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Chapter 1

Introduction

Technological advancements of the last twenty years were eagerly adopted by the stock ex-

changes resulting in quote processing times on the order of microseconds and timestamps

with nanosecond precision. The decreasing latency of exchanges made high-frequency trad-

ing (HFT) strategies possible, whereas they fueled further investments into speeding up the

infrastructure. HFT became ubiquitous bringing the average trading frequency up to before

unseen levels. Generally, exchanges are obliged to store and report every quote, whereas

eventually serving as data providers became a substantial part of their revenues. Due to the

improved availability of such datasets, the academic interest in analyzing this massive amount

of data from financial perspective grew exponentially and constituted itself as a separate field,

called high-frequency financial econometrics (see Aı̈t-Sahalia and Jacod [2014]).

The focus of the econometrics community was drawn to estimating and modeling volatil-

ity. While it is essential for many applications in finance, for example asset pricing, portfolio

and risk management, volatility is generally an unobservable process with no universal defi-

nition. Traditionally, volatility was estimated based on some parametric model or volatilities

implied by options. These approaches suffer from several drawbacks, which are due to the

specific parametric assumptions or weak sensitivity to recent behavior of prices. By defining

daily volatility for a (no-arbitrage) price process as the integrated variance, which is basically

accumulated variance over some time period, the non-parametric estimator called realized

variation (RV ) was popularized in a series of papers by Andersen et al. [2001], Andersen

and Bollerslev [1998], Corsi et al. [2001], Barndorff-Nielsen and Shephard [2002], whereas it

goes back at least to Merton [1980]. Technically, RV is calculated as the sum of squared
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intraday returns over equidistant time intervals, i.e. the sample analog of quadratic varia-

tion. Consequently, the theory on properties of this estimator was adopted from stochastic

calculus. Thereby, RV was shown to be asymptotically consistent with time interval going

to zero under the assumption of no jumps and noise in the price process (see Andersen et al.

[2001]).

The subsequent empirical analysis of the high frequency financial data revealed that

whether these assumptions are fulfilled depends heavily on the time scale, whereas RV di-

verges for increasing frequency. The common assumption of continuous price process is an

approximation (or limit) of the actually observed prices when the frequency increases. Since

prices are determined through transactions, they are observed at random not necessarily

equidistantly placed time points, whereas the order flow has impact on the price process

(news announcements). Responsible for the divergence of RV is microstructure noise, which

is a collective term for approximation errors stemming from sampling equidistantly placed

prices from observed trade data, bid-ask spreads, as well as price rounding and occasional

factual errors. Hansen and Lunde [2006] provide empirical analysis of this noise behavior.

Furthermore, jumps in asset prices are present at least due to market rules (no overnight

trading, circuit breakers) and are hardly identifiable due to the discrete-time nature of ob-

servations. Finally, considering the case of several assets, the time asynchronicity is an issue.

In order to tackle these problems a multitude of alternative methods collectively referred to

as realized measures (RM s) was proposed. For a thorough empirical overview of different

classes of RM s see Liu et al. [2015].

By treating volatility as an observed process, which is estimated with some RM , proper-

ties of such time series could be explored and modeled much more efficiently, compared to

econometric models based on unobserved volatility. The topic of this dissertation is modeling

time series of RM s with a special focus on forecasting. Currently, most popular univariate

models are basically restricted linear regressions with some economic argumentation, whereas

multivariate methods usually face complex numerical or theoretical issues. Chapters 2 and 3

propose alternative approaches to modeling univariate RM s from two different perspectives,

distributional with copulas and non-parametric with B-splines, respectively. Chapter 4 in-

troduces a novel factor-based approach to modeling multivariate RM s. The articles which

constitute this dissertation are briefly discussed in the remainder of this introduction.

2



1.1 Vine copula approach for modeling realized mea-

sures

The famous result by Sklar [1959] states that any multivariate distribution can be decom-

posed into corresponding marginal distributions and a multivariate function called copula,

in the way that copula maps marginals to the joint distribution function. The practical

attractiveness and popularity of the copula approach stems from the converse of Sklar’s the-

orem. Namely, a combination of any marginals and copula always defines a valid multivariate

distribution. The main references on copula theory are Nelsen [2006] and Joe [2014].

Considering copulas within modeling framework brings several advantages. Firstly, dur-

ing model specification a diverse set of distributions can be constructed from combinations

of marginals and copulas, i.e. individual and joint behaviors. Secondly, the estimation pro-

cedure is split into estimating univariate distributions and their dependencies sequentially,

thus simplifying the overall (numerical) problem and allowing for application of research re-

sults specific to each step. Using copulas is also supported from empirical perspective, since

the common normality assumption for financial data is often highly questionable. Finally,

copulas as a measure of dependence overcomes the drawbacks of (auto)correlation. The lat-

ter measures only pairwise dependencies, whereas its estimation is possible only with finite

second moment and is not reliable in case of infinite fourth moment (see Davis and Mikosch

[1998]). Empirical evidence suggests the presence of infinite higher moments due to heavy

tails in financial time series (see Ibragimov et al. [2015]).

While copulas steadily reserved an important place in financial theory and actuarial sci-

ence (see Ibragimov and Prokhorov [2017] and McNeil et al. [2015]), the interest in using

copulas for modeling (financial) time series has manifested itself only recently. The univari-

ate modeling approach is based on defining stationary discrete-time Markov chains through

invariant marginal distribution of the chain and transition distribution defined through a

copula. Darsow et al. [1992] were the first to apply copulas within time series context provid-

ing theoretical results on first-order Markov chains, whereas Ibragimov [2009] generalized the

findings to Markov chains of an arbitrary order. The semiparametric estimation of copula-

based time series was discussed in Chen and Fan [2006a,b].

The main advantage of copulas within time series modeling is that they allow for recon-
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struction of the conditional transitional distributions. Thus, (conditional) moments higher

than one and quantiles other than median can be recovered seamlessly. Furthermore, model

specifications which include copulas with asymmetric tail dependence could generate Markov

chains with increasing serial dependence when approaching high (low) values. Thus, such

copulas have the potential to model occasional temporary hoarding behaviors, like for exam-

ple volatility clustering.

However, theoretical flexibility of copula approach was practically very limited due to

scarcity of high-dimensional copula families, whereas most of them are generalizations of

bivariate copulas. These extensions to higher dimensions impose homogeneous dependencies

with simple parameterization. In his seminal paper Joe [1996] introduced the idea of building

multivariate distributions through sequentially defining intermediate (conditional) bivariate

dependencies. Using copulas as building blocks in this sequential manner quickly claimed a

separate field of research within copula theory. Generally, these constructions are referred to

as (regular) vines or vine copulas. Interest in this approach grew exponentially fast, whereas

vines saw a multitude of applications (see Aas [2016] for a review).

We propose a vine based modeling framework for time series of univariate realized mea-

sures. We consider two most studied and popular vine structures, namely canonical vines

(C-vines) and drawable vines (D-vines). In a specific sense they offer diametrically opposed

modeling frameworks. C-vines treat some (conditional) variable inherently as central at

each sequential level, whereas all variables are equal from model perspective within D-vines.

The empirical qualities of competing vines are analyzed based on bi-power variation (BPV )

calculated for 13 equity indices over a timespan of ten years. BPV is a popular realized

measure due to a good balance between technical simplicity and robustness against most

of microstructure noise. Both vines are estimated and analyzed on the datasets as in the

Heterogeneous Auto-Regressive (HAR) and Mixed Data Sampling (MIDAS) models, whereas

the corresponding approaches along with bivariate copula are taken as benchmarks. During

application study we put special focus on analyzing the non-linearity of estimated vines. The

results present overall flexibility of the proposed approach within the in-sample as well as

statistically superior forecasting power in out-of-sample.
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1.2 Non-parametric approach for modeling realized mea-

sures

Popular methods for modeling one-dimensional realized measures are usually linear time se-

ries models. Consequently, their theoretical properties contradict empirical characteristics of

volatility and financial data in general. Features like regime switching, non-normality, asym-

metric behaviors and obviously non-linear functional relationships among lagged observations

are not possible within standard linear models by design. Partial departure from linearity

can be facilitated by considering non-gaussian distributions for the innovations. However,

such implicit extensions of well-known models require suitable parametric assumptions and

are theoretically less preferable compared to an explicit extension, which is based on some

non-linear functional relationship.

Non-linear models are typically based on some a priori parametric assumptions, moti-

vated by empirical evidence or economic argumentation. For example, ARCH model family

(Engle [1982]), which defines a specific functional relationship between returns and volatility,

is a very famous member of this class. Furthermore, time series models built around copulas

- like the one presented in the previous section - also constitute a special parametric case of

this class. By relying on copula approach the generality is sacrificed deliberately for distri-

butional modeling of the conditional dependencies. When probabilistic aspects are not the

prime research focus, other non-linear time series methods can be attractive within volatility

modeling framework.

Nevertheless, choosing some specific functional link over others and motivating the choice

economically is usually problematic. The decision is further complicated within volatil-

ity modeling framework when relying on realized measures, since these are (noisy) non-

parametric estimators with normally complex dynamics. The simple fact that there are dif-

ferent realized measures, each with several choices for its implementation, makes an optimal

parametric model specification possibly dependent on the selected realized measure.

The most general modeling approach is to express random variable as (non-linear) func-

tion of its lagged values and white noise, whereas the functional form of the dynamics is

empirically estimated ex post. Despite the infinite number of possible functions, non-linear

time series literature produced very powerful results linking functions to stationarity of the
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produced process (see Tong [1990] for summary). However, inference without any a priori

assumptions on the data generating process results in what is called saturated non-parametric

model, which is known to be subject to the curse of dimensionality (see Chapter 8 in Fan and

Yao [2003] and references therein). Thus, making some mild general assumptions on the un-

derlying functional form, motivated by empirical evidence, is theoretically more appropriate.

In this way, parameters of a model specification can be estimated much more efficiently.

It is a commonly accepted fact that time series of realized measures (or volatility in gen-

eral) exhibit non-linear behavior. Perhaps, the most widely recognized empirical properties

of realized measures are high cross-time persistence and clustering behavior. In terms of

functional modeling, these stylized facts could be interpreted as continuity and locality of

the underlying functional link, respectively. Making the continuity assumption reduces the

choice to a smaller set of well-studied functions, whereas locality is generally acceptable for

continuous functions. Empirically recovering the true functional form can be facilitated by

using some appropriate basis.

We propose a non-parametric multivariate regression based on basis splines or B-splines.

These functions span the space of piecewise polynomials, which fulfill both continuity and

locality assumptions. Among other possible choices, B-splines stand out as a class of func-

tions with well-studied theoretical properties, abundant application results, computationally

efficient calculations and uniqueness. Whereas one-dimensional B-splines found widespread

recognition as a tool for non-parametric estimation, multivariate extensions were limited to

tensor products, which are inherently univariate. We present the theoretical foundations of

the multivariate B-splines and study their empirical properties within an application study.

Thus, the true functional link is recovered using an ensemble of multivariate B-splines. Tech-

nically, the data is transformed through a set of B-splines and linear regression is fitted to the

transformed data. The proposed method is compared against plain HAR model on the same

information filters for 22 equity indices using BPV . The analysis is performed on in-sample

and the forecasting power is tested statistically. Presented results reveal the superiority of the

proposed approach in modeling and analyzing time series, as well as in delivering significantly

better forecasts.

6



1.3 Matrix variate factor model

Modeling (co)volatility in case of several assets faces challenges, which are quantitatively

as well as qualitatively much more complex compared to the univariate case. First of all,

the practical implementation of any multivariate realized measure is severely complicated

by the asynchronicity of trade data for different assets. Additionally, the candidate model

must ensure positive definiteness, which is an intrinsic property of covariance matrices, and

be numerically feasible. The methods proposed in the literature so far guarantee positive

definiteness either through an appropriate model design, matrix transformation or distribu-

tion assumptions. On the other hand, model estimation is mostly possible only for small

dimensions or by naive simplification of parameterization.

First approaches to model multivariate risk processes were essentially GARCH extensions

to higher dimensions. Bollerslev et al. [1988] proposed to apply univariate GARCH processes

to matrix vectorization. In this way, positive definiteness can be guaranteed only numerically

and due to generality of the proposed model specification it is almost intractable within

empirical applications without further simplification. Later developed BEKK model (see

Engle and Kroner [1995]) is a GARCH-type approach directly for matrices. The model design

naturally ensures positive definiteness although parameter estimation is still computationally

demanding and their interpretation is cumbersome.

Another popular framework is similar to non-linear combinations of volatilities in the

spirit of copula modeling, whereas the dependence structure (correlation) is modeled sepa-

rately from individual volatilities. Bollerslev [1990] proposed constant conditional correlation

(CCC) model, where only volatilities are assumed to have dynamics. An improvement on

CCC is the dynamic conditional correlation (DCC) model by Engle [2002], whereas the dy-

namics of correlation matrix depend on only two scalars. Combining daily and intraday

information, Halbleib and Voev [2016], Oh and Patton [2016] considered mixed frequency

DCC, where the correlation matrices are based on daily information and individual volatili-

ties are modeled using intraday data.

A convenient way to ensure positive definiteness is by considering matrix transformations,

whereas mostly Cholesky decomposition was favored in applications so far. For example,

Chiriac and Voev [2011] applied VARFIMA to the elements of Cholesky matrix. The disad-

vantages of modeling the elements of Cholesky decomposition include the reliance on order,
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obscure interpretations of the parameters and introduction of bias through back multiplica-

tion (squared residuals). Another matrix decomposition was considered in Bauer and Vorkink

[2011], who modeled the elements of matrix logarithm. This decomposition is considerably

more computationally demanding than Cholesky and is generally constructed with error due

to approximations.

Positive definiteness can be ensure by introducing appropriate distributional assumptions.

Gouriéroux et al. [2009] proposed Wishart Autoregressive (WAR) model, which is defined as

conditionally non-central Wishart distribution with dynamics in the non-centrality parame-

ter. Later Golosnoy et al. [2012] proposed Conditional Autoregressive Wishart (CAW) under

which the conditional distribution is central Wishart, whereas scaling matrix has BEKK

dynamics. Again, the inference is feasible only for small matrix dimensions.

The numerical complexity of modeling matrix processes can be simplified by relying on

dimension reduction techniques. Thereby, introducing factor structure is arguably the most

popular of such techniques. In this way the number of parameters is reduced whereas their

interpretability is preserved. Furthermore, introducing (latent) factors normally offers new

analytical possibilities and facilitates efficient estimation. Probably the first factor approach

for multivariate realized measures is the model by Tao et al. [2011], which is basically PCA

for matrices. Estimation procedure is highly efficient but the positive definiteness of forecasts

remained unresolved.

In Chapter 4 we propose a novel matrix variate factor model, whereas factors are con-

sidered latent and are filtered from observed data. The model naturally ensures positive

definiteness due to appropriate distributional assumptions. Furthermore, we suggest a com-

putationally efficient estimation procedure based on Expectation Maximization algorithm

using analytical derivatives. Technically, estimation is a deterministic sequence of simple

matrix operations. Latent factors are filtered using Kalman-type technique, whereas the

estimates are shown to be asymptotically consistent with increasing dimension of data. The-

oretical properties of estimation procedure are analyzed within a simulation study. Empirical

application is performed for 60 most traded equities from S&P100 over a period of five year.

The proposed approach is compared to two benchmarks. Matrix forecasts are analyzed using

standard matrix norms and based on the performance of the minimum variance portfolio.

Results reveal the superiority of proposed model.
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Chapter 3

Article 2: Modeling temporal

dependence of realized measures with

multivariate B-splines
1

Abstract

A general non-linear non-parametric modeling framework for time series is proposed. The

considered approach is capable of replicating a broad class of cross-time dynamics. The

basic idea is making very weak assumptions on the true functional form of the dependencies

whereas inferring it from data using B-splines. The application focus in this paper lies on

modeling realized measures. Current popular methods in this field of research neglect the

potential non-linear and non-monotonic temporal dependencies. The proposed approach

overcomes common drawbacks of such models, whereas cross-time persistence and volatility

clustering can be replicated seamlessly. HAR, which can be seen as a special case of the

suggested modeling framework, is chosen as benchmark. Both models are evaluated within an

extensive empirical study both in- and out-of-sample and their forecasting ability is compared

statistically. The results suggest that the proposed model delivers significantly better results.

Keywords: B-splines, realized volatility, forecasting, time series

1Submitted to Econometrics and Statistics (2020).
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3.1 Introduction

Volatility within financial applications is generally an unobservable process which is usually

estimated non-parametrically from time series of returns. A monumental paradigm shift in

estimating volatility was made possible due to the improved availability and accessibility

of high-frequency (intraday) financial data. The focus of research community on modeling

intraday asset returns in continuous time led to fundamental theoretical results, that served

as the basis for developing realized measures (RM s), which are non-parametric estimators

of integrated variance. Practical issues, like microstructure noise or asynchronicity of data,

stimulated the development of different classes of RM s. Consequently, their use spread widely

within econometrics and finance due to the superior quality of volatility estimates compared

to those based on daily data.

