Ω the support of ~ ↦−→ F0 (G,~) must be contained in

Y2 and thereforeF0 ∈ !? (Ω;, 1,?

0
(Y2)) which was to show. �

Remark §7.2: Time-dependency and compactness

Chapter III will consider parabolic initial–boundary value problems, so let us note that

both theorem §7.1 and theorem §7.2 carry over almost verbatim to the time dependent

case if (temporal) !1-regularity is available. The latter is a minimal condition due to
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I. An introduction to periodic homogenisation and two-scale convergence

periodic unfolding. So, if no temporal oscillations of the coe�cients are present then

periodic unfolding only works on spatial variables. Under these conditions the very

same proofs carry over with minimal changes, for example �(Ω × Y8 ) is replaced by

�(� × Ω × Y8 ) for some open and bounded time interval � ⊂ R.

On regularity requirements

Let us comment on the regularity requirements of theorem §7.1 and theorem §7.2 about the

boundaries mΩ and mY1. Theorem §7.1’s�0,1
-regularity of the boundary can be weakened since

only _3 (mΩ) = 0 is actually necessary, a state of a�airs that [MT06] already pointed out. The

compactness of mΩ is necessary for the projective limit procedure to be convergent such that

_3 (Λ+Y ) → 0 holds for Y → 0. If the latter aspect can be assured by alternative means it is

conceivable to drop the compactness assumption, too.

Concerning Theorem §7.2, Γ was required to be �0,1
-regular. Its �rst purpose was to ensure

Ω × Y1 would have a �0,1
-regular boundary enabling us to characterise the kernel of ∇~ · as

gradients plus constant functions, leading to (7.15). The author conjectures that this charac-

terisation holds under weaker assumptions since the test functions under consideration have

compact support in Ω × Y1 and Ω × Y1 is a bounded �∞-manifold. More speci�cally, it is well-

known, c.f. [BT82, Cor. 5.8], that (only) connectedness of Ω × Y1 implies �32 (Ω × Y1) � R to

hold, i.e. the 3-th de Rham cohomology group of smooth functions with compact support is iso-

morphic to R in terms of groups. The latter is strongly linked to divergence operators and the

author plans to enquire this matter in future works. If the conjecture would prove true then this

step would require no regularity from the boundary at all working only inside of the domain.

Secondly, establishing (7.18) required the foregoing characterisation to hold. Provided the

latter holds, its consequence (7.19) is the actually important result and it relies on having Gauß–

Green–Stokes theorems and suitable trace operators on mY1 available. The common assumption

of �0,1
-regular interfaces is of course only su�cient. Without intending any o�ence at all, it

seems to the author that this condition is based on the state of knowledge attained around the

time of the original release of [AF03] in 1975.
6

However, drastically re�ned versions are available

nowadays, we refer to H. Triebel’s trace theorems on 3-sets presented in [Tri06, Sec. 7.1], to

Gauß–Green theorems for�+ -functions given in V. Maz’ya’s [Maz11, Sec. 9.6] and – in particular

– to [AFP00, Thm 3.77]. Presently, the latter result seems to be the most promising to the author

asking for mY1 to be recti�able. Again, the author plans to address this matter in a future piece

of work, thanking Dr. M. Santilli and Dr. J. Tölle for indicating to him the more recent works

and results on traces and related matters.

A very defective example

Let us conclude with this section with underlining two rather simple but fundamental facts.

First, theorem §7.2 is only a statement about weak topologies and secondly, estimates like (7.5)

and its time-dependent analogue are way too weak to yield stronger compactness results. As an

6
A claim based solely on the author’s mere impression which may be just as well plain ignorance.
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§7. Two-scale convergence and derivatives – compactness

illustration consider the sequence(
IY (G) :=

∑
:∈N

1

:2
sin

(
G/ :
√
Y
))
Y∈J

(7.20)

which ful�ls ‖Y∇IY ‖!∞ (R) for all Y > 0. However, (IY)Y∈J entirely de�es the scale separation

approach: neither two-scale convergence nor a �nite number of additional scales can handle

(IY)Y∈J’s convergence properties correctly to yield more than weak convergence results. Thus,

(IY)Y∈J must be considered as a worst case scenario that can occur inside the fast domain having

only (7.5) and its likes at hand. Consequently, usable convergence results must stem from other

means than compactness theorems.

§7.5. Two-scale compactness of gradients – a limit space

Theorem §7.2 and the set-up therein suggest the de�nition of a limit space containing the func-

tions (D0, D1, E) from (7.6). As it turns out, one can regard these equivalently as pairs or as triplets.

De�nition §7.1: Subspace of two-scale limits

Referring to theorem §7.1 and theorem §7.2 we de�ne the corresponding two-scale limit

space by

(7.21)

Ξ(Ω) :=
{
(F0,F1) ∈ !? (Ω × Y)1+3 : ∃D0 ∈, 1,?

0
(Ω), D1 ∈ !? (Ω;, 1,? (Y1)/R)

and E ∈ !? (Ω;, 1,?

0
(Y2)) : ∀(G,~)

a.e.∈ Ω × Y :

F0 (G,~) = D0 (G) + E (G,~) ∧

F1 (G,~) = j1 (~)
[
∇GD0 (G) + ∇~D1 (G,~)

]
+ ∇~E (G,~)

}
.

Ξ := Ξ(Ω) is a closed subspace in !? (Ω×Y)1+3 . We will frequently identify (F0,F1) ∈ Ξ
with the triplet of functions (D0, D1, E) = (F0,F1) which essentially represent (F0,F1).
Moreover, taking advantage of these alternative representations it will be convenient to

write

F1 = ∇̃F0 (G,~) = j1 (~)
[
∇GD0 + ∇~D1

]
+ ∇~E(7.22)

such that (F0,F1) = (F0, ∇̃F0) = (D0, D1, E) ∈ Ξ, a notation the expresses the fact that

∇̃F0 = F1 is a gradient augmented by two-scale correctors.

We conclude the �rst chapter with the prediction thatΞ is to play a pivotal role on our analysis.

It is quite apparent that solutions of limit problems will be elements of Ξ, though a rigorous

justi�cation for this claim is the purpose of the next chapters. In functional analytical terms, Ξ

will be characterised as stemming from procedure similar to Cauchy completion. Perhaps, this

is not trivial to anticipate at the current state of a�airs.
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§8. Configuration of the problem

§8.1. Crude formulation of the problem

This chapter will introduce a sequence of quasi-linear, stationary boundary value problems and

their abstract formulation. The domain Ω ⊂ R3 is assumed to be non-void, bounded and with

�0,1
-regular boundary throughout. As pointed out at the beginning of chapter I, our interest

lies in materials that possess a �ne locally periodic structure. For the purpose of clarity, let us

distinguish periodic coe�cients on interfaces such as mΩ or Γ and periodic coe�cients on Ω

itself. Whereas the former is a very worthwhile matter of investigation, we refrain from such

considerations, placing our attention on the second item.

We will begin with a discussion of related modelling assumptions which will serve to guide

the following mathematical treatment. In rather crude terms, we want to consider boundary

value problems of the form


−∇ · ®0Y (G,DY ,∇DY) + 1Y (G,DY) = 5Y in Ω and

DY = 6 on mΩ
(8.1)

whose coe�cients typically oscillate at scale Y with Y becoming increasingly small. To this end,

let 0 < Y0 � diam(Ω) be �xed and assume J ⊂ (0, Y0) to be a given, countable, non-void set with

0 ∈ J. J supplies us with a null sequence (Y=)=∈N = J which we simply denote by (J 3)Y → 0.

A roadmap for the problem: compensation of compactness by monotonicity

Naturally, we need to specify suitable conditions on (8.1) and its coe�cient functions ®0Y and 1Y

such that our toolbox from chapter I is applicable. To this end, we ask that an admissible periodic

decomposition of Ω is given in the sense of de�nition §6.1. Leaving the coe�cients aside for a

moment, we will impose conditions on the right hand side functions (5Y)Y∈J such that (8.1) can

be reformulated as a problem that is weakly solvable for all, or at least co�nitely many Y ∈ J,
i.e. for all but �nitely many Y ∈ J. Recall that its preferable not to specialise the sequence Y ∈ J
nor to use constructions that exploit speci�c null sequences.

Most crucially, we will encounter severely �awed a priori estimates making compactness

methods basically unusable. In contrast, the method of monotonicity remains potentially un-

challenged, a fact providing us with a possible compensation. Although both methods are splen-

didly combinable, most notably in the family of pseudo-monotone operators, we cannot over-

come the compactness defect caused by the slow medium so that monotonicity alone must �ll

the gap.

Finally, let us point out that realising the necessity for a compensation of compactness is not

obvious (at least to the author) from the outset. Rather, our requirements are crafted retrospect-

ively to �t theorem §10.1 below.
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§8.2. Requirements on the superposition operator

We intend to employ the well-established techniques of monotone operators in re�exive Banach

spaces due to decent weak compactness theorems being are available there together with mono-

tone operators’s favourable weak continuity properties on solution sets. Eventually, we will

formalise in the next chapter that monotone operators can be considered as a family of oper-

ators that behaves essentially like a single pseudo-monotone operator with respect to Y → 0.

In contrast, this is generally not true if one starts with pseudo-monotone operators in the �rst

place.

As mentioned in chapter I, not much literature seems to be available on highly heterogeneous

media. All instances known to the auther work with linearity or some compensating technique

that works without compactness arguments. At the time of this writing, S. Reichelt work presen-

ted in [Rei15] seems to be the only succesful non-linear technique around. There, Lipschitz con-

tinuous perturbations of the Laplacian Y2Δ in !2 (Ω) are considered. The author suspects that

Hilbert space techniques should be dispensable for Reichelt’s methods but the need of the per-

turbations to be Lipschitz seems vital for Gronwall’s lemma to be applicable, a key tool in the

steps 3 and 4 of the proof of [Rei15, Thm 2.1.6].

Classically, monotonicity framework are inhabited in frameworks of re�exive !? -spaces and

their duals. It must be said though, that this not more general than [Rei15] but rather a di�erent

con�guration. So, let us �x ? ∈ (1,∞) and and ? ′ := ?/(?−1). It must be mentioned that the class

of monotone operators with compact perturbations excluded is not ‘too large’, the ?-Laplacian

Δ? (D) := −∇ ·
[
|∇D |?−2∇D

]
mapping , 1,? (Ω) −→

(
, 1,? (Ω)

) ′
being the standard prototype. In particular, pseudo-monotone operators like the ?-Laplacian

perturbed by lower order terms are only encompassed in the family of monotone operators if

they are monotone themselves, a quite severe restriction: the loss of the Rellich–Kondrachov

embedding inside the slow domain Ω2

Y is not easily compensated for.

Requirements on the function inducing the superposition operator

Let us specify the coe�cient functions ®0Y and 1Y of (8.1) by assuming that two functions{
a : Ω × Y × R × R3 −→ R3
b : Ω × Y × R −→ R

(8.2)

are given that induce ®0Y for (Y, G, G/Y, A, B, ) ∈ J × Ω × Y × R × R3 by

®0Y (G, A, B) = a(G, G/Y, A, B)(8.3a)

and 1Y for (Y, G, G/Y, A, B, ) ∈ J × Ω × Y × R × R3 by

1Y (G, A ) = b(G, G/Y, A ).(8.3b)

As customary, the functions a and b are to induce Nemytskii operators, mapping (D0, . . . , D3 ) ∈
!? (Ω)1+3 to !?

′ (Ω)3 for Y > 0 via

(D0, ®D) ↦−→a (D0, ®D) := a(G, G/Y,D0, ®D),(8.4)
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writing ®D := (D1, . . . , D3 ) and a for the Nemytskii operator induced by a. Analogously, one

de�nes b by

D0 ↦−→b (D0) := b(G, G/Y,D0).(8.5)

In order to ensure sensible properties for the operators at hand, we need to impose several

conditions on the functions a and b. Fortunately, the requirements are standard besides the

two-scale admissibility matter already discussed. We want the superposition operators to yield

measurable functions that possess the desired integrability. In addition, we need coercivity and

monotonicity conditions, too.

N.1) (Modi�ed) Caratheodory maps. For all (A, B) ∈ R × R3 the maps{
a( · , · , A , B) : Ω × Y −→ R3 (G,~) ↦−→ a(G,~, A, B)
b( · , · , A ) : Ω × Y −→ R (G,~) ↦−→ b(G,~, A )

(8.6a)

areL(Ω)⊗L(Y)−B(R3 )-measurable andL(Ω)⊗L(Y)−B(R)-measurable, respectively.

Secondly, one imposes continuity conditions: for _3 -almost all ~ ∈ Y the maps{
a( · , ~, · , · ) : R × R3 −→ R3 (G, A, B) ↦−→ a(G,~, A, B)

b( · , ~, · ) : R −→ R (G, A ) ↦−→ b(G,~, A )
(8.6b)

are continuous in the respective Euclidean topologies.

N.2) Growth conditions. We ask for a constant� ≥ 0 such that for _23 -almost all (G,~) ∈ Ω×Y
and all (A, B) ∈ R × R3

|a(G,~, A, B) | + |b(G,~, A ) | ≤ �
(
1 + |A |?/?′ + |B |?/?′

)
(8.7)

holds.

N.3) Coercivity condition. There exist constants �1 > 0,�2 ≥ 0 and an non-negative, continu-

ous function ℎa ∈ !1 (Ω × Y) such that

a(G,~, A, B) · B + b(G,~, A ) · A ≥ �1 |B |? +�2 |? |? − ℎa (G,~)(8.8)

holds for _23 -almost all (G,~) ∈ Ω × Y and all (A, B) ∈ R × R3 .

N.4) Monotonicity condition. a and b induce superposition operators that are monotone on

their domain of de�nition in, 1,? (Ω). To this end we require that

[a(G,~, A, B1) − a(G,~, A, B2)] · [B1 − B2] ≥ 0,(8.9a)

[b(G,~, A1) − b(G,~, A2)] · [A1 − A2] ≥ 0.(8.9b)

holds for _23 -almost all (G,~) ∈ Ω × Y and all (A1, A2, A , B1, B2) ∈ R × R × R × R3 × R3 .

§8.3. Requirements on the source and boundary terms

The sequence of source terms (5Y)Y∈J ⊂ !?
′ (Ω) is required to be strongly two-scale convergent:

(8.10) ∃50 ∈ !?
′ (Ω × Y) :

50 − T ∗Y (5Y)!?′ (R3×Y) Y→0−→ 0
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and again, for modelling reasons it is desirable that 50 does not depend on the speci�c choice

of Y ∈ J. Concerning boundary values, our intentions are quite modest: we require that there

exists a function 6̃ ∈, 1,? (Ω) such that 6 |mΩ ∈, 1−1/?,? (mΩ) is its resulting trace function.

§9. Statement and treatment of the individual problems

The foregoing conditions allow us to give a reasonable formulation of (8.1). Note that here Y ∈ J
is �xed as we do not yet consider limiting behaviour for Y → 0. Therefore, we are going to use

the label of Y-dependent (boundary value) problems. For what follows set � :=,
1,?

0
(Ω).

§9.1 Problem (Y-dependent problem). For Y ∈ J �nd DY ∈ � such that for all i ∈ � we have



∫
Ω

a

(
G,
G

Y
, 6̃ + DY ,∇Y6̃ + ∇YDY

)
· ∇Yi + b (G, G/Y, 6̃ + DY) i 3G

=: 〈�Y (DY), i〉�′×� = 〈ℓY , i〉�′×� :=

∫
Ω

5Yi 3G.

(YP)

Lemma §9.1

For every �xed Y > 0 the operator�Y : � −→�
′
is monotone and coercive and ℓY ∈ �′.

Consequently, (YP) is equivalent to �nding DY ∈ � such that �Y (DY) = ℓY in �
′
.

Proof. �Y and ℓY are well-de�ned and their claimed properties are due to the conditions im-

posed on a and b beforehand. As aforementioned, the veri�cation is considered standard and

can be found in [Rou13, Ch. 2], for instance. Finally, same applies to equivalence of operator

equation and the corresponding boundary value problem. �

Theorem §9.1: Solvability

For every Y > 0 the operator problem corresponding to Problem §9.1 is solvable. In

addition, if (8.9) is strengthened to yield equality if and only if B1 = B2 and A1 = A2 then

there is a unique solution. Independently of uniqueness, the following a priori estimate

can be established:

(9.1) ∃� > 0 : ∀Y > 0 : ‖DY ‖!? (Ω) + ‖∇YDY ‖!? (Ω;R3 ) ≤ �

Proof. By lemma §9.1 we may resort to the operator equation which involves a coercive and

monotone operator. Both Brezis’s theorem §A.2.1 or the Browder–Minty theorem yield the

solvability of the operator equation. Uniqueness of solutions is due to strict monotonicity

which is elementary to verify. Finally, (9.1) is deduced by standard calculations employing

the coercivity constants from (8.8). �

The estimate (9.1) is of paramount importance and the compactness theorems in section §7.4

were tailor-made to be in line with it, inferring the next result.
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II. A quasi-linear, elliptic problem

Corollary §9.1: Presumptive limit functions

To a given sequence Y ∈ J there is a subsequence of solutions (DY′)Y′∈J′ of Problem §9.1

with J′ ⊂ J such that for Ξ given in de�nition §7.1 we have

∃(F0,F1) ∈ Ξ(Ω) : (T ∗Y′ (DY′),T ∗Y′ (∇Y′DY′))
Y′→0−⇀ (F0,F1) in !? (R3 × Y;R1+3 ).(9.2)

As customary, we will denote the subsequence by (DY)Y∈J, again.

