
Received: 28 December 2018 Revised: 1 June 2020 Accepted: 8 June 2020 Published on: 21 July 2020

DOI: 10.1002/nav.21929

R E S E A R C H A R T I C L E

Predicting intensive care unit bed occupancy for integrated
operating room scheduling via neural networks

Julian Schiele1,2 Thomas Koperna3 Jens O. Brunner1,2

1University Center of Health Sciences at Klinikum

Augsburg (UNIKA-T), University of Augsburg,

Augsburg, Germany
2Chair of Health Care Operations/Health

Information Management, Faculty of Business and

Economics, University of Augsburg, Augsburg,

Germany
3Universitätsklinikum Augsburg, Augsburg,

Germany

Correspondence
Jens O. Brunner, Chair of Health Care

Operations/Health Information Management,

Faculty of Business and Economics, University of

Augsburg, Universitätsstraße 16, 86159 Augsburg,

Germany.

Email: jens.brunner@unikat.uni-augsburg.de

Abstract
In a master surgery scheduling (MSS) problem, a hospital’s operating room (OR)

capacity is assigned to different medical specialties. This task is critical since the risk

of assigning too much or too little OR time to a specialty is associated with overtime

or deficit hours of the staff, deferral or delay of surgeries, and unsatisfied—or even

endangered—patients. Most MSS approaches in the literature focus only on the OR

while neglecting the impact on downstream units or reflect a simplified version of

the real-world situation. We present the first prediction model for the integrated OR

scheduling problem based on machine learning. Our three-step approach focuses on

the intensive care unit (ICU) and reflects elective and urgent patients, inpatients and

outpatients, and all possible paths through the hospital. We provide an empirical

evaluation of our method with surgery data for Universitätsklinikum Augsburg, a

German tertiary care hospital with 1700 beds. We show that our model outperforms

a state-of-the-art model by 43% in number of predicted beds. Our model can be

used as supporting tool for hospital managers or incorporated in an optimization

model. Eventually, we provide guidance to support hospital managers in scheduling

surgeries more efficiently.
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1 INTRODUCTION

The health care industry accounts for a large share of expen-

ditures facing ongoing growth in most countries around the

globe. In the United States, 3.3 trillion USD or nearly 18%

of its gross domestic product (GDP)1 were spent on health

care in 2016 reflecting an annual growth of 4.3% compared

to 2015 (Centers for Medicare & Medicaid Services, 2016).

A closer look reveals that hospital care is a key driver of

health expenditures accounting for 32% in the United States

and nearly 40% in the OECD (Centers for Medicare &

19% of GDP on average in the OECD countries (OECD Publishing, 2017),

11% in Germany (Eurostat, 2018).

Medicaid Services, 2016; OECD Publishing, 2017). With

rising costs, hospitals are increasingly attracting attention

from sponsors in both the governmental and the private sec-

tor demanding more cost effectiveness while ensuring the

same level of service quality. “Pressures to make operating

margins will continue to be at the forefront of most hospi-

tal and health system leaders’ minds” (Natarajan, Frenzel,

& Smaltz, 2017)—particularly, since it seems that noth-

ing “will stop public spending on health care from rising”

(Porter, 2013).

Commonly, the response is to cut costs such as payment

levels and benefit structures. However, it would be less harm-

ful and more promising to focus on reducing waste, not

value-added care. According to Berwick et al., at least 20% of
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total health care expenditures could be eliminated by address-

ing overtreatment, failures in coordination and execution of

care processes, inefficient pricing, administrative complex-

ity, fraud and abuse (Berwick & Hackbarth, 2012). Among

others, particularly health care operations management has

emerged as a key discipline to address wasted expenditure

founded on a data-driven, mathematical approach (Carter,

Hans, & Kolisch, 2012). Contributions to an improved deliv-

ery of health care services are manifold, for example, planning

of geographic locations for hospitals (Mestre, Oliveira, &

Barbosa-Póvoa, 2012), management of scarce resources (Hul-

shof et al., 2012), analysis of emergency departments (ED)

(Saghafian, Austin, & Traub, 2015), and scheduling of staff

(Kim & Mehrotra, 2015) and patient appointments (Gupta &

Denton, 2008). A further challenge is getting the right bal-

ance between efficiency and responsiveness when handling

emergency surgeries (Ferrand, Magazine, & Rao, 2014; Sand-

baek, Helgheim, Larsen, & Fasting, 2014). One area with

significant impact is scheduling of surgeries in the operating

room (OR) of a hospital (Gupta, 2007; Li, Gupta, & Pot-

thoff, 2016) or even within a strategic network of multiple

hospitals (Roshanaei, Luong, Aleman, & Urbach, 2017).

Next to the OR, the intensive care unit (ICU) is one of a

hospital’s most expensive resources representing nearly 15%

of United States’ total hospital expenditures (Halpern & Pas-

tores, 2010). A cost break-down for the United States is

depicted in Figure 1. It shows that 3.3 trillion USD were

spent on health care including hospital expenditures of 1.1

trillion USD and ICU expenditures of 0.1 trillion USD. Even

more importantly, the ICU is an important bottleneck in most

hospitals (Litvak, van Rijsbergen, Boucherie, & van Houden-

hoven, 2008). If the ICU reaches capacity, other hospital

units such as the OR are blocked and inferior patient treat-

ment is fostered, that is, lower probability of ICU admission

(McManus et al., 2003), higher discharge rates (Anderson,

Price, Golden, Jank, & Wasil, 2011), and increased danger

of re-admission (Baker, Pronovost, Morlock, Geocadin, &

Holzmueller, 2009). There is even evidence that the mortality

decreases with increasing length of stay (LOS) (Bartel, Chan,

& Kim, 2017). Consequently, not only OR capacity, but also

the closely linked downstream units such as the ICU should

be considered in surgery planning.