By making volatility directly measurable, the focus of most applied empirical work was put

on statistical modeling and forecasting of volatility, whereas standard time series approaches

were considered first. The two most prominent and widely used examples are HAR by Corsi

[2009] and MIDAS by Ghysels et al. [2004]. Both methods are basically constrained linear

regressions based on the economic assumption of different dealing frequencies or exponentially

falling cross-time linear dependence in volatility, respectively. They are able of reproducing

the long memory behavior present in time series of volatility and are sparsely parameterized.

However, the problem thereby is the imposed linearity, which is emblematic of many proposed

methods so far. Linear regression delivers a global approximation neglecting local behavior,

like volatility clustering. Furthermore, the incremental change in forecasts is always constant,

i.e. it does not depend on the currently observed level of volatility. On the other hand,

considering some non-linear functional form of cross-time dependence is complicated by the

amount of possible choices.

In this paper, a non-parametric method capable of replicating a broad class of cross-

time dependence structures is considered. Probably the first non-parametric approach to

reconstruct the functional form of cross-time dependence from data was locally-polynomial

estimation proposed in Stone [1977], Cleveland [1979], Katkovnik [1979], whereas the sta-

tistical properties of the estimator were further discussed in Tsybakov [1986]. The model
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proposed in this paper is a non-linear autoregression with additive noise

Xt = f (Xt−1, . . . , Xt−k) + εt,

whereas function f is recovered from data using an ensemble of multivariate basis splines

or B-splines. These are non-negative bounded piecewise polynomial functions with compact

support. The attractiveness of B-splines is supported by their effective calculation, strong

approximation power, linear independence and uniqueness. The latter property is revealed

when compact support in form of simplex is given, i.e. area where B-spline is positive and

zero elsewhere.

Probably the first use of splines in regression modeling was Multivariate Adaptive Re-

gression Splines (MARS) model introduced in Friedman [1991], whereas an application to

time series modeling was examined in Lewis and Stevens [1991]. Engle and Rangel [2006]

were first to consider splines for explaining the slow changes of unconditional variance in

the context of volatility modeling. Later, Audrino and Bühlmann [2009] applied B-splines

within GARCH(1,1) by reconstructing the functional link between past daily returns and

volatilities. However, their multivariate implementation of B-splines is essentially univariate,

since tensor product of B-splines is taken. In this paper, true multivariate B-splines are

utilized outside GARCH framework, i.e. the behavior of volatility is explained only by its

past values. Furthermore, the focus lies mainly on statistical modeling.

The probabilistic properties of dynamical systems - such as non-linear autoregression

- with a specific focus on geometric ergodicity were discussed in Chan and Tong [1985].

Generally, if function f is bounded then the defined process is stable. Since B-splines are

bounded functions the proposed approach defines a stable time series process.

The paper is structured as follows. The next section provides basic information on realized

measures and outlines motivation for development of a new method. Section 3.3 provides

details on the proposed model. Introduction into the theory of multivariate B-splines is the

subject of Section 3.4. The estimation procedure is discussed in Section 3.5. The results of

an extensive empirical study are summarized in Section 3.6. Section 3.7 concludes.
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3.2 Modeling realized measures

Volatility of financial assets is generally a latent process, which can be estimated using ob-

served price movements, whereas the frequency of data has crucial impact on the quality of

such approximation. Since intraday financial data became available to the research commu-

nity, a new field of financial econometrics which deals with modeling inherent risk process

expanded quickly, delivering fundamental theoretical results. Thereby, the main focus lies on

developing and modeling so-called realized measures (RM s), which are designed to estimate

integrated variance (IV ) of intraday price movements. The simplest estimator of IV is the

realized variation (RV ), which was the first and is by far the most well-known of such pro-

posed methods. It is calculated as the sum of squared high-frequency returns over equidistant

time intervals

RV t =
M∑
m=1

r2
t,m,

where rt,m is the intraday return observed at the subinterval m on day t. RV consistently

estimates IV , when microstructure noise and jumps are not present in the observed asset

returns. In this case, when M goes to infinity, RV converges uniformly in probability to

quadratic variation of the price process, which is called IV within financial theory. Otherwise,

RV diverges or delivers biased estimates of IV . Due to strong empirical evidence for the

presence of such market frictions in the intraday time series of asset returns, different classes

of realized measures were developed. The specific RM used within empirical study is the

bi-power variation (BPV ), which is calculated as the summed products of absolute values of

two consecutive returns

BPV t =
M∑
m=2

|rt,m| |rt,m−1| .

It is a comparably simple measure, which nonetheless isolates the market frictions under the

assumptions that noise is not autocorrelated and the probability of a jump in two small con-

secutive intervals is negligible. Within this setting BPV converges uniformly in probability

to the IV (see Barndorff-Nielsen and Shephard [2004]). Furthermore, as discussed in Liu

et al. [2015], BPV is one of the most efficient RM s available. Aı̈t-Sahalia and Jacod [2014]

provide a very thorough overview of theoretical results concerning RM s.

There are different classes of approaches for modeling time series of RM s. Arguably,

the most prominent method - which additionally serves as benchmark through the empirical
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study - is the so-called Heterogeneous Auto-Regressive (HAR). It was first proposed in Corsi

[2009] and quickly emerged as one of the most popular choices. The inspiration for the model

design and name comes from Heterogeneous Market Hypothesis. Thereby, the dynamics of

volatility is linked to activity of heterogeneous market participants. HAR is based upon the

assumptions, that investors can be classified using their dealing horizon and that they affect

volatility differently. For example, market makers with high trading activity and pension

funds with low dealing frequency influence the market differently. The model is defined as

the following constrained linear regression

RM t = φ+ φ(d) · RM t−1 + φ(w) · 1

4

5∑
k=2

RM t−k + φ(m) · 1

15

20∑
k=6

RM t−k + εt,

where φ is the intercept, φ(d) is the regression coefficient for the previous day (D) observation,

φ(w) and φ(m) - coefficients for the proxies of weekly (W) and monthly (M) information,

respectively. The model is estimated using OLS.

The most well-known empirical property of RM s is their high persistence. From economic

viewpoint this phenomena can be explained based on mixture of distributions (Tauchen

and Pitts [1983]), interplay between trading volume and returns (Bollerslev and Jubinski

[1999]) or aggregation of numerous linear processes (Zaffaroni [2004]). Since the focus of

this paper lies on statistical modeling, some general conditions for long memory should

be derived from statistical viewpoint. According to Wold’s decomposition every (weakly)

stationary time series can be split into a deterministic trend and purely random component.

High persistence of such time series indicates that deterministic part is a smooth function

of the past observations and that the random component has relatively small variation.

Furthermore, time series of RM s generally demonstrate volatility clustering. This empirical

finding suggests varying dependence structure, i.e. some local approximations are desirable.

Due to the linearity of the most widely used approaches such approximations are not possible

since linear models are by definition fitted globally.

Figure 3.1 provides empirical evidence for the mentioned issues. Thereby, information sets

as in HAR are calculated for German DAX index over the period from January 2000 to De-

cember 2018. Next, two-dimensional grid on weekly and monthly information is constructed

and the daily data is categorized based on it. The average value of daily data associated with

each of such squares on the grid is illustrated in the left panel of Figure 3.1. Additionally,
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Figure 3.1: Volatility surface of 5-minute BPV for DAX index (left) and residuals from

estimated HAR (right).

the residuals after estimating HAR are categorized according to the two-dimensional grid,

and the results are reported in the right panel of Figure 3.1. Plots clearly illustrate the local

character and (local) smoothness present in data. Such behavior cannot be reproduced with

linear approach, since it basically builds a tilted plane. The next section briefly elaborates

on non-linear autoregression and introduces the proposed model.

3.3 Non-parametric B-spline regression

The foundations of non-linear autoregressive modeling were laid in Jones [1978]. A process

(Xt)t∈Z follows non-linear autoregressive model of order k with additive noise if there exists

a function f : Rk → R such that

Xt = f (Xt−1, . . . , Xt−k) + εt, (3.1)

where (εt)t∈Z are iid and εt is independent of (Xs)s<t for t ∈ Z. Within setting (3.1) the

slow varying conditionally deterministic drift is given by the function f itself, whereas purely

random part is εt. The former is commonly referred to as ”bone” or ”skeleton”, whereas the

latter - as ”skin”. Thus, it is assumed that (εt)t∈Z are identically distributed fluctuations
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around some (rigid) volatility ”skeleton”.

Up to now no conditions on the functional form of f were explicitly stated. Having a

specific application case in mind, the selected f should bare characteristics which are strongly

inline with the empirical findings partly discussed in the previous section. First of all, the

function must be smooth in past values in order for model (3.1) to demonstrate long memory.

Secondly, it should have flexible local behavior to replicate volatility clustering but also allow

for lower levels of volatility during calm periods. And lastly, since different financial assets

have distinct volatility profiles, the candidate function must be adaptable, i.e. it should

provide a flexible framework for replicating different behaviors. In this setting, taking a

functional basis consisting of smooth linearly independent functions with uniformly bounded

derivatives to model the behavior of conditionally deterministic drift is a logical choice. Since

there are generally different approaches for constructing a functional basis, some selection

must be done. Basis splines or B-splines constitute a theoretically powerful and computation-

ally effective functional basis for piecewise polynomial functions. Under certain conditions

presented later, linear combinations of B-splines can approximate continuous functions with

any given degree of accuracy. Thus, a proper ensemble of B-splines is able to fulfill the stated

criteria.

Next the proposed model is stated. Define L1 : Rk → Rl1 and L2 : Rk → Rl2 to be some

information filters with l1, l2 ≤ k. Given some ensemble of multivariate B-splines (Mi)i∈N ,

the following modeling framework is proposed

Xt − α′L1(Xt−1) =
∑
i∈N

βiMi(L2(Xt−1)) + εt, (3.2)

where Xt−1 = (Xt−1, . . . , Xt−k)
′ and Mi is a multivariate B-spline of dimension l2 with index

i. B-splines (Mi)i∈N in (3.2) have local support on some cylinder Ci ∈ B(Rl), whereas the

union ∪i∈NCi covers the compact support of (Xt)t∈Z. Due to this locality property of B-

splines the proposed model can be classified into the general class of threshold models (see

Tong [1990]). Furthermore, since B-splines are bounded and have compact support, the

stability of the dynamic model (3.2) is ensured. During empirical application we consider

the case of information sets as in HAR. Thereby, filters L1 = L2 reduces the information of

the last 20 days to only 3 variables, i.e. daily, weekly and monthly information. In the next

section theoretical foundations of B-splines are presented.
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3.4 B-splines

Using polynomials for approximating continuous functions is advantageous from several view-

points. Complex functions are generally computationally difficult to evaluate, whereas poly-

nomials can be evaluated, differentiated and integrated in a very straightforward fashion.

Furthermore, since they have easily tractable analytical properties, the target function can

be studied efficiently. Nevertheless, the simplicity of polynomials is still enough for approx-

imating a very broad class of continuous functions to a specified degree of accuracy. A

polynomial of order k is defined as

p(x) =
k∑
j=1

ajx
j−1, ak 6= 0,

whereas polynomials of order k form linear space further denoted by Π<k.

Given some function f , distinct points ξ1, . . . , ξk and function values f(ξi), . . . , f(ξk), there

exists exactly one polynomial p ∈ Π<k that interpolates f on these points. The approxima-

tion accuracy of this approach is well studied for different classes of functions and depends

crucially on local properties of the function to be approximated. Thus, if f has ”unexpected”

local behavior the approximation is globally weak. An appropriate criteria to classify such

behaviors for some f is the number and uniformity of continuous derivatives. The Jackson’s

Theorem (see (22) in de Boor [2001]) states that for a given f which is r times continu-

ously differentiable on interval [a, b], the accuracy increases with smaller b− a or/and bigger

order k of approximating polynomials. Thus, to gain additional flexibility and accuracy of

approximation, the local behavior can be modeled by introducing piecewise approximations,

i.e. splitting the interval [a, b] into parts and constructing polynomials.

Let ξ := (ξi)
l+1
1 be a strictly increasing sequence of points in R and ν := (νi)

l
2 a sequence

of non-negative integers less than or equal to k. Further define Π<k,ξ,ν as the linear space

of piecewise polynomial functions with continuity conditions at points ξ imposed by ν, i.e.

each f ∈ Π<k,ξ,ν is a polynomial of order k on (ξi, ξi+1) and f ∈ Cvi−1 at ξi for i = 2, . . . , l.

Thus, the convention of continuity from the right is adopted.

To allow for practical implementation of functions from Π<k,ξ,ν a basis of this linear

space is necessary. Since it is not unique, the choice should be made in favor of some

computationally and analytically attractive set of functions. One of the most straightforward
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ways to construct a basis of Π<k,ξ,ν is by simply using the truncated power functions

(t− x)r+ := ((t− x)+)r = (max {t− x, 0})r. (3.3)

at appropriate points. However, a much more efficient basis can be built by generalizing (3.3)

to B-splines through certain linear combinations.

B-splines were first introduced as own class of functions by Schoenberg [1946] and the

term was coined in Schoenberg [1967]. A very comprehensive account of the topic can be

found in de Boor [2001], whereas practical applications of B-splines are discussed in Höllig

and Hörner [2013]. Univariate B-splines are basically (scaled) n-th order divided differences

of truncated power function.

Definition 1 (Divided difference). Divided difference of order n is the coefficient of xn in

the polynomial that interpolates g at the points tj, . . . , tj+n in R. It is denoted by

[tj, . . . , tj+n] g.

Divided differences are obviously invariant under permutations of the knots and allow

for multiplicity greater than 1. For a good account of properties of divided difference see

Chapter 1 in de Boor [2001]. To facilitate computational implementation divided differences

are calculated using the following recursive relation:

[tj]g = g(tj),

[tj, tj+1]g =
[tj+1]g − [t0]g

tj+1 − tj
,

. . .

[tj, . . . , tj+n]g =
[tj+1, . . . , tj+n]g − [tj, . . . , tj+n−1]g

tj+n − tj
.

The original formula for B-splines as derived by Curry and Schoenberg [1966] is given in

the following definition.

Definition 2 (B-spline of Curry-Schoenberg). The j-th B-spline of order k for the knot

sequence t := (ti)
n
0 in R is defined as

Mj,k,t(x) := Mj,k(x|tj, . . . , tj+k) = k [tj, . . . , tj+k] (· − x)k−1
+ , ∀x ∈ R. (3.4)

Notation (· − x)+ means that for a fixed x the function is treated as depending on only

one variable. For further purposes, the notation of B-splines is simplified to Mj,k by dropping

reference to knot sequence in the index as long as it can be inferred from the context.
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B-splines appear naturally when divided differences are applied to both sides of the Taylor

expansion of some function f . This leads to the following important relation

[tj, . . . , tj+k] f =

∫
R
Mj,k(x)

f (k)(x)

k!
dx,

whereas integral equals one if f(x) = xk.

B-splines can be studied through (3.4) by applying properties of divided differences and

function values can be calculated using the following formula

Mj,k(x) = k
n∑
j=0

(tj − x)k−1
+∏

i 6=j (tj − ti)
.

However, to facilitate practical implementation recurrence relation for B-splines is more suit-

able. Thereby, B-spline of order 1 is the characteristic function divided by the length (volume)

of the corresponding interval

Mj,1(x) =

 1
tj+1−tj , if tj ≤ x < tj+1;

0, otherwise

whereas higher order B-splines can be calculated using the following recurrence relation (see

Dahmen [1980])

Mj,k(x) =
k

k − 1

(
tj+k − x
tj+k − tj

Mj+1,k−1(x) +
x− tj
tj+k − tj

Mj,k−1(x)

)
. (3.5)

Calculating function values using (3.5) is computationally efficient and supports establishing

all analytical properties of (3.4).

B-spline is a piecewise polynomial of order k with breaks tj, . . . , tj+k, hence consisting of

at most k non-trivial polynomial pieces. The function is non-negative on R, has small support

in the sense that Mj,k(x) > 0 iff x ∈ (tj, tj+k) and is logarithmically concave on (tj, tj+k) (see

Curry and Schoenberg [1966]). The derivative of B-spline (3.4) can be represented recursively

using lower order B-splines. One interesting observation is that since Mj,k has one continuous

derivative more than Mj,k−1 and Mj+1,k−1, it follows that coefficients in (3.5) must cancel

out the discontinuities of a certain derivative of lower order B-splines. Generally, one could

define B-splines completely through this property without using divided differences. Further-

more, given some set of knots, B-spline function is fully determined. Thus, a refinement of

approximation is possible by simply changing the knot sequence.

22



Figure 3.2 contains examples of B-splines for order k = 2, 3, 4 using an equidistant knots

with step 0.1 on [0, 1]. The positivity and local support are clearly illustrated. Second order

B-spline is a piecewise linear function consisting of two parts, with undefined derivative at

the middle knot. Third and fourth order B-splines consist of three and four pieces which

form functions in C(1) and C(2), respectively.