Proof. The estimate (9.1) stems from the coercivity constants given in (8.8) and so, it is ap-

plicable to a sequence (DY)Y∈J, too. Applying theorem §7.1 and theorem §7.2 to (DY)Y∈J yields

the result. �

Remark §9.1: Sequences and nets

One may notice that we distinguish statements holding for every Y > 0 from those that

are tied to Y ∈ J. The rule of thumb is that whenever sequences are under consideration

we switch to the latter. In fact, one could work with (DY)Y>0 instead of (DY)Y∈J but this

would require to handle nets and subnets. As far as the author is aware of, all consider-

able compactness theorems only yield convergent subnets of a given net, and obtaining a

convergent subsequence from a given net is an extremely restrictive and involved a�air

involving the notion of supersequential compactness, c.f. [Sch97, p. 468]. In addition, the

easiness of handling subsequences is most starkly contrasted by the notion of subnets.

As discussed in [Sch97, Ch. 7], there are at least three highly sensible but non-equivalent

notions for the latter, making ‘subnet’ the author’s favourite candidate for the most de-

lusive notion in analysis. Moreover, whereas monotone operators are indeed �t to handle

nets and subnets, pseudo-monotone operators fail to do so as they are de�ned in terms of

sequences; and our limiting procedure is actually pseudo-monotonic in nature. Indeed,

there are generalisations of pseudo-monotone operators handling nets, c.f. [DK00], but

we refrain from their use for their corresponding limiting procedures seem to be quite

more involved to the author, at least at present.

§10. Establishing of a limit problem

Section §9 provides us with a two-scale convergent sequence as speci�ed in (9.2). It is our aim to

show that (F0,F1) ≡ (D0, D1, E) ∈ Ξ solve a limit problem on their own part which is related to

Problem §9.1 in ‘meaningful way’. Following G. Allaire’s treatment of linear problems in [All92,

Sec. 4], it is straightforward to come up with a candidate for a limit problem. Alas, making this

correspondence rigorous is not as easy.

§10.1. The presumtive limit problem

A close reexamination of theorem §2.1 and theorem §2.2 allows to use corollary §9.1 to guess a

potential limit problem whose weak form is as follows.
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§10. Establishing of a limit problem

§10.1 Problem. FindF = (F0,F1) = (F0, ∇̃F0) ∈ Ξ such that for all q = (q0, ∇̃q0) ∈ Ξ we have

∬
Ω×Y

a

(
G,~, 6̃ +F0,∇6̃ + ∇̃F0

)
· ∇̃q0 + b (G,~, 6̃ +F0) q0 3G3~

=: 〈�0 (F), q〉Ξ′×Ξ = 〈ℓ0, q〉Ξ′×Ξ :=

∬
Ω×Y

50q0 3G3~,

(10.1)

with ∇̃ representing the two-scale limits of gradient sequences of the form

∇̃q0 (G,~) = j1 (~)
[
∇Gi0 + ∇~i1

]
+ ∇~k

for q = (q0, q1) = (q0, ∇̃q0) = (i0, i1,k ) ∈ Ξ, c.f. de�nition §7.1.

§10.2. Stock-taking and bargaining to make fit for periodic unfolding

Our wish is link the Y-dependent Problem §9.1 to Problem §10.1 sensibly. Thanks to (8.10) we

have 5Y
2B−→ 50 in !?

′ (R3 × Y) and therefore ℓY −→ ℓ0 is established. As a minimal objective,

�Y (DY)
2F−⇀ �0 (F) in

(
T ∗Y

(
, 1,? (Ω)

) ) ′
needs to be shown. Let us reformulate this in handier

terms.

By proposition §7.1 T ∗Y
(
, 1,? (Ω)

)
↩−→ !? (R3 × Y;R3+1) is clear, but also(

T ∗Y
(
, 1,? (Ω)

) ) ′
↩−→

(
!? (R3 × Y;R3+1)

) ′
� !?

′ (R3 × Y;R1+3 )(10.2)

is meaningful due to extension by zero or simply the Hahn–Banach theorem.

Furthermore, the conditions imposed in N.1) and N.2) allow us to recast�Y (DY) as an element

of !?
′ (Ω;R1+3 ) via

G ↦−→ ZY := ZY (G) :=
[
b

(
G,
G

Y
, 6̃(G) + DY (G)

)
, a

(
G,
G

Y
, 6̃(G) + DY (G),∇Y6̃(G) + ∇YD (G)

)]
.(10.3)

However, one must not forget about −∇Y or its adjoint which are not incorporated into ZY but

transferred to the space of functions that test ZY .

The purpose of subduing −∇Y for the moment is that unfolding T ∗Y (ZY) ∈ T ∗Y (!?
′ (Ω;R1+3 ))

works nicely, whereas T ∗Y (, −1,? (Ω)) is not well-de�ned in general, even though there is a two-

scale convergence notion for distributions. Thus, passing −∇Y to the testing functions is a very

worthwhile trade for us since T ∗Y (∇YD) with D ∈ , 1,? (Ω) is perfectly suitable for periodic un-

folding.

Now, our main objective is to establish
Z =

(
b (G,~, 6̃ +F0) , a

(
G,~, 6̃ +F0,∇6̃ + ∇̃F0

))
and

ZY
2F−⇀ Z in !?

′ (R3 × Y)1+3
(10.4)

for some F = (F0, ∇̃F0) ∈ Ξ(Ω), namely the task of characterising the weak two-scale limit Z

tested against unfolded Sobolev functions with two-scale gradients. We will approach this task

with weak compactness methods and a passage to limit technique borrowed from the theory of

(pseudo-)monotone operators.

57



II. A quasi-linear, elliptic problem

Remark §10.1: Merely weak limits?

(10.4) is a sequential continuity property of solutions in a weak topology and one may

wonder whether this yield is rather poor. Nevertheless, it follows the tracks of [All92,

Sec. 4] closely where weak convergence was established �rst, with stronger estimates

following afterwards by requiring additional means. In our manner of speaking, [All92,

Sec. 4] works with linear operators that are uniformly monotone such that our result can

be regarded as a natural extension to !? -spaces and in the same spirit, stronger results

can be derived eventually. So, (10.4) must be understood as a result that establishes a

framework. This thesis is not about being exhaustive with respect to stronger results.

§10.3. A limiting result

In what follows we will write - := !? (R3 × Y)1+3 and make use of the fact that incidence

product 〈 · , · 〉 = 〈 · , · 〉- ′×- coincides with 〈 · , · 〉
-̃ ′×-̃ for -̃ = T ∗Y (�) or other closed subspaces.

However, this places additional importance on keeping track of the particular test functions in

use.

Theorem §10.1: Limit characterisation

Provided suitable recovery sequences do exist, (10.4) holds, and consequently, Prob-

lem §10.1 is solvable and its solution is the two-scale limit of a subsequence of solutions

of Problem §9.1. Consequently, Problem §10.1 can be considered as the limit problem of

Problem §9.1 under the initial assumption.

Proof. For convenience’s sake, let us rephrase the statements available so far. By corol-

lary §9.1 we have

FY := (T ∗Y (DY),T ∗Y (∇YDY)) −⇀ F =

(
F0.∇̃F0

)
∈ Ξ in -(10.5)

Clearly, �Y : � −→ � is a bounded operator and so the boundedness (DY ,∇YDY)Y∈J ⊂
!? (Ω)1+3 and (FY)Y∈J ⊂ - carries over to (ZY)Y∈J from (10.3) being bounded in - ′. The-

orem §7.1 yields that there exists some Z0 ∈ !?
′ (Ω × Y)3+1 such that T ∗Y (ZY) −⇀ Z0 in -

holds. So, we need to show that �0 (F) = Z0. To this end we rewrite �0 and �Y with Y > 0 as

being induced by a single pseudo-monotone operator, namely B : * ×T ∗Y (�) −→�
′

given

by

B(TY ,T ∗Y (D),T ∗Y (∇YD) := −∇Y · ã
(
TY , ~,T ∗Y (DY),T ∗Y (∇YD)

)
+ b̃ (TY , ~,D ◦ TY) ,(10.6)

with* = {(TY)Y∈J∪{83Ω}. The pseudo-monotonicity ofB is due to ‖TY−83Ω ‖!∞ (R3×Y;R3 ) −→
0 and can be checked by standard calculations which rely on B being continuous in its �rst

argument and a splitting argument similar to handling lower-order terms in the presence of

compact embeddings. For a blueprint see [Rou13, Lem. 2.32]. In fact, these calculations will

be revisited in section §15 in greater generality, skipping this aspect’s details for the moment.

Given B’s pseudo-monotonicity, showing (10.4) requires us to establish

lim sup

Y→0

〈B(TY ,FY),FY −F〉- ′× - ≤ 0.(10.7)
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§10. Establishing of a limit problem

Having assured the solvability of Problem §9.1 in theorem §9.1 we obtain

〈B(TY ,FY),T ∗Y (i) −FY〉 =
∬
Ω×Y

T ∗Y (5Y)T ∗Y (i − DY) 3G = 〈T ∗Y (ℓY),T ∗Y (i − DY)〉,(10.8)

for 〈·, ·〉 = 〈·, ·〉- ′×- and all i ∈ , 1,?

0
(Ω). In order to derive (10.7) from (10.8), we need to

impose a highly non-trivial assumption, namely the existence of a recovery sequence (AY)Y∈J ⊂
� with (T ∗Y (AY),T ∗Y (∇YAY)) −→ F in - . A discussion on their existence is given below.

Expanding the left-hand side of (10.7), inserting a recovery sequence and using Hölder’s

inequality one can derive

lim sup

Y→0

〈B(TY ,FY),FY −F〉- ′× - = lim sup

Y→0

〈
B(TY ,FY),FY + T ∗Y (AY − AY) −F

〉
- ′× -

= lim sup

Y→0

[〈
B(TY ,FY),FY − T ∗Y (AY)

〉
- ′× - +

〈
B(TY ,FY),T ∗Y (AY) −F

〉
- ′× -

]
≤ lim

Y→0

[〈
T ∗Y (ℓY),FY − T ∗Y (AY)

〉
- ′× - + ‖B(TY ,FY)‖- ′ ‖T

∗
Y (AY) −F ‖-

]
= 0,

so that (10.7) does hold. We point out that two strong two-scale convergence statements

are employed here simultaneously: strong two-scale convergence of the right hand side and

strong two-scale convergence of the recovery sequence.

Finally, since B is pseudo-monotone and (10.7) is valid, the �rst line of what follows can be

inferred for arbitrary E ∈ Ξ by the standard implication of pseudo-monotone operators, see

(2.1) for instance:
〈B(83Ω,F),F − E〉Ξ′× Ξ ≤ lim inf

Y→0

〈B (TY ,FY) ,FY − E〉

= lim inf

Y→0

〈B (TY ,FY) ,FY − T ∗Y (AY − AY) − E〉

= 〈ℓ0,F − E〉.

(10.9)

The fact that (10.9) is valid for all E ∈ Ξ allows to employ the standard monotonicity trick

which is also known as type (M) transition: �rst, assume that B(83Ω,F) ≠ ℓ0 in Ξ′. Since

the dual pairing 〈 · , · 〉- ′×- restricted to Ξ′ × Ξ′ is separating, i.e. if E ′ ≠ F ′ in Ξ′ then

∃I ∈ Ξ : 〈E ′ −F ′, I〉 ≠ 0, there exists some E0 ∈ Ξ such that 〈B(83Ω,F) − ℓ0,F − E0〉 < 0. But

choosing E1 := 2F − E0 yields

0

(10.9)

≥ 〈B(83Ω,F) − ℓ0,F − E1〉 = −〈B(83Ω,F) − ℓ0,F − E0〉 > 0(10.10)

such that 〈B(83Ω,F) − ℓ0,F − E0〉 = 0 for all E ∈ Ξ implying B(83Ω,F) = ℓ0 in Ξ′ which is

the desired result. �

§10.4. A short discussion on recovery sequences

As we have seen, the availability of suitable recovery sequences are necessary for our method.

More speci�cally, the following statement would be vital to show:

There exists a recovery sequence (AY)Y∈J to everyF ∈ Ξ(Ω), in formal terms:

(10.11) ∀F = (F0,F1) ∈ Ξ(Ω) : ∃(AY)Y∈J ⊂ � :

(
T ∗Y (AY),T ∗Y (∇YAY)

) 2B−→ F in - .
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II. A quasi-linear, elliptic problem

As far as the author is aware of, (10.11) has precursors for media without interfaces of standard

and slow media. The standard media case was given in [MT06, Prop. 2.9 & Prop. 2.10]. An

extension to highly heterogeneous media was given by H. Hanke in [Han09] for ? = 2, using

the classical two-scale calculus’s device of an expansion in Y, i.e. the decomposition into good

and bad portions. Since both proofs are variational in nature, the author suspects that the case

? ∈ (1,∞) should be possible to establish as well using more re�ned Γ-convergence techniques

for functionals of the form

(10.12) ΦY (A ) :=
1

?

∫
Ω

|∇YA −�Y |? + |A − 0Y |? 3G,

with (0Y) ⊂ !? (Ω), (�Y) ⊂ !? (Ω)3 given for G
a.e.∈ Ω by

0Y (G) :=
∫

Y (.+[G/Y ])∩Ω

F0

(
I,
G

Y

)
3I,(10.13a)

�Y (G) :=
∫

Y (.+[G/Y ])∩Ω

j1

(G
Y

)
F1

(
I,
G

Y

)
3I(10.13b)

forF = (F0,F1) ∈ Ξ(Ω). This way, one may hope to circumvent actual Hilbert space techniques.

Unfortunately, the decomposition of the given functionals’ minimiser into good and bad portions

poses technical di�culties too steep for the author to overcome.

§10.5. Epilogue: hints for a more abstract framework

Theorem §10.1 stems from a limiting technique that relies on two key ingredients, recovery

sequences and a suitable concept of pseudo-monotonicity for families of operators. In this re-

spect,let us point out that theorem §10.1’s proof and the proof of Brezis’s theorem, for instance

given in [Rou13, Thm. 2.6], coincide in their handling of the passage to limit. In other words,

our homogenisation problem coincides with Galerkin’s method in terms of passing to the limits

Y → 0 and dim(+: ) −→ ∞ for �nite-dimensional approximation spaces+: . Furthermore, Galer-

kin’s method also uses a unifying operator B which organises underlying operators, namely

the �nite-dimensional restrictions, whose solvability must be ensured in the �rst place, too.

Moreover, � =, 1,? (Ω) possesses a Schauder base which yields the �nite-dimensional approx-

imation spaces +: and the latter ‘converge’ to � and have a coinciding incidence product. A

similar set-up is encountered for the spaces T ∗Y (�) in - , with Ξ being the space containing

the corresponding two-scale limits. So, both homogenisation and Galerkin’s method appear to

be akin to each other, both relying on a separability condition that allows to obtain recovery

sequences and not only recovery nets.

On the other hand, the �nite-dimensional spaces (+: ):∈N ⊂ � form a direct system ordered

by inclusion and so, it is not far-fetched but rather natural and even well-known, c.f. [CLM79,

Prop. 1.20], that � = lim ind+: holds in Ban1. As we have seen in section §4.3, similar construc-

tions hold for auxiliary domains and their corresponding !? -spaces but although (T ∗Y (�))Y∈�
is a sequence of closed subspaces in - it does not seem to yield an analogue that is both simple

and useful, even though Ξ may be anticipated to be a limit space in some sense.
1

In the absence

1T∗Y1 (�) and T∗Y1 (�) are not contained in each other if Y1 ≠ Y2. In categorical terms, T∗Y is no natural transformation

from !? (Ω;ℬ) to !? (Ω+Y ;ℬ) . Again, category theory is no silver bullet but a decent organiser.
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§10. Establishing of a limit problem

of convenient comparison maps between the spaces of (T ∗Y (�))Y∈� no straightforward limit or

co-limit construction is available to summarise the state of a�airs concisely.