Following the classification approach proposed in Guer-

riero and Guido (2011), OR management problems are cat-

egorized into three levels according to their decision hierar-

chy: strategic, tactical, and operational. At the strategic level,

surgery time is distributed among different medical special-

ties, for example, 1 day per week in one OR is allocated to

Neurosurgery. Hereafter, we refer to 1 day per week in one

OR as one OR block. At the tactical level, a master surgery

scheduling (MSS) is developed by assigning the given OR

blocks of each medical specialty to specific time slots in spe-

cific ORs. The suitability of block scheduling is analyzed by

van Oostrum, Bredenhoff, and Hans (2010). Usually, a MSS

is constructed cyclical, that is, repeating after a fixed cycle.

FIGURE 1 Break-down of U.S. health expenditures 2016 in trillion USD.

Hospital care accounts for nearly one-third of health costs, thereof about

15% for ICU

An illustrative MSS is presented in Table 8a. At the opera-

tional level, specific patients are assigned to given OR blocks.

The purpose of this paper is to predict the impact of surgery

decisions on other hospital departments. Our objective is to

minimize the deviation between the ICU bed occupancy pre-

dicted by our model and the realized ICU bed occupancy. This

topic is of high relevance from both a theoretical and a prac-

tical standpoint. From a research perspective, it is desirable

to achieve prediction results that are as accurate as possible.

Our proposed prediction model achieves convincing results

and shows higher accuracy than a state-of-the-art approach.

Our work is motivated by practical challenges faced in hospi-

tals. Our research partner, the university hospital in Augsburg,

is challenged by ICU capacity shortages that cause overtime

costs, unsatisfied staff and patients, postponed and canceled

surgeries. Based on experience, the hospital management is

well aware that allocating OR capacity to different medical

specialties has an impact on the resulting occupancy levels of

downstream units. Hence, they asked us for a supporting tool

in order to address the ICU shortages already on the tactical

level during the development and evaluation of a MSS.

We present—to our best of our knowledge—the first pre-

diction model for the integrated OR scheduling problem based

on machine learning. We contribute to the research in this

field by identifying the key features that are important for a

prediction model for the integrated OR scheduling problem

and by proposing such a model based on neural networks.

In the essential preprocessing step, we retrieve the respective

path through the hospital for each patient from the provided

electronic hospital records. Furthermore, we formulate the

corresponding machine learning problem, derive features and

labels, and introduce the memory depth as a new parameter

to reflect the impact of previous surgeries. Finally, we config-

ure, train, and deploy a neural network to solve the problem

and compare it with alternative machine learning algorithms.

In the paper at hand, we consider the ICU as most impor-

tant supporting unit, but the model can easily be extended to

additional units such as ED, general patient ward (hereafter:

ward), and intermediate care unit (IMC). We consider elec-

tive in- and outpatients as well as urgent patients and reflect

all patient paths that occur in the hospital, that is, there is no

need to exclude transitions from ICU to ward or patients with
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multiple surgeries per stay as in state-of-the-art models (see

Section 2).

While the application of neural networks is well known

for diagnosis in health care and also for forecasting in sev-

eral industries (see Section 2), we are not aware of previous

work applying neural networks to the tactical OR scheduling

problem. Machine learning is well suited for this problem

since traditional models struggle to reflect the hospital’s

real-world complexity and its inherent uncertainty. Instead of

explicitly modeling the rather complex relationship between

inputs, that is, OR blocks per medical specialty, and outputs,

that is, number of occupied beds in supporting units, our pro-

posed approach learns automatically from historical data. Our

approach is able to reflect a hospitals’ real-world complexity

in its entirety including more supporting units, patient types,

and patient paths than previous work. Neural networks are

capable of handling nonlinear relationships. The increasing

number of papers that successfully apply neural networks to

adjacent fields indicates that the approach is beneficial and

worth approaching (Esteva et al., 2017; Goodfellow, Bengio,

& Courville, 2016).

Consequently, we provide guidance for hospital managers

and show a proof of concept by applying the model to a

reference hospital. We preprocess the hospital’s real-world

data, implement the prediction model, and achieve convinc-

ing numerical results. We show that our prediction model

outperforms a state-of-the-art model by 43%. Moreover, we

demonstrate how one could train the prediction model with ex

ante data by bootstrapping from ex post data. The proposed

model serves as valuable tool supporting the decision mak-

ing process of hospital managers in regular discussion rounds

to adaptively evaluate a given, feasible MSS with respect to

the expected bed occupancy levels in the ICU. Moreover, we

incorporate our prediction model in an optimization model

and show that the expected ICU bed demand in our partner

hospital can be reduced by 8.9% compared to status quo. We

also present a comparison with a state-of-the-art optimization

model. Our study is based on a large data set covering 7 years

of data with nearly 77k patients. Our proposed approach is

generalizable to other hospitals since it relies on commonly

available electronic hospital records and automatically takes

care of all computations from the import of data to the output

of the predicted impact on bed occupancy.

The remainder of this paper is organized in five sections.

Section 2 provides an overview of previous contributions

to OR scheduling and applications of machine learning.

Section 3 describes the problem. In Section 4, we present

the general prediction model based upon neural networks. In

Section 5, we explain the required data input, apply prepro-

cessing and training of the prediction model to a reference

hospital, compare our numerical results with state-of-the-art,

and discuss applications of our model. In Section 6, we con-

clude our findings and discuss limitations and managerial

insights.

2 RELATED LITERATURE

In the past six decades, extensive research has been car-

ried out to optimize OR scheduling (Cardoen, Demeule-

meester, & Beliën, 2009; Guerriero & Guido, 2011; Samudra

et al., 2016). In this section, we first introduce the most rel-

evant contributions to integrated OR scheduling. Then, in

order to motivate our approach based upon neural networks,

we present previous work addressing neural network applica-

tions in the health care sector as well as forecasting models in

various industries.