0.0

2.5

5.0

7.5

10.0

k = 2

0.0

2.5

5.0

7.5

10.0

k = 3

0.0 0.1 0.2 0.3 0.4 0.5

0.0

2.5

5.0

7.5

10.0

k = 4

Figure 3.2: Example of B-splines on unit interval for k = 2, 3, 4.

The derivative of second order B-spline is discontinuous at the middle break due to an

important intrinsic property. The cardinality of knots - number of coinciding knots - controls

the smoothness of function in the neighborhood of each break, with fewer equal knots trans-

lating to more smoothness, i.e. k equals number of continuity conditions at some point x plus

the multiplicity of x as a knot (see Lemma 1 in Curry and Schoenberg [1966]). At a k-fold

knot no continuity conditions are imposed whereas no knot at a site enforces k continuity

conditions, i.e. two polynomial pieces connected at such x must be identical. Thus, at a

simple knot the function is in C(k−2), while for x 6= ξi the function is k−1 times continuously
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differentiable

As an example consider B-splines of order four with different continuity conditions at

point 0.2 in Figure 3.3. Thereby one to four knots (indicated by plot title) coincide at point

0.2, illustrating distinct behavior for B-splines at this point within their support. For a knot

sequence where 0.2 appears four times as a knot no continuity is observed at this point,

whereas for smaller multiplicities better smoothness is achieved. Such intrinsic property

could be used for controlling the approximation of some function by taking into account it’s

local behavior.
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Figure 3.3: Example of B-spline of order 4 with different continuity conditions at point 0.2.

Now, the most appealing property of B-splines from practical perspective and the inspira-

tion for their name is stated. For a strictly increasing sequence ξ = (ξi)
l+1
i=1 and a non-negative

integer sequence ν = (vi)
l
i=2 with vi ≤ k we set

n := k +
l∑

i=2

(k − vi) = dim Π<k,ξ,ν . (3.6)
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We further t := (ti)
n+k
1 ⊂ ξ to be a non-decreasing set of knots such that #{j : tj = ξj} =

k − vj for j = 2, . . . , l. For purposes of extrapolation we set the boundaries as follows

t1 ≤ t2 ≤ . . . ≤ tk ≤ ξ1 and ξl+1 ≤ tn+1 ≤ . . . ≤ tn+k.

The name basis spline is due to next theorem by Curry and Schoenberg [1966] with an

alternative proof in de Boor [2001].

Theorem 1 (Basis property of B-splines). Let t be a non-decreasing sequence of knots as

described above. Then the corresponding sequence of B-splines (Mj,k)
n
1 is a basis for Π<k,ξ,ν

on [tk, tn+1]

Π<k,ξ,ν =

{
n∑
j=1

αjMj,k : αj ∈ R

}
.

In particular, given some I ⊂ [tk, tn+1] the set

MI := (Mj,k : Mj,k(x) > 0, ∀x ∈ I)

is locally linearly independent on I.

This theorem enables reconstruction of any piecewise polynomial function from B-splines

for an appropriate knot sequence. Furthermore, since Π<k,ξ,ν is nested within the class of

continuous functions, a broad spectrum of functions can be approximated non-parametrically

through linear combinations of B-splines. Thereby sequence ξ stipulates the breakpoints,

whereas t - the level of smoothness. In this way a knot with multiplicity k implies no

continuity, whereas B-spline is in C(k−2) or C(k−1) for a point which is a simple knot or not a

knot, respectively. Theoretical results suggest that the quality of approximation of continuous

functions increases with number of knots and better uniformity of continuity, whereas the

information about local behavior of target function can be deduced empirically. Developing

a result comparable to Theorem 1 within high dimensional setting was made possible by the

introduction of multivariate B-splines.

Multivariate B-splines

The crucial step in order to generalize univariate B-splines to higher dimensions was taken

in Curry and Schoenberg [1966], where the authors delivered a geometric interpretation of
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the univariate case. Let t1, . . . , tk+1 be a strictly increasing sequence of knots in R. Further

define y1, . . . ,yk+1 ∈ Rk such that the first coordinates coincide with t1, . . . , tk+1, i.e.

yi,1 := (yi)1 = ti, i = 1, . . . , k + 1,

and such that k-dimensional simplex σk spanned by y1, . . . ,yk+1 has volume one, i.e.

volkσk =
1

k!
| det(y2 − y1, . . . ,yk+1 − y1)| = 1.

Then as shown in Curry and Schoenberg [1966] the univariate B-spline on t1, . . . , tk+1 is the

linear density function of the orthogonal projection (”shadow”) of σk onto R:

M(x) = M(x|t1, . . . , tk+1) =
volk−1{y ∈ σk|y1 = x}

volkσk
= volk−1{y ∈ σk|y1 = x}.

This formula implies that a univariate B-spline at some point is calculated as the k-dimensional

volume of intersection of σk with a hyperplane orthogonal to x-axis at some point.

As an example consider a B-spline of order two with knots t1, t2, t3 as in Figure 3.4 (see

Micchelli [1979]). The knots are ”elevated” to y1,y2,y3 in the plane, such that the area of the

triangle is 1. For some point t the value of B-spline is calculated as the length of intersection

between a line orthogonal to x-axis at point t and simplex σ(y1,y2,y3) marked by thick line

in the figure.

t1 t2 t3

y1

y2

y3

t

M(t|t1, t2, t3)

Figure 3.4: The geometric interpretation of univariate B-splines demonstrated for a B-spline

of order 2 on some knots t1, t2, t3.

The geometric interpretation of univariate B-splines provided in Curry and Schoenberg

[1966] led to the following definition of multivariate B-splines introduced in de Boor [1976].
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Definition 3 (Multivariate B-spline). Let T = t1, . . . , ts+k, k ≥ 1 be a set of points in Rs

such that the dimension of the convex hull of T is s, alternatively vols(σ(T)) > 0. Further let

y1, . . . ,ys+k ⊂ Rs+k, such that yi|Rs = ti, i = 1, . . . , s + k. Then the multivariate B-spline

is defined as

M(x|t1, . . . , ts+k) := M(x|T) = M(x) =
vols {y ∈ σ(y1, . . . ,ys+k) : y|Rs = x}

vols+kσ(y1, . . . ,ys+k)
(3.7)

As shown in Dahmen [1980], such ”elevation” is always possible for s + 1 affinely inde-

pendent elements present in T, since in this case vols(σ(T)) > 0. The multivariate B-spline

defined in (3.7) does not depend on the choice of the (s+k)-dimensional simplex but only on

the projected vertices t1, . . . , ts+k. Normally, these elevated knots are chosen in such a way

that (s+k)-dimensional simplex has unit volume. Multivariate B-splines can be alternatively

defined as the unique density of

∫
Rs

M(x|t1, . . . , ts+k)f(x)dx =

∫
σs+k

f(x)dy. (3.8)

Thereby B-spline M is unique given some points t1, . . . , ts+k, i.e. it does not depend on

σs+k. Property (3.8) characterizes the B-splines completely in the univariate as well as in the

multivariate case (see Dahmen [1980]).

Definitions (3.7) or (3.8) are analytically but not practically attractive. To enable com-

putational application, a recursive relation in the spirit of (3.5) for multivariate B-splines

was derived in Micchelli [1980], Dahmen [1980]. The computational aspects of this algorithm

were further discussed in Micchelli [1979]. Thus, for k = 1 the multivariate B-spline (3.7) is

the characteristic function of the simplex σ(t1, · · · , ts+1) divided by its volume:

M(x|t1, · · · , ts+1) =


s!

∣∣∣∣∣∣det

 t1 · · · ts+1

1 · · · 1

∣∣∣∣∣∣
−1

, x ∈ σ(t1, · · · , ts+1)

0, x /∈ σ(t1, · · · , ts+1)

A B-spline of arbitrary order k > 1 can be defined through lower order B-splines given any

s+ 1 affinely independent points tij ⊂ T, j = 1, . . . , s+ 1 using following recurrence relation

M(x|T) =
k + s

k

s+1∑
j=1

Cij(x|ti1 , . . . , tis+1)M(x|T \ {tij}), x ∈ Rs, (3.9)
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where Cij are the barycentric coordinates

Cij(x|ti1 , . . . , tis+1) :=

det

 ti1 · · · tij−1
, x, tij+1

· · · tis+1

1 · · · 1 1 1 · · · 1


det

 ti1 · · · tis+1

1 · · · 1

 .

For α ∈ Zs+, with |α| = ∑s
i=1 αi and xα =

∏s
i=1(x)αi

i we define the linear space of s-variate

polynomials of order k

Πk,s :=

∑
|α|<k

cαx
α : cα ∈ R,x ∈ Rs


Multivariate B-splines are polynomials of order k within any region which is enclosed but

not intersected by any simplex of s elements (”edge”) from T. Furthermore, if every s + 1

subset of T is affinely independent, B-spline is k − 2 times continuously differentiable.

According to (3.9), the value of a multivariate B-spline at x is a sum of products of

barycentric coordinates relative to knots from shrinking subsets of T. Let (Tl)l=1,...,k be

nested sets corresponding to some term in the sum (3.9), such that Tl ⊂ T, Tl+1 ⊂ Tl,

|Tl| = |T| − l . The recurrence given in (3.9) stops at Tk, i.e. when it has exactly s + 1

points in general position. Thereby, a term in the sum (3.9) is non-zero iff x ∈ Tk. Consider

simplex σ(T) in the left panel of Figure 3.5 defined through knot points marked in red. All

possible subsimplices can be recognized by any three connected knots in the right panel of

the same figure.

The recursive relation (3.9) does not stipulate the order in which the knots have to be

removed. However, to decrease the computational complexity one could first find all (s+ 1)-

simplices which contain the considered point. Left panel of Figure 3.6 demonstrates some

random point x marked in blue, whereas all 2-simplices which contain this point are marked

in red. Thus, only those nested subsets of T correspond to non-zero term in sum (3.9), which

end up as one of the marked 2-simplices.

Bivariate B-spline defined through this set of points is a polynomial of order k within

regions not crossed by any of these lines. However, imposing those continuity restrictions

practically is quite demanding. For example, consider point y in the right panel of Figure

3.6 which lies in the intersection of two ”edges” (0,0)-(4,2) and (2,0)-(4,4). In contrast to
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Figure 3.5: An example of 8 affinely independent points on the plane (left) along with all

possible subsimplices.
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Figure 3.6: Subsimplices containing points within and outside of the intersection of edges.

univariate case, rules of assigning such intersection points to some simplex are much more

complex. As mentioned before intersection of two neighboring intervals is considered to be

contained in the interval on the right. Here and for higher dimensions a set of highly complex

rules has to be designed first. Thus, we exploit the continuity of multivariate B-splines by

shifting such problematic points randomly to regions without any intersections. The resulting

bivariate B-spline is given in Figure 3.7.

By shifting the simplex as in Figure 3.5 along both dimensions one gets linearly indepen-

dent B-splines which approximate appropriate continuous functions with any desired degree

of accuracy Dahmen [1980]. This approach can be generalized to higher dimensions. In the

next section we discuss the aspects of estimation procedure.
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Figure 3.7: Example of two dimensional B-spline with simplex given in Figure 3.5.

3.5 Estimation and forecasting

Anticipating empirical application, the specifications of implemented estimation procedure

are now discussed. Three dimensional information filter as in HAR is considered during

empirical study. Thereby a three dimensional base and appropriate shifting logic have to be

specified. Since B-spline base dictates the order of polynomial approximation and the shape,

some commonly used values should be considered. Generally, B-splines of order three or four

are used within empirical applications in the univariate case. Thus, a natural choice from

different perspectives is a three dimensional cube, which is highlighted with a solid line in

Figure 3.9. It defines a polynomial of total order 4 and can be easily scaled and shifted across

all dimensions. The illustrated cubes have edge length 2, whereas shifts of magnitude one

across all three axes are displayed using dotted lines.

B-spline defined by this 3-dimensional cube is illustrated in Figure 3.8 in dependence of

the value of the third variable Z, which is indicated by the plot title. B-spline is almost linear

(and zero) for small values of Z whereas it achieves the biggest smoothness at the center of

the value interval of Z.

The edge length and number of shifts during empirical application is selected in the

following way. For each considered equity index and some time period daily (D), weekly (W)
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Figure 3.8: The 3-dimensional B-splines defined by the cube with edge length 2. Plot titles

indicate different values of the third variable.
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Figure 3.9: Base and integer shifts of the three dimensional B-splines used within the empir-

ical study.

and monthly (M) information as in HAR is calculated. By shifting equal three dimensional

cubes, different coverages of the data ”domain”

[0,max(D)]× [0,max(W )]× [0,max(M)]

can be produced with varying precision. Further, m will quantify the approximation quality

in the following fashion. Thereby, the edge length l of cubes is calculated as

l =
max(max(D),max(W ),max(M))

m
.

The cubes are shifted till the whole data domain is covered. The amount of shifted cubes

stipulates the precision, with higher count resulting in better in-sample accuracy but also

more cubes without any data points.

Once data is transformed through B-splines the proposed approach is basic linear regres-

sion model. Thereby, on the left side of equation (3.2) a restricted regression in the spirit of

HAR is taken. The coefficients of linear combinations of shifted multivariate B-splines are

estimated with least squares approach under no further restrictions. Forecasts are taken as

the conditional mean.

The in-sample fit of both models is compared using RMSE, whereas the evaluation of

forecasts must be treated differently. Patton [2011] argued, that since RM s are estimators of
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volatility, the ranking of forecasts x̂t based on such volatility proxies xt generally depends on

the choice of loss function L. However, the only ranking available in applications is the so-

called feasible ranking which is based on volatility estimators and is generally different from

the infeasible one, which is based on the true values. To resolve this problem, Patton [2011]

specifies exactly which classes of loss functions are insensitive to empirical imperfections

(noise) of the chosen volatility proxy. This class of functions delivers identical rankings of

forecasts under the true volatility as well as under the unbiased estimator of it. Probably, the

two most prominent examples of loss functions in this class are mean squared error (MSE)

and QLIKE, defined as

MSE : (xt − x̂t)2,

QLIKE : log x̂t +
xt
x̂t
,

whereas the latter is less sensitive to extreme observations due to its design. Bollerslev et al.

[1994] contains additional discussions and examinations of QLIKE.

Furthermore, to test whether differences in QLIKE of several competing models are sta-

tistically significant, Patton [2011] also proposed to compare their predictive ability using

Diebold-Mariano-West (DMW) test (Diebold and Mariano [1995], West [1996]). Generally,

the use of QLIKE instead of MSE is advocated since the moment conditions required for

DMW test under QLIKE are far weaker than those for the MSE. More importantly, DMW

in this specification was found to have more power (see Patton and Sheppard [2009]). Given

two competing forecasts x̂1t and x̂2t the null hypothesis

H0 : E [L(x̂1t, xt)− L(x̂2t, xt)] = 0,

is tested against the case when this (expected) difference is either positive of negative.

As a further comparative criteria, the mean interval score (MIS) defined by Gneiting and

Raftery [2007] as:

MISα (l,u;x) =
1

T

T∑
t=1

[
(ut − lt) +

2

α
(lt − xt) 1xt<lt +

2

α
(xt − ut) 1ut<xt

]
,

is considered. Thereby, T is the number of out-of-sample forecasts, lt and ut are the lower

and upper bounds of 100 (1− α) % confidence intervals. Lower values of MISα are associ-

ated with better forecasts, whereas quantities 2
α

(lt − xt) 1xt<lt and 2
α

(xt − ut) 1ut<xt serve as

penalization terms when true values lie outside of the interval.
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3.6 Empirical study

Within this empirical study shifted multivariate B-splines are applied to model volatility

behavior of equity indices, whereas the in- and out-of-sample performance are analyzed and

compared. B-spline regression is estimated as described previously based on the information

sets as in HAR, whereas the latter model is the natural benchmark. The considered data

sample consists of 22 international equity indices and spans from January 2000 to December

2018. The information about individual index tickers is listed in Table 3.1.

Ticker Name

AEX AEX index
AORD All Ordinaries
BFX Bell 20 Index
BSES S&P BSE Sensex
BVSP BVSP BOVESPA Index
DJI Dow Jones Industrial Average
FCHI CAC 40
FTSE FTSE 100
GDAX DAX
HSI HANG SENG Index
IBEX IBEX 35 Index

Ticker Name

IXIC Nasdaq 100
KS11 Korea Composite Stock Price Index
KSE Karachi SE 100 Index
MXX IPC Mexico
N225 Nikkei 225
NSEI NIFTY 50
RUT Russel 2000
SPX S&P 500 Index
SSEC Shanghai Composite Index
SSMI Swiss Stock Market Index
STOX EURO STOXX 50

Table 3.1: Equity indices considered through empirical study.

The specific volatility proxy taken for modeling is 5-minute BPV as provided by Oxford-

Man database. Overview of the empirical characteristics for each equity index is reported in

Table 3.2. Thereby sample average, standard deviation, median and 95% quantile of each

time series were calculated. Generally, separate markets show different trading activity but

since 5-minute BPV is taken those differences should cancel out. Thus, the most volatile

markets are Chinese SSEC and Indian BSESN according to average and standard deviation

of BPV , respectively. The former also has the highest 95% quantile and second highest

median of all time series. On the other end of the volatility spectrum, is the Australian

AORD, which is probably the calmest market according to data.