Summing up, one might anticipate that surjectivity results like Brezis’s theorem and our the-

orem §10.1 have a common root but are not fully akin, suggesting an investigation that we carry

out in the next chapter. Our main reason is twofold: �rst, a slightly more abstract machinery is

more tolerant to the inconveniences of parabolic problems, in particular the considerably more

extensive apparatus of function spaces and related convergence concepts. Secondly, the actual

mechanics of the limiting procedure involved are easier to isolate this way; this is our principal

motivation.
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III. The parabolic regime

§11. Preparations and prerequisites

Analogous to the previous chapter II, we will turn to carry out the periodic homogenisation of

a quasi-linear parabolic problems with strong heterogeneities of the form

mCDY − ∇Y · VY (C,DY) = 5Y in Ω) with DY = D0,Y in {0} × Ω(11.1)

which is assumed to have homogeneous boundary values for simplicity’s sake. A key aspect

will be whether and how one can make us of results and related techniques developed for the

stationary case. As we have seen, all machinery eventually contributes to organising arguments

that vindicate passages to the limit Y → 0. In order to keep this presentation free from un-

necessary technical burdens, we will restrict ourselves to monotone problems, again, although

involving non-monotone lower order terms on Ω1

Y is conceivable along standard arguments of

compact embeddings, we refer to T. Roubiček’s [Rou13] once more.

So, our main task is to develop the additional machinery necessary to handle parabolic evol-

ution problems and their periodic homogenisation. We start by gathering some standard tools

for parabolic initial–boundary value problems together with the corresponding notation. Our

presentation is guided by [DiB93; Lad68b; Rou13].

§11.1. Fundamentals for parabolic problems

Domains

We assume Ω ⊂ R3 to be a non-void domain of �0,1
-regularity equipped with an admissible

periodic decomposition. such that a parabolic analogue of theorem §7.2 to be available.

Time interval

We �x some) > 0 and obtain the fundamental objects � := (0,) ) and Ω) = �×Ω. More generally,

we write (C := (0, C) × ( for any given set ( . In addition, (� ,L(� ), _) denotes the measure space

resulting from restricting (R1,L(R), _1) to � .

Lebesgue–Bochner spaces

Here, we gather the necessary elementary results on integration of Banach space valued func-

tions. Thorough presentations on this matter can be found in [DJ77; Din74; Edw65; Lan69]. Let

us �x some notation. For a given Banach space ℬ we write

(11.2) !0 (0,) ;ℬ) := !0 (� ; )↽ := {D : (0,) ) −→ℬ : D is Bochner measurable}
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for the (vector) space of Bochner measurable functions. Here, Bochner measurability is de�ned

via sequences of simple functions (B= : (0,) ) −→ℬ)=∈N, i.e.
∀= ∈ N : ∃ℓ= ∈ N, !1, . . . , !ℓ= ∈ L(� ), 11, , . . . , 1ℓ= ∈ ℬ :

B= (C) =
ℓ=∑
:=1

1: j!: (C) ∧
(
1 ≤ 8 ≠ 9 ≤ ℓ= =⇒ !8 ∩ ! 9 = ∅

)(11.3)

which converge pointwise toD almost everywhere in � . Furthermore, we will employ Lebesgue–

Bochner spaces given for for ? ∈ [1,∞) by

(11.4) !? (0,) ;ℬ) :=
D ∈ !0 (0,) ;ℬ) : ‖D‖?!? (0,) ;ℬ) :=

)∫
0

‖D (g)‖?
ℬ
3g < ∞


and for ? = ∞ with obvious modi�cations. !? (0,) ;ℬ) is a Banach space for ? ∈ [1,∞] if ℬ is

one. In other words, we have a functor

(11.5)


!? (0,) ; · ) : Ban∞ −→ Ban∞

ℬ ↦−→ !? (0,) ;ℬ)
HomBan∞ (ℬ1,ℬ2) 3 � ↦−→ �∗ ∈ HomBan∞ (!? (0,) ;ℬ1), !? (0,) ;ℬ2))

with �∗ being the pushforward of � given by �∗ (D) := � ◦ D. In addition, this functor respects

Ban1, too, preserving non-expansive morhpisms.

For ? ∈ (1,∞) set ? ′ := ?/(? − 1) and for ? = 1 use 1
′
:= ∞. There is a canonical Ban1-

isomorphism

(11.6)

(
!? (0,) ;ℬ)

) ′
�Ban1 !

?′ (0,) ;ℬ′),

provided ℬ has the Radon–Nikodym property, which is ful�lled if ℬ is re�exive or has a sep-

arable pre-dual space. [DJ77] is very extensive on the Radon–Nikodym property and related

questions. Besides, Ban1-isomorphisms mean that there is a isometric, linear homeomorphism

between the corresponding normed spaces. As James’ space shows [Jam51], a Banach space can

be Ban1-isomorphic to its bidual without being re�exive. Thus, it must be emphasised that this

Ban1-isomorphism can be chosen to be canonical which is vital to get the representation of the

dual product in terms of

(11.7) 〈E,D〉 (!? (0,) ;ℬ))′×!? (0,) ;ℬ) =
C∫

0

〈E (g), D (g)〉ℬ′×ℬ 3g

for D ∈ !? (0,) ;ℬ), E ∈ (!? (0,) ;ℬ)) ′ is valid. As a most important consequence, !? (0,) ; · )
preserves re�exive spaces and separable spaces for ? ∈ (1,∞) and Hilbert spaces for ? = 2.

Finally, the importance of separability of ℬ stems from !0 (� ;ℬ) being ‘e�ectively void’ oth-

erwise: as [Mei08, Sec. 2] points out, (G,~) ↦−→ j {G<~ } is not Bochner-measurable as a function

(0, 1) −→ !∞ (0, 1). A short explanation is that a countable family of simple functions is insu�-

cient for approximating a given function D almost everywhere unless D is essentially separably
valued: the image ofD |�̃ is separable inℬ and _(� \�̃ ) = 0. In practical terms, it is hardly veri�able
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III. The parabolic regime

whether or not a given function is essentially separably valued. As a remedy, one restricts to

separable Banach spaces ℬ such that all functions D : � −→ℬ are essentially separably valued.

Distributional derivatives of vector–valued functions

Every D ∈ !? (� ;ℬ) can be identi�ed canonically with a vector–valued distribution thanks to

q ↦−→ D (q) :=
∫
�
D (C)q (C) 3C ∈ ℬ for q ∈ �(� ). Consequently, speaking of distributional

derivatives mCD makes sense thanks to (mCD) (q) := D (q ′).1

Sobolev–Bochner spaces

We speak of weak differentiability if the distributional derivative mCD of a function D ∈ !? (� ;ℬ)
with ?, @ ∈ [1,∞] is su�ciently regular such that it can be represented by a function E ∈
!@ (0,) ;ℬ), calling E the weak derivative and writing E = mgD, again. As customary,, 1,? (� ;ℬ)
denotes the Sobolev–Bochner space which is the subspace of !? (� ;ℬ) containing functions

whose weak derivatives are again in !? (� ;ℬ); equipped with the norm

‖D‖, 1,? (� ;ℬ) = ‖D‖!? (� ;ℬ) + ‖mCD‖!? (� ;ℬ)(11.8)

it is a Banach space. Solutions of parabolic standard problems are usually not elements of

, 1,? (Ω) ). Rather, they inhabit spaces of varying regularity of the following kind: for ?, @ ∈
[1,∞] and given Banach spaces ℬ1,ℬ2 with ℬ1 ↩−→ℬ2 we set

, 1,?,@ (� ;ℬ1,ℬ2) := !? (� ;ℬ1) ∩, 1,@ (� ;ℬ2)(11.9a)

+
@,?

0
(Ω) ) := !?

(
� ;,

1,?

0
(Ω)

)
∩ !∞ (� ;!@ (Ω)) .(11.9b)

Again, properties of ℬ1 and ℬ2 like re�exivity or separability carry over for ?, @ ∈ (1,∞). The

most relevant case for us will be @ = ? ′ with ℬ2 = ℬ
′
1

and ℬ1 =,
1,?

0
(Ω).

A Gelfand triplet is given by a Banach space+ and a Hilbert space� with a dense embedding

] : + ↩−→ � . Due to density, the adjoint ] ′ : � ′ ↩−→ + ′ is well-de�ned and many authors write

(+ ,�,+ ′) for a Gelfand triplet, referring to the sequence + ↩−→ � � � ′ ↩−→ + ′.

A Gelfand triplet (+ ,�, ]) allows to establish continuity of the linear embedding

, 1,?,?′ (� ;+ ,+ ′) ↩−→ �0 (� ;� ) D ↦−→ D.(11.10)

Suppressing ] in most instances, this yields the integration by parts formula

(11.11)

C2∫
C1

〈D ′, E〉+ ′×+ 3g = 〈D (C2), E (C2)〉� ′×� − 〈D (C1), E (C1)〉� ′×� −
C2∫

C1

〈E ′, D〉+ ′×+ 3g

forD, E ∈, 1,?,?′ (� ;+ ,+ ′) and C1, C2 ∈ � which is of vital importance in order to incorporate initial

values given in � .

Yet another word on compactness

So far, we have swept compactness of embeddings of the spaces involved under the rug. In

most instances, one encounters Gelfand triplets (+ ,�, ]) whose embedding map ] is not merely

1
The topologies on �

′ (� ;ℬ) are de�ned analogously to the topologies of periodic distributions of de�nition §4.2.
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continuous but even compact. As a prototype, consider+ =, 1,? (Ω)∩!2 (Ω) ]
↩−→ � = !2 (Ω) for

? ∈ (1,∞) large enough such that the Rellich–Kondrachov theorem renders ] compact, i.e. 2 < ?∗

with ?∗ being the Sobolev exponent of ? .

As we have mentioned already and seen in the elliptic case, the Rellich–Kondrachov embed-

ding is not applicable on Ω2

Y since uniform bounds on the gradients are not available there. It

will hardly be a surprise that time-dependency does not heal this defect. More explicitly, in the

absence of stationary compact embeddings one cannot hope to obtain time-dependent compact

embeddings. In fact, progressing from the former to the latter is a major step in the theory with

the famous Aubin–Lions–Simon lemma being the most prominent prototype. However, any such

result – at least as far as the author is aware of – requires compactly embedded spaces in the

elliptic regime; a prerequisite that we cannot ful�l from the very outset! [Ama00] is a rather

new and very extensive study on this issue.

For what it is worth, the absence of compactness foils any straightforward attempt to carry

out a periodic homogenisation procedure of a Stefan problem in highly heterogeneous media

which includes phase changes in the slow domain. The standard media case has been covered

by A. Visintin in [Vis07a], making crucial use of the Aubin–Lions–Simon lemma but a transfer

without compactness methods seems out of the author’s scope, though it was the very initial

motivation of our work.

To cut a long story short, compactness theorems are unavailable and this defect must be

overcome by methods that are su�ciently tolerant. Again, monotonicity is �t for this endeavour

making it our method of choice. Nevertheless, compact embeddings are available on Ω1,Y so that

augmentations of the methods presented here are conceivable. In particular, such embeddings

open the possibility of incorporating phase changes in Ω1,Y following Visintin’s work. Since

our work focuses on presenting a generalised framework that isolates the actual mechanisms

of passage to the limit Y → 0, we refrain from elaborating on the aforementioned task, leaving

them to subsequent research.

§11.2. Periodic unfolding in a time-dependent framework

An elementary question is whether and how T ∗Y : !? (Ω) −→ !? (Ω+Y × Y) carries over to

parabolic spaces like !? (Ω) ) and !? (� ;, 1,@ (Ω)). First, let ℬ be a function space on which

periodic unfolding has been de�ned, i.e ℬ = !? (Ω) or ℬ = ,
1,?

0
(Ω). For D ∈ !? (� ;ℬ) we

extend periodic unfolding in a canonical fashion via{
T ∗Y : !@ (� ;ℬ) −→ !@ (� ;T ∗Y (ℬ))
(C ↦→ D (C)) ↦−→

(
C ↦→ T ∗Y (D (C))

)(11.12)

to obtain induced parabolic periodic unfolding for @ ∈ [1,∞] and ℬ = !? (Ω) or ℬ =,
1,?

0
(Ω)

with ? ∈ [1,∞). This construction is very straightforward but exploits two aspects crucially;

a) T ∗Y is an isometry that respects both Borel sets and Lebesgue zero sets. Therefore, both

integrability and measurability properties of !? -spaces remain unaltered.

b) Our version of periodic unfolding exclusively deals with spatial oscillations such that no

extension for time-dependent oscillations of periodic unfolding to all of Ω) is necessary.
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III. The parabolic regime

The latter aspect does contain quite an assumption which rules out considerable applications

with time-oscillating coe�cients. On the other hand, it allows lifting periodic unfolding from

the elliptic realm to the parabolic regime with minor e�ort.

Last but not least, recall the key observation of remark §7.2 realising that time-dependent

analogues of theorem §7.1 and theorem §7.2 hold without any restrictions provided temporal

!1-regularity is available. We will exploit this fact tacitly from now on, referring to theorem §7.1

and theorem §7.2 in a somewhat sloppy way.

§12. Families of initial–boundary value problems with
oscillating coe�icients

We will formulate and treat a family of initial–boundary value problems indexed by �xed Y ∈ J
�rst. First, we will only state the problem in an ad hoc fashion, specifying suitable conditions

afterwards. To keep the notation as slim as possible, we �x the following notation.

a) The functions’ arguments (C, G) and (C, G,~) are mostly neglected.

b) Recall T ∗Y (01) = T ∗Y (0)T ∗Y (1) for all functions 0, 1 whose product is in !1, and this multi-

plicativity extends to scalar products, too.

c) VY (DY ,∇YDY) := V (C, G, G/Y,DY ,∇YDY) for almost all (C, G) ∈ Ω) . Later, we will impose

growth conditions on V ensuring su�cient regularity for its periodically unfolded counter-

part to make sense, which reads reads: for almost all (C, G,~) ∈ Ω) × Y:

(12.1) T ∗Y (VY (DY ,∇YDY)) = V
(
C,TY (G,~), ~,T ∗Y (DY),T ∗Y (∇YDY)

)
.

d) We set � :=,
1,?

0
(Ω)∩!2 (Ω) andℋ := !2 (Ω) such that � ↩→ℋ forms a Gelfand triplet.

§12.1 Problem (The Y-dependent parabolic IVP). For a �xed Y > 0 let 5Y ∈ !?
′ (Ω) ) andD0,Y ∈ℋ

be given. The Y-dependent (heterogeneous) parabolic initial–boundary value problem reads:

�nd DY ∈ , 1,?,?′ (� ;�,�′) such that for all i ∈ , 1,?,?′ (� ;�,�′) the following variational

equality holds:

∫
Ω

DY () )i () ) 3G +
∬
Ω)

−DYi ′3G3C +
∬
Ω)

VY (DY ,∇YDY) · ∇Yi 3G3C

=

∬
Ω)

5Yi 3G3C +
∫
Ω

D0,Yi (0) 3G.
(YPP)

Naturally, one can rewrite (YPP) via periodic unfolding. Yet, quite an inconvenience comes into

play namely !?
′ (� ;�′) " !1

loc
(Ω) ) such that i ′ from (YPP) is not regular enough to be unfolded.
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§12. Families of initial–boundary value problems with oscillating coe�cients

As a remedy, one can write



∬
R3×Y

T ∗Y (DY () )i () )) 3G3~ +
∭
R3
)
×Y

−T ∗Y (DYi ′) 3~3G3C

+
∭
R3
)
×Y

T ∗Y (VY (DY) · ∇Yi) 3~3G3C =
∭
R3
)
×Y

T ∗Y (5Yi) 3G3C

+
∬
R3×Y

T ∗Y
(
D0,Yi (0)

)
3G

(YPP’)

for all i ∈, 1,?,?′ (� ;�,ℋ ′). Since the latter function space is not really the natural habitat for

an existence theory of problem §12.1 we prefer (YPP) for this endeavour and save (YPP’) for the

limiting procedure.

§12.1. Requirements on the heat flux

Our treatment of the elliptic Y-dependent problems (YP) provides the blueprint for handling (YPP).

Explicitly, we aim at imposing conditions on on the heat �ux function V such that a monotone

and coercive operator is at hand. Later, the ‘right hand side data’ made up by the initial values

D0,Y and the source functions 5Y will be required to ful�l suitable restricitons, too. Let us start by

assuming that there is a heat �ux function

V : � × Ω × Y × R × R3 −→ R3 (C, G,~, A, ®B) ↦−→ V (C, G,~, A, ®B).

which ful�ls the following conditions.

H.1) V is a Caratheodory function with respect to its (A, ®B)-arguments.
∀(A, ®B) ∈ R × R3 : (C, G,~) ↦−→ V (C, G,~, A, ®B) is measurable and

∀(C, ~) a.e.∈ � × Y : (G, A, ®B) ↦−→ V (C, G,~, A, ®B) is continuous.

(12.2a)

H.2) V su�ces !? − !?′-growth conditions.


∃�V,1 > 0 : ∀(C, G,~, A, ®B) ∈ � × Ω × Y × R × R3 :

|V (C, G,~, A, ®B) |?′ ≤ �V,1 (1 + |A |? + |®B |? )
(12.2b)

H.3) V is !? -coercive in B .