Among other criteria, research on OR scheduling can be

differentiated by decision hierarchy (strategic, tactical, oper-

ational), patient type (elective vs nonelective, outpatient vs

inpatient), performance measure (overutilization vs underuti-

lization), considered supporting units (ED, post-anesthesia

care unit [PACU], ward, IMC, ICU), uncertainty (determin-

istic vs stochastic), research methodology (simulation, math-

ematical programming, heuristics), and tangibility (theoretic

vs real data) (Samudra et al., 2016). Marjamaa, Vakkuri,

and Kirvelä (2008) and Marjamaa, Torkki, Hirvensalo, and

Kirvelä (2009) provide an overview on OR performance and

analyze efficiency gains by parallel processing. OR efficiency

without consideration of downstream units has been stud-

ied extensively (Batun, Denton, Huschka, & Schaefer, 2011;

Dexter & Traub, 2002; Hans, Wullink, Van Houdenhoven,

& Kazemier, 2008; Marques, Captivo, & Pato, 2012; Shylo,

Prokopyev, & Schaefer, 2013); however, since OR scheduling

decisions have also an impact on other departments through-

out the entire hospital, an integrated approach that incor-

porates downstream units seems more suitable to improve

their combined performance (Vanberkel, Boucherie, Hans,

Hurink, & Litvak, 2010). This interdependency between OR

and downstream units, particularly the ICU, is addressed in

the following contributions. Adan and Vissers (2002) use

integer programming to schedule patients assuming fixed

capacities in the OR and downstream units. Their objective is

to generate a good admission profile that minimizes the devi-

ation between realized and target resource utilization. Hsu, de

Matta, and Lee (2003) focus on bed leveling for outpatients in

the PACU. While these two papers model downstream units in

a deterministic manner, Beliën and Demeulemeester (2007)

present an approach in which both the number of patients and

the LOS are assumed to be stochastic. They create MSSs that

level the expected bed occupancy in downstream units and are

able to calculate the expected bed demand for a given MSS

since the probability distribution of arrival times is known.

Also, Vanberkel et al. (2011b) propose an analytic model to

optimize the MSS and level the expected bed demand. For

any given MSS, they are able to calculate the distribution of

patients in the wards using binomial distributions and discrete

convolutions. A case study where an optimized MSS is imple-

mented successfully in a Dutch cancer center is presented in

Vanberkel et al. (2011a).
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A question similar to ours is studied by Fügener, Hans,

Kolisch, Kortbeek, and Vanberkel (2014) who further extend

the previous approach (Vanberkel et al., 2011b) by incor-

porating multiple downstream units, assessing downstream

costs, and maximizing hospital revenues (Fügener, 2015).

Based on the probability of an admission to the ICU and

the LOS distribution, a three-step approach is presented to

derive the occupancy levels for ICU and wards. First, they

analyze the pathway of a single patient through the hospital

based on historical data to derive the distributions of num-

ber of patients resulting from a single OR block (step 1).

Second, in order to account for an overlap of patients from

previous cycles, the distributions for single OR blocks are

convoluted. Third, all blocks of a cyclical MSS are combined

to determine the bed demand for the downstream units. In

a case study (Fügener et al., 2015), the authors apply the

model to a German hospital, predict bed demands for any

given MSS, and design two adjusted MSSs resulting in a

leveled bed demand and reduced weekend demand, respec-

tively. This approach can be viewed as state-of-the-art since

it is integrated, stochastic, based on real data, and considers

multiple downstream units. However, their approach differs

from our work since their model is constructed in a way such

that only a predefined set of patient paths is reflected, that

is, OR → (ICU→)ward→ discharge, whereas all others are

not supported. More precisely, step 1 of their model relies

on transition probabilities in a patient flow model that is not

able to capture all patient paths (see figure 4 on page 230 in

Fügener et al., 2014). This implies for example the loss of

information about multiple surgeries, preoperative stays, and

transfers from ward to ICU. Moreover, they assume that the

probability for a patient to be discharged from the ward after

being transferred from the ICU only depends on the time since

the transfer from the ICU. For the convolution in their model,

they assume that patient paths are independent from each

other. In contrast, our approach is based on neural networks

which allows us to reflect all patient paths that have occurred

in the past. Hence, it seems reasonable that our model is able

to reflect the real-world situation even more accurately.

Within the last decade, neural networks have gained

momentum across many industries and particularly helped

to advance diagnosis applications in health care. Esteva

et al. (2017) present a model that outperforms human experts

in classifying skin cancer. Other diagnosis applications

include the classification of fetal heart rates (Li et al., 2018),

prediction of diseases (Chen, Hao, Hwang, Wang, &

Wang, 2017), diagnosis of heart diseases under considera-

tion of misclassification costs (Pendharkar & Nanda, 2006),

and prediction of colorectal cancer outcome based on tissue

samples (Bychkov et al., 2018). Besides for diagnosis, neu-

ral networks are also used in the health care sector to support

robot-assisted surgeries (Volkov, Hashimoto, Rosman, Meire-

les, & Rus, 2017), drug discoveries (Wallach, Dzamba, &

Heifets, 2015), and a broad variety of additional applications

(Hamet & Tremblay, 2017; Natarajan et al., 2017; Shahid,

Rappon, & Berta, 2019; Thuemmler & Bai, 2017). Numer-

ous papers can be found using machine learning to address

problems on the operational level of a hospital. In partic-

ular, the prediction of surgical durations has been studied

extensively (Fairley, Scheinker, & Brandeau, 2018; Strum,

May, & Vargas, 2000; Tuwatananurak et al., 2019). Unlike

them, we consider a problem on the tactical level and do

not use individual patient characteristics as input. Across

many industries, it has been shown that neural networks are

well-suited to tackle forecasting and prediction problems.

Some examples include the prediction of rainfall (French,

Krajewski, & Cuykendall, 1992), GDP growth (Jahn, 2018),

energy consumption in residential buildings (Biswas, Robin-

son, & Fumo, 2016), useful life of bearings (Guo, Li, Jia,

Lei, & Lin, 2017), and railway passenger flow (Toque, Come,

Oukhellou, & Trepanier, 2018). Also in hospitals, operational

problems have been addressed with machine learning meth-

ods. Neural network based models have proven successful for

the prediction of hospital admission (Hong, Haimovich, &

Taylor, 2018), emergency visits (Hong, Niedzwiecki, Palta,

& Tenenbaum, 2018), hospital re-admission (Leung Patrick

Cheung & Dahl, 2018), surgery cancellation (Luo, Liu, Hou,

& Shi, 2016), surgical durations (Master et al., 2017), clinical

deterioration (Churpek et al., 2016), and clinical events (Este-

ban, Staeck, Baier, Yang, & Tresp, 2016). However, so far we

are not aware of any previous work in which neural networks

are applied to predict the bed demand for the integrated OR

scheduling problem.