First, HAR and proposed model for different degrees of accuracy are estimated on all

available data and in-sample fit is compared for each index. The precision of B-spline ap-

proximation hinges on the amount of shifted cubes, whereas higher count results in better

in-sample accuracy.
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Avg Std Med 95%

AEX 10.9 18.7 5.4 37.4
AORD 4.2 7.2 2.3 13.1
BFX 8.0 12.4 4.4 25.2
BSES 13.5 27.6 6.7 44.3
BVSP 13.7 21.2 8.8 37.4
DJI 8.4 20.3 3.8 26.5
FCHI 12.6 20.9 7.0 39.7
FTSE 8.9 20.7 4.4 27.7
GDAX 14.5 25.0 7.5 51.1
HSI 8.7 14.8 5.0 24.8
IBEX 13.1 18.6 8.4 38.4

Avg Std Med 95%

IXIC 11.9 23.0 5.2 42.0
KS11 11.3 21.0 5.3 37.8
KSE 8.9 13.4 4.7 31.6
MXX 6.2 9.8 3.5 19.1
N225 9.1 16.2 5.5 25.5
NSEI 11.0 26.7 5.3 34.5
RUT 6.6 14.8 3.2 21.0
SPX 8.8 20.5 3.9 28.7
SSEC 15.5 26.4 7.4 55.1
SSMI 7.7 14.8 3.8 26.4
STOX 13.2 22.6 7.0 43.5

Table 3.2: Summary statistics (×105) of considered equity indices.

Thus, B-splines with m = 5, 10, 20, 30, 40, 50 as described previously are taken. The

linear combinations of shifted multivariate B-splines along with information as in HAR are

estimated with least squares approach under no further restrictions. As stated previously,

the model fit is assessed using RMSE. The results are reported for HAR and B-splines of

different precision indicated by column name in Table 3.3. Already m = 5 yields better

in-sample fit than HAR, whereas best results are achieved for highest considered amount of

shifted cubes. The best fit within this group of equity indices was observed for the least

volatile AORD, whereas the worst results are associated with BSES, NSEI and SSEC, which

are most volatile according to standard deviation. It is clear that adding further cubes will

only increase the accuracy of approximation.

We further analyze the estimated coefficients of both approaches. Since daily, weekly

and monthly information is included in both HAR and proposed model we analyze the

differences to assess the impact of the additional information. Here the average coefficients

over all equity indices are calculated for HAR and shifted B-splines whereas the results are

reported in Table 3.4. The importance of daily information decreases mildly within proposed

model with increasing precision, whereas the impact of weekly data on the contrary becomes

stronger.
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5 10 20 30 40 50 HAR

AEX 10.9 6.7 4.7 4.1 3.5 3.1 14.5
AORD 2.3 2.0 1.5 1.4 1.2 1.1 3.1
BFX 5.5 4.6 3.3 2.6 2.4 1.8 7.5
BSES 32.8 28.6 21.5 20.2 13.7 11.1 52.1
BVSP 10.7 9.8 8.9 8.1 7.2 6.7 20.1
DJI 12.6 7.7 7.5 7.0 6.4 5.5 20.4
FCHI 15.7 11.0 8.3 6.5 5.8 4.3 21.1
FTSE 20.5 16.3 14.7 13.3 11.3 7.6 26.8
GDAX 21.0 16.3 10.2 9.3 8.0 6.7 28.5
HSI 9.3 5.8 5.2 4.1 3.5 2.9 11.1
IBEX 14.8 9.3 8.1 7.0 5.9 4.9 18.2
IXIC 22.4 18.3 10.1 7.0 5.5 4.5 26.3
KS11 10.0 8.7 8.5 6.5 5.2 4.7 18.4
KSE 8.4 7.5 5.4 4.5 3.6 2.8 10.2
MXX 5.0 4.5 4.1 3.8 3.5 3.2 6.0
N225 10.5 7.3 5.6 5.3 4.6 4.2 14.5
NSEI 29.8 23.6 15.7 13.8 13.0 12.4 49.1
RUT 7.8 3.7 3.4 3.0 2.7 2.5 11.8
SPX 10.4 6.3 5.7 5.2 4.9 4.2 18.5
SSEC 26.6 22.9 21.9 16.7 12.3 11.5 37.6
SSMI 9.6 7.7 5.3 4.9 4.3 4.0 11.5
STOX 18.5 12.6 10.9 7.6 6.8 6.1 26.5

Table 3.3: In-sample RMSE (×109) for HAR and B-spline regression estimated on the full

sample with different degrees of accuracy. The best result for each index is marked in bold.

5 10 20 30 40 50 HAR

D 0.49 0.48 0.44 0.46 0.45 0.44 0.33
W 0.28 0.35 0.37 0.41 0.43 0.42 0.39
M 0.14 0.13 0.14 0.12 0.12 0.13 0.22

Table 3.4: Average coefficients over all equity indices corresponding to daily (D), weekly (W)

and monthly (M) information as in the proposed model and HAR.

As illustrated in Figure 3.1, plain linear regression is not capable of reproducing local

behavior. Subplot with HAR errors is presented in Figure 3.10 along with similar plots for

B-spline regression with m = 5, 20, 50. These results indicate that B-spline regression with

m = 5 is similar to the model without B-splines, whereas the fit is better for bigger m.
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Figure 3.10: Average residuals calculated as described earlier. Results for HAR model are

presented in top left subplot and for B-spline regression in the remaining subplots, whereas

title indicates the precision.

Nevertheless, the discussed coefficients of HAR and B-spline regression are only partly

comparable, since they quantify the linear response to changes in variables for the former

model. A better measure of comparison would be marginal effects, defined as sensitivities of

forecasts with respect to each explanatory variables. Given some observed information up to

time point t, this measure is calculated as the deviation in forecasts divided by change in input

variables, i.e. it is a partial derivative of the forecasting function. In case of linear models

marginal effects are equal to regression coefficients. Figure 3.11 demonstrates marginal effects

for daily, weekly and monthly variable and m = 5, 50 in the form of boxplots. The response

to daily and weekly information becomes more diverse with increasing m due to expanding

locality. Furthermore, the influence of monthly information stays relatively subdued.
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Figure 3.11: Boxplots of marginal effects for different variables (row) and two degrees of

accuracy m = 5, 50 (column). Whiskers indicate 1.5 standard deviation and outliers are

omitted for illustration purposes. Red x markers indicate coefficients of plain HAR, whereas

green crosses - the coefficients of the HAR informational filters as in the proposed model.
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Now we proceed to forecasting application. Thereby, B-spline regression and HAR are re-

estimated monthly using the whole available information to date. One-step-ahead forecasts

are done for the following month based on these parameter estimates. Considered time

period starts on the first and ends on the last trading day of 2018. The results are reported

as average QLIKE losses in Table 3.5. All cases in which forecasts associated with B-spline

regression were better than those of HAR are marked in bold and additionally in italics, if

the difference was statistically significant. B-spline regression was consistently better than

HAR with as little as m = 5, whereas the proposed approach was significantly better for

4 tickers, including most important US equity indices. The 95% quantile of out-of-sample

QLIKEs and MIS with α = 5% are reported in Tables 3.6a and 3.6b. Here, in 3 and 4 cases,

respectively, HAR delivered better results. Generally, the empirical findings suggest that

m = 5 or 10 should be an appropriate number.

5 10 20 30 40 50 HAR

AEX 0.1519 0.1515 0.1518 0.1552 0.153 0.1541 0.157
AORD 0.2319 0.2375 0.257 0.2752 0.265 0.2521 0.2703
BFX 0.1153 0.115 0.1206 0.1219 0.1244 0.1187 0.1205
BSES 0.5124 0.47 0.5623 0.5607 0.5231 0.4692 0.49
BVSP 0.1363 0.1344 0.139 0.1398 0.1404 0.1407 0.1448
DJI 0.2411 0.2315 0.3373 0.3463 0.3909 0.2357 0.28
FCHI 0.1562 0.1549 0.1688 0.1675 0.165 0.1547 0.1596
FTSE 0.1738 0.1736 0.1771 0.1772 0.1797 0.1596 0.176
GDAX 0.1304 0.1284 0.1314 0.1293 0.1315 0.1304 0.1362
HSI 0.1194 0.118 0.1211 0.1186 0.1183 0.1251 0.1297
IBEX 0.1143 0.1073 0.1269 0.1251 0.132 0.1092 0.1148
IXIC 0.2153 0.2072 0.2256 0.2342 0.2343 0.2332 0.2363
KS11 0.1013 0.1013 0.1135 0.1163 0.1159 0.1056 0.1099
KSE 0.1743 0.1734 0.1797 0.1858 0.1925 0.1829 0.1873
MXX 0.1476 0.1487 0.1536 0.1543 0.1754 0.149 0.1645
N225 0.193 0.1917 0.2035 0.2005 0.1998 0.2028 0.2161
NSEI 0.2261 0.2194 0.2734 0.2674 0.2585 0.22 0.2461
RUT 0.1612 0.1589 0.2005 0.1889 0.178 0.1651 0.2046
SPX 0.2138 0.2191 0.3213 0.3378 0.3325 0.2303 0.2561
SSEC 0.1464 0.151 0.1522 0.1616 0.1686 0.1448 0.1553
SSMI 0.087 0.0844 0.0914 0.0908 0.0919 0.0869 0.0878
STOX 0.1718 0.1679 0.1787 0.178 0.1856 0.1644 0.1757

Table 3.5: Average QLIKE of forecasts. Results for B-spline regression which are better than

HAR are marked in bold, whereas statistically significant difference is highlighted in italics.
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3.7 Summary

In this paper a non-parametric regression based on B-splines is proposed. Technically, pre-

sented model recovers the true functional link through a set of B-splines by a classic estimation

method. The proposed approach is applied within volatility modeling framework. Popular

models in this field are basically constrained linear regressions, which are by design incapable

of reproducing non-linearities or accounting for local behavior. The modeling approach sug-

gested in this paper extends or includes all popular frameworks as special cases. HAR model,

which is the most prominent of such methods, is taken as benchmark. The proposed model is

compared with this approach within an extensive empirical study on time series of bi-power

variation of 22 equity indices, whereas explanatory variables are selected as in HAR model.

The presented method delivers better results within in-sample as well as statistically better

forecasts.
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Wolfgang Dahmen. On multivariate B-splines. SIAM Journal on Numerical Analysis, 17(2):

179–191, 1980.

Carl de Boor. Splines as linear combinations of B-splines. A Survey. In Approximation Theory

II, pages 1–47. Academic Press (New York), 1976.

Carl de Boor. A Practical Guide to Splines. Applied Mathematical Sciences. Springer, 2001.

42



Francis X. Diebold and Roberto S. Mariano. Comparing predictive accuracy. Journal of

Business & Economic Statistics, 13(3):253–263, 1995.

Robert F. Engle and Jose Rangel. The spline GARCH model for unconditional volatility and

its global macroeconomic causes. Review of Financial Studies, 21, 01 2006.

Jerome H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19

(1):1–67, 03 1991.

Eric Ghysels, Pedro Santa-Clara, and Rossen Valkanov. The MIDAS touch: Mixed data

sampling regression models. UCLA: Finance, 2004.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and

estimation. Journal of the American Statistical Association, 102(477):359–378, 2007.
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Chapter 4

Article 3: Matrix variate factor model

with application to realized covariance

matrices
1

Abstract

We propose a matrix variate dynamic factor model for time series of symmetric positive

definite matrices. The latent factors are matrices with a specific AR-type dynamics. The

suggested approach ensures symmetricity and positive definiteness by design. Furthermore, it

relies on appropriate distributional assumptions, preserves interpretability and supports data

analysis through introduction of latent factors. The proposed estimation procedure based on

EM algorithm consists of a deterministic sequence of simple matrix operations, thus making

the model attractive from numerical perspective. We further show the asymptotic consistency

of factors estimates under increasing dimension of data. The proposed model along with two

benchmarks is evaluated within an extensive empirical study both in- and out-of-sample.

The results reveal the advantages of the proposed approach.

Keywords: latent factor, Wishart distribution, EM, realized volatility

1Submitted to Journal of Econometrics (2020)
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4.1 Introduction

Informational streams in different fields of science are inherently multivariate, since normally

every observation is characterized by several variables (attributes). Consequently, multivari-

ate time series analysis evolved as an active field of research within statistics and delivered a

multitude of well-studied methods (see Tsay [2013]). Thereby, the functional dependencies

between variables as well as the temporal dependencies are modeled. Since the estimation

of such models is basically a high-dimensional numerical problem, different ways of reducing

computational complexity were proposed. Probably the most popular general approach is

the introduction of factor structure (see Bai and Ng [2002], Forni et al. [2000]). Thereby the

observed information is split into a relatively much smaller group of (latent) factors which

are assumed to explain most of the data dynamics and an (uncorrelated) idiosyncratic part.

The potential presence of autocorrelation within idiosyncratic part leads to limited separa-

tion of both components. Such models are only asymptotically identifiable, due to the model

assumptions about factors, which ensure separation of common and individual components

with increasing dimension of data. The introduction of factors within econometric applica-

tions is attractive from several perspectives. Firstly, in this way the number of parameters

is reduced. Secondly, in contrast to naive simplification of model parameterization by disre-

garding some dependencies completely, the factor approach simplifies the dependencies in a

well motivated way by considering some common drivers of change. Lastly, the interpretation

of parameters and (latent) factors delivers a powerful way of analyzing observed data.

Many observations within econometric applications consist of several variables with same

set of attributes, thus, the observed information is in matrix form. In such cases, depen-

dencies exist not only between columns but also between rows. For example, the option

prices for different strikes and maturities given as a time series are basically random ma-

trices observed over time. The typical approach to modeling matrix variate time series is

by vectorizing each matrix and applying some well-studied methods like factor analysis to

vectors. However, vectorization destroys the inherent structure of data by disregarding the

dependencies between rows or columns. Since matrix variate time series are the basic form

of economic information delivery, modeling such time series is becoming an active field of re-

search. Walden and Serroukh [2002] introduced the concept of matrix variate time series with

an engineering application. To the best of our knowledge Wang et al. [2019] were the first
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to consider a matrix factor model within econometric application. The method is a two-step

hierarchical model, where intermediate factors are first extracted from each row of observed

data separately, whereas in the next step factors are extracted from each column of interme-

diate factors. Finally, the model is assembled. Due to the generality of assumptions on data

and factors, which can be rectangular, Chen et al. [2020] proposed a method to incorporate

a priori information about data, by introducing constraints on the model specification.

In this paper we introduce a new multivariate approach to modeling symmetric positive

definite matrices based on latent factors, with a specific application to realized covariance ma-

trices in mind. The proposed factor model is based on appropriate distributional assumptions

and thus ensures positive definiteness by design. Furthermore, the analytical properties of the

model are easily accessible whereas the interpretability of parameters is very straightforward.

A brief overview of the existing methods to model realized covariance matrices reveals that in

all cases the general design must be simplified for numerical purposes by disregarding almost

all cross dependencies, for example Bollerslev et al. [1988], Engle and Kroner [1995], Boller-

slev [1990], Engle [2002]. To ensure positive definiteness, a popular method is to transform

matrices with Cholesky decomposition or matrix logarithm, vectorize the resulting matrices

and model the entries separately, see Chiriac and Voev [2011] and Bauer and Vorkink [2011],

respectively. However, this introduces bias and complicates drastically the interpretation of

parameters. Furthermore, matrix transformations like Cholesky decomposition is unattrac-

tive from portfolio allocation point of view, since the results of modeling depend on the order

of assets. Finally, only several of the methods proposed so far (see Gouriéroux et al. [2009],

Golosnoy et al. [2012]) rely on distributional assumptions. The model we propose ensures

positive definiteness at every point in time, simplifies by introducing factor structure and is

invariant to asset order. In the empirical study we compare our model to ARFIMA-Cholesky

approach and the method proposed in Tao et al. [2011]. The authors elaborated on PCA for

matrix processes, whereas the dynamics of factors was proposed to be modeled with VAR.

The next Section introduces the approach we propose and the theoretical properties are

discussed. Section 4.3 outlines the estimation procedure. A simulation study is performed in

Section 4.4 followed by an empirical study in Section 4.5.
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4.2 Matrix variate factor model

This section introduces the proposed factor model and elaborates on its properties. We

denote the observed information with Yt and (unobserved) matrix variate factor process

with Ft, respectively. Furthermore, the notion of Wishart distribution given in the following

definition is essential within this paper.

Definition 4 (Wishart distribution). If Xi ∼ N(0,Σ),Σ ∈ Rp×p are independent and multi-

variate normally distributed variables for i = 1, . . . , n, then
∑n

i=1XiX
′
i ∼ Wp(n,Σ) is called

Wishart distribution.