∃�V,2 > 0,�V,3 ∈ R :

∀(C, G,~, A, ®B) ∈ � × Ω × Y × R × R3 : V (C, G,~, A, ®B) · ®B ≥ �V,2 |®B |? +�V,3
,(12.2c)

H.4) V is monotone in its ®B-argument.
∀(C, G,~) a.e.∈ � × Ω × Y, (A1, ®B1), (A2, ®B2) ∈ R × R3 :

(V (C, G,~, A1, ®B1) − V (C, G,~, A1, ®B1)) · (®B1 − ®B2) ≥ 0

(12.2d)
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III. The parabolic regime

The modi�ed Caratheodory condition (12.2a) is necessary for measurability of the resulting

functions and admissibility in the two-scale sense. The remaining conditions (12.2b), (12.2c) and

(12.2d) are more or less standard conditions from the theory of monotone operators, see [Rou13,

Sec. 8.6] for a thorough discussion. In contrast to the elliptic case, we suppress monotone

lower order terms. These can be included of course but since we want to focus on the limiting

procedure itself, we decided to neglect them. Anyhow, monotone lower order terms can be

included without any substantial modi�cations.

Finally, let us point out that (12.2d) e�ectively rules out A -dependence of V . We do keep

this argument refraining from disposing of it prematurely since monotonicity only serves as a

limiting technique. One may wonder whether future research will yield additional means to

enlarge this family of operators, for instance, by incorporating Reichelt’s method from [Rei15].

Remark §12.1: On heat �uxes and energy conservation

The idea of heat �uxes stems from the law of energy conservation, an invaluable concept

of physics which is well-known to be an emanation of symmetry laws by E. Noether’s

theorem, c.f. [Kos10]. Observe that Fourier’s law tacitly inspires our heat �ux function

since we (aim to) arrive at parabolic problems. We follow this approach recognising

its shortcomings such as not being in full accord with the �nite propagation speed of

light. We point out that generalised Fourier laws like Cattaneo’s law are available but

the resulting problems are no longer parabolic but hyperbolic in nature!
a

It is therefore

not too surprising that Fourier’s law is much better received in mathematics than its

alternatives. The latter are predominantly debated about in physicists’ literature, for

instance in [LJC08, Sec. 7.1].

a
Our limiting procedure relies on monotonicity methods whose applications to hyperbolic problems is rather

scarce, see [Kan97] for an exception.

§12.2. Conditions on initial data and heat sources

Here, we impose strong two-scale convergence conditions on the sequences (D0,Y)Y∈J ⊂ !2 (Ω ×
Y) and (5Y)Y∈J ⊂ !?

′ (Ω) × Y), namely

∃D0,0 ∈ !2 (Ω × Y) : lim
Y→0

‖T ∗Y (D0,Y) − D0,0‖!2 (R3×Y) = 0,(12.3)

∃50 ∈ !?
′ (Ω) × Y) : lim

Y→0

‖T ∗Y (5Y) − 50‖!?′ (�×R3×Y) = 0.(12.4)

Again, the soundness of the model at hand might suggest the desirability of the limits D0,0 and

50 being independent of the speci�c sequence Y ∈ J in use.

§12.3. Solving (YPP) as an equation of monotone operators

First, we need to ensure the solvability of (YPP) which we do by casting it into an abstract

operator inclusion that is treatable by Browder’s theorem of pseudo-monotone perturbations of

maximal monotone mappings: see appendix §A.2 for further reference and [Zei90, Thm 32.A]

or [Le11] for full expositions. Of course, Browder’s theorem is much stronger than we need but

its abstract simplicity make it our method of choice.
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§12. Families of initial–boundary value problems with oscillating coe�cients

Lemma §12.1: Equivalent operator equation

For every Y > 0, %A>1;4< §12.1 can be cast into the form of an abstract operator equation

given as follows. Set - := !? (� ;�), and let 1Y ∈ - ′ be given. Find DY ∈ - such that the

inclusion

(12.5) �Y (DY) + �Y (DY) = 1Y

is ful�lled for two operators �Y , �Y which we specify as

�Y : - −→ - ′ is maximally monotone and dom(�Y) ⊂ -(12.6)

�Y : - −→ - ′ is pseudo-monotone, bounded and demi-continuous(12.7)

together with the following coercivity condition{
∃E0 ∈ -, ' ≥ ‖E0‖- : ∀D ∈ dom(�Y) ∩ �' (0) ≠ ∅ :

〈�Y (D) + �Y (D) − 5Y , D − E0〉- ′×- > 0.
(12.8)

Proof. Set dom(�Y) := {D ∈, 1,?,?′ (� ;�,�′) ⊂ - : ‖D (0)−D0,Y ‖ℋ = 0} and de�ne�Y via the

weak derivative �Y (D) := mCD such that �Y maps dom(�Y) into - ′. To check monotonicity,

let D, E ∈ dom(�Y) and exploit integration by parts and the equality of the initial values to

obtain

(12.9) 〈�Y (D) −�Y (E), D − E〉- ′×- =

)∫
0

〈mC (D − E), D − E〉�′×� 3C =
1

2

‖D () ) − E () )‖2
ℋ
≥ 0.

To establish maximality, use the linearity of �Y and the monotonicity of its adjoint �′Y to

establish that �Y is closed which infers maximality. For a similar proof see [Rou13, p.289].

�Y can be de�ned on all of - via 〈�Y (D), E〉- ′×- :=
∬
Ω)
V (C, G, G/Y,D,∇YD) · ∇YE 3G3C . The

remaining claims on �Y and coercivity are standard due to the conditions imposed on V , we

refer to [Rou13] for a full display. Finally, due to the density of � ↩−→ ℋ the right hand

side 〈1Y , E〉. ′×. :=
∬
Ω)
5YE 3G3C establishes the equivalence of (12.5) to (YPP). �

Theorem §12.1: Solvability via Browder’s theorem

Problem §12.1 is solvable for every Y > 0. Moreover, the solution is unique and the

following a priori estimates can be established:

∃� > 0 : ∀Y > 0 : ‖DY ‖!∞ (� ;!? (Ω)) + ‖∇YDY ‖!? (Ω) ;R3) +
D ′Y!?′ (� ;�′) ≤ �.(12.10)

Proof. (12.5) is solvable by Browder’s theorem §A.2.2 and thus problem §12.1 is solvable, too.

Uniqueness can be inferred from (YPP) by considering two solutions D1, D2 with

mC (D1 − D2) − ∇Y · [V (D1) − V (D2)] = 0 in !?
′ (� ;�)(12.11)
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which can be tested with i = D1 − D2 ∈ !? (� ;�) such that integration by parts and mono-

tonicity yield

∀C a.e.∈ � : ‖D1 (C) − D2 (C)‖2!2 (Ω) ≤ 0(12.12)

which infers equality in, 1,?,?′ (� ;�,�′) due to the Du Bois-Reymond lemma. Finally, de-

riving (12.10) is standard as well: choose i = DY in (YPP) with ) = C
a.e.∈ � to get



�V,3 + 1

2
‖DY (C)‖2!2 (Ω) +�V,2 ‖∇YDY ‖

?

!? (ΩC )

≤ 1

2

‖DY (C)‖2!2 (Ω) +
∬
ΩC

V (DY ,∇YDY) · ∇YDY 3G3C

=
1

2

D0,Y2!2 (Ω) +∬
ΩC

5YDY 3G3C ≤
1

2

D0,Y2!2 (Ω) + ‖ 5Y ‖!?′ (Ω) ) ‖DY ‖!? (Ω) )
(12.13)

by using the coercivity estimate (12.2c) for the �rst inequality and Hölder’s inequality for

the latter. Arguing with contradiction in (12.13) yields the claimed a priori results, implicitly

using a Poincaré-inequality which is valid for �xed Y > 0. �

§13. Establishing the parabolic limiting problem – a plan
of action

We turn to the periodic homogenisation of (YPP) by retrieving weak sequential compactness res-

ults. Note thatD ′Y is not su�ciently regular to be unfolded, foiling its ability to have a reasonable

two-scale limit. This defect is no major obstacle but will require some additional discussion to

be compensated for.

§13.1. Preparations: weak compactness results

Analogous to corollary §9.1 in chapter II, (12.10) allows to invoke theorem §7.2’s time analogue.

Corollary §13.1: Weak sequential two-scale compactness

There exists a subsequence of Y ∈ J again denoted by Y ∈ J such that for Y → 0 the

following weak convergence statements holds. First, there are (F0, ∇̃F0) ∈ !? (� ;Ξ(Ω))
such that {

T ∗Y (DY)
2F−⇀ F0 in !? (� × R3 × Y)

T ∗Y (∇YDY)
2F−⇀ ∇̃F0 in !? (� × R3 × Y)3

(13.1)

withF0 (G,~) = D0 (G)+E0 (G,~) and F̃0 (G,~) = j1 (~)
[
∇GD0 (G) + ∇~D1 (G,~)

]
+∇~E0 (G,~)

for some D0 ∈ !? (� ;�), D1 ∈ !? (Ω) ;, 1,? (Y1)/R) and E0 ∈ !? (Ω) ;, 1,?

0
(Y2)). In addi-

tion, there exists a function I0 ∈ !? (� ;�′) such that

D ′Y −⇀ I0 in !?
′ (� ;�′)(13.2)
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is valid. Moreover, there exists a function b~
0
∈ !?′ (Ω) × Y)3 such that

T ∗Y (V (C, G, G/Y,DY ,∇YDY))
2F−⇀ b~

0
in !?

′ (� × R3 × Y)3 .(13.3)

Warning: besides suppressing the arguments of DY , (13.3) tacitly uses the isometry described

in (10.3) which allows identifying T ∗Y (VY) – which is tested by functions from !?
(
� ;T ∗Y (�)

)
– with an element in !?

′ (� × R3 × Y)3 . There, weak compactness results are easily available.

Finally, one must return to the actual set-up of testing with the right functions. Observe that

this identi�cation processes depends on the T ∗Y being an isometry such that its image is weakly

closed.

Proof. (13.1) is entirely due to the time-dependent modi�cation of theorem §7.2 mentioned in

remark §7.2. (13.2) is a consequence of � being separable and re�exive such that !?
′ (� ;�′)

inherits these properties for ? ∈ (1,∞). Combining the Banach–Alaoglu and Eberlein–

Šmulian theorems yields the claim. Finally, (13.3) is due to weakly (two-scale) converging

sequences being bounded and V being a bounded operator such that the foregoing arguments

can be repeated. �

For future reference we will need the following lemma.

Lemma §13.1: Parabolic energy estimate

Let DY ∈, 1,?,?′ (� ,�,�′) be a a weak solution of (YPP), then we have

1

2

‖DY () )‖2ℋ −
1

2

‖D0,Y ‖2ℋ +
∬
Ω)

VY (DY ,∇YDY) · ∇YDY 3C3G =

∬
Ω)

5YDY 3C3G,(13.4)

which can be periodically unfolded and rewritten as



∭
�×R3×Y

VY
(
TY (G,~), ~,T ∗Y (DY),T ∗Y (∇YDY)

)
· T ∗Y (∇YDY) 3~3G3C

=

∭
�×R3×Y

T ∗Y (5YDY) 3~3G3C

+1
2

T ∗Y (D0,Y)2!2 (R3×Y) − 1

2

‖T ∗Y (DY () ))‖2!2 (R3×Y) .

(13.5)

Proof. Take i = DY in (YPP) and integrate by parts. Since su�cient spatial regularity is

available, periodic unfolding is admissible and a straightforward calculation yields (13.5). �

§13.2. Stock-taking

So far, we have obtained the following:

a) Solvability of (YPP) for all Y ∈ J invoking acceptable restrictions on V .

b) Existence of a sequence Y ∈ J together with suitable weak (two-scale) limits under suitable

conditions on the initial values and the source functions.

Of course, there are also gaps in our treatment.

a) We are unable to identify a weak two-scale limit of (D ′Y)Y∈J due to lacking spatial regularity.
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III. The parabolic regime

b) At present we are unable to characterise b~
0

. Similarly to the elliptic case one would expect

(♥) b~
0
(C, G,~) = V

(
C, G,~,F0 (C, G,~), ∇̃F0 (C, G,~)

)
.

for

(
F0, ∇̃F0

)
∈ !? (� ;Ξ(Ω)) from corollary §13.1.

So, we are in a situation similar to chapter II where (♥)’s analogue was treated via monotonicity

methods, the latter’s sole purpose being a correct passage to the limit Y → 0.

§14. Limiting procedures – Part I: spaces

As we have seen in chapter II, the presence of non-linearities and insu�cient a priori estimates

make the passage to the limit a major issue in both homogenisation and existence proofs – and

in non-linear analysis, in general. Actually, we already invoked the idea that a suitable family

of (pseudo-)monotone operators is not only available for existence proofs – most prominently

carried out by Galerkin’s method or Rothe’s method – but also for periodic homogenisation.

In the latter case, the limiting machinery is less formalised, therefore most proofs are usually

carried out in ad-hoc fashion, just like our theorem §10.1.

We intend to formalise matters in order to carry out periodic homogenisation proofs ana-

logously to existence proofs. Whereas the machinery for existence proofs is quite mature and

rather well-established nowadays, an adaptation to periodic homogenisation will require more

re�ned constructions. Basically, there are two aspects to attend to, namely function spaces of

suitable limits and families of operators which operate with the corresponding function spaces

in a well-de�ned manner, admitting properties which allow for a sensible passage to the limit.

Both questions will be addressed in separate sections, starting with the space issue which is

to place the headstone for the operators’ discussion.

A word on spaces of limits

In order to focus on the actual mechanics of the problem under consideration we will abandon

the topic of periodic homogenisation altogether for a moment and favour to work with a more

abstract description. Our plan is to revisit existence proofs very brie�y for the sake of com-

parison. Afterwards, we will �nd a description of a space containing sensible limits which is

constructed by a modi�ed Cauchy completion procedure.

So, let - be a Banach space and (-=)=∈N a family of closed subspaces of - which do not

necessarily form an ascending chain, i.e. -= ↩−→ -=+1 is not available in general. The following

questions are important to us.

a) Are there non-trivial strongly converging sequences of the form (G=)=∈N ⊂ - with G= ∈
-= holding for all = ∈ N?

b) If so, can the corresponding limits be considered as a vector space?

c) If the strong limits form a vector space, is it a closed subspace of - or can it be considered

as some other Banach space, at least?

d) Does the same hold for weakly convergent sequences, weak limits and the resulting space

of weak limits?
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e) Do the spaces of strong and weak limits coincide in a meaningful way?

Lamentably, the importance of these questions is not obvious, in fact, they stem from carefully

revising ‘standard proofs’ of existence theorem seeking adaptations to periodic homogenisation.

This process of anticipation is strongly guided by �nite-dimensional approximation which we

recall in brief.

§14.1. Example: finite-dimensional approximation

In order to avoid technical subtleties, we will restrict ourselves to Banach spaces - with a

(countable) Schauder base. Our applications will work in a given Banach space - ; for instance,

- = !? (Ω;ℬ): will be su�cient to keep in mind as a prototype, with Ω being a domain, ℬ a

re�exive Banach space with Schauder basis (thus being separable, too) and : ∈ N.

Again, we only work with the directed setN, avoiding nets that are no sequences. Indeed, this

matter can be subtle. For instance, every Banach space ℬ is weakly sequentially complete, and

weakly quasi-complete but not weakly complete unless ℬ coincides with its algebraic bidual, a

condition which is ful�lled for normed spaces only if dim(ℬ) < ∞, c.f. [Köt83, § 20.9.(2)]. In

addition, all sequences in a given set form a set themselves. In contrast, the totality of all nets in

a given set is no set in general – a key aspect advocating the use of �lters and (bounded) Cauchy

�lters for completion precedures, c.f. [Köt79] and [Low89] in particular.

We �x some concepts. - is a Banach space with a Schauder basis, i.e. there exists a linearly

independent sequence ∃(4: ):∈N ⊂ - whose linear span is dense in- . If- is a Hilbert space one

usually prefers to work with a orthonormalised Schauder basis. One writes -: for the span of

{41, . . . , 4: } so that an ascending sequence of �nite-dimensional spaces with ∀: ∈ N : -: ↩−→
-:+1 is at hand.

Thanks to this ascending chain of subspaces the �rst two questions can be answered positively

by considering eventually constant sequences of the form (G0, . . . , G: , G, G, . . .) for arbitrary G8 ∈
-8 for 8 = 1, . . . , : and some �xed G ∈ -:+1 ⊂ -:+2 ⊂ . . .. Clearly, such sequences are Cauchy

sequences in - and their limits form a vector space. Since the limits are elements in - the space

of limits is a subspace of - , namely the union of all -: . Referring to the weak topology in the

fourth question, the same procedure yields weak Cauchy sequences and spaces of weak limits.

Finally, one can address the third and the �fth question by considering the strong and weak

closure of the spaces of limits of eventually constant functions. This yields closed vector spaces

and these coincide since weak and strong closures coincide on convex sets due to Mazur’s lemma.

To sum up, one can answer the above questions positively in the instance of Galerkin’s method

with a Schauder base. The task which we now turn to is a modi�cation of the foregoing construc-

tion. Starting with the time-independent con�guration, we will have a null sequence Y = Y= → 0

together with closed subspaces-= = T ∗Y= (�) at hand, which are no ascending chain but yet sub-

spaces of - = !? (R3 × Y)1+3 . Also, one has the very important property that (TY= (E))=∈N is a

Cauchy sequence in - for �xed D ∈ �.