Hence, we build upon the existing research by presenting a

neural network based approach for the integrated OR schedul-

ing problem that considers OR capacity as well as multiple

supporting units (ED, ward, IMC, ICU), is capable of han-

dling uncertainty and complexity, is based on 7 years of real

data, and has been designed in close cooperation with key

stakeholders of the reference hospital in Augsburg.

3 PROBLEM DESCRIPTION

In this study, we address the integrated OR scheduling

problem. We consider a hospital, in which several medical

specialties compete for OR capacity to treat their patients.

On the tactical level, hospital managers are asked to develop

a MSS by assigning a given number of OR blocks for each

medical specialty to specific time slots in specific surgery

rooms. As has been emphasized before, this decision affects

not only the OR, but also other hospital departments. Hence,

an integrated approach to MSS optimization needs to take

those effects into account. In order to consider the impact

on supporting units, hospital managers require a model that

predicts the resulting bed occupancy levels for given surgery

decisions.

To understand the impact of surgeries on the supporting

units, an individual patient’s path needs to be considered.

In a rather simple example, a Neurosurgery patient may
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FIGURE 2 Possible patient paths through the hospital. Patients are

admitted in any unit of a hospital (OR, ED, ward, IMC, or ICU), transferred

among those units in arbitrary order, and finally discharged at any point

be admitted to the ward, then—after a surgery of 3 hours

duration—transferred to the ICU for a 3-night stay, then trans-

ferred to another ward station for a 5-night stay, and finally

discharged from the hospital. Knowing this specific patient

path, we are able to draw conclusions from Neurosurgery

blocks to the impact on the ICU.

However, in real-life hospitals, not all patients are of the

same medical specialty and not all patients of the same med-

ical specialty take the same path. Hence, we deal with a wide

variety of different patient paths and different LOS in each

unit. This is mainly due to diverse medical conditions, various

types of anamneses, different surgical staff and equipment,

as well as unforeseen complications during the hospital stay.

Figure 2 shows all possible combinations of paths through

the units of the hospital and is explained in the following.

Self-loops are possible as well, for example, transfers from

one ward station to another ward station, but are not depicted

in Figure 2 since we directly aggregate stations that belong

to the same unit.

To formalize the following steps, we use the notation for

sets and indices as described in Table 1. We consider r ∈

surgery rooms that are combined to one common OR capac-

ity which is depicted as a box in Figure 2. In the same

way, we refer to the supporting units as u ∈  . Figure 2

shows boxes for the supporting units ED, ICU, IMC, and the

ward. Each supporting unit is composed of several stations

hu ∈u. For example, the supporting unit u = 1 might be

composed of three stations, that is, stations with the numbers

1 = {1,2,3}. In this study, one “hyper-ICU” is considered to

pool the capacity of all relevant ICU stations. This assumption

is reasonable since the ICU stations are interdisciplinary and,

hence, utilization can be balanced. The same holds true for

ED, IMC, and the ward, respectively. Even in case of fixed

allocation of hospital beds to medical specialties, patients

might overflow to beds of related specialties if the desig-

nated ones are fully occupied, that is, “off-service placement”

(Song, Tucker, Graue, Moravick, & Yang, 2019). For hospi-

tals where this is not acceptable, additional supporting units

can be introduced in order to pool the capacity of selected

(or even single) ward stations, for example, 1′ = {1, 2},

1′′ = {3}. A patient can be admitted to any unit of the hos-

pital (indicated by the dotted arrow called Start), transferred

between any units (indicated by arrows), and discharged from

any unit (indicated by the arrows ending in the unit called

outside). The outside unit is used to locate a patient that is

currently not within the hospital. Knowing the time of the

TABLE 1 Sets and indices

Description Index∈ set

ORs r ∈ = {1, … , R}

Supporting units u ∈  = {1, … ,U}, eg, where 1=̂ICU

Stations belonging to unit u hu ∈u = {1, … , Hu}

Patients p ∈  = {1, … ,P}
Patient paths f ∈ = {1, … , F}

Surgeries s ∈  = {1, … , S}
Medical specialties j ∈  = {1, … , J}, eg, where

1 =̂ Cardiothoracic Surgery

Samples/days m∈ = {1, … , M}, where

M = Mtrain +Mval +Mtest

Features n ∈  = {1, … ,N}
Memory depth d ∈  = {D−, … , 0, … ,D+}
Days of the week e∈ = {1, … , 7}, where

1 =̂ Monday, … , 7 =̂ Sunday

admission to the hospital as well as the LOS for each unit,

a patient’s position within the hospital can be reconstructed

for any given date. Accumulating over all patients allows us

to draw conclusions for the bed occupancy level in each unit.

Furthermore, we refer to patients as p ∈  , surgeries as s ∈  ,

patient paths as f ∈ , and medical specialties as j ∈  .

To predict the impact of surgery decisions on the ICU,

we develop and implement a neural network based model

which is described in Section 4. In this model, we define

one sample m∈ as 1 day chosen from the set of available

days. The description of the features n ∈  is explained in

Section 4.3. As not only surgery decisions made for today,

but also surgeries conducted on preceding and subsequent

days affect today’s bed occupancy level, we introduce a new

parameter called memory depth d ∈ . This parameter reg-

ulates how many preceding days D− and subsequent days D+

are considered by the model for the prediction of the bed

occupancy level on day m∈.

By means of this study, we want to support hospital man-

agers in making substantiated surgery decisions by providing

them with a model that predicts the resulting bed occupancy.

Our objective is to minimize the deviation between predicted

and actual ICU occupancy levels.

4 NEURAL NETWORK MODEL FOR
PREDICTION OF ICU BED OCCUPANCY

In this section, we formulate the mathematical model to pre-

dict the ICU bed occupancy for a given MSS. Even though

the proposed prediction model can be applied to any up- or

downstream unit, we believe that it is reasonable to focus on

one unit for this study. The ICU is most critical since it is most

expensive, represents an important bottleneck in the hospital,

and bears the risk of blocking ORs.