Thus, a Wishart distributed variable is a random symmetric positive definite (spd) ma-

trix, whereas p identifies the dimension and n - the number of independent and identically

distributed (iid) normal vectors in the sum. To model the behavior of a time series of sym-

metric positive definite matrices, we propose the matrix variate state-space process with

factor structure given in Definition 5.

Definition 5. A time series of symmetric positive definite matrices {Yt} ∈ Rp×p is a matrix

variate factor model if for {Ft} ∈ Rq×q it satisfies

Yt = ΛFtΛ
′ + εt (4.1)

Ft = AFt−1A
′ + ut, (4.2)

where for q � p

Λ ∈ Rp×q is the matrix of factor loadings,

εt ∼ Wp (n,Σε) are iid shocks with Σε ∈ Rp×p,

A ∈ Rq×q is a quadratic full-rank matrix,

ut ∼ Wq (n,Σu) are iid shocks with Σu ∈ Rq×q.

The general idea of our factor model is that the observable process Yt can be split into two

orthogonal parts: the autocorrelated common component of considerably lower dimension,

represented by the latent matrix variate process {Ft}, i.e. factors, and idiosyncratic not au-

tocorrelated part, represented by iid εt. In general terms of factor modeling, equation (4.1) is
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called observation equation, which describes the relationship between observable information

Yt and (latent) factors, whereas (4.2) is called state equation and it determines the dynamics

of (unobservable) factors. The singular values of Λ determine the strength of the common

component, whereas its cross-time persistence is measured through eigenvalues of A.

To the best of our knowledge, the continuous version of the process as in the state equation

(4.2) was first considered in Bru [1991]. Later Gouriéroux et al. [2009] defined the process in

the discrete time through conditional Laplace transform and named it Wishart Autoregressive

process (WAR). The conditional distribution of the latent factor process is a non-central

Wishart

Ft | Ft−1 ∼ Wq(n,Σu,Σ
−1
u AFt−1A

′).

The following lemma describes the stationary distribution of the process.

Lemma 1. The stationary distribution of the factors {Ft} is given by the Wishart distribution

Wq(n, F ) where

F =
∑
i≥0

AiΣu(A
′)i. (4.3)

Consequently, following this lemma the process Ft is well defined iff the eigenvalues of

A lie within the unit circle. For the rest of this paper we assume that F0 ∼ Wq(n, F ),

although the results remain similar even if factor process does not start with the stationary

distribution. The analytical distribution of Yt is uniquely identifiable with the help of moment

generating function (MGF) given in the following Lemma.

Lemma 2. The moment generating function of Yt is given by

MYt(Z) = |Ip − 2ZΣε|−
n
2 ·
∏
j≥0

∣∣Iq − 2Λ′ZΛAjΣu(A
′)j
∣∣−n

2 (4.4)

Thus, it follows that the distribution of Yt is not Wishart. The following Lemma provides

results for the first two moments of Yt.

Lemma 3. The first and second moments of Yt are given by

E[Yt] = n (ΛFΛ′ + Σε)

and

E[Y 2
t ] = (ΛFΛ′)

2
+ ΛFΛ′Σε + ΣεΛFΛ′ + n((n+ 1)Σε + tr(Σε)Ip)Σε

+ n
∑
i≥0

(
ΛAiΣu(A

′)iΛ′
)2

+ n
∑
i≥0

tr(ΛAiΣu(A
′)iΛ′)ΛAiΣu(A

′)iΛ′,
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where the parameter F is as in (4.3).

The essential assumption of absent cross-time dependencies in idiosyncratic component

εt translates into degenerate measure of autocovariance as the following lemma shows.

Lemma 4 (Autocovariance function). For some lag k > 0 define the autocovariance function

of process Yt as in model (4.1)-(4.2) to be

ACV (k) := E [YtYt−k]− E [Yt]E [Yt−k] . (4.5)

It then follows that ACV(k) has exactly q non-zero eigenvalues.

In the following section we discuss the estimation procedure.

4.3 Estimation

Here we discuss the necessary assumptions to ensure the identifiability of the common and

idiosyncratic components within observed data. As mentioned earlier, the absence of dynam-

ics within the individual component is essential for inference and separation of the observed

information into two parts. Furthermore, asymptotic consistency of factor and parameter

estimates depends on the behavior of Λ and Σε with increasing dimension. We summarize

our set of assumptions as follows:

(A1) Ft and εt are independent processes;

(A2) |λmax(A)| < 1;

(A3) εt is a strong white noise matrix process;

(A4) lim infp→∞
1
p
λmin(Λ′Λ) > 0;

(A5) lim supp→∞
1
p
λmax(Λ′Λ) <∞;

(A6) lim infp→∞ λmin(Σε) > 0;

(A7) lim supp→∞ λmax(Σε) <∞.
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Assumption (A2) is necessary for stationarity of the process {Ft}, as stated previously.

Together with (A1) and (A3) the first three assumptions ensure that {Ft} and consequently

{Yt} are stationary. Further, assumptions (A4)-(A7) are required to guarantee the asymptotic

properties of the estimation procedure presented in Section 4.3 for the matrix of factor

loadings Λ and consequently the factor process Ft and other parameters. Hereby, assumption

(A4) states that the common component is pervasive, (A5) - that all eigenvalues of Λ′Λ diverge

at the same rate. Assumption (A6) ensures non-degeneracy of idiosyncratic component

and (A7) guarantees finite variance, which is essential for the identifiability of the common

component. The following lemma establishes the consistency of factor estimates given the

true matrix Λ.

Lemma 5. Under assumptions (A1)-(A7) for p→∞

(Λ′Λ)−1Λ′YtΛ(Λ′Λ)−1 → Ft.

Since the true factors Ft are identifiable only up to a rotation, we now characterize which

specific rotation of the true factors Ft is estimated. For E such that EFE ′ = Iq the following

factor estimates

F̃t = EFtE
′ = E (AFt−1A

′ + ut)E
′ = EAE−1F̃t−1(E ′)−1A′E ′ + ũt

are retrieved. This normalization results in standardized factors, i.e. E[F̃t] = Iq and following

parameter rotations

Λ̃ = ΛE−1,

Ã = EAE−1,

Σ̃u = EΣuE
′.

The following Lemma establishes the consistency of rotated factor estimates.

Lemma 6. Under assumptions (A1)-(A7) for p→∞

(Λ̃′Λ̃)−1Λ̃′YtΛ̃(Λ̃′Λ̃)−1 → F̃t.

Assumptions (A1)-(A7) are essential in order to show asymptotic consistency of the esti-

mation procedure presented in next subsection.
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Sequential estimation procedure

The only observable information within the proposed model is Yt. Thus, parameters Λ, Σε,

A and Σu have to be estimated and factors Ft must be filtered from data, given the proposed

data generating process. We choose likelihood based inference over non-parametric method as

in Tao et al. [2011] since the former accounts for the probabilistic specifications of the model.

Thus, in order to estimate parameters and filter factors of model (4.1)-(4.2) we propose an

iterative estimation procedure based on Expectation Maximisation algorithm (EM). EM

was first introduced in Dempster et al. [1977], whereas the specific case of factor models

was later discussed in Rubin and Thayer [1982], Shumway and Stoffer [1982]. Essentially,

it is a sequential maximum likelihood estimation (MLE) procedure applicable to models,

which depend on unobserved information. The basic principle is to calculate and maximize

log-likelihood in terms of both observed and unobserved data, i.e. factors. Define Θj =

{Λ(j), A(j),Σε(j),Σu(j)} to be the set of optimal parameters at iteration j, Y = (Y1, . . . , YT )

- the observed data and F = (F1, . . . , FT ) - latent factors. At each iteration j, algorithm

executes the following steps:

1. Expectation step (E-step) - computing the expected log-likelihood conditional on ob-

served data with optimal parameter set Θj:

L(Θ,Θj) = EΘj
[L(Y ,F |Θ)|Y ]

2. Maximization step (M-step) - re-estimating the parameters through the maximization

of the expected log-likelihood with respect to Θ.

Θj+1 = arg max
Θ

L(Θ,Θj).

The conditioning on the observed data in the E-step is essential, since estimates of factors

are filtered from Y using the parameter set Θj. M-step is normally much more computation-

ally demanding than E-step when executed numerically. However, in our case we calculate

first derivatives of log-likelihood w.r.t. each parameter matrix analytically and find unique

zero points. Thus, the M-step boils down to iterating through simple matrix calculations.

If EM steps are continuously repeated, convergence to a (local) optimum is guaranteed (see
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Wu [1983]). In order to perform the E-step we calculate the full likelihood of the model with

L (Y ,F | Θ) = f (Y ,F | Θ) = f (Y | F ,Θ) f (F | Θ)

=
T∏
t=1

f (Yt | Ft,Θ)
T∏
t=1

f(Ft | Ft−1,Θ).

The result in the last line is due to conditional independence of Ft and Ft−k for all k ≥ 2,

when conditioned on Ft−1. Thus, the log-likelihood is

logL (Y ,F | Θ) =
T∑
t=1

log f (Yt | Ft,Θ) +
T∑
t=1

log f(Ft | Ft−1,Θ). (4.6)

Next from (4.1) and (4.2) we derive that

Yt − ΛFtΛ
′ ∼ Wp (n,Σε) ,

Ft − AFt−1A
′ ∼ Wq (n,Σu) .

The conditional density functions from (4.6) are thus given by:

f (Yt | Ft,Θ) =
|Yt − ΛFtΛ

′|(n−p−1)/2 exp (−tr (Σ−1
ε (Yt − ΛFtΛ

′)) /2)

2np/2 |Σε|n/2 Γp
(
n
2

) ,

f (Ft | Ft−1,Θ) =
|Ft − AFt−1A

′|(n−q−1)/2 exp (−tr (Σ−1
u (Ft − AFt−1A

′)) /2)

2nq/2 |Σu|n/2 Γq
(
n
2

) .

Finally, the complete log-likelihood of the model takes the form of

logL = −
[
npT

2
+
nqT

2

]
log 2− nT

2
log |Σε| −

nT

2
log |Σu| − T log Γp

(n
2

)
− T log Γq

(n
2

)
+

(n− p− 1)

2

T∑
t=1

log |Yt − ΛFtΛ
′|+ (n− q − 1)

2

T∑
t=1

log |Ft − AFt−1A
′|

− 1

2

T∑
t=1

tr
(
Σ−1
ε (Yt − ΛFtΛ

′)
)
− 1

2

T∑
t=1

tr
(
Σ−1
u (Ft − AFt−1A

′)
)
.

The conditional expectation of log-likelihood is calculated using the factor estimates. In

next Lemma we present the optimal parameter set at each iteration j of EM, in the sense

that it contains the zero points of partial derivatives w.r.t. each parameter matrix.

Lemma 7. The optimal set Θ̂j = (Â(j), Σ̂u(j), Λ̂(j), Σ̂ε(j)) of parameters at iteration j is
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given by

Σ̂u(j) =
1

nT

T∑
t=1

ût,

Â(j) = GV
1
2 V̄ −

1
2 Ḡ′,

Σ̂ε(j) =
1

nT

T∑
t=1

ε̂t,

Λ̂(j) = HW
1
2 V̄ −

1
2 Ḡ′,

whereas

ḠV̄ Ḡ′ =
T∑
t=1

F̂t−1,

GV G′ =
n− q − 1

2

[
Σ̂u(j)

T∑
t=1

(û−1
t F̂t − Iq) +

T∑
t=1

(F̂tû
−1
t − Iq)Σ̂u(j)

]
,

HWH ′ =
n− p− 1

2

[
Σ̂ε(j)

T∑
t=1

(ε̂−1
t Yt − Ip) +

T∑
t=1

(Ytε̂
−1
t − Ip)Σ̂ε(j)

]

and F̂t, ût, ε̂t are filtered using optimal set of parameters from iteration j − 1.

The estimates of latent factors and innovations are calculated at every iteration step j

of EM using parameter set Θ̂j−1 from the previous step. The following Lemma lays out the

procedure.

Proposition 1 (Factor estimates). The estimates of factors and innovations are given by

F̂t = FΛ′(ΛFΛ′ + Σε)
−1YtΛ(Λ′Λ)−1,

ε̂t = Σε(ΛFΛ′ + Σε)
−1Yt,

ût = F̂t − AF̂t−1A
′,

whereas n · F is the expectation of Ft. Under Assumptions (A1)-(A7) for p→∞

F̂t → Ft, ε̂t → εt.

The suggested estimators differ from the estimators which would be obtained by a Kalman

filter. In the latter case the filtered residuals and factors are determined using the conditional

expectations of the respective true quantities. The expectation are easy to derive in the

classical dynamic factor models assuming normal distribution. This is not straightforward
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due to the specific modeling and distributional setting in our case. To overcome the problem

we suggest estimators of the factors and innovations in Proposition 1 which are not Kalman-

type estimators, but are consistent. Note that the estimators require only simple matrix

operations and thus are numerically easy to implement. In the simulation study we assess

the performance of the suggested technique.

4.4 Simulation study

Within this simulation study we consider parameter sets with increasing dimension of data

p ∈ (20, 40, 60, 80, 100) and number of factors fixed at four, i.e. q = 4. We further fix daily

frequency n = 390, which equals the number of minutes during a trading day on New York

Stock Exchange.

Further let index i denote different parameter setups of (Λ,Σε). For each i we select

Λi ∈ Rpi×q such that Λ′iΛi = diag(λ2
1,i, . . . , λ

2
4,i), whereas singular values λ1,i, . . . , λ4,i are

drawn from uniform distribution on [0.5 ·zi−0.5, 0.5 ·zi+0.5] and eigenvalues of Σε,i ∈ Rpi×pi

− from uniform distribution on [0, 1]. This translates to the property that the singular

values of Λi are in mean zi times bigger than those of Σε,i. In this way, assumptions (A4)-

(A7) are fulfilled, since singular values grow with dimension and Σε,i is non-degenerate. For

i = (1, . . . , 5) we select Λi and Σε,i only once using parameters pi and zi given in Table 4.1.

i 1 2 3 4 5

pi 20 40 60 80 100

zi 3 4 5 6 7

Table 4.1: Parameters pi and zi for simulations.

Next, to achieve comparability of results for different dimensions and be able to mea-

sure the effect of different persistence in factors we consider a matrix A with eigenvalues

(0.5, 0.6, 0.7, 0.8) and Σu such that AA′ + Σu = Iq.

Given true A the precision of estimates for Λ depends only on p, whereas given the true

Λ the precision of estimates for A depends only on T . Thus, in our setup increasing both

T and p should deliver better results for all considered Λi. Given some parameter set Θi =
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(Λi,Σε,i, A,Σu) and T we simulate 1000 samples of observed data (Yt)t=1,...,T . Next, for each

sample j we execute 1000 steps of EM and the parameter estimates Θ̂ij = (Λ̂ij, Σ̂ε,ij, Âij, Σ̂u,ij)

with the biggest log-likelihood are selected. Finally, singular values of Λ̂ij and eigenvalues of

Âij are divided by the corresponding true values, in order to measure the accuracy. Thus,

for each (i, j) we obtain 1000 distances between estimated and true parameters. We denote

the averages of the distances with λ̄k,i and āk, standard deviations of these distances with

σ(λk,i) and σ(ak) for k = 1, . . . , 4, respectively. The results for T ∈ (250, 500, 750, 1000) are

presented in Tables 4.2 and 4.3.

The precision of estimates for Λ and A increases with p and T , since averages λ̄k,i and

āk approach 1 and empirical standard deviations σ(λk,i) and σ(ak) tends to 0. Eigenvalues

of A tend to be slightly overestimated and those of Λ - underestimated. The higher the

persistence in factors the longer sample is needed for precise estimation of A, whereas this

effect is less muted for Λ.

Next, we measure the identifiability of the number of factors. The setup is now different

since we consider several Aj = aj · Iq, whereas aj = 0.4 + 0.1 · j. For this purpose we

simulate 1000 samples of observed data (Yt)t=1,...,T for each Θij = (Λi,Σε,i, Aj,Σu,j). For every

sample 1000 steps of estimation procedure with different number of factors q̂ ∈ (3, 4, 5, 6) are

executed. We again choose the model with the biggest log-likelihood. The proportion of

cases when a specific amount of factors had the biggest likelihood are presented in Table 4.4.

Since estimates of Λ are more precise with bigger p the proportion of cases when the true

amount of factors was selected increases. Also, the persistence in factors has non-negligible

effect on identification.

4.5 Empirical study

In the following empirical study we compare the factor model presented in this paper against

two other methods using realized covariance matrices of a subset of S&P100 equity index.

The benchmark is represented by the model as in Tao et al. [2011], further referred to as

simply principal components, and ARFIMA-Cholesky approach. Models are estimated and

compared on daily realized covariance matrices (RCs), computed as plain sums of vector

outer-products of 1-minute returns, whereas first and last 30 minutes of each day were
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removed. As a consequence of Lemma 2, it follows that the distribution of Yt as in the pro-

posed model is not Wishart, which does not contradict the definition of RM s as a volatility

measure, since there is a strong empirical evidence that RM s do not follow Wishart distri-

bution. The reason is that the underlying intraday returns are not iid Gaussian possibly

due to market microstructure effects. Furthermore, we don’t associate Wishart distributed

random matrices in Definition 5 with sum of outer products of intraday returns but instead

the whole model is applied to time series of RCs.