A word on category theory and completion

Galerkin’s method stems from the fact that - = lim ind-: holds in Ban1 and more generally

from the fact that every Banach space is the co-limit of its �nite-dimensional subspaces which

form a directed set, too, see [CLM79; Cas10], for instance. In hands on terms, co-limits in Ban1
are constructed by considering the span of co-limit in Set, i.e. span (∪:∈N-: ), and to take its

closure. In categorical terms, this construction can be deemed very easy.
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Now, the unfolded spaces -= form no ascending chain so that no directed set is easily ac-

cessible. As a result, the foregoing procedure cannot be initiated or mimed easily. Despite the

author’s considerable a�ection of category theory there seems to be no useful tool easily avail-

able for our task. More explicitly, the concept of Cauchy completion is very well-known in a

heavily generalised form in category theory but it seems to be entirely useless to our purpose as

it excels at describing consequences of completeness and its properties but fails to give decent

construction guidance, a state in which sceptics surely rejoice in schadenfreude.

§14.2. An abstract description of the limiting procedure

This subsection sketches a more abstract description of the limiting procedure at hand. Due to

its vital importance for the elliptic case, we will discuss the existence of recovery sequences,

too, leaving conclusive steps open, though. For convenience’s sake, appendix §A.4 gathers the

notions related to uniform structures necessary for Cauchy completions.

Idempotence of a sequential completion procedure of quasi-complete, uniform spaces

Recall- to be a Banach space and (-: ):∈N a sequence of closed subspaces of- . First, writing

∏
for the Cartesian product, let us set .0 :=

∏
:∈N- and /0 :=

∏
:∈N-: , considered as algebraic

vector spaces without any topology for the moment. Observe that the inclusions ]: : -: ↩−→ -

are linear maps of vector spaces for all : ∈ N and thus, ] : /0 ↩−→ .0 via the product map

] = (]: ):∈N makes sense.

Next, we will introduce two gauges on - to have notions of Cauchy sequences available,

namely the gauge given by the norm of - , and �f (-,- ′) , the gauge stemming from the weak

topology f (-,- ′) on- . For instance, the pseudo-metric ? : -×- −→ [0,∞) ful�ls ? ∈ �f (-,- ′)
if there exists 5 ∈ - ′ such that ? (G,~) = |5 (G − ~) |.

De�nition §14.1: Spaces of Cauchy sequences

Having two gauges, and thus two uniform structures at hand, the following de�nitions

are unambiguous.

.1,B the space of strong Cauchy sequences in - ,(14.1a)

.1,f (-,- ′) the space of weak Cauchy sequences in - ,(14.1b)

/1,B the space of strong Cauchy -: -sequences in - , and(14.1c)

/1,f (-,- ′) the space of weak Cauchy -: -sequences in - .(14.1d)

The following inclusions hold by construction: /1,B , /1,f (-,- ′) ↩−→ /0, -1,B , -1,f (-,- ′) ↩−→ -0,

/1,B ↩−→ .1,B , and /1,f (-,- ′) ↩−→ .1,f (-,- ′) . Furthermore, .1,B ↩−→ .1,f (-,- ′) and /1,B ↩−→
/1,f (-,- ′) hold, as well.

Let us note that the question whether the linear vector spaces /1,B and /1,f (-,- ′) are non-

trivial at all, i.e. whether non-zero elements exist in these spaces, is open. It is straightforward

to come up with pathological examples, for instance, sett -: = span{4: } for some orthonormal

basis {4: : : ∈ N} in - = !2 (0, 1). Thus, considerable restrictions will be necessary in order to

arrive at meaningful structures.

The next step is to introduce appropriate uniform structures on the spaces of Cauchy se-

quences themselves. The idea is, to place the focus on the limits of the sequences at hand. So,
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one endows .1,B with a pseudo-metric induced by the norm of - , namely

(14.2a) 3B ((G: ):∈N, (~: ):∈N) := lim

:→0

‖G: − ~: ‖- ,

which is actually a pseudo-norm. Analogously, �f (-,- ′) induces a gauge on .1,f (-,- ′) , more

speci�cally, for ? ∈ �f (-,- ′) set

(14.2b) ? ′((G: ):∈N, (~: ):∈N) := lim

:→0

? (G: , ~: )

and denote the resulting gauge by �.1 . Tacitly, we equip /1,B and /1,f (-,- ′) with the respective

relative uniform structure. Similarly, we impose the corresponding relative topology on the

spaces/1,B and/1,f (-,- ′) which stems from the uniform topology of.1,B and.1,f (-,- ′) . Of course,

this means that one uses the aforementioned pseudo-norms restricted to /1,B and /1,f (-,- ′) ,

respectively.

A major step is to turn the spaces of limits from (14.1) into Hausdor� spaces. In this respect

recall that (sequentially) complete uniform spaces are not necessarily closed, unless they are

Hausdor�. Cutting a long story short, the next step is to obtain a Hausdor� modi�cation of the

topological and uniform structures at hand.

Since linear spaces are at hand, it is su�cient, to factor out the closed subspace given by the

closure of {0} with respect to the topology induced by 3B and the uniform topology of �.1 :

.2,B := .1,B/
(
{0}

3B
)

and .2,f (-,- ′) := .1,f (-,- ′)/
(
{0}

�.
1

)
(14.3a)

/2,B := /1,B/
(
{0}

3B
)

and /2,f (-,- ′) := /1,f (-,- ′)/
(
{0}

�.
1

)
.(14.3b)

After these preparatory steps, let us note that.1,B and.1,f are sequentially complete just as.2,B

and.2,f , c.f. [Kel55; Köt83]. However, for/1,B , /1,f , /2,B and/2,f the situation is not classical since

the resulting space of limits does not contain almost all of its respective sequence’s elements.

Assuming that sequential completeness can be shown, though, let us recall the following

fact. (Quasi-)completion procedures are idempotent in the sense that - and .2,B are linearly

homeomorphic and even Ban1-isomorphic. More speci�cally, .2,B is the sequential completion

of the Banach space - and there is isometric isomorphism, namely � : .2,B −→ - , given by the

equivalence class of constant sequences; its inverse is obvious.

Concerning .2,f (-,- ′) , the situation is not as clear, since the latter is neither the completion,

nor the quasi-completion but the sequential completion of of (-, f (-,- ′)), the latter being a

quasi-complete Hausdor� vector space itself. Since quasi-completeness implies sequential com-

pleteness, it is natural that the very same map � can be used again to obtain a linear and continu-

ous isomorphism between .2,f (-,- ′) and (-, f (-,- ′)), making .2,f (-,- ′) quasi-complete spaces,

as well. Note that at this point one my infer/2,B and/2,f (-,- ′) to be identi�able with sequentially

closed subspaces of - if they are sequentially complete.

Let us close with pointing out that at this point the existence of recovery sequences is not

touched upon. Eventually, one would like to show that/2,B0/2,f . Even if sequential completeness

can be shown, this is a highly non-trivial claim since the non-ascending structure of the spaces

-= involved requires very re�ned criteria for existence since a too general statement cannot be

expected, even for Banach spaces.
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§15. Limiting procedures – Part II: suitable families of
operators

Let us now consider the following set-up: we are provided with a re�exive Banach space -

which has a Schauder basis together with a sequence of subspaces (-: ):∈N such that the limiting

procedure of the foregoing section is non-trivial, i.e. the sequences of the form G: ∈ -: for all

: ∈ N yield non-trivial spaces of weak and strong limits and the latter spaces coincide, forming

the space of limits Ξ. Moreover and most importantly, we assume that appropriate recovery

sequences exist, which means that any weak limit can be retrieved as a strong limit. Also, we

ask for the incidence products to coincide, i.e. 〈E ′, E〉- ′×- = 〈E ′, E〉- ′
:
×-: for E ′ ∈ - ′

:
, E ∈ -: .

Note in this context, that ]∗
:
: - ′ ↩−→ - ′

:
holds due to the adjoint map of the injection map

]: : -: ↩−→ - , whereas - ′
:

can also be identi�ed with {G ′ ∈ - ′ : -: * ker(G ′)} via a topological

linear homeomorphism by using the Hahn–Banach theorem.

Turning to families of mappings, we assume that a familiy of operators (�: ):∈N0
is given such

that

∀: ∈ N : �: : -: −→ - ′
:

(15.1a)

�0 : Ξ −→ Ξ′(15.1b)

which ful�ls the following compatibility condition:

[∀: ∈ N : E: ∈ -: ∧ ∃E0 ∈ Ξ : E: −→ E0 in - ] =⇒ [�: (E: ) −→ �0 (E0) in - ′] .(15.1c)

Again, a prototypical instance is given by Galerkin’s method on - = Ξ with a pseudo-

monotone operator � : - −→ - ′ and the �: being the restrictions of � to the �nite-dimensional

spaces -: . Taking values in - ′
:

is to be understood in the sense, that one would use only test

functions from -: itself, a procedure which requires growth conditions to be sensible.

Returning to (�: ):∈N0
, one is interested in the archetypical question of which conditions to

impose on the family described in (15.1), such that it is possible to secure a passage to the limit?

Of course, we can only hope to give highly restricted frameworks for such an endeavour. To

be more speci�c, we want to work with families of monotone or pseudomonotone operators;

therefore, we aim to establish

-: 3 G: −⇀ G0 ∈ Ξ in -

�: (G: ) −⇀ b0 ∈ Ξ′ in - ′

lim sup:→∞〈�: (G: ), G:〉- ′×- ≤ 〈b0, G0〉- ′×-

 =⇒ �0 (G0) = b0 in - ′,(Mlim)

which is a straightforward modi�cation of the so-called M-transition or type (M) property from

[Zei90]. A second notion is given by pseudomonotone operators which are closed under addition,

a fact which does not necessarily hold for operators which allow M-transitions. Therefore, we

aim to generalise pseudomonotonicity in a natural manner: the following implication is again a

straightforward generalisation of classical pseudomonotonicity:
(
-: 3 G: −⇀ G0 ∈ Ξ in - ∧ lim sup

:→∞
〈�: (G: ), G: − G0〉- ′×- ≤ 0

)
=⇒

(
∀~: −→ ~0 ∈ Ξ : 〈�0 (G0), G0 − ~0〉- ′×- ≤ lim inf

:→∞
〈�: (G: ), G: − ~:〉- ′×-

)
.

(PMlim)
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Several questions are in order: �rst, is (Mlim) actually su�cient for a passage to the limit?

Secondly, does (PMlim) imply (Mlim)? And �nally, what are reasonable conditions to impose

in (15.1a) and (15.1b) to actually get (PMlim) or at least (Mlim)?

Rather trivially, the �rst question can be answered positively since (Mlim) is tailor-made for

the purpose of characterising limits. The second question is answered by a

Lemma §15.1

Let the family of operators in (15.1) be given, then (PMlim) implies (Mlim) provided re-

covery sequences are available.

Proof. Let G: −⇀ G0 ∈ Ξ and �: (G: ) −⇀ b0 ∈ Ξ′. Then, lim sup:→∞〈�: (G: ), G:〉- ′×- ≤
〈b0, G0〉- ′×- implies lim sup:→∞〈�: (G: ), G: − G0〉- ′×- ≤ 0 and thus (PMlim) yields

〈�0 (G0), G0 − ~0〉 ≤ lim inf:→∞〈�: (G: ), G: − ~:〉 for every strongly convergent se-

quence -: 3 ~: −→ ~0 ∈ Ξ. Now, one deduces lim inf:→∞〈�: (G: ), G: − ~:〉 =

lim inf:→∞ [〈�: (G: ), G:〉 − 〈�: (G: ), ~:〉] = 〈b0, G0 − ~0〉. Since a recovery sequence is avail-

able for every ~0 ∈ Ξ, the foregoing step implies 〈�0 (G0), G0 − ~0〉 ≤ 〈b0, G0 − ~0〉 for every

~0 ∈ Ξ which yields �0 (G0) = b0 via an obvious contradiction. �

Theorem §15.1

Let the family in (15.1) consist of continuous, monotone operators, then (PMlim) holds

provided recovery sequences are available.

Proof. Our proof is an adaption of the proof of [Rou13, Lemma 2.32]. First, let -: 3 E: −→
G0 ∈ Ξ, X ∈ [0, 1] be a �xed and set D: := (1 − X)E: + X~: = E: + X (~: − E: ) ∈ -: . Since every

operator �: : -: −→ - ′
:

is monotone, we have 0 ≤ 〈�: (G: ) − �: (D: ), G: − D:〉 for all : ∈ N.

Rewriting the latter expression leads to

X 〈�: (G: ), E: − ~:〉 ≥ −〈�: (G: ), G: − E:〉 + 〈�: (D: ), G: − E:〉 + X 〈�: (D: ), E: − ~:〉.(15.2)

Now, we want to estimate the right hand side suitably from below. By assumption, (PMlim)

assumes 0 ≤ − lim sup:→∞〈�: (G: ), G: − G0〉 = lim inf:→∞ −〈�: (G: ), G: − G0〉 to hold. Also,

E: −→ G0 such that lim:→∞〈�: (G: ), G0 − E:〉 = 0 is valid, so we have

lim inf

:→∞
−〈�: (G: ), G: − E:〉 = − lim sup

:→∞
〈�: (G: ), G: − G0〉 + lim

:→∞
〈�: (G: ), G0 − E:〉 ≥ 0.(15.3)

Furthermore, we have lim:→∞〈�: (D: ), G: −E:〉 = 0 sinceD: −→ D0 := (1−X)G0 +X~0 implies

�: (D: ) −→ �0 (D0) due to (15.1c) and G: − E: −⇀ G0 − G0 = 0 holds. Consequently, (15.2)

yields

(15.4) X lim inf

:→∞
〈�: (G: ), E: − ~:〉

≥ lim inf

:→∞
[−〈�: (G: ), G: − E:〉 + 〈�: (D: ), G: − E:〉 + X 〈�: (D: ), E: − ~:〉]

≥ lim inf

:→∞
X 〈�: (D: ), E: − ~:〉 = lim

:→∞
X 〈�: (D: ), E: − ~:〉 = X 〈�0 (D0), G0 − ~0〉

for all X ∈ (0, 1]. Dividing by X we obtain for X → 0

lim inf

:→∞
〈�: (G: ), E: − ~:〉 ≥ lim

X→0

〈�0 (D0), G0 − ~0〉 = 〈�0 (G0), G0 − ~0〉(15.5)
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since limX→0 ‖�0 (D0)−�0 (G0)‖- ′ = 0 holds due to the continuity of �0 and limX→0 ‖D0−G ‖- =

0.

Finally, all of the preceding argumentation relies on the availability of recovery sequences

for all G0, ~0 ∈ Ξ. Assuming to have su�ciently many recovery sequences at hand, we may

conclude the statement to be proven. �

Remark §15.1

The key argument of the forgoing proof is (to discuss) the asymptotic negligibility of

the �rst two right hand side terms in (15.2). Futre work may conceive of more general

set-ups than ours where the continuity condition (15.1c) holds, aiming to compensate

for the loss of the Rellich–Kondrachov embedding. As a �rst step, one may try to in-

corporate lower order terms on the fast medium may by adapting the model proof of

[Rou13, Lemma 2.32]. Also note, that one may try to weaken the continuity restrictions

from theorem §15.1 to work with hemicontinuity instead; we do not elaborate on this,

though.

§16. Continuation of the homogenisation process

Let us connect (YPP) to our set-up �rst. Writing � =,
1,?

0
(Ω), we set - := !? (� × R3 × Y)1+3 ,

T ∗Y
(
!? (� ;�)

)
:=

{
(F0, ®F1) ∈ - : ∃E0 ∈ !? (� ;�) : F0 = T ∗Y (E0) ∧ ®F1 = T ∗Y (∇YE0)

}
(16.1)

and -Y := T ∗Y (!? (� ;�)). Naturally, the space of (parabolic) two-scale limits, stems from the

space Ξ given in (7.21) for the elliptic set-up.

Proposition §16.1: Paraboli�cation of Ξ

Assuming the existence of recovery sequences, the space of limits of all weakly or

strongly two-scale convergent sequences of the form (DY)Y∈J ⊂ - with DY ∈ -Y ⊂ -

for every Y ∈ J is is induced by Ξ by applying the functor !? (� , · ) to obtain the parabolic

analogue !? (� ;Ξ).

Proof. Having recovery sequences at hand, the statement stems from the functor !? (� , · ) op-

erating solely on the temporal variable whereas unfolding is restricted to spatial coordinates.

Thus, the two operations can be considered to commute.

�

Returning to the homogenisation of (YPP), we gather the convergence statements available

from (12.3), (12.4) and corollary §13.1. There exists a subsequence Y ∈ J such that



T ∗Y (5Y) −→ 50 in !?
′ (� × R3 × Y),

T ∗Y (D0,Y) −→ D0,0 in !2 (R3 × Y),
T ∗Y (DY) −⇀ F0 in !? (� × R3 × Y),
TY (∇YDY) −⇀ ∇̃F0 in !? (� × R3 × Y)3 ,

T ∗Y (�Y (DY)) −⇀ b~
0

in !?
′ (� × R3 × Y)3 .