This section is organized in three parts. First, in Section 4.1,

we introduce the concept of neural networks which serves

as foundation for our model (readers familiar with machine

learning might skip this part). Second, we describe how
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FIGURE 3 A neuron mapping three inputs to one output. Neurons are the

fundamental building block of neural networks

to preprocess the hospital records and retrieve the required

inputs for the model in Section 4.2. Third, we formulate the

neural network problem to predict the ICU bed occupancy

(see Section 4.3).

4.1 Neural networks

The problem at hand corresponds to finding a computable

function x → f (x) = y where we know the input vector x,

that is, the surgery decisions, and want to draw conclusions

for the output value y, that is, the resulting bed occupancy.

However, the relationship between inputs and output is not

trivial for the underlying hospital setting and hence, diffi-

cult to model. Even state-of-the-art literature struggles to

represent the real-world complexity in a well-defined model

(see Section 2). Instead of modeling the relationship with

numerous constraints and restricting the validity to a narrow

scope, our model is developed directly from the underlying

real-world data.

Supervised learning is a well-suited method to comprehend

complex relationships based on historical data. Particularly

the field of deep learning2 has made significant progress

in the past decades and—combined with today’s computing

capacity—offers entirely new possibilities. A comprehen-

sive overview on deep learning is provided in Goodfellow

et al. (2016) and LeCun, Bengio, and Hinton (2015).

Neuron. The basic building block of each neural network is

a neuron. It models the relation between inputs, the so-called

features, and the output, also called label. Figure 3 depicts

a neuron with three features and one label for one sample

m = 1. The input values x1, x2, and x3 are mapped to the

output value ŷ. As we consider only one sample, we omit the

sample index m = 1.

In a neuron, three mathematical operations are performed.

In Equation (1), the dot product between the input vector x and

the corresponding weight vector w is computed and a bias b is

added. In Equation (2), an activation function g(z) is applied

to the term resulting in the prediction ŷ.

z = wxT + b. (1)

ŷ = g(z). (2)

2A deep neural network is characterized by multiple layers between the input

layer and the output layer, also called hidden layers.

The activation function in (2) introduces nonlinearity in

the model and is one of the main reasons for the improved

performance of neural networks compared to classical infer-

ence approaches such as linear regression. Additionally, they

may also be understood in terms of mapping the results of

calculations to their natural domains, for example, for proba-

bilities to the interval between zero and one. Common activa-

tion functions are sigmoid, ReLu and tanh (see Chapter 6 in

Goodfellow et al., 2016).

Network of neurons. Simple neurons are then combined to

larger structures. With multiple neurons, an additional layer

(called hidden layer) can be formed where each neuron is

connected to all inputs in the first layer (called input layer)

and to the neuron in the last layer (called output layer). The

neuron in the output layer is fed with the outputs of the neu-

rons in the previous layer. Hence, more options for weighting

the features are provided and more complex functions can

be represented. Kolmogorov’s theorem states that any con-

tinuous real function on the n-dimensional unit cube is

representable by sums and superpositions of continuous real

functions of one variable (Kolmogorov, 1957). This implies

that any continuous function with N inputs can be repre-

sented by an hidden layer comprising exactly 2N + 1 neurons

(Hecht-Nielsen, 1987). However, one often achieves better

performance by appending even more layers of neurons. The

topology of a neural network is defined by the number of lay-

ers and the number of neurons in each layer. As the input layer

is defined by the number of features and the output layer is

defined by the type of the problem,3 it remains to choose the

number of hidden layers and the number of neurons in each

hidden layer. Hereafter, we use the form “1:2:3” to indicate

the number of neurons in each hidden layer. For example, the

topology “16:4” would describe a neural network with two

hidden layers comprising 16 and 4 neurons, respectively. The

model is fed by N features x1, … , xN depicted in the input

layer. In each hidden layer, each neuron receives all values

of the previous layer, weights them accordingly, adds a bias

term, and applies the activation function. The output of each

neuron is then propagated to the next layer. Finally, the pre-

diction ŷ in the output layer is computed as the weighted sum

of the values from the last hidden layer.

The neural network requires training to learn the rela-

tionship between inputs and output. During the training, the

network is shown many samples, that is, multiple instances of

input values and the corresponding output values. Thus, the

features are described by the feature matrix X and the labels

by the label vector y. In order to evaluate the performance of

the prediction, a loss function is used measuring the devia-

tion between the original output vector y and the prediction

vector ŷ. Furthermore, we summarize the weights and biases

of a neural network as parameter vector 𝜽. An overview of

the notation commonly used in machine learning is found in

Appendix A.

3In regression problems, the output layer comprises exactly one neuron.
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TABLE 2 Patient flow table for a single patient p ∈ 

Index Timestamp Type From_unit From_station To_unit To_station

0 2 January 2014 2:58 PM Admission Outside — Ward 051

1 2 January 2014 4:31 PM Start of surgery — — — —

2 2 January 2014 7:46 PM End of surgery — — — —

3 2 January 2014 7:46 PM Transfer Ward 051 ICU 031

4 5 January 2014 09:59 AM Transfer ICU 031 Ward 053

5 10 January 2014 10:17 AM Discharge Ward 053 Outside —

Abbreviations: This table containing all movements through the hospital is reconstructed for each patient.

FIGURE 4 Common patient paths and their corresponding patient numbers. Nearly 90% of all patients choose one of the 10 most common patient paths and

7% of the patients are outpatients

Two steps are required, to develop and implement a neu-

ral network that predicts the bed occupancy. First, features

and labels need to be provided to feed the model. Second, the

model needs to determine the best parameter 𝜽 that minimizes

the deviation between real and predicted bed occupancy.

These two steps are covered in the next two parts.

4.2 Data preprocessing for extraction of features
and labels

In this part, we describe how to retrieve the surgery sched-

ules as well as the resulting bed occupancy levels from

historical hospital records. Since hospital records are usually

patient-specific, we first need to reconstruct each individual

patient’s path through the hospital before drawing conclusions

for the entire hospital.