The considered sample comprises 60 stocks and spans over 1256 consecutive trading days,

starting on the first trading day of 2012 and ending on the last trading day of 2016. Con-

sidered stocks are components of the S&P100 equity index in the composition as of January

2019. We first remove stocks which are not available over the whole sample period. Then

60 equities with the highest intraday liquidity (amount of available 1-minute returns) are

filtered. The final selection of stocks along with their tickers is listed in Table 4.5.

4.5.1 Full sample analysis

For purposes of visual sample data analysis we present the time series of the two biggest eigen-

values of daily realized covariance matrices in Figure 4.1, whereas four biggest eigenvalues

are marked with date. The spike of volatility on October 15, 2014, occurred most certainly

due to the so-called bond flash crash in US Treasuries during the opening hours. On Monday

August 24, 2015, the biggest observed volatility was caused by the ”Black Monday” in China,

whereas uncertainty remained for a couple of days. January 2016 was characterized by broad

market sell-off.

The classical visual approach to select an appropriate number of factors (components) q̂

is the so-called scree plot, which illustrates eigenvalues of the covariance matrix against their

order. Some small group of eigenvalues which are sufficiently separated from the rest is con-

sidered appropriate. Due to its simplicity, scree plot is normally the first step in determining

the number of factors. However, this criterion depends crucially on how ”separate” is defined,

thus, further analysis of data is essential. The central assumption of our model requires that

a small set of eigenvalues grows with dimension. Thus, to check this properties empirically,

we present scree plot for three growing dimensions of data and the variation explained by

three biggest eigenvalues in Figure 4.2.
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Ticker Name Ticker Name

AAPL Apple Inc MDLZ Mondelez International Inc
ABT Abbott Laboratories MDT Medtronic Inc
AIG American International Group Inc MET Metlife Inc
AXP American Express Co MMM 3M Co
BA Boeing Co MO Altria Group Inc
BAC Bank Of America Corp MRK Merck & Co Inc New
BMY Bristol Myers Squibb Co MS Morgan Stanley Dean Witter & Co
BRK.B Berkshire Hathaway Inc Del MSFT Microsoft Corp
C Citigroup Inc NKE Nike Inc
CAT Caterpillar Inc ORCL Oracle Corp
COP Conocophillips OXY Occidental Petroleum Corp
CSCO Cisco Systems Inc PEP Pepsico Inc
CVS CVS Caremark Corp PFE Pfizer Inc
CVX Chevron Corp New PG Procter & Gamble Co
DIS Disney Walt Co PM Philip Morris International Inc
EMR Emerson Electric Co QCOM Qualcomm Inc
F Ford Motor Co Del SBUX Starbucks Corp
GE General Electric Co SLB Schlumberger Ltd
GILD Gilead Sciences Inc SO Southern Co
GS Goldman Sachs Group Inc T AT& T Inc
HAL Halliburton Company TGT Target Corp
HD Home Depot Inc TXN Texas Instruments Inc
IBM International Business Machs Cor UNH Unitedhealth Group Inc
INTC Intel Corp USB US Bancorp Del
JNJ Johnson & Johnson UTX United Technologies Corp
JPM Jpmorgan Chase & Co VZ Verizon Communications Inc
KO Coca Cola Co WBA Walgreen Co
LLY Lilly Eli & Co WFC Wells Fargo & Co New
LOW Lowes Companies Inc WMT Wal Mart Stores Inc
MCD Mcdonalds Corp XOM Exxon Mobil Corp

Table 4.5: Ticker symbols and names of the 60 stocks used in the empirical analysis of this

article.

The left panel of Figure 4.2 illustrates the time series averages over the sample period for

ten biggest eigenvalues and three different dimensions, indicated by color. Thereby, first 20,

40 and 60 rows and columns of each realized covariance matrix in the sample period are taken

and eigenvalues are calculated, whereas only the average is presented. The scree plots indicate

that q̂ = 3 or 4 should be a good fit in case of each considered dimension of the realized

covariance matrices. This empirical evidence is consistent with results of Aı̈t-Sahalia and

Xiu [2019]. The authors found that three factors account for a considerable amount (≈ 60%)

of the cross-sectional variation of stock returns. They also pointed out that this empirical
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Figure 4.1: Time series of two biggest eigenvalues of daily realized covariance matrices over

the sample period. Four biggest values are marked with date.
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Figure 4.2: Left panel contains time series averages over the considered sample period of the

10 biggest eigenvalues, whereas colors (or shapes) indicate different dimensions of realized

covariance matrices. The right panel presents time series of the percentage variation explained

by first three eigenvalues.
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evidence is consistent with Fama-French common factor analysis. Next, one can observe that

the eigenvalues indeed increase with dimension, which should support assumptions (A4) and

(A5). Furthermore, we report the dynamics of the percentage variation explained by the first

three eigenvalues in the right panel of Figure 4.2. The first three factors accounted for about

40%-80% of total variation, whereas for higher dimensions the relative part is somewhat

smaller. Although, during crisis periods the idiosyncratic components become relatively

less important. A case in point was the last full trading week in August 2015, which was

marked by market turmoil, originated in China. On Monday, the eigenvalues of the realized

covariance matrix increased 3-fold and the sum of eigenvalues was 4 times higher compared to

Friday. The overall highest proportion of variance explained by the three main components

was observed two days later on 26 August, when it reached over 80%, before bouncing 15

percentage points back into average interval several days later. Such behavior during crisis

periods is again inline with Aı̈t-Sahalia and Xiu [2019]. In order to fulfill assumptions (A6)

and (A7), the portion of remaining variation must at least not fall to zero, which can be

supported by the presented empirical evidence.

The analytical properties of the proposed model illustrated in Lemma 4 allow for a further

criteria to choose an appropriate number of factors, namely scree plots of autocovariance

measure. For this purpose we analyze the empirical analog of the autocovariance measure as

introduced in Lemma 4, namely

ˆACV (k) :=
1

T − k
T∑

t=1+k

YtYt−k −
1

T 2

(
T∑
t=1

Yt

)(
T∑
t=1

Yt

)
. (4.7)

Due to analytical results presented earlier, matrices ˆACV (k) should be degenerate, with as

many non-zero eigenvalues as there are factors. We present the results in the form of scree

plots for k = 1, 5, 10 in Figure 4.3. Biggest three eigenvalues are clearly outliers, which again

hints at three factors. We want to emphasize that this empirical evidence is highly consistent

with the analytical assumption of time dynamics present only within common component.

Finally, following Aı̈t-Sahalia and Xiu [2019] we extract economic interpretation from

eigendecomposition, in order to assess the economical value of additional factors. For this

purpose, eigenvectors associated with the five biggest eigenvalues of the time series average

of realized covariance matrices are extracted. Since these eigenvectors are basically the first

five principal components as in model by Tao et al. [2011], we also estimate our model on
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Figure 4.3: Eigenvalues (×106) of Dk for k = 1, 5, 10 as in (4.7) against their order.

the full sample period with five underlying factors and retrieve the parameter matrix Λ for

further comparison. Each entry in the principal components or Λ is the loading of a specific

factor on some stock. The results are reported graphically in the form of biplots (see Gabriel

[1971]). Thereby individual stocks are scattered using loadings of two different factors as

coordinates. Since the role of the first factor is crucial for all stocks, we fix the x-axis to

represent the corresponding loading of the first component and switch the y-axis between the

remaining components.

Biplots for principal components are presented in Figure 4.4, whereas the meaning of

coordinates is indicated by the axis title. Stocks from the financial, oil and IT sector were

highlighted with blue, red and green color, respectively. Tickers were provided where appro-

priate. We find that apart from American Express Co. other financials (marked blue) are

separable from the rest based on first and third factors alone, which is again inline with the

results reported in Aı̈t-Sahalia and Xiu [2019]. We also find that the group of oil & energy

companies (highlighted in red) is clearly separable along the second component alone. We

further observe and document four special cases, which were marked yellow. Gilead Sci-

ences Inc. (gild) and Southern Co. (so) are the only representatives of biotechnology and

utility sectors, respectively. The former is an outlier according to all but first component,

whereas the latter can be identified using the first component only. Furthermore, Ford Mo-

tor Co. could also be considered an interesting case, since it lies very near to the financials

and oil sector, but has recognizably different loadings on the fourth and fifth factor. This

disproportionality could mean targeting of individual stocks by these components.
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Figure 4.4: Biplots for principal components. The x-axis always corresponds to first com-

ponent. Financials are highlighted with blue, oil stocks with red and outliers - with green

color.

The results for estimated Λ as in our model are reported in Figure 4.5. The main difference

is that financials are separable using the second component, whereas they have loading around

zero in case of principal components. Also oil stocks show distinct loadings on the third

component. Fourth and fifth components are very similar.

Aı̈t-Sahalia and Xiu [2019] argued that the first component could be associated with the
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Figure 4.5: Biplots for columns of Λ̂. The x-axis always corresponds to first component.

Financials are highlighted with blue, oil stocks with red and outliers - with green color.

overall market return, especially since it stayed positive for the whole sample they considered.

Again, in our case the first component is positive for all stocks. Furthermore, the less sensitive

company is the only utility stock, which is logically consistent, since utilities are normally

immune to market volatilities. We find a further possible argument for it being associated

with marker return. Table 4.6 contains the eigenvalues of estimated A as in the proposed

model, whereas the index coincides with the order of component. These values indicate the
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persistence of individual factors. Thus, the first component, which could be associated with

market return, has the lowest measure of autocorrelation, whereas further factors targeting

smaller groups (financials) or individual stocks demonstrate stronger persistence.

A11 A22 A33 A44 A55

.42 .64 .59 .67 .89

Table 4.6: Eigenvalues of the estimated A.

4.5.2 Forecasting study

For each day of the sample period all models are estimated on the previous 100 days and

a one-step-ahead forecast for this day is obtained. We also consider different dimensions

of data as previously, i.e. models are estimated and forecasts are compared using 20, 40

and 60 stocks. As discussed previously, the assumption of Wishart distribution for εt can be

misleading and is hardly testable, although essential to calculate the likelihood. Thus, during

estimation of our factor model we extract two sets of parameters, where one corresponds to

biggest log-likelihood and the other to the smallest Frobenius norm for in-sample forecasts

during estimation. To model the dynamics of principal components, we follow Tao et al.

[2011] and fit VAR(1) to the vectorization of lower dimensional matrix process. Shen et al.

[2018] found VAR of order one appropriate. The results are reported using the notation

PC for the model as in Tao et al. [2011], F-L or F-F for forecasts based on log-likelihood

or in-sample fit and A for ARFIMA-Cholesky, respectively. To simplify notation we refer

to F-L and F-F as different models, although these are only slightly distinct approaches to

estimation of the same model. Previously we have established that three factors is probably

the most appropriate amount. Thus, in order to check this assumption further, we estimate

each model with two to five underlying factors.

Forecasts obtained from different models are evaluated from statistical point of view and

in the aspect of optimal portfolio allocation. Thereby, each matrix forecast is first compared

through its distance to the observed value and is further used to calculate the weights of

minimum variance portfolio (MVP). We consider two matrix loss measures, namely Frobenius
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and spectral norm. Given some matrix M ∈ Rp×p, the Frobenius norm is defined as

Fr(M) :=

√√√√ p∑
i=1

p∑
i=1

M2
ii,

whereas spectral norm is the biggest singular value of M ′M , i.e.

S(M) := λmax(M ′M).

Furthermore, the weights of MVP are calculated for each matrix forecast. PC is the only

of the considered models where the positive definiteness of forecasts is not guaranteed. Table

4.7 contains the number of days for which the forecast didn’t fulfill the requirements. In case

of not positive definite forecast the last available observed realized covariance matrix is taken

instead to calculate the weights of MVP.

2 3 4 5

20 0 7 38 92

40 5 16 41 97

60 4 16 28 91

Table 4.7: Number of days on which the forecasts from model PC were not positive definite.

For each model we calculate the average Frobenius (Fr) and spectral (S) norms along

with standard deviation (Std), 5% VaR (VaR) and Sharpe ratio (SR) of the produced MVP.

Results are reported in Table 4.8. They suggest, that F-F with 5 factors beats all other

alternatives for all dimensions, although F-F with 3 factors is quite near.

We make a further step and calculate the minimal and maximal weight of individual asset

in the minimum variance portfolio. The results are reported in Table 4.9. Again, our model

produced portfolios which are less exposed to individual stocks.

4.6 Summary

In this paper we address the problem of modeling and forecasting the time dynamics of sym-

metric positive definite matrices with applicational focus on realized covariance matrices.
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PC F-L F-F A

p q̂ 2 3 4 5 2 3 4 5 2 3 4 5

20 Fr 15.83 16.16 17.14 18.02 16.63 17.9 18.03 18.64 15.96 15.3 15.28 15.24 22.81

S 14.23 14.67 15.65 16.48 15.2 16.62 16.69 17.41 14.53 13.83 13.79 13.74 17.46

Std 6.07 6.11 6.16 6.17 6.01 6.06 6.06 6.06 5.98 5.98 5.97 5.99 6.39

VaR -9.23 -9.29 -9.68 -9.47 -9.23 -9.13 -9.0 -8.94 -8.96 -9.19 -8.85 -8.83 -9.89

SR 6.13 6.35 5.44 6.33 6.63 6.79 6.88 6.48 6.57 6.59 6.77 6.92 6.54

40 Fr 27.67 28.1 30.82 31.81 28.25 31.14 30.96 32.02 27.23 26.59 26.59 26.63 34.1

S 25.22 25.75 28.53 29.51 26.01 29.24 28.95 30.19 24.94 24.18 24.18 24.2 27.12

Std 5.19 5.22 5.28 5.22 5.2 5.24 5.29 5.22 5.17 5.18 5.19 5.17 5.51

VaR -7.77 -7.87 -7.8 -7.76 -7.78 -7.99 -7.87 -8.03 -7.83 -7.8 -7.85 -7.77 -8.37

SR 8.31 8.39 9.17 8.79 8.97 8.45 8.76 8.24 8.76 8.89 9.34 9.08 8.47

60 Fr 37.42 38.08 40.74 43.12 38.14 42.51 42.37 43.79 36.38 36.39 36.37 36.2 41.48

S 34.17 34.95 37.55 39.95 35.17 39.96 39.78 41.38 33.25 33.19 33.12 33.0 34.08

Std 4.82 4.8 4.81 5.23 4.85 4.92 4.87 4.91 4.81 4.83 4.84 4.84 5.14

VaR -7.37 -7.28 -7.52 -7.57 -7.37 -7.47 -7.4 -7.43 -7.36 -7.3 -7.31 -7.15 -7.64

SR 8.88 9.52 8.68 9.12 9.73 9.27 9.12 9.69 9.74 9.53 9.86 9.95 9.28

Table 4.8: Final results of forecasts comparison study. Average Frobenius (×104) and spectral

(×104) norms along with standard deviation (×103), 5% VaR (×103) and Sharpe ratio (×102)

of the produced MVP are reported. The results are denoted by Fr, S, Std, VaR and SR,

respectively.