(16.2)
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As mentioned before, the natural minimal objective is characterise the limit b~
0

as

b~
0
(C, G,~) = �0 (F0, ∇̃F0) (C, G,~) := V

(
C, G,~,D0, ∇̃D0

)
in !?

′ (� ;Ξ′)(♥)

which is essentially a weak continuity property along a sequence of solutions and would imply

correctness of the homogenisation process, at least in a distributional sense of �
′(Ω) ×Y). Of

course, such a characterisation is the very purpose of (Mlim). To this end, recall (13.5)
〈�Y (DY), DY〉 =

∭
�×R3×Y

VY
(
TY (G,~), ~,T ∗Y (DY),T ∗Y (∇YDY)

)
· T ∗Y (∇YDY) 3C3~3G

=

∭
�×R3×Y

T ∗Y (5YDY) 3C3G +
1

2

T ∗Y (D0,Y)2!2 (Ω×Y) − 1

2

‖T ∗Y (DY () ))‖2!2 (Ω×Y)

for which we need to show lim supY→0
〈�Y (DY), DY〉 ≤ 〈b~

0
, D0〉. At this point, a workaround is

necessary to deal with lacking regularity since

T ∗Y (mCDY)
2F−⇀ mCF0 in !1

loc
(Ω) × Y)

is meaningless. Quasi-linear set-up generally yield only very weak spatial regularity of time

derivatives, see [Lad68b] and [DiB93]. Consequently, D ′
0

is not available with su�cient spatial

regularity to be �t for periodic unfolding. Therefore, we will work with Steklov averages and

showF0 ∈ �0

(
� ;!2 (Ω × Y)

)
so that 〈b~

0
,F0〉 is unambiguous.

The fulcrum of our analysis will be a suitable limit system of (YPP). Assume the existence

of recovery sequences, let us pick test functions iY ∈ , 1,?

0
(Ω) ) which are strongly two-scale

convergent to a given i0 = (i1, i2, i3) ∈, 1,?

0
(� ;Ξ) in the sense that i ′Y

2B−→ i ′
0

holds in !? (� ×
R3 × Y), too. Inserting such test functions in (YPP) and passing to the limit Y → 0 yields the

interim limit 
∭
Ω) ×Y

−F0i
′
0
+ b~

0
·
[
j1

(
∇Gi1 + ∇~i2

)
+ ∇~i3

]︸                              ︷︷                              ︸−50i0 3~3G3C = 0.

=: ∇̃i0
(16.3)

Unfortunately, neither (16.2) nor (16.3) yield F0 ∈ �0

(
� ;!2 (Ω × Y)

)
directly. Therefore, we

cannot give meaning to initial values likeF0 (C = 0) = D0,0 at the moment. Nevertheless, restrict-

ing to � is unproblematic, as mirrored by (16.3). Next, we shall retrieve a little more temporal

regularity ofF0 by employing Steklov averages, and eventually, (12.3) and (12.4) will yield (♥).

§16.1. Application of Steklov averages to homogenisation

Let us return to the matter of lacking temporal regularity of D0 in (16.3). The following result is

a two-scale adaptation of a classical result [Lad68b, Ch. III, Lemma 4.1].
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Proposition §16.2: (Hölder) continuity in time

Let (16.3) and (16.2) hold forF0 from ∈ !∞ (� ;!2 (Ω×Y)) ∩!? (� ;Ξ). Then, C ↦−→ F0 (C) ∈
!2 (� × R3 × Y) is uniformly continuous and can be considered unambiguously to ful�l

F0 ∈ �0

(
� ;!2 (Ω × Y)

)
.(16.4)

In addition, limℎ→0 1/ℎ‖F0 (C+ℎ)−F0 (C)‖2!2 ( (0,)−ℎ0)×Ω×Y) = 0 holds for everyℎ0 ∈ (0,) ).

Proof. We intend to use the Arzelà–Ascoli theorem for vector–valued functions, see [Sch97,

Thm. 18.35] for instance, to show that the family of Steklov averages ((F0)ℎ)0<ℎ�ℎ0 ⊂
�0 (� ;!2 (Ω ×Y)) converges toF0, carrying over uniform continuity, as well. Our key argu-

ments rely on favourable properties of the Steklov averages and the integrability of 50 and

b~
0

.

Let i ∈ , 1,?

0
(� ;Ξ), 0 < ℎ < ℎ0 and insert i0 = i

ℎ
as a test function in (16.3). Transferring

the average via lemma §A.3.5 and using partial integration, we get

)−ℎ0∫
0

∬
Ω×Y

(F0) ′ℎ i +
(
b~
0

)
ℎ
· ∇̃i − (50)ℎ i 3~3G3C = 0.(16.5)

Now, let a compact intervall � := [C1, C2] ⊂⊂ [0,) ) be given. Assume ℎ0 > 0 to be su�ciently

small such that � ⊂ [0,) − ℎ0) holds. Also, let ZX ∈ �(� ) be the molli�cation of j � . Note

that for su�ciently small X > 0 the support of ZX is contained in (−ℎ0,) − ℎ0), using tacitly

an extension by zero ofF0 outside of � for the moment.

Now, as a �rst test function in (16.5) choose i = ZX (F0)ℎ and let X → 0 to get

1

2

‖(F0)ℎ ‖2!2 (Ω ×Y
���C2
C1
= '1 :=

∫
�

∬
Ω×Y

−
(
b~
0

)
ℎ
· ∇̃ (F0)ℎ + (50)ℎ (F0)ℎ 3~3G3C .(16.6)

Observe that '1 = '1 (C1, C2, ℎ) ful�ls limC1→C2 '1 = 0 uniformly for ℎ ∈ (0, ℎ0). Consequently,

one can argue that for a given ℎ0 > 0 the family ((F0)ℎ)0<ℎ�ℎ0 is uniformly equicontinuous

in�0
(
[0,) − ℎ0];!2 (Ω × Y)

)
. Similarly, one can use backward Steklov averages to construct

a family ((F0)ℎ)0<ℎ�ℎ0 which is uniformly equicontinuous in�0 ( [ℎ0,) ];!2 (Ω×Y)). In both

cases,F0 is the pointwise limit of both families a.e.

As a second step, we need to show that the family of Steklov averages is pointwise relatively

compact. To this end, subtract (16.5) for 0 < ℎ1, ℎ2 � )−C2, choosei =
(
(F0)ℎ1 − (F0)ℎ2

)
ZX ∈

,
1,?

0
(� ;Ξ) and let X → 0 to get



1

2

(F0)ℎ1 − (F0)ℎ2
2
!2 (Ω×Y)

���C2
C1

= '2 :=

∫
�

∬
Ω×Y

−
[ (
b~
0

)
ℎ1
−

(
b~
0

)
ℎ2

]
· ∇̃

[
(F0)ℎ1 − (F0)ℎ2

]
+

[
(50)ℎ1 − (50)ℎ2

] [
(F0)ℎ1 − (F0)ℎ2

]
3~3G3C .

(16.7)

Again, observe that independently of C1, C2 ∈ � , '2 involves uniformly integrable integrands.

Moreover, this holds uniformly for ℎ1, ℎ2 → 0, too, a consequence of(16.2). By lemma §A.3.2
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su�ciently regular Steklov averages converge strongly to functions which are already suf-

�ciently regular themselves. Consequently, we have limC1→C2 '2 = 0 uniformly in ℎ1 and ℎ2.

As a result we get limℎ1,ℎ2→0 limC1→C2 '2 = 0 = limC1→C2 limℎ1,ℎ2→0 '2 for every C2 ∈ � .
Arguing similarly for backwards Steklov averages, makes the Arzelà–Ascoli theorem applic-

able for both averages. Which yields a uniformly continuous function D̃ ∈ �0

(
� ;!2 (Ω × Y)

)
as the limit of the Steklov averages. Moreover, D̃ coincides with F0 a.e. in � , in other words,

D̃ ∈ [F0] = F0 ∈ !? (� ;Ξ), i.e. F0 is in the same equivalence class like D̃.

To obtain the claimed Hölder continuity, return to (16.5) and insert i = (gℎ − �3)F0 with

gℎ (F0) (C) := F0 (C + ℎ) being de�ned a.e. in [0,) − ℎ0] for every 0 < ℎ < ℎ0. Using

mC (F0)ℎ (C) = 1/ℎ [F0 (C + ℎ) −F0 (C)] everywhere in the foregoing interval one arrives at

1/ℎ
∫
�

∫
Ω×Y |F0 (C + ℎ) − F0 (C) |2 3 (G,~)3C on the left hand side for every [C1, C2] = � ⊂

[0,) − ℎ0]. Transferring the di�erences appropriately allows to exploit the integrability of

the right hand side functions. Explicitly, the right hand side reads

'3 :=



C1+ℎ∫
C1

∬
Ω×Y

(−b~
0
(C))ℎ · ∇̃F0 (C) + (50 (C))ℎF0 (C) 3~3G3C

+
C2+ℎ∫
C2

∬
Ω×Y

(−b~
0
(C))ℎ · ∇̃F0 (C) + (50 (C))ℎF0 (C) 3~3G3C

+
C2∫

C1+ℎ

∬
Ω×Y

[
(−b~

0
(C))ℎ − (−b~0 (C − ℎ))ℎ

]
· ∇̃F0 (C)

+ [(50 (C))ℎ − (50 (C − ℎ))ℎ]F0 (C) 3~3G3C .

(16.8)

Similarly as above, the regularity of the integrands and the regularity of Steklov aver-

aging ensure the applicability of Lebesgue’s dominated convergence theorem and as a result

limℎ→0 '3 = 0. Thanks to backward Steklov averaging, this limiting can be carried out for

any interval � ⊂ � and consequently, the claim is shown. �

Corollary §16.1: Initial values for the interim limit

Assuming the existence of recovery sequences, one may extend (16.3) such that the limit

functionF0 !
? (� ;Ξ) satis�es

∭
�×R3×Y

−F0i
′
0
+ b~

0
· ∇̃i0 − 50i0 3~3G3C

=

∬
Ω×Y

D0,0i0 (0) −F0 () )i0 () ) 3~3G
(16.9)

for all i0 ∈, 1,min(2,?)
0

( [0,) ] × Ω × Y). In particular, the initial value D0,0 is attained by

the limit functionF0 from (16.2) in the sense of

‖F0 (0) − D0,0‖!2 (Ω×Y) = 0.(16.10)
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Proof. Assuming (16.10), (16.9) follows by inserting strongly two-scale convergent test func-

tions into (YPP), i.e. using the existence of recovery sequences, together with passing to the

limit Y → 0, applying partial integration and making use of the increased temporal regularity

ofF0.

(16.10) is a direct consequence of D0,0 ←− T ∗Y (DY) (0) −⇀ F0 (0) ∈ !2 (Ω × Y) in !2 (R3 ×
Y). �

We now turn to inquiring (♥) by considering (13.5), again. This time, not only (16.2) is avail-

able but also additional temporal regularity ofF0.

Theorem §16.1: Characterisation of the limit problem

Given the limits from (16.2) which satisfy (16.4) and (16.9) with (16.10), we have

lim sup

Y →0

〈T ∗Y (�Y (DY)),T ∗Y (DY)〉- ′Y×-Y ≤ 〈b
~
0
,F0〉Ξ′×Ξ(16.11)

Assuming the existence of recovery sequences, (♥) holds and one can identify the limit

problem of (YPP) for Y → 0. More speci�cally, without loss of generality the sequence

of solutions (Dn ) ⊂ !? (� ;, 1,?

0
(Ω)) of (YPP) are two-scale convergent to a limit function,

in more detail
(
F0, ∇̃F0

)
∈ !? (� ;Ξ) ∧ F0 ∈ �0 (� ;!2 (Ω × Y))

DY
2F−⇀ F0 in !? (� × R3 × Y) & ∇YDY

2F−⇀ ∇̃F0 in !? (� × R3 × Y;R3 )
(16.12)

holds. Moreover,F0 ful�ls (16.10) and solves the following limit problem of (YPP):

∭
�×Ω×Y

−F0i
′
0
+ V

(
C, G,~,F0, ∇̃F0

)
· ∇̃i0 − 50i0 3~3G3C

=

∬
Ω×Y

D0,0i0 (0) −F0 () )i0 () ) 3~3G.
(16.13)

for every i0 ∈ !? (� ;Ξ) ∩, 1,?′ (� ;Ξ′).

Remark §16.1

Implicitly, we assume Ξ ↩−→ !2 (Ω × Y) throughout, which essentially represents the

case ? ≥ 2. For ? ∈ (1, 2) minor modi�cations are necessary, most notably, one has ask

that the elements

(
F0, ∇̃F0

)
∈ !? (� ;Ξ) ∈ Ξ also ful�lF0 ∈ !2 (� × Ω × Y).
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Proof. Recall that the unfolded form of 〈�Y (DY), DY〉 from (13.5) ful�ls the following equality:

〈T ∗Y (�Y (DY)),T ∗Y (DY)〉- ′Y×-Y

=

∭
�×R3×Y

VY
(
TY (G,~), ~,T ∗Y (DY),T ∗Y (∇YDY)

)
· T ∗Y (∇YDY) 3C3~3G

=

∭
�×R3×Y

T ∗Y (5YDY) 3C3~3G

+1
2

T ∗Y (D0,Y)2!2 (R3×Y) − 1

2

‖T ∗Y (DY () ))‖2!2 (R3×Y) =: 'Y .

First, let us remark that all contributions of 'Y are uniformly bounded for

all Y > 0 and thus also for Y → 0. Considering lim supY→0
'Y , observe

that by (16.2) limY→0

T ∗Y (D0,Y)2!2 (R3×Y) = ‖D0,0‖2!2 (Ω×Y) holds, together with

limY→0

∭
�×R3×Y T

∗
Y (5YDY) 3C3G3~ =

∭
�×Ω×Y 50F0 3C3G3~. Since norms of Hilbert spaces

are sequentially weakly lower semi-continuous, T ∗Y (DY) () ) −⇀ F0 () ) in !2 (Ω ×Y) implies

lim infY→0 ‖T ∗Y (DY) () )‖!2 (R3×Y) ≥ ‖F0 () )‖!2 (Ω×Y) . Thus, we can estimate lim supY→0
'Y

from above:

lim sup

Y→0

'Y ≤
∭

�×Ω×Y

50F0 3C3G3~ +
1

2

‖D0,0‖2!2 (Ω×Y)

−1
2

lim inf

Y→0

‖T ∗Y (DY) () )‖2!2 (R3×Y)

≤
∭

�×Ω×Y

50F0 3C3G +
1

2

‖D0,0‖2!2 (Ω×Y) −
1

2

‖F0 () )‖2!2 (Ω×Y) =: / .

(16.14)

Now, consider (16.9) and insert a suitable test function: we choose i
ℎ
= ((F̃0)ℎ)ℎ which

stems from averaging F̃0, the extension of C ↦→ F0 (C) ∈ !2 (Ω × Y) outside of [0,) ] by

D̃0 (C > ) ) ≡ F0 () ) and D̃0 (C < 0) ≡ D0,0. This test function is admissible since F0 is

spatially su�ciently regular in (0,) ) and temporally in [0,) ] for the resulting integral to

be meaningful. With this test function at hand, we claim that the following identity can be

established:

/ = lim

ℎ→0

∭
�×Ω×Y

F0i
′
ℎ
+ 50iℎ 3~3G3C +

1

2

∬
Ω×Y

D0,0iℎ (0) −F0 () )iℎ () ) 3~3G

= lim

ℎ→0

∭
�×Ω×Y

b~
0
· ∇̃i

ℎ
3~3G3C

=

∭
�×Ω×Y

b~
0
· ∇̃F0 3~3G3C = 〈b~0 ,F0〉!?′ (� ;Ξ′)×!? (� ;Ξ)

(16.15)

We proceed as follows: the second equality is clear from (16.9); the third equality is due to

lemma §A.3.2 and proposition §A.3.1 which ensure limℎ→0 ‖∇̃(F0 − iℎ)‖!?′ (�×Ω×Y;R3 ) = 0.

The �nal equality is correct by de�nition, thus only the �rst equality is open. Similarly to
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III. The parabolic regime

the preceding proofs, we transfer the backwards Steklov average to get

∭
�×Ω×Y

(F0)ℎ (F̃0) ′ℎ + (50)ℎ (F̃0)ℎ 3~3G3C

+
∬
Ω×Y

D0,0iℎ (0) − (F0)ℎ () ) (F̃0)ℎ () ) 3G3~.
(16.16)

For the �rst term on the left hand side we defer

∭
�×Ω×Y

(F0)ℎ (F̃0) ′ℎ 3~3G3C =
∭

�×Ω×Y

(F̃0)ℎ (F̃0) ′ℎ 3~3G3C

=
1

2

‖(D̃0)ℎ (C)‖2!2 (Ω×Y)
��C=)
C=0

ℎ→0−→ 1

2

‖F0 (C)‖2!2 (Ω×Y)
��C=)
C=0

(16.17)

The remaining terms and the convergence statement forℎ → 0 are clear from (16.10) and the

strong convergence properties of Steklov averaging for su�ciently regular as (16.4) holds.