Patient flow. For each patient p ∈  , a patient flow table

is computed containing timestamps, origins, and destina-

tions for relevant transactions that occur during a patient’s

journey through the hospital. In particular, the admission

to the hospital, transfers within the hospital, start and end

of a surgery, and the discharge from the hospital are recon-

structed. Table 2 shows an illustrative patient flow table for a

single patient. Each row corresponds to a specific event. This

patient has been admitted to the hospital on 2 January 2014,

at 14:58 (which is 2:58 PM). After the surgery, which took

place between 2:31 PM and 7:46 PM, the patient has been

transferred to the ICU, and afterwards to the ward. Finally,

the patient has been released from the hospital on 10 January

at 10:17 AM. Depending on medical specialty, medical con-

ditions, surgical staff and equipment, and additional external

factors, different patient paths f ∈ through the hospital

are encountered. Figure 4 in Section 5.2 depicts the 10 most

common paths identified for the reference hospital. Luckily,

we do not need to treat all these cases individually as the

model will be able to generalize once it has encountered such

cases during the training.

4.2.1 Acquiring the label data: occupancy level
Based on the patient path of an individual patient, we are able

to reconstruct its exact location within the hospital for any

given date. By superimposing the locations of all patients,

we obtain the bed occupancy levels for a hospital unit. The

bed occupancy in supporting unit u ∈  on day m∈ is

defined as: ∑
hu∈u

∑
p∈

𝛿hu,p,m, ∀u ∈  , m ∈ , (3)

where 𝛿hu,p,m = 1 denotes that a patient p has been present

in station hu on day m. In this study, we focus on the ICU.
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The presented approach can easily be extended to additional

supporting units or individual stations.

In close alignment with hospital managers we made two

important assumptions. First, patients who are transferred

to the ICU within 3 hours after their surgery are regarded

as directly transferred, even if the records would suggest an

interim ward-stay between surgery and ICU. In most cases,

the delayed transfer in the records results from the delayed

manual registration rather than from an actual stay in the

ward. Thus, it is fair to assume that the patients went to

the ICU directly after surgery. Second, we assume that a

bed can be occupied by at most one patient per day unless

the previous patient is leaving before 11 AM, that is, the

so-called hotel principle. This assumption is well established

within the tactical OR literature (Fügener et al., 2014; Fügener

et al., 2015; Shi, Helm, Deglise-Hawkinson, & Pan, 2019;

Vanberkel et al., 2011b) since metrics are considered on a

daily basis. Furthermore, this assumption is also supported by

the data of the reference hospital (in over 98% of the consid-

ered bed-days) and consistent from a practical point of view

since a bed is reserved for every day of a patient’s stay and

first needs to be cleaned and prepared before being ready for

a new patient.

4.2.2 Acquiring the feature data: surgery schedule
On a tactical level, one focuses on the surgery decisions as

main drivers for the occupancy level in the ICU. Hence,

this approach would ideally be based on ex ante surgery

schedules. In fact, ex ante data account for the additional

uncertainty given that a significant number of scheduled

surgeries are canceled in advance (Dexter, Maxbauer, Stout,

Archbold, & Epstein, 2014). However, due to the limited

data availability, we base this approach on ex post data in

which cancellations, no shows, and rescheduling are already

reflected. In particular, we focus on the historical surgery

records to retrieve the allocation of OR blocks (r, m) for all

medical specialties. For each room r ∈ in which a medical

specialty has performed surgeries on a given day m∈, one

OR block (r, m) is assigned to the respective specialty. If the

same room has been utilized by multiple specialties on the

same day, the OR block is allocated to the involved medical

specialties according to their accumulated surgery durations.

The number of OR blocks assigned to specialty j ∈  on day

m∈ is defined as:

∑
r∈

∑
s∈ ts,j,r,m∑

j∈
∑

s∈ ts,j,r,m
, ∀j ∈  ,m ∈ , (4)

where ts, j, r, m denotes the duration of surgery s of a patient p
of medical specialty j in the surgery room r on day m.

Table 3 shows an illustrative surgery schedule. For

example, no OR block was allocated to the medical spe-

cialty j = 1 on 26 December 2016, and three OR blocks on

27 December. On 28 December, three full OR blocks were

assigned to j = 1 and an additional room was shared with the

medical specialty j = 3, where j = 1 used 27% of the total

surgery time in this room on this day.

4.3 Neural network problem formulation

After preprocessing, we formulate the supervised regression

problem: “predict the number of occupied beds in the ICU on

day m∈ for a given assignment of OR blocks (r, m) to J
medical specialties on day m, up to D− days before, and up

to D+ days after.” Labels and features were chosen in close

alignment with hospital managers as follows:

Label
y(m) ∈ R+

0
Number of occupied beds in the ICU on

day m, ∀m∈

Features

x(m)
(e) ∈ {0, 1} One-hot encoding for the day of the

week e, ∀e∈  , m∈

x(m)
(j,d) ∈ R+

0
Number of OR blocks allocated to

specialty j on day m+ d,

∀j ∈  ,m ∈ , d ∈ 

Hence, we obtain the number N of feature vectors xn, n ∈
 = {1, … ,N}, in Equation (5).

N = E + J||. (5)

The features are labeled by n ∈  in the subscript. The mem-

ory depth d ∈  describes the number of previous days D−

and subsequent days D+ which are taken into account for each

sample. For instance,  = {−1, 0} indicates that today’s and

yesterday’s surgeries are reflected in the feature matrix. Fur-

ther assuming J = 8 specialties, we achieve N = 23 feature

vectors in this example. Additional features are discussed in

Section 6.