PC F-L F-F A

2 3 4 5 2 3 4 5 2 3 4 5

20 Min -0.56 -0.58 -0.57 -2.43 -0.28 -0.30 -0.21 -0.21 -0.24 -0.46 -0.44 -0.42 -0.37

Max 1.24 1.29 1.33 1.33 0.62 0.78 0.62 0.64 0.72 1.04 1.01 1.02 0.86

40 Min -0.27 -0.29 -0.54 -0.72 -0.19 -0.22 -0.18 -0.20 -0.22 -0.25 -0.24 -0.25 -0.38

Max 0.50 0.51 0.61 1.10 0.42 0.46 0.44 0.38 0.47 0.46 0.44 0.45 0.69

60 Min -0.20 -0.27 -0.35 -0.61 -0.16 -0.15 -0.16 -0.16 -0.18 -0.20 -0.21 -0.20 -0.24

Max 0.36 0.37 0.42 1.03 0.28 0.32 0.26 0.28 0.30 0.35 0.33 0.40 0.63

Table 4.9: The minimal and maximal weight of some individual stock in the MVP over the

sample period.
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The popular models within this area reduce the problem of modeling time series of random

matrices to modeling their vectorization by some well-known methods. This approach breaks

the inherent matrix structures and the proposed estimation procedures are infeasible for the

general model definitions. The model suggested in this paper ensures symmetricity and pos-

itivity without unnecessary matrix transformations but based on appropriate distributional

assumptions. The proposed estimation procedure is numerically efficient, since it is a (deter-

ministic) sequence of simple operations. The advantages of the proposed model are shown

within an extensive empirical study.
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4.7 Appendix

4.7.1 Necessary theoretical results

Eij = (δikδjl)1≤k≤N,1≤l≤M (4.8)

∂Y

∂X ′
=

(
∂Y

∂X

)′
(4.9)

log |X|
∂X

= (X ′)
−1

(4.10)

log |X|
∂X

= 2X−1 − (X−1 ◦ I), if X = X ′ (4.11)

∂X

∂Xij

= Eij + Eji − EijEji (4.12)

∂|Y |
∂Xij

= |Y | tr
[
Y −1 ∂Y

∂Xij

]
(4.13)

∂ (XY ) = (∂X)Y +X (∂Y ) (4.14)

∂tr(AX−1B)

∂X
= −(X−1BAX−1)′ (4.15)

tr (ABC) = tr (BCA) = tr (CAB) (4.16)

tr(A′B) = tr(AB′) (4.17)

tr(A′) = tr(A) (4.18)

∂

∂X
tr
(
X
′
BXC

)
= BXC +B

′
XC

′
(4.19)

∂g(U)

∂Xij

= tr

[(
∂g(U)

∂U

)′
∂U

∂Xij

]
(4.20)

(A+ UBV )−1 = A−1 − A−1U
(
B−1 + V A−1U

)−1
V A−1 (4.21)

(A+H)−1 = A−1 − (A+H)−1HA−1 (4.22)

(A−1 + U ′B−1U)−1U ′B−1 = AU ′(UAU ′ +B)−1, if A,B are psd (4.23)

Theorem 2. For positive definite S ∈ Rp×p and Z ∈ Cp×p the following property holds∫
S>0

etr(−SZ) |S|a−
p+1
2 dS = Γp(a) |Z|−a . (4.24)

Theorem 3. Let S ∼ Wp(n,Σ) and A be any p × p nonsingular matrix. Then, ASA′ ∼
Wp(n,AΣA′).

Theorem 4. (See Gupta and Nagar [1999] p. 94) Let S ∼ Wp(n,Σ), and partition S
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and Σ as

S =

 S11 S12

S21 S22

 ,Σ =

 Σ11 Σ12

Σ21 Σ22

 , (4.25)

where S11 ∈ Rq×q. Further let S11·2 = S11 − S12S
−1
22 S21, Σ11·2 = Σ11 − Σ12Σ−1

22 Σ21, then

(i) S22 ∼ Wp−q (n,Σ22)

(ii) S11·2 ∼ Wq(n− p+ q,Σ11·2)

(ii) S11·2 and (S12, S22) are independent.

(iv) S12 | S22 ∼ Nq,p−q(Σ12Σ−1
22 S22,Σ11·2 ⊗ S22)

Theorem 5. Let S ∼ Wp(n,Σ), then the characteristic function of S is given by

φS(Z) = |Ip − 2iZΣ|−n
2 (4.26)

Theorem 6. Let S ∼ Wp(n,Σ), then

E [SAS] = nΣA′Σ + ntr(ΣA)Σ + n2ΣAΣ

Theorem 7. Let V ∼ IWp(m,Ψ), then V −1 ∼ Wp(m− p− 1,Ψ−1)

4.7.2 Proofs

Proof of Lemma 2. Here we use the results of Theorem 5. Thus, we have

MYt(Z) = E [etr(ZYt)] = E [etr(Z(ΛFtΛ
′ + εt))] = E [etr(Zεt)] · E [etr(ZΛFtΛ

′)]

= E [etr(Zεt)] · E
[
etr(ZΛ

∑
j≥0

Ajut−jA
jΛ′)

]

= |Ip − 2ZΣε|−
n
2 ·
∏
j≥0

E
[
etr(ZΛAjut−jA

jΛ′)
]
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Denote with Sj := Ajut−jA
j and Σj = AjΣuA

j, then using Theorem 2 and plugging in the

density of Wishart distribution

E [etr(ZΛSjΛ
′)] = E [etr(Λ′ZΛSj)] =

∫
etr(Λ′ZΛSj)f(Sj)dSj

=
(

2
nq
2 Γq(

n

2
) |Σj|

n
2

)−1
∫
etr(Λ′ZΛSj) |Sj|

n−q−1
2 etr

(
−1

2
Σ−1
j Sj

)
dSj

=
(

2
nq
2 Γq(

n

2
) |Σj|

n
2

)−1
∫
etr(Λ′ZΛSj −

1

2
Σ−1
j Sj) |Sj|

n−q−1
2 dSj

=
(

2
nq
2 Γq(

n

2
) |Σj|

n
2

)−1
∫
etr(−(−Λ′ZΛ +

1

2
Σ−1
j )Sj) |Sj|

n−q−1
2 dSj

(4.24)
=
(

2
nq
2 Γq(

n

2
) |Σj|

n
2

)−1

Γq(
n

2
)

∣∣∣∣−Λ′ZΛ +
1

2
Σ−1
j

∣∣∣∣−n
2

= 2−
nq
2 Γq(

n

2
)−1 |Σj|−

n
2 Γq(

n

2
)

∣∣∣∣12Σ−1
j

∣∣∣∣−n
2

|−2ΣjΛ
′ZΛ + Iq|−

n
2 = |Iq − 2Λ′ZΛΣj|−

n
2 .

Thus the moment generating function is given by

|Ip − 2ZΣε|−
n
2 ·
∏
j≥0

|Iq − 2Λ′ZΛΣj|−
n
2 .

Proof of Lemma 3. For the first moment it follows directly that

E [Yt] = ΛE [Ft] Λ′ + E [εt] = n (ΛFΛ′ + Σε)

By calculating the second moment we use Theorem 6 for deriving E [εtεt]:

E
[
Y 2
t

]
= E [ΛFtΛ

′ΛFtΛ
′ + ΛFtΛ

′εt + εtΛFtΛ
′ + εtεt]

= E [ΛFtΛ
′ΛFtΛ

′] + ΛFΛ′Σε + ΣεΛFΛ′ + n((n+ 1)Σε + tr(Σε)Ip)Σε

whereas

E [FtΛ
′ΛFt] = E

[∑
i≥0

Aiut−i(A
′)iΛ′Λ

∑
j≥0

Ajut−j(A
′)j

]

= E

[∑
i≥0

Aiut−i(A
′)iΛ′Λ

∑
j 6=i

Ajut−j(A
′)j

]
+ E

[∑
i≥0

Aiut−i(A
′)iΛ′ΛAiut−i(A

′)i

]
.

Thus, the first term in the sum results in∑
i≥0

AinΣu(A
′)iΛ′Λ

∑
j 6=i

AjnΣu(A
′)j = n

∑
i≥0

AiΣu(A
′)iΛ′Λ

[
E[Ft]− nAiΣu(A

′)i
]

= E[Ft]Λ
′ΛE[Ft]− n2

∑
i≥0

AiΣu(A
′)iΛ′ΛAiΣu(A

′)i,

74



whereas using Theorem 6 we obtain for the second term

E

[∑
i≥0

Aiut−i(A
′)iΛ′ΛAiut−i(A

′)i

]
= (n+ n2)

∑
i≥0

AiΣu(A
′)iΛ′ΛAiΣu(A

′)i

+ n
∑
i≥0

tr(Σu(A
′)iΛ′ΛAi)AiΣu(A

′)i

form which the result follows.

Proof of Lemma 4. First, it follows that

E [YtYt−k] = E [(ΛFtΛ
′ + εt)(ΛFt−kΛ

′ + εt−k)]

= E

[
(Λ

[
AkFt−k(A

′)k +
k−1∑
i=0

Aiut−i(A
′)i

]
Λ′ + εt)(ΛFt−kΛ

′ + εt−k)

]

= E

[
ΛAkFt−k(A

′)kΛ′ΛFt−kΛ
′ + Λ

k−1∑
i=0

Aiut−i(A
′)iΛ′ΛFt−kΛ

′ + εtΛFt−kΛ
′ + ΛFtΛ

′εt−k + εtεt−k

]

= ΛE
[
AkFt−k(A

′)kΛ′ΛFt−k
]

Λ′ + nΛ
k−1∑
i=0

AiΣu(A
′)iΛ′ΛE [Ft−k] Λ′

+ nΣεΛE [Ft−k] Λ′ + nΛE [Ft] Λ′Σε + n2ΣεΣε,

and further

E [Yt]E [Yt−k] = ΛE [Ft] Λ′ΛE [Ft−k] Λ′ + nΣεΛE [Ft−k] Λ′ + nΛE [Ft] Λ′Σε + n2ΣεΣε.

Finally, we get that

E [YtYt−k]− E [Yt]E [Yt−k]

= Λ

(
E
[
AkFt−k(A

′)kΛ′ΛFt−k
]

+ n
k−1∑
i=0

AiΣu(A
′)iΛ′ΛE [Ft−k]− E [Ft] Λ′ΛE [Ft−k]

)
Λ′.

(4.27)

Now look closer at

n
k−1∑
i=0

AiΣu(A
′)iΛ′ΛE [Ft−k]−E [Ft] Λ′ΛE [Ft−k] = n

(
k−1∑
i=0

AiΣu(A
′)i −

∑
i≥0

AiΣu(A
′)i

)
Λ′ΛE [Ft−k]

= −n
(∑
i≥k

AiΣu(A
′)i

)
Λ′ΛE [Ft−k] .
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Next

E
[
AkFt−k(A

′)kΛ′ΛFt−k
]

= E

[∑
i≥0

Ak+iut−k−i(A
′)k+iΛ′Λ

∑
j≥0

Ajut−k−j(A
′)j

]

= E

[∑
i≥0

Ak+iut−k−i(A
′)k+iΛ′Λ

∑
j 6=i

Ajut−k−j(A
′)j

]
+E

[∑
i≥0

Ak+iut−k−i(A
′)k+iΛ′ΛAiut−k−i(A

′)i

]
.

The first term becomes:

E

[∑
i≥0

Ak+iut−k−i(A
′)k+iΛ′Λ

∑
j 6=i

Ajut−k−j(A
′)j

]
=
∑
i≥0

Ak+inΣu(A
′)k+iΛ′Λ

∑
j 6=i

AjnΣu(A
′)j

= n
∑
i≥0

Ak+iΣu(A
′)k+iΛ′Λ

[
E[Ft]− nAiΣu(A

′)i
]

= n
∑
i≥k

AiΣu(A
′)iΛ′ΛE[Ft]− n2

∑
i≥0

Ak+iΣu(A
′)k+iΛ′ΛAiΣu(A

′)i,

and using Theorem 6 we get for the second term

E

[∑
i≥0

Ak+iut−k−i(A
′)k+iΛ′ΛAiut−k−i(A

′)i

]
= n

∑
i≥0

Ak+iΣu(A
′)iΛ′ΛAk+iΣu(A

′)i

+ n
∑
i≥0

tr
(
Σu(A

′)iΛ′ΛAk+i
)
Ak+iΣu(A

′)i + n2
∑
i≥0

Ak+iΣu(A
′)k+iΛ′ΛAiΣu(A

′)i.

Thus, autocovariance function equals

nΛ

(∑
i≥0

Ak+iΣu(A
′)iΛ′ΛAk+iΣu(A

′)i +
∑
i≥0

tr
(
Σu(A

′)iΛ′ΛAk+1
)
Ak+iΣu(A

′)i

)
Λ′

= nΛ
∑
i≥0

(CikΛ
′ΛCik + tr(CikΛ

′Λ)Cik) Λ′

whereas Cik = Ak+iΣu(A
′)i.

Proof of Lemma 5.

(Λ′Λ)−1Λ′YtΛ(Λ′Λ)−1 = (Λ′Λ)−1Λ′ [ΛFtΛ
′ + εt] Λ(Λ′Λ)−1 = Ft + (Λ′Λ)−1Λ′εtΛ(Λ′Λ)−1

To show that the second term in the above equation is asymptotically zero, we consider its

asymptotic behavior under the Frobenius norm:

E
[
||(Λ′Λ)−1Λ′εtΛ(Λ′Λ)−1||2

]
= E

[
tr
(

(Λ′Λ)−1Λ′εtΛ (Λ′Λ)
−2

Λ′εtΛ(Λ′Λ)−1
)]

= tr
(

(Λ′Λ)−1Λ′E
[
εtΛ (Λ′Λ)

−2
Λ′εt

]
Λ(Λ′Λ)−1

)
.
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Next using Theorem 6, we derive

E
[
εtΛ (Λ′Λ)

−2
Λ′εt

]
= (n + n2) · Σε(Λ (Λ′Λ)

−2
Λ′)Σε + n · tr

(
ΣεΛ (Λ′Λ)

−2
Λ′
)

Σε.

We look at the terms and factors of the previous line separately. First

tr
(

(Λ′Λ)−1Λ′ΣεΛ (Λ′Λ)
−2

Λ′ΣεΛ(Λ′Λ)−1
)
≤
[
tr
(

(Λ′Λ)−1Λ′ΣεΛ (Λ′Λ)
−1
)]2

whereas

tr
(

(Λ′Λ)−1Λ′ΣεΛ (Λ′Λ)
−1
)
≤ tr

(
(Λ′Λ)−1

)2
tr (Λ′ΣεΛ)

and

tr (Λ′ΣεΛ) = tr (ΛΛ′Σε) ≤ tr (ΛΛ′) tr (Σε)

from which follows for p→∞

tr
(

(Λ′Λ)−1Λ′ΣεΛ (Λ′Λ)
−2

Λ′ΣεΛ(Λ′Λ)−1
)
≤
[
tr
(
(Λ′Λ)−1

)
tr (Σε)

]2 → 0.

Next for p→∞

tr
(

(Λ′Λ)−1Λ′tr
(

ΣεΛ (Λ′Λ)
−2

Λ′
)

ΣεΛ(Λ′Λ)−1
)

= tr
(

ΣεΛ (Λ′Λ)
−2

Λ′
)
tr
(
(Λ′Λ)−1Λ′ΣεΛ(Λ′Λ)−1

)
≤ tr

(
Λ′ΣεΛ (Λ′Λ)

−2
)
tr
(
(Λ′Λ)−1

)2
tr (Λ′ΣεΛ)→ 0.

Finally, the main result follows due to

E
[
||(Λ′Λ)−1Λ′εtΛ(Λ′Λ)−1||2

]
→ 0,

for p→∞.

Proof of Lemma 6. Observe that

(Λ̃′Λ̃)−1Λ̃′YtΛ̃(Λ̃′Λ̃)−1 = ((E−1)′Λ′ΛE−1)−1(E−1)′Λ′
[
ΛE−1F̃t(E

−1)′Λ′ + εt

]
ΛE−1((E−1)′Λ′ΛE−1)−1

= F̃t + ((E−1)′Λ′ΛE−1)−1(E−1)′Λ′εtΛE
−1((E−1)′Λ′ΛE−1)−1,

from which the stated result follows using arguments similar to the previous proof.

Proof of Lemma 7. To simplify the notation we omit the number of iteration j. When dealing

with symmetric matrices Σu and Σε, the chain rule (4.20) is applied extensively throughout

this proof.

77



M-step for Σu There are two terms in the complete log-likelihood which contain Σu,

namely −nT
2

log |Σu| and −1
2

∑T
t=1 tr (Σ−1

u (Ft − A′Ft−1A)). First, observe that

∂ tr (Σ−1
u (Ft − AFt−1A

′))

∂(Σu)ij

(4.20)
= tr

[
∂ (Σ−1

u (Ft − AFt−1A
′))

∂Σu

· ∂Σu

∂(Σu)ij

]
= tr

[
−Σ−1

u (Ft − AFt−1A
′) Σ−1

u (Eij + Eji − EijEji)
]
,

from which follows that

∂ tr (Σ−1
u (Ft − AFt−1A

′))

∂Σu

= −2Σ−1
u (Ft − AFt−1A

′) Σ−1
u + Iq � Σ−1

u (Ft − AFt−1A
′) Σ−1

u

and

− 1

2
· ∂
∑T

t=1 tr (Σ−1
u (Ft − AFt−1A

′))

∂Σu

= Σ−1
u

T∑
t=1

(Ft − AFt−1A
′) Σ−1

u

− 1

2

T∑
t=1

Iq � Σ−1
u (Ft − AFt−1A

′) Σ−1
u ,

where the last term is the diagonal of the first term in the sum.

Furthermore, for the second term in the complete log-likelihood which contains matrix

Σu we have

−nT
2

∂ log |Σu|
∂Σu

(4.11)
= −nTΣ−1

u +
nT

2
Iq � Σ−1

u .

Finally, the derivative can be calculated as follows

∂ logL

∂Σu

= −nTΣ−1
u + Σ−1

u

T∑
t=1

(Ft − AFt−1A
′) Σ−1

u

+
nT

2
Iq � Σ−1

u −
1

2

T∑
t=1

Iq � (Σ−1
u (Ft − AFt−1A

′) Σ−1
u ).

To find the zero point of this derivative it suffices to solve the following equation

nT

2
Σ−1
u =

1

2
Σ−1
u

T∑
t=1

(Ft − AFt−1A
′)Σ−1

u , (4.28)

since then it follows that

nT

2
Iq � Σ−1

u =
1

2

T∑
t=1

Iq � Σ−1
u (Ft − AFt−1A

′) Σ−1
u .