To establish (♥), we use (Mlim) via (PMlim). Thanks to theorem §15.1, the family of operators

〈�Y (DY ,∇YDY), i〉!? (� ;-Y )×!?′ (� ;- ′Y ) :=
∭

�×R3×Y

V
(
C,TY (G,~), ~,T ∗Y (DY),T ∗Y (∇YDY)

)
· ∇Yi 3C3G3~

〈�0 (F0, ∇̃F0), i〉!? (� ;Ξ)×!?′ (� ;Ξ′) :=
∭

�×Ω×Y

V

(
C, G,~,F0, ∇̃F0

)
· ∇̃i 3C3G3~

is a subject for the implication (PMlim): �rst, V was assumed to ful�l the respective mono-

tonicity condition in (12.2d). Secondly, to verify (15.1c) let DY
2B−→ F0 in !? (� ×R3 ×Y) with

∇YDY
2B−→ ∇̃F0 in !? (� ×R3 ×Y;R3 ) be given. Recall that limY→0 ‖TY (G,~)−83Ω ‖!∞ (R3×Y) = 0

holds and since V induces a continuous superposition operator thanks to (12.2a) and (12.2b),

we get

lim

Y→0

�Y (DY ,∇YDY) − �0 (
F0, ∇̃F0

)
!?
′ (�×R3×Y;R3 )

= 0.(16.18)

Finally, as (PMlim) is an admissible implication, (16.11) is precisely the criterion named in

(PMlim) to yield (♥). To obtain the limit system, one inserts (♥) into (16.9) to get (16.13) �

§17. Epilogue

This work concludes with a short summary and a prospect on related problems and questions.

In short, an elliptic and a parabolic family of quasi-linear problems were subject to periodic

homogenisation. Our main di�culty was to compensate for a loss of compactness due to degen-

erated a priori estimates caused by the slow medium. In technical terms, our method relied on

carrying over a limiting technique for existence proofs – monotone operators – to our problems.

Unfortunately, the vital step of ensuring the existence of recovery sequences could not estab-

lished but it could be shown that if it holds, one can adapt monotonicity accordingly, allowing

to characterise weak limits in both elliptic and parabolic set-ups.

Leaving the recovery sequences’ issue aside, there are several natural extensions of weak

limit characterisations which aim at improving and quantifying convergence. In this respect,
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it must be said that for merely monotone operators stronger results cannot expected, even for

existence proofs. However, stronger concepts analogous to families of uniformly monotone

operators are conceivable and may yield stronger modes of convergence along the lines of [All92,

Prop. 4.6] where smoothness of the corrector functions was assumed to establish strong two-

scale convergence to the solution of the limit problem. We refrained from elaborating on this

matter since unlike to the linear case, such smoothness assumptions are either highly non-trivial

or quite non-credible in the quasi-linear regime. So, regularity issues play an important role

and such considerations are presently too immature to be incorporated in the aforementioned

machinery. However, for future research [Lad68a; Bec16; Lad68b; DiB93] form sound points of

departure.

Moreover, even in the original domain of existence proofs, quanti�cation of convergence is

a precarious issue. Nevertheless, the analogy of periodic homogenisation to �nite-dimensional

approximation leads the author to hazard the guess that these two share a common root; more

concretely, restriction operators to �nite-dimensional subspaces and periodic unfolding are alike

and consequently, �nite element error estimates and error estimates for homogenised problem

are ‘two leafs on the same tree’.

Furthermore, let us mention the recent works of A. Koutsoukou-Argyraki with U. Kohlenbach

– we refer to [KK15; KK16; Kou17b; Kou17a] – where error estimates are derived from (classical)

existence proofs invoking accretive operators. Perhaps it is possible to transfer such techniques

to homogenisation, provided the latter and existence proofs are su�ciently linked. As a result,

such an endeavour would yield error estimates from mere limiting proofs.

Finally, the families of operators �t for limiting procedures should be sought to be enlarged

in favour of a larger framework. Indeed, S. Reichelt’s thesis [Rei15] can be considered as com-

plementary to our presentation, but both works have abandoned compactness methods alto-

gether and turned to a compensation by properness: given strongly convergent right hand side

functions, one wants to infer convergence of solutions. Indeed, this concept has been cast in

great generality by W. V. Petryshyn into the notions of A-properness and pseudo-A-properness
in [Pet75] and [Pet93]. Adding to the possibility of a unifying frame, there is an alternative

formulation of pseudo-monotonicity in optimisation which links pseudo-convex potentials to

pseudo-monotone gradient functions in Euclidean spaces, we refer to [HSW12]. We did not en-

quire this topic any further but the relation to Γ-convergence is quite obvious, in particular since

pseudo-monotonicity of gradient operators imply weak lower sequential semi-continuity of the

potential. So, exploring a common origin of homogenisation and existence proofs is strongly

encouraged by the present state of a�airs but is left to future research.
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A. Appendix

§A.1. Our essentials of category theory

We refer to [Sem71, Ch. III] and [Cas10] for analysis-oriented introductions, to [Bra17] for a

state-of-the-art introduction in German, and to [AHS04] as an extensive presentation of cat-

egory theory. More classical literature like [Mac71; KS06] is available, too. Also, [nLa19] is

a very serious and valuable resource and a signi�cant hub of related communities. Moreover,

[Hel89; Hel06] are very extensive analysis-centred works; however, by analysis we mean func-

tional analysis, ignoring such highly sophisticated matters like secondary calculus on di�eties,
see [Vin01] for further reference.

§A.1.1. Categories

A category � is pair of sets or even classes

� =

(
$1 (�),

(
Mor� (�1,�2)

)
�1,�2∈$1 (�)

)
(1.1)

The elements � ∈ $1 (�) are the objects of � and for �1,�2 ∈ $1 (�) Mor� (�1,�2) denotes

the �-morphisms from �1 to �2. It is required that Mor� (�1,�1) contains an identity element.

Moreover, morphisms can be composed, i.e. ∀51 ∈ Mor� (�1,�2), 52 ∈ Mor� (�2,�3) there is

some composition operation ◦� such that 52 ◦� 51 ∈ Mor� (�1,�3) holds an this composition

is associative and respects identity maps, making the latter unique. � is locally small if all

morphism classes Mor� (�1;�2) are sets for all �1,�2 ∈ �. � is a small category if it is locally

small and its class of objects is a set.

Some examples of categories

A most central category is the category of sets Setwhose objects are sets with the morphisms be-

ing all set maps between the corresponding sets. Secondly, Top is the category of all topological

spaces and continuous maps as morphisms; Vect is the category of all linear vector spaces with

linear maps as morphisms. Thirdly, Ban,Ban∞ andBan1 are the (quite natural) categories whose

objects are Banach spaces together with linear maps, continuous linear maps and non-expansive

linear maps as morphisms, respectively. In likewise fashion one can formalise almost everything.

To give you an impression the following form categories: uniform spaces (Unif), pseudo-metric

spaces (PMet, PMet1) metric spaces (Met,Met1), topological vector spaces (Tvs), locally convex

spaces (Lcs), �nite-dimensional vector spaces (FinVect), Hilbert spaces (Hilb), smooth manifolds

(Di�) partially ordered sets (PoSet), measurable spaces (Meas), measure spaces (Measure) and

even the category of all categories (CAT) and the category of all small categories (cat). None of

the aforementioned categories is small, but all except CAT are locally small. We underline four

aspects:
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a) Not all categories are de�ned equally by all authors so one must take care. In particu-

lar, this holds for the morphisms underlying a category. Roughly put, in most instances

morphisms are ‘even more important’ than the corresponding objects.

b) A lot can be said and is being discussed about related and additional structures such as

Abelian categories, Grothendieck topologies, sheaves and topoi. We do not elaborate on

these aspects.

c) Again, almost everything can be formalised as a category but at the end of the day, the

important question is whether or not the category under consideration has favourable

properties for the applications one has in mind. Our focus will be on limits and co-limits;

related concepts are completeness and co-completeness of a category.

d) More generally and going back to A. Grothendieck, is the insight that it is better to have a

well-behaved collection of bad objects than a collection of good objects that misbehaves.

Obviously Sobolev spaces are a positive example which supersede more classical function

spaces like �:,U . As we have seen in chapter I, Di� is no favourable properties though its

objects are even smooth.

For further information consider the given literature.

Isomorphisms in a category

Next, a �-morphism 5 : � −→ � is a �-isomorphism if there is a �-morphism 6 : � −→ � such

that 6 ◦� 5 = 83� and 5 ◦� 6 = 83� in �. In fact, this concept is very natural in conventional

functional analysis where a linear isomorphism, a Vect-isomorphism, is not necessarily continu-

ous, at least not as long as the (full) axiom of choice holds. Moreover, it is the very essence of

the open mapping theorem that for a Ban∞-morphism to be an Ban∞-isomorphism, i.e. it has a

continuous and linear inverse, it is su�cient to be a Set-isomorphism, i.e. a bijection.

§A.1.2. Functors and natural transformations

A (covariant) functor is a map between categories � : �1 −→ �2 that sends objects from �1 to

�2 together with their morphisms. It is required that a functor respects identity elements and

composition of morphisms. Thus, � (83�1
) = 83� (�1) for all�1 ∈ �1 and � (6◦ 5 ) = � (6) ◦� (5 ) for

all respective �1-morphisms. In practical terms, de�ning a functor is ‘more di�cult’ than just

de�ning a map since one must specify what to do with the underlying morphisms. A contrav-

ariant functor is de�ned in the same manner but it inverts the succession of maps, i.e. � (6 ◦ 5 ) =
� (5 ) ◦ � (6) for all respective �1-morphisms. Both contravariant and covariant functors are

fundamentally important.

Two examples of functors

A prominent example is the forgetful functor which maps a category of structures into a greater

category with weakened structure conditions. For instance, the sequence

Ban1 −→ Ban∞ −→ Ban −→ Vect −→ Set

can be considered in this way since forgetful functors leave the morphisms untouched.
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A most important instance are function spaces, for example the functor ℬ ↦−→ !1 ((0, 1),ℬ)
given in chapter III. This concept is strongly advocated in [Cas10].

Another important concept are completions: let NormVectR be the category of normed vector

spaces over R with continuous linear maps as morphisms. Then, a functor can be de�ned by

sending- ∈ NormVect to its Cauchy completion- . Since continuous linear maps are uniformly

continuous their extension to the completion is unambiguous.

Natural transformations

At the very heart of category theory are natural transformations. Given two functors �,� :

�1 −→ �2 a natural transformation from � to � is a family of maps denoted [ : � −→ � such

that for every � ∈ �1 there is a �2-morphism [� : � (�) −→ � (�) making the diagram

(1.2)

� (�1)
[�

1−−−−−−→ � (�1)

� (5 )y y� (5 )
� (�2)

[�
2−−−−−−→ � (�2)

commutative for all �1,�2 ∈ $1 (�⌢1),5 ∈Hom�
1
(�1,�2) .

As an example consider a continuous linear map between Banach spaces � : ℬ1 −→ ℬ2.

Then, ℬ ↦−→ !1 ((0, 1);ℬ1) is mapped to ℬ ↦−→ !1 ((0, 1);ℬ2) by prolongation, also known as

pushforward along �.

A most crucial fact to us is that periodic unfolding admits no natural transformation, at least

none that the author managed to �nd. This state of a�airs is extremely inconvenient and a single

major source of challenging issues.

§A.1.3. Co-limits and limits

Among the purposes of providing additional categories are the notions of co-limits and limits in

a given category. To start with co-limits, let � = (� ,C) be a directed set and let (- 9 )9 ∈� be a family

of � objects together with a collection of �-morphisms b8, 9 : -8 −→ - 9 for 8, 9 ∈ � with 8 C 9

(the case of absent morphisms is explicitly allowed). Such a family ((- 9 )9 ∈� , (b8, 9 )8, 9 ∈� ) is called

an inductive system or inductive familiy (in �). A co-cone or target to this family of objects

and morphisms is an object . ∈ � with �-morphisms b 9 : - 9 −→ . such that b8 = b 9 ◦ b8, 9
for all 8, 9 ∈ � with 8 C 9 . The cone is universal if any other cone is factored by . , i.e. if there

exists another cone / with cone maps Z 9 : - 9 −→ / then there exists a unique �-morphism

U : . −→ / such that Z 9 = U ◦ b 9 for all 9 ∈ � . A co-limit to a given family of objects and

morphisms indexed by a directed set is a universal co-cone. Co-limits are also known as direct
limits or inductive limits and one writes lim ind- 9 = . or colim- 9 = . .

1

Likewise, limits are given by dualisiation, the reversing of arrows: for 8, 9 ∈ � with 8 C 9 there

may be maps b8, 9 : -8 ←− - 9 for - � ∈ � for 9 ∈ � such that a ((- 9 )9 ∈� , (b8, 9 )8, 9 ∈� ) is a projective

system or projective familiy (in �). The corresponding cone or source is an �-object . with

�-morphisms b 9 : - 9 ←− . for all 9 ∈ � such that b8 = b8, 9 ◦b 9 for all 8, 9 ∈ � with 8C 9 . Again, the

limit is de�ned as a universal cone to a given family of objects and morphisms. It is also known

as inverse limit or projective limit and we write lim- 9 = . or lim proj- 9 = . ; however, we

1
Originally, co-limits generalised inductive limits but we use both notions interchangeably.
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§A.2. Monotone operators

prefer the latter notation to keep projective limit constructions apart from conventional limits

of analysis. In fact, the latter are conceivable as inverse limits by the help of �lters in Set.
A family of objects can have di�erent limits or co-limits with respect to di�erent underlying

categories. Also, our co-limits and limits are small in the sense that � is a set and not a proper

class. More generally, category theory is impressed by set theoretic concepts which touch upon

the antinomy of sets and classes. Fortunately, the overwhelming majority of problems of ana-

lysis circumvent the related problems altogether – there are exceptions, though, for instance,

the totality of all nets in a given set. For numerical mathematics the situation is quite unclear

since �oating-point arithmetic e�ectively abandons mathematically well-behaved objects like

the �elds R and C, entering mathematical realms that are not too well-understood.

Construction and examples

Most often, the idea is to construct or co-limits limits in Set �rst, endowing them with additional

structure afterwards. This approach is based on the fact that many categories – and all of our

categories – can be considered as subcategories of Set via forgetful functors. This does not apply

to every mathematical subject, leading to higher category theory, a �eld which we avoid.

Concerning examples, one can consider all �nite-dimensional sub-spaces of a given Banach

space as a family of Banach spaces directed by inclusion. The corresponding co-limit in Ban1
is the original Banach space, c.f. [CLM79]: every �nite-dimensional approximation procedure

rests on this result.

Another example is the construction of the space of test functions which is a co-limit con-

struction in Lcs; one can verify that the corresponding family of objects is in Ban1, too, and has

a co-limit there, as well. However, the latter is trivial, a fact which is related to locally compact

Banach spaces being necessarily �nite-dimensional. For more applications, we refer to the main

text. In general, an important question is whether a given category can be expected to possess

‘reasonable’ co-limits or limits and in fact, the corresponding notions are co-completeness and

completeness of a given category. For instance, Set and Ban1 are both co-complete and complete

but Ban∞ is not.

Let us close with remarking that there are several more concepts from category theory which

deserve more attention by the analysis community. Most interestingly, let us mention sheaves
and co-sheaves, adjunctions of functors and the related concept of Kan extensions. All of these are

extensively used throughout mathematics. For instance, the completion functor and the forget-

ful functor are adjoint in a meaningful way. However, for the present work such conceptional

means we not necessary, making it our main reason of omission.

§A.2. Monotone operators

Our references on the theory of monotone operators are [Lio69; Klu79; Zei90; Le11] and [Rou13],

the latter being our preferred choice. Given a re�exive Banach space- an operator� : - −→ - ′

is monotone if for all G,~ ∈ - we have 〈�G − �~, G − ~〉- ′×- ≥ 0 and stictly monotone if

〈�G −�~, G −~〉- ′×- > 0 for G ≠ ~. Throughout the literature, it is customary to write�G even if

� is not linear. One can show that monotone operators are locally bounded and continuous as a

map from+ in the strong topology to+ ′ equipped with its weak topology if they are hemi-con-

tinuous, meaning [0, 1] 3 g ↦−→ 〈�(G +g~), I〉- ′×-R is continuous for all G,~, I ∈ - . An operator

� : dom(�) ⊂ - −→ - ′ is maximally monotone if it is monotone and if its graph is maximal
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in the sense that there is no monotone extension of � but � itself. An operator � : - −→ - ′

is pseudo-monotone if it is bounded and the following implication holds for weakly convergent

sequences G: −⇀ G0 in - :

lim sup

:→∞
〈�G: , G: − G0〉 ≤ 0 =⇒

[
∀~ ∈ - : 〈�G0, G0 − ~〉 ≤ lim inf

:→∞
〈�G: , G: − ~〉

]
.(2.1)

We call � : - −→ - ′ (strongly) coercive if lim‖G ‖→∞〈�G, G〉/‖G ‖ = +∞. The following implic-

ations hold: a hemi-continuous monotone operator is maximally monotone, every monotone

operator is pseudo-monotone, every compact operator is pseudo-monotone, sums of pseudo-

monotone operators are pseudo-monotone. The next result is a major theorem of the theory.