4.3.1 Defining features and data set
Full data set. Juxtaposing all feature vectors yields the fea-

ture matrix as

X = [x1 … xN] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)e=1
… x(1)e=7

x(2)e=1
… x(2)e=7

… … …
x(M)

e=1
… x(M)

e=7
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Weekday features

|||||||||||||||||

||||||||||

x(1)j=1,d=D− … x(1)j=1,d=0
… x(1)j=1,d=D+

x(2)j=1,d=D− … x(2)j=1,d=0
… x(2)j=1,d=D+

… … … … …
x(M)

j=1,d=D− … x(M)
j=1,d=0

… x(M)
j=1,d=D+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
OR block features for specialty 1

… x(1)j=J,d=D+

… x(2)j=J,d=D+

… …
… x(M)

j=J,d=D+

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
OR block features for J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)
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A sample with index m is defined as a set consisting of the

respective label for the selected day m as well as the respective

values of the feature vectors (ie, one row of X) given in (7).

(y(m), x(m)
1

, … , x(m)
N ). (7)

All samples are combined to a data set (y, X), also called

full data set as it covers all selected specialties. Table 3

shows 3 days (27–29 December) of the feature matrix with

memory depth  = {−1, 0} for the historical surgery sched-

ule depicted in Table 4. For example, three OR blocks were

assigned to the medical specialty j = 1 on 27 December 2016.

The fact that this day was a Tuesday, is indicated with a one

in the second column. If looking at the next sample, that

is, 28 January 2016, we notice that the three OR blocks are

also found in column xj = 1, d = − 1, which denotes the surgeries

conducted on the previous day.

4.3.2 Increasing the number of samples
Isolated data set. While the previous approach provided a per-

spective on the joint effect of all medical specialties j ∈  ,

most hospital records allow also a dedicated break-down to

patients of each individual medical specialty. By doing so,

we generate more samples and enable the neural network

to further learn about the underlying structure. The simple

example below illustrates that additional information can be

extracted by breaking down the full data set covering all

medical specialties into isolated data sets for the individual

medical specialties.

Full data set ∶ (y, xj=1, xj=2)full = (15, 2, 3)
⇐⇒ 2blocks for spec. 1 + 3 blocks for spec.

2 → 15 ICU beds.

Isolated data set 1 ∶ (y, xj=1, xj=2)j=1 = (5, 2, 0)
⇐⇒ 2 blocks for specialty 1 → 5 ICU beds.

Isolated data set 2 ∶ (y, xj=1, xj=2)j=2 = (10, 0, 3)
⇐⇒ 3 blocks for specialty 2 → 10 ICU beds.

In the full data set of this example it remains unclear which

share of the joint bed demand of 15 beds is caused by which

of the two involved medical specialties. Numerous solutions

are possible, for example, six ICU beds for each OR block of

specialty 1 and one bed for each OR block of specialty 2. The

isolated data sets reveal the function between OR block and

resulting bed demand without ambiguity.

Combined data set. To leverage the full information of the

hospital records, we derive the full data set (y, X)full as well

as the isolated data set (y, X)j for each medical specialty

j ∈  and append all sets into large, combined data set
given in (8).

(y,X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(y,X)full

(y,X)1
(y,X)2
…

(y,X)J

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

The resulting feature matrix X is defined in (9) and the

corresponding y is composed of the respective bed occu-

pancy of the full set followed by the bed occupancy of each

isolated medical specialty. One could also think of adding all

combinations of specialties to the data set which we did not

explore in this study.

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)e=1
… x(1)e=7

… … …

x(M)
e=1

… x(M)
e=7

x(1)e=1
… x(1)e=7

… … …

x(M)
e=1

… x(M)
e=7

… … …

x(1)e=1
… x(1)e=7

… … …

x(M)
e=1

… x(M)
e=7

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Weekday features

x(1)j=1,d=D− … x(1)j=1,d=0
… x(1)j=1,d=D+

… … … … …

x(M)
j=1,d=D− … x(M)

j=1,d=0
… x(M)

j=1,d=D+

x(1)j=1,d=D− x(1)j=1,d=0
x(1)j=1,d=D+ … …

… … … … …

x(M)
j=1,d=D− … x(M)

j=1,d=0
… x(M)

j=1,d=D+

… … … … …

0 … 0 … 0

… … … … …

0 … 0 … …
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

OR block features for specialty 1

… x(1)j=J,d=D+

… …

… x(M)
j=J,d=D+

… 0

… …

… 0

… …

… x(1)j=J,d=D+

… …

… x(M)
j=J,d=D+

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
OR block features for J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Full set

Isolated sets

for j = 1

…

for j = J

(9)
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TABLE 3 Three days of the feature matrix with memory depth  = {−1, 0} corresponding to the surgery schedule depicted in Table 4

Sample Date xe = Mon xe = Tue xe = Wed … xj = 1, d = − 1 xj = 1, d = 0 … xj = 8, d = − 1 xj = 8, d = 0

2 27 December 2016 0 1 0 … 0.00 3.00 … 0.00 1.00

3 28 December 2016 0 0 1 … 3.00 3.27 … 1.00 0.00

4 29 December 2016 0 0 0 … 3.27 2.00 … 0.00 0.00

Abbreviations: The first seven columns represent the one-hot encoded days of the week e∈  , the remaining columns contain the number of assigned OR blocks for

each specialty j ∈  and each day m∈.

TABLE 4 Historical surgery schedule in number of OR blocks

Sample Date j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

1 26 December 2016 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

2 27 December 2016 3.00 1.00 1.00 1.00 0.00 1.00 2.00 1.00

3 28 December 2016 3.27 0.00 0.73 4.00 1.00 1.00 3.00 0.00

4 29 December 2016 2.00 1.00 1.00 2.00 0.00 1.00 3.00 0.00

Abbreviations: For each OR that is exclusively occupied by one medical specialty, one OR block is assigned to the specialty.

4.3.3 Training the neural network
The resulting data set is split randomly into three subsets,

that is, training set, validation set, and test set. Since our

model is based on ex post data as reconstructed from the

historical records, the OR capacity for each medical spe-

cialty differs between individual days such that variability

is reflected when randomly assigning samples to sets. Note

that ex ante data would be preferred over ex post data since

a significant number of scheduled surgeries is canceled or

rescheduled in advance (Dexter et al., 2014). However, due

to the limited data availability, this model is based on ex post

data. The training set is used to train the neural network, that

is, to fit the parameters 𝜽 of the model such that the prediction

error of the loss function J(𝜽) is minimized. The validation set

is used to evaluate the performance during training and adjust

the hyperparameters accordingly. The test set contains Mtest

“fresh” samples that are excluded from the training process

and hence ensure an unbiased performance measure.