The only solution of (4.28) is the simple average

Σu =
1

nT

T∑
t=1

(Ft − AFt−1A
′). =

1

nT

T∑
t=1

ut (4.29)
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M-step for A As was the case for Σu, there are two terms in the complete log-likelihood

which contain A. First, we calculate the derivative of log |Ft − AFt−1A
′|:

∂ log |Ft − AFt−1A
′|

∂Aij

(4.20)
= tr

[(
∂ log |Ft − AFt−1A

′|
∂(Ft − AFt−1A′)

)′
∂(Ft − AFt−1A

′)

∂Aij

]
= tr

[
(Ft − AFt−1A

′)
−1 ∂(−AFt−1A

′)

∂Aij

]
.

The second factor under the trace function can be derived as follows:

−∂AFt−1A
′

∂Aij

(4.14)
= − ∂A

∂Aij
Ft−1A

′ − A∂Ft−1A
′

∂Aij

(4.12)
= −EijFt−1A

′ − AFt−1E
′
ij.

Next, using basic properties of trace function we get

∂ log |Ft − AFt−1A
′|

∂Aij
= tr

[
(Ft − AFt−1A

′)
−1

(−EijFt−1A
′ − AFt−1E

′
ij)
]

= −tr
[
(Ft − AFt−1A

′)
−1
EijFt−1A

′
]
− tr

[
(Ft − AFt−1A

′)
−1
AFt−1E

′
ij

]
(4.17)
= −2tr

[
(Ft − AFt−1A

′)
−1
AFt−1E

′
ij

]
Finally, it follows that

∂ log |Ft − AFt−1A
′|

∂A
= −2 (Ft − AFt−1A

′)
−1
AFt−1.

Next the derivative of tr (Σ−1
u AFt−1A

′):

∂tr (Σ−1
u AFt−1A

′)

∂A

(4.16)
=

∂tr (AFt−1A
′Σ−1

u )

∂A

(4.19),(4.10)
=

(
Ft−1A

′Σ−1
u + F ′t−1A

′ (Σ−1
u

)′)′
= 2Σ−1

u AFt−1.

Taking the derivative of L after A and setting it to zero we get the following identity:

(n− q − 1)
T∑
t=1

(Ft − AFt−1A
′)
−1
AFt−1 =

T∑
t=1

Σ−1
u AFt−1. (4.30)

from which by multiplying on the right with A′ we get

(n− q − 1)
T∑
t=1

(Ft − AFt−1A
′)
−1
AFt−1A

′ =
T∑
t=1

Σ−1
u AFt−1A

′ = Σ−1
u A

[
T∑
t=1

Ft−1

]
A′

⇐⇒ (n− q − 1)
T∑
t=1

u−1
t (Ft − ut) = Σ−1

u A

[
T∑
t=1

Ft−1

]
A′

⇐⇒ (n− q − 1)Σu

T∑
t=1

(u−1
t Ft − Iq) = A

[
T∑
t=1

Ft−1

]
A′
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Here the previously extracted parameter Σu is used. The part on the left is asymptotically

symmetric, whereas only approximately symmteric for finite samples. Thus, we symmetrize

the left part by adding its transpose:

n− q − 1

2

[
Σu

T∑
t=1

(u−1
t Ft − Iq) +

T∑
t=1

(Ftu
−1
t − Iq)Σu

]
= A

[
T∑
t=1

Ft−1

]
A′

For simplicity let GV G′ denote the eigendecomposition of the part on the left, and ḠV̄ Ḡ′ -

that of
∑T

t=1 Ft−1. Then it follows, that

GV G′ = AḠV̄ Ḡ′A′,

and A thus equals

A = GV
1
2 V̄ −

1
2 Ḡ′

M-step for Σε Following the same steps as for Σu, in the end we get:

Σε =
1

nT

T∑
t=1

(Yt − ΛFtΛ
′) =

1

nT

T∑
t=1

εt.

Step for Λ Next we calculate the derivative of log |Yt − ΛFtΛ
′| similar to A:

∂ log |Yt − ΛFtΛ
′|

∂Λij

(4.20)
= tr

[
(Yt − ΛFtΛ

′)
−1 ∂(Yt − ΛFtΛ

′)

∂Λij

]
and the second term in the trace function:

∂(Yt − ΛFtΛ
′)

∂Λij

= −
(
EijFtΛ

′ + ΛFtE
′
ij

)
.

∂ log |Yt − ΛFtΛ
′|

∂Λij

= tr
[
(Yt − ΛFtΛ

′)
−1

(−EijFtΛ′ − ΛFtE
′
ij)
]

= −tr
[
(Yt − ΛFtΛ

′)
−1
EijFt−1Λ′

]
− tr

[
(Yt − ΛFtΛ

′)
−1

ΛFtE
′
ij

]
= −2tr

[
(Yt − ΛFtΛ

′)
−1

ΛFtE
′
ij

]
.

Thus it follows similarly to a previous result, that

∂ log |Yt − ΛFtΛ
′|

∂Λ
= −2 (Yt − ΛFtΛ

′)
−1

ΛFt

Now the derivative:

1

2

∂tr (Σ−1
ε ΛFtΛ

′)

∂Λ

(4.16)
=

1

2

∂tr (ΛFtΛ
′Σ−1

ε )

∂Λ

(4.19)
= (FtΛ

′Σ−1
ε )′ = Σ−1

ε ΛFt
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Next we have to find a solution for the following equation:

(n− p− 1)
T∑
t=1

(Yt − ΛFtΛ
′)
−1

ΛFt =
T∑
t=1

Σ−1
ε ΛFt, (4.31)

By proceeding as previously we get

n− p− 1

2

[
Σε

T∑
t=1

(ε−1
t Yt − Ip) +

T∑
t=1

(Ytε
−1
t − Ip)Σε

]
= Λ

[
T∑
t=1

Ft

]
Λ′,

where Σε is as extracted previously. Similarly let HWH ′ denote the singular value decom-

position, i.e. H ∈ Rp×q and W ∈ Rq×q, of the part on the left, and ḠV̄ Ḡ′ - again that of∑T
t=1 Ft−1.Then it follows, that

HWH ′ = ΛḠV̄ Ḡ′Λ′,

and Λ thus equals

Λ = HW
1
2 V̄ −

1
2 Ḡ′

Proof of Proposition 1. Remember that ut =
∑n

i=1Xu,i,tX
′
u,i,t and εt =

∑n
i=1 Xε,i,tX

′
ε,i,t for

iid Xu,i,t ∼ N (0,Σu) and Xε,i,t ∼ N (0,Σε). Define

Xi,t =


Xε,i,t∑

j≥0A
jXu,i,t−j

Λ
∑

j≥0A
jXu,i,t−j +Xε,i,t

 .

Since Xi,t is normally distributed it follows that

n∑
i=1

Xi,tX
′
i,t ∼ W2p+q

n,


Σε 0 Σε

0 F FΛ′

Σε ΛF ΛFΛ′ + Σε


 .

We further define

S12 :=

 ∑n
i=1Xε,i,t(Λ

∑
j≥0A

jXu,i,t−j +Xε,i,t)
′∑n

i=1

∑
j≥0A

jXu,i,t−j(Λ
∑

j≥0A
jXu,i,t−j +Xε,i,t)

′


=

 εt +
∑n

i=1Xε,i,t

∑
j≥0X

′
u,i,t−j(A

j)′Λ′

FtΛ
′ +
∑n

i=1

∑
j≥0A

jXu,i,t−jX
′
ε,i,t + 2

∑n
i=1

∑
j≥0A

jXu,i,t−j
∑

l>j X
′
u,i,t−l(A

l)′Λ′


=

 εt +R′1Λ′

FtΛ
′ +R1 +R2Λ′

 ,
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and

S22 :=
n∑
i=1

(Λ
∑
j≥0

AjXu,i,t−j +Xε,i,t)(Λ
∑
j≥0

AjXu,i,t−j +Xε,i,t)
′

= ΛFtΛ
′ + εt + Λ

n∑
i=1

∑
j≥0

AjXu,i,t−jX
′
ε,i,t +

n∑
i=1

∑
j≥0

Xε,i,tX
′
u,i,t−j(A

j)′Λ′

+ 2Λ
n∑
i=1

∑
j≥0

AjXu,i,t−j
∑
l>j

X ′u,i,t−l(A
l)′Λ′

= Yt + ΛR1 +R′1Λ′ + ΛR2Λ′.

Using Theorem 4, it follows that

E [S12|S22] =

 Σε

FΛ′

 (ΛFΛ′ + Σε)
−1

(Yt + ΛR1 +R′1Λ′ + ΛR2Λ′) .

We define estimates for Ft and εt as

F̂t := FΛ′ (ΛFΛ′ + Σε)
−1
YtΛ(Λ′Λ)−1

ε̂t := Σε (ΛFΛ′ + Σε)
−1
Yt

and investigate their asymptotic behavior in the rest of this proof. Since trace is the sum of

eigenvalues and due to ((A4)), ((A5)) it follows that ||(Λ′Σ−1
ε Λ)−1||2 → 0, where || · ||2 is the

Frobenius norm. We first derive the following result using (4.23)

FΛ′(ΛFΛ′ + Σε)
−1 = (Λ′Σ−1

ε Λ + F−1)−1Λ′Σ−1
ε .

Next we split the factors estimates F̂t into two parts

FΛ′(ΛFΛ′ + Σε)
−1YtΛ(Λ′Λ)−1 = FΛ′(ΛFΛ′ + Σε)

−1 [ΛFtΛ
′ + εt] Λ(Λ′Λ)−1

= (Λ′Σ−1
ε Λ + F−1)−1Λ′Σ−1

ε ΛFt + (Λ′Σ−1
ε Λ + F−1)−1Λ′Σ−1

ε εtΛ(Λ′Λ)−1. (4.32)

To show that the second term in the above equation is asymptotically zero, we consider its

asymptotic behavior under the Frobenius norm:

E
[
||(F−1 + Λ′Σ−1

ε Λ)−1Λ′Σ−1
ε εtΛ(Λ′Λ)−1||2

]
= E

[
tr
(

(F−1 + Λ′Σ−1
ε Λ)−1Λ′Σ−1

ε εtΛ (Λ′Λ)
−2

Λ′εtΣ
−1
ε Λ(F−1 + Λ′Σ−1

ε Λ)−1
)]

= tr
(

(F−1 + Λ′Σ−1
ε Λ)−1Λ′Σ−1

ε E
[
εtΛ (Λ′Λ)

−2
Λ′εt

]
Σ−1
ε Λ(F−1 + Λ′Σ−1

ε Λ)−1
)
. (4.33)

82



Next using Theorem 6, we derive for the expectation under the trace

E
[
εtΛ (Λ′Λ)

−2
Λ′εt

]
= nΣε(Λ (Λ′Λ)

−2
Λ′)′Σε + ntr

(
ΣεΛ (Λ′Λ)

−2
Λ′
)

Σε + n2Σε(Λ (Λ′Λ)
−2

Λ′)Σε

= (n+ n2) · Σε(Λ (Λ′Λ)
−2

Λ′)Σε + n · tr
(

ΣεΛ (Λ′Λ)
−2

Λ′
)

Σε.

We look at the terms and factors of (4.33) separately. First it follows that

tr
(

(n+ n2) · (F−1 + Λ′Σ−1
ε Λ)−1Λ′Σ−1

ε Σε(Λ (Λ′Λ)
−2

Λ′)ΣεΣ
−1
ε Λ(F−1 + Λ′Σ−1

ε Λ)−1
)

= tr
(
(n+ n2) · (F−1 + Λ′Σ−1

ε Λ)−2
)
→ 0.

Next

(F−1 + Λ′Σ−1
ε Λ)−1Λ′Σ−1

ε ΣεΣ
−1
ε Λ(F−1 + Λ′Σ−1

ε Λ)−1

= ((Λ′Σ−1
ε Λ)−1F−1 + I)−1(F−1 + Λ′Σ−1

ε Λ)−1

and finally

n · tr
(

ΣεΛ (Λ′Λ)
−2

Λ′
)
tr
(
((Λ′Σ−1

ε Λ)−1F−1 + I)−1(F−1 + Λ′Σ−1
ε Λ)−1

)
→ 0.

Since the first term in (4.32) converges to Ft

(Λ′Σ−1
ε Λ + F−1)−1Λ′Σ−1

ε ΛFt = (Iq + (Λ′Σ−1
ε Λ)−1F−1)−1Ft → Ft.

it follows that F̂t → Ft. Finally, since

ΛF̂tΛ
′ + ε̂t = ΛFΛ′ (ΛFΛ′ + Σε)

−1
Yt + Σε (ΛFΛ′ + Σε)

−1
Yt = Yt

it follows that ε̂t → εt.
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Chapter 5

Summary and outlook

The central topic of this doctoral thesis is volatility modeling, whereas motivation for de-

veloping new methods is twofold. Firstly, it is the prevailing reliance on classic linear time

series models in literature. This could be explained by a good balance between simplicity

of such methods and their performance in applications. However, theoretical properties of

gaussian models contradict broadly accepted empirical evidence (see Ibragimov et al. [2015]).

Thus, considering some more general methods can improve the overall model quality. Sec-

ondly, most modeling frameworks for multivariate measures of risk suffer from the curse of

dimensionality and/or do not account for positive definiteness.

Using vine copulas for replicating one-step conditional distributions of realized measures

is the topic of Chapter 2. These recently developed copula structures (see Aas [2016]) are

probably the most flexible tool for multivariate modeling available. We compared two differ-

ent vine constructions along with two benchmarks on a set of equity indices over a substantial

time period. The results reveal promising empirical qualities of vines, which produced statis-

tically better one-step-ahead forecasts. The presented empirical results reveal the flexibility

of copula approach advocating for further applications to individual assets. Vine copulas con-

stitute a very active field of research, whereas several aspects for further analysis are worth

mentioning. The theoretical generality of vines must usually be sacrificed within empirical

applications for estimation purposes. Implications of so-called simplifying assumption were

examined theoretically and empirically (see Stöber et al. [2013], Killiches et al. [2017]), how-

ever not within time series context. Furthermore, there exist only a handful of applications

of vines to time series (see Smith [2015], Smith and Vahey [2016], Brechmann and Czado
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[2014]). Finally, time-varying vine copulas, for example regime switching, has received only

minor attention (Fink et al. [2017]).

Non-parametric regression based on multivariate B-splines was discussed in Chapter 3.

B-splines span the space of piecewise polynomials, which can approximate any continuous

functions with an arbitrary accuracy. With only mild assumptions on the true functional

form, it is recovered empirically by estimating the coefficients of linear combinations of B-

splines. Due to the generality of such approach, a huge amount of functions can be repli-

cated. Not only did the proposed model perform better on the in-sample as expected, but

it also delivered better results in a forecasting study, outperforming HAR model for a panel

of indices. These encouraging empirical findings should motivate the examination of such

non-parametric regression for other financial times series, which fulfill continuity condition.

Generally, mostly univariate B-splines were considered in application studies so far, whereas

their true multivariate extension was hardly ever mentioned. Furthermore, applying B-splines

to time series modeling has attracted relatively small scientific interest. The results presented

in this thesis advocate further examination of B-splines within time series context. A further

intriguing application of multivariate B-splines is for example modeling volatility implied by

option prices. Since B-splines are unique given some base, choosing the right one is an im-

portant modeling task. In Chapter 3 only homogeneous B-splines were considered, whereas

developing a procedure for selecting a more efficient ensemble of B-splines is a very impor-

tant topic for further research. It could include developing better strategies for selecting an

appropriate mesh based on observed data or using meshless method like weighted extended

B-spline approximation by Höllig et al. [2001].

A novel approach to modeling realized covariance matrices was introduced in Chapter 4.

The model is defined with lower dimensional (latent) factors capturing a substantial part of

the variance in data and providing cross-time dynamics, whereas idiosyncratic part is white

noise. Additionally, we proposed a computationally efficient estimation routine based on EM

algorithm, whereas factors are filtered using Kalman-type technique. Thus, the proposed

model can be estimated in arbitrary dimension, thereby delivering asymptotically consistent

estimates and naturally ensuring positive definiteness. The theoretical properties of the

estimator were examined in a simulation study. In the empirical application the proposed

model delivered intriguing results in comparison against two benchmarks based on data for a
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selection of stocks from S&P100. To motivate further examination of the model, it must be

mentioned that it only allows so-called strong factors, which penetrate each stock. A possible

extension would be weak factors, which are not present in all stocks. This relationship could

be explored using LASSO technique. Further research could also allow different distributional

assumptions for the innovations in the observation equation.

To conclude, methods considered and proposed in this thesis offer a new way of modeling

volatility of one asset as well as in case of a portfolio. The presented methods provide

theoretical advantages and outperform standard benchmarks in application studies. Offering

a new approach which resolves the two important problems of multivariate modeling is the

main research contribution of this thesis. Since volatility is such a central topic in finance,

this field of research will surely attract a lot of attention leading to even better results.
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