Theorem §A.2.1: Brezis’s theorem, c.f. [Rou13, Thm. 2.6]

Every pseudo-monotone, coercive operator is surjective and strict monotonicity is suf-

�cient to be a bijection, i.e. a Set-isomorphism.

Brezis’s theorem generalises the Browder–Minty theorem which restricts to monotone oper-

ators and is strongly related to the Lax–Milgram theorem. Perhaps the pinnacle of monotone

operators’ existence theory is the next result.

Theorem §A.2.2: Browder’s theorem, c.f. [Zei90, Thm. 32.A]

Let � : - −→ - ′ be maximally monotone and � : - −→ - ′ be pseudo-monotone such

that {
∃E0 ∈ -, ' ≥ ‖E0‖- : ∀D ∈ dom(�Y) ∩ �' (0) ≠ ∅ :

〈�Y (D) + �Y (D) − 5Y , D − E0〉- ′×- > 0

(2.2)

holds. Then � + � is a surjection.

Finally, all of the above de�nitions and results have multivalued analogues which we neither

present nor use here. A full account, including proofs, is given in the German textbook [Klu79].

§A.3. Steklov averages

Here, we gather the material on Steklov averages required for our purposes. We omit the proofs

of all classical statements, tending only relevant two-scale results. In general, the respective

proofs are entirely ‘classical and elementary’, i.e. most people know or anticipate and use the

result but only few people feel the urge to write down proofs. A classical ressource is [Lad68b,

pp. 84-86, pp. 141-142] but the more recent [CDG17] is very extensive and contains proofs, too.

We will give a formulation in the two-scale set-up on Ω × Y since this is what we are going to

work with. Of course, one can drop Y,Ω or Ω × Y to work with R-valued functions, instead.

Throughout, � = (0,) ) for some ) > 0.
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§A.3. Steklov averages

De�nition §A.3.1: Steklov averages

Let ?1, ?2 ∈ [1,∞], D ∈ !?1 (� ;!?2 (Ω × Y)) and ℎ0 ≥ ℎ > 0. We call

Dℎ (C, G,~) :=
C+ℎ⨏
C

D (g, G,~)j [0,)−ℎ] (g) 3g :=
1

ℎ

C+ℎ∫
C

D (g, G,~)j [0,)−ℎ] (g) 3g(3.1a)

the (forward) Steklov average of D. The (backward) Steklov average of D is given by

D
ℎ
(C, G,~) :=

C⨏
C−ℎ

D (g, G,~)j [0,) ] (g) 3g .(3.1b)

Clearly, D ↦−→ Dℎ and D ↦−→ D
ℎ

are linear mappings for all ℎ > 0 and regularise temporal

regularity. Let us formulate several fundamental properties as lemmata.

Lemma §A.3.1: Continuity of Steklov averaging

For D ∈ !?1 (� ;!?2 (Ω × Y)) with ?1, ?2 ∈ [1,∞] we have Dℎ ∈ �0

(
� ;!?2 (Ω × Y)

)
and{

‖Dℎ ‖!?1 (� ;!?2 (Ω×Y)) ≤ ‖D‖!?1 (� ;!?2 (Ω×Y))
‖Dℎ (C)‖!?2 (Ω×Y) ≤ ℎ−1/?1 ‖D (C)‖!?2 (Ω×Y) a.e. in � .

(3.2)

The very same statements hold for backward averages. Thus, Steklov averages are con-

tinuous, linear endomorphism of !?1 (� ;!?2 (Ω × Y)).

Lemma §A.3.2: Approximation property of Steklov averages

For all D ∈ !?1 (� ;!?2 (Ω × Y)) with ?1 ∈ [1,∞), ?2 ∈ [1,∞] we have{
limℎ→0 ‖D − Dℎ ‖!?1 (� ;!?2 (Ω×Y)) = 0 = limℎ→0 ‖D − Dℎ ‖!?1 (� ;!?2 (Ω×Y))
limℎ→0 ‖(D − Dℎ) (C)‖!?2 (Ω×Y) = 0 = limℎ→0 ‖(D − Dℎ) (C)‖!?2 (Ω×Y)

(3.3)

almost everywhere in � .

Lemma §A.3.3: Temporal di�erentiability of Steklov averages

For all D ∈ !?1 (� ;!?2 (Ω × Y)) with ?1 ∈ [1,∞), ?2 ∈ [1,∞] we have Dℎ ∈ , 1,?1 (0,) −
ℎ;!?2 (Ω × Y)) and DD ∈, 1,?1 (ℎ,) ;!?2 (Ω × Y)) thanks to

(
mC (Dℎ)

)
(C) = 1/ℎ [D (C + ℎ) − D (C)] a.e. in (0,) − ℎ), and(

mC (Dℎ)
)
(C) = 1/ℎ [D (C) − D (C − ℎ)] a.e. in (ℎ,) ).

(3.4)

If in addition D ∈ �0 (� ;!?2 (Ω × Y)) then the foregoing statements hold pointwise.
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Lemma §A.3.4: Uniform approximation by Steklov averages

Let D ∈ �(0,) ) := !? (0,) ;!? (Ω;, 1,? (Y))) ∩�0 (0,) ;!2 (Ω ×Y)) then for every ℎ0 > 0

lim

ℎ→0

‖D − Dℎ ‖� (0,)−ℎ0) = 0 & lim

ℎ→0

‖D − D
ℎ
‖� (ℎ0,) ) = 0(3.5)

hold with ‖D‖� (0,) ) = maxC ∈[0,) ] ‖D (C)‖!2 (Ω×Y) + ‖D‖!? (0,) ;!? (Ω;, 1,? (Y))) .

Lemma §A.3.5: Partial integration for Steklov averages

For D ∈ !? (Ω) × Y),F ∈ !?
′ (Ω) × Y) we have

)∫
ℎ

∬
Ω×Y

DF
ℎ
3~3G 3C =

)−ℎ∫
0

∬
Ω×Y

DℎF 3~3G 3C .(3.6)

Thus, backward Steklov averaging can be considered to be the adjoint operator of for-

ward Steklov averaging for appropriately truncated functions.

Proposition §A.3.1: Steklov averaging commutes with spatial derivatives and
periodic unfolding

Let D ∈ !? (� ;, 1,?

0
(Ω × Y)) andF ∈ !? (Ω) )) then we have

∇(G,~) (Dℎ) =
(
∇(G,~)D

)
ℎ

(3.7)

T ∗Y (Dℎ) =
(
T ∗Y (D)

)
ℎ

(3.8)

Proof. For the �rst statement let �1 (� ;�1

0
(Ω × Y)) 3 D= −→ D in !? (� ;, 1,?

0
(Ω × Y)). The

second statement is trivial by de�nition. �

Corollary §A.3.1: Steklov averaging for weak two-scale limits

Let !? (Ω) ) 3 DY
2F−⇀ D0 ∈ !? (Ω) × Y) in !? (� × R3 × Y) then we have the following

commutativity statement for 0 < ℎ ≤ ℎ0 ≤ ) and i ∈ !?′ (Ω) × Y) for forward Steklov
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averaging, while similar backward counterparts hold, too.

)∫
0

∬
Ω×Y

D0i 3~3G3C = lim

Y→0

lim

ℎ→0

)∫
0

∬
R3×Y

(
T ∗Y (DY)

)
ℎ
i 3~3G3C(3.9)

)∫
ℎ0

∬
Ω×Y

D0i 3~3G3C = lim

ℎ→0

lim

Y→0

)−ℎ0∫
0

∬
R3×Y

(
T ∗Y (DY)

)
ℎ
i 3~3G3C(3.10)

)∫
ℎ0

∬
Ω×Y

D0i 3~3G3C =



lim

Y→0

lim

ℎ→0

)∫
ℎ0

∬
R3×Y

(
T ∗Y (DY)

)
ℎ
i 3~3G3C

lim

ℎ→0

lim

Y→0

)−ℎ0∫
0

∬
R3×Y

(
T ∗Y (DY)

)
ℎ
i 3~3G3C .

(3.11)

Proof. Since limℎ→0 ‖
(
T ∗Y (DY)

)
ℎ
− T ∗Y (DY)‖!? (�×R3×Y) = 0, the �rst integral is tantamount

to weak two-scale convergence. For the middle integral we use lemma §A.3.5 to obtain∫ )
ℎ0

∬
R3×Y T

∗
Y (DY)iℎ 3G3~3C with i

ℎ
∈ !?

′ (Ω) × Y) so that for Y → 0 the expression

converges to

∫ )
ℎ0

∬
�×R3×Y D0iℎ 3G3~3C . Then, applying ℎ → 0 yields the claim thanks to

lemma §A.3.2. The �nal identity follows from combining the �rst two identities. �

§A.4. Uniform structures and Cauchy completion

Here, we gather the concepts of Cauchy completion and uniform structures used in section §14.2

which are entirely classical, though. We refer to [Kel55; Bou64] as classical resources, to [Sch97]

for a analysis-themed presentation and to [Low89; MP09] for specialised literature. Throughout

the literature uniform spaces and completion concepts are handled in varying formulations,

for instance, uniform spaces can be de�ned via entourages or via families of pseudo-metrics.

Likewise, completion procedures may be based on Cauchy �lters or equivalently, on Cauchy

nets.

§A.4.1. Uniform spaces, gauges and completion

(%,3% ) is a pseudo-metric space if % is a set together with a pseudo-metric 3% : % × % −→ [0,∞)
ful�lling ∀G,~, I ∈ % : (G = ~) ⇒ (3 (G,~) = 0) ∧ 3 (G,~) ≤ 3 (G, I) +3 (I,~) ∧ 3 (G,~) = 3 (~, G).
A metric is pseudo-metric for which ∀G,~ ∈ % : (3% (G,~) = 0) =⇒ (G = ~) holds.

Next, we introduce uniform spaces. Large parts of the literature employ vicinities and en-

tourages to do so, we prefer an equivalent de�nition invoking pseudo-metric spaces. A uniform

space (* ,D* ), also known as gauge space, is given by a set * and a gauge D* , also known as

uniform structure. More speci�cally, D* is family of pseudo-metrics on * , such that (* ,3* ) is

a pseudo-metric space for all 3* ∈ D* . Gauges and topologies are di�erent concepts but they

are naturally linked by de�ning convergence of nets or sequences via convergence with respect

to every pseudo-metric of the gauge. Such topologies are named uniform topologies.

We use nets and gauges to de�ne all necessary completeness notions. By a net in a set ( , we

mean elements (=U )U ∈� indexed by a given directed set (�,C) such that ∀U ∈ � : =U ∈ ( holds.
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Let (* ,D* ) be a uniform space withD = (3 9 )9 ∈� and an index set � . A net (DU )U ∈� is a Cauchy

net if ∀9 ∈ � , X > 0 : ∃UX
9
∈ � such that

(4.1) ∀U0, U1 ∈ � : UX9 C U0, U1 =⇒ 3 9 (DU0 , DU1 ) < X.

(* ,D* ) is complete if every Cauchy net converges in * . A uniform space (+ ,D+ ) is the (uni-

form) completion of * if * is uniformly homeomorphic to a dense subset of + . A uniform

homeomorphism is a homeomorphism which, together with its inverse, is uniformly continuous

with respect to all pseudo-metrics of all gauges.

In general, completions of pseudo-metric spaces are more convenient since a pseudo-metric

space is complete as a uniform space if and only if every Cauchy sequence converges in % (a

Cauchy sequence is a sequence which is a Cauchy net).

Concerning existence, every uniform space has a completion. More explicitly, to every uni-

form space (* ,D* ) there exists a complete uniform space (+ ,D+ ) containing * as a subset

such that restricting the elements of D+ to * yields the elements of D* . In addition, if the

uniform topology of (* ,D* ) is Hausdor�, so is the uniform topology of its completion. For a

full proof we refer to [Sch97, Thm 19.36].

§A.4.2. Completeness of topological vector spaces

Not every topological space is a uniform space but for topological groups and topological vector

spaces the situation is quite convenient, see [Sch97, Thm 26.29]: given a topological vector space,

there exists a non-unique gauge whose uniform topology coincides with the given topology. In

addition, all such gauges are equivalent in the sense that their Cauchy nets coincide.

As a consequence, any topological vector space can be considered as a uniform space so that

corresponding notions from uniform spaces – and completeness in particular – carry over to

topological vector spaces sensibly. For instance, weak topologies also correspond to a uniform

structure: let (�, g) be a given topological vector space over F = R,C. One can verify that the

weak topology f (�;� ′) induced by � ′ is the uniform topology given by the following gauge of

semi-norms

(4.2) Df (�,�′) :=
{
35 (G1, G2) := |5 (G1 − G2) |F : 5 ∈ � ′

}
.

Again, such gauges are not unique. For instance, excluding trivial dual spaces, restricting the

gauge given in (4.2) to 5 ∈ � ′ with ‖ 5 ‖�′ = 1 yields another gauge whose uniform topology is

the weak topology.

Returning to completeness, it turns out that completeness alone is not the only notion one is

after. Referring to weak topologies, one rather aims at a slightly weaker notion. A topological

vector space (�, g) is termed sequentially complete if every Cauchy sequence in � converges in �

and quasi-complete if every bounded and closed set� ⊂ � is complete as a uniform space. Equi-

valently, every bounded Cauchy net converges in � (Cauchy nets are not necessarily bounded).

Of course, completeness implies quasi-completeness which in turn implies sequential com-

pleteness; the reverse is true if a pseudo-metric space is at hand. Quasi-completeness can be

derived from completeness by the help of quasi-closed sets: a subset of a topological vector

space is quasi-closed if it contains all closure points of its bounded subsets. The quasi-closure

of a subset � is the intersection of all quasi-closed sets of containing �. The quasi-completion

of a topological vector space � is its quasi-closure in its completion. Sequential closures can be
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de�ned analogously, outside pseudo-metric spaces, the sequential closure of a set is not neces-

sarily sequentially closed itself, though.

For illustration, consider a Banach space (�, ‖ · ‖�) and its continuous dual (� ′, ‖ · ‖�′). Both

spaces are is complete with respect to the uniform structure induced by the norm. In contrast,

let DF∗ denote the gauge given by all pseudo-metrics 3 (ℓ1, ℓ2) := sup{|ℓ1 (G) − ℓ2 (G) | : G ∈
� with ‖G ‖� = 1}, whose uniform topology is the weak-* topology f (� ′, �). It is a classical

result that (�,DF∗) is quasi-complete, but it is complete if and only if dim(� ′) < ∞.

Finally, the uniform space completion of a topological vector space (�, g) is a topological

vector space, too. In addition, every pair of such completions is topologically isomorphic, if g

is a Hausdor� topology. In case of a Hausdor� topology, the quasi-completions are isomorphic,

too. Thus, every topological vector space that is complete (resp. quasi-complete) is topologically

isomorphic to its completion (resp. quasi-completion).
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Index

Y-dependent

Initial–value problem, 66

f-algebra

�nal, 34

pushforward, 34

Allaire function, 33

Allaire’s defect set, 32

Auxiliary domains

de�nition, 16

Hausdor�-convergence, 16

Category, 87

Co-limit, 89

Decomposition

resulting, of a domain, 42

admissible, of a domain, 42

of periodic cell, 42

Decoupled problem, 9

Directed set, 26

least element, 26

maximum element, 26

Domain

fast, 43

slow, 43

Embedding

trivial, 30

Flat 3-torus, 12

Functor, 88

Gauge, 94

Geldfand triplet, 64

Hausdor�-convergence, 16

Hausdor�-metric in R3 , 16

Heat �ux function, 67

Homogenisation

and periodic homogenisation, 4

High contrast regime, 5

versus periodic homogenisation, 5

Inductive

limit, 89

limit topology, 22

system (or family), 89

Isomorphism (of a category), 88

Limit, 89

Measurable

Bochner, 63

Nemytskii operator

induced, 35

Periodic

Z3 -periodic function, 22

distributions , ℬ-valued, 23

Periodic unfolding

induced parabolic, 65

Periodic unfolding operator

on auxiliary domains, 18

on R3 , 13

on a domain Ω, 20

Problem

Y-dependent parabolic, 66

Projective

limit, 89

system (or family), 89

Space

gauge, 94

Lebesgue–Bochner, 63

Sobolev–Bochner, 64

uniform, 94

Steklov average

backward, 92
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Index

forward, 92

Test functions

space of, ℬ-valued, 22

Transversality, 38

Two-scale convergence

distributions, 24

functions, 24

original de�nition, 8

Two-scale decomposition bundle, 20

Two-scale decomposition map

on R3 , 13

Two-scale gradient ∇Y , 43

Two-scale limit space Ξ, 51

Two-scale test function

admissible, 33

Allaire’s sense, 33

original de�nition, 8

Uniform

completion, 95

space, 94

structure, 94

topology, 94
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