After discussions with the hospital management, we

decided that robustness of the model has highest priority and

consequently selected the mean squared error (MSE) as loss

function for this study. This choice implies limitations for

the prediction accuracy for high congestion periods as the

MSE metric averages both congested and noncongested peri-

ods instead of only focusing on congested periods. Using a

model ŷ with the parameters 𝜽 as prediction for y, the loss

function J(𝜽) is given in Equation (10).

J(𝜽) = 1

M

M∑
m=1

(̂y(m) − y(m))2. (10)

Then, the neural network problem is formulated as in (11).

min
𝜽

J(𝜽). (11)

During the training, gradient descent is used to minimize the

loss function by fitting the parameters to the data set.

5 NUMERICAL RESULTS FOR
REFERENCE HOSPITAL

In this section, we apply the proposed model to real data

retrieved from a reference hospital in order to show proof

of concept and provide guidance for other hospital man-

agers. This section is structured in six parts. First, we provide

detailed information about the particular setting in the ref-

erence hospital and explain the required input data. Second,

we apply preprocessing to reconstruct historical patient paths,

ex post surgery schedules, and utilization levels and finally

derive features and labels. Third, we train the prediction

model, deploy it to test samples, and present numerical results

for various constellations. Fourth, we compare our prediction

model with the results of alternative algorithms as well as the

state-of-the-art model by Fügener et al. (2014). Fifth, we show

how the model can be trained with bootstrapped ex ante data.

Sixth, we present two valuable options to inform the deci-

sion making process using the prediction model, that is, as

supporting tool for the hospital management and as objective

function in an optimization model.

5.1 Reference hospital and required input data

Although levels of detail, professionalism, and standardiza-

tion, as well as types of systems and tools employed for

OR scheduling vary significantly between different hospitals,

most hospitals keep track of conducted surgeries as well as

patient movements. The proposed model requires two sets of

input data:

• Surgery records. Documentation of details for conducted

surgeries. This data set contains patient-related informa-

tion such as unique patient identifiers, patient types, levels

of urgency, and medical specialties, as well as detailed

timestamps for each surgery-related step.
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• Supporting units records. Documentation of patient move-

ments within and between supporting units, that is, ED,

wards, IMC, and ICU. This data set contains information

such as unique patient identifiers as well as timestamps,

station numbers, and details for admission, transfer, and

discharge.

Based on our experience, these data sets are commonly

available in most hospitals and can be pulled directly from the

hospital information system, for example, Agfa Healthcare

Orbis4 in the reference hospital. Universitätsklinikum Augs-

burg is a 1700-bed, maximum-care university hospital located

in Southern Germany. Each year, around 250 000 patients are

treated by more than 700 doctors and 2000 nurses in 25 med-

ical specialties and institutes. For this study, we focus on the

central OR department5 in the central location of Universität-

sklinikum Augsburg located in Neusäß. We work with the two

aforementioned sets of input data covering 7 years from 2010

to 2016. The two data sets are interlinked by an unique patient

identifier which is essential to reconstruct the patient paths.

Excerpts of both hospital records are shown in Appendix C.

The hospital’s surgeries are currently orchestrated via MSS

A (based on status quo) which is illustrated in Table 8a. The

MSS is evaluated and modified once per quarter by the operat-

ing room (OR) manager and co-author of this manuscript, Dr

Thomas Koperna. It needs to meet the total weekly number of

OR blocks for each specialty and cannot exceed the available

OR capacity per day. Key evaluation criteria are the impact

on downstream departments, particularly the ICU, as well as

the availability of staff. During the considered time period,

the strategic case mix as well as the average number of treated

patients has remained nearly unchanged (see Appendix D) .

However, due to the ample period of 7 years, continuous mod-

ifications to the MSS, and particularly the fact that we work

with ex post data, diversification is still reflected in the data,

that is, each medical specialty has seen surgeries on each day

of the week, which is essential for the learning process.

In general hospitals, one typically distinguishes between

medical and surgical patients as well as between elective and

emergency patients. Since the proposed model aims to pre-

dict the impact of OR scheduling, only patients with at least

one surgery are relevant. This is also supported from a prac-

tical perspective since medical and surgical patients utilize

dedicated, autonomously acting up- and downstream units.

Furthermore, we consider elective patients since they can be

rescheduled and, hence, managed by a MSS. Those patients

that can be rescheduled within some hours are referred to

as urgent patients. While there is less flexibility for urgent

patients, they are also considered in our study since there is

still some ability to reschedule the respective surgeries, that is,

within 6 to 24 hours in the reference hospital. However, while

4https://global.agfahealthcare.com/main/hospital-it/orbis/.
5This department includes all central ORs (“ZOP”), ORs located on the top

floor (“Dach-OP”), and ORs located on the first floor (“EG-OP”).

we include urgent patients, it is not reasonable to include

emergency patients in the tactical OR scheduling problem

since they cannot be scheduled in advance and must be

treated immediately in the next available OR. We suggest to

exclude them from tactical planning, but rather ensure suf-

ficient buffer capacity in the respective units on top of the

predicted demand to accommodate emergency patients. This

approach is well established within the tactical OR schedul-

ing literature (Fügener et al., 2014; Vanberkel et al., 2011a).

Our patient selection also includes long-term patients that

are rather difficult to predict on a tactical level and have a

significant impact on the occupancy level as well as on the

performance of the prediction model, that is, a maximum LOS

of 289 days was observed in the data set. In order to ensure

data consistency and a well-defined scope, it is crucial to

focus on patients whose patient paths are entirely reflected in

the provided hospital records, that is, all ORs and support-

ing units. For example, we exclude patients of the specialty

Dermatology since they are mainly operated on at a differ-

ent hospital location in the south of Augsburg which is not

entirely covered by our data set. Summing up, we select

P = 77k patients based on the following criteria:

• Time period. The patient stayed in the hospital within the

years 2010 and 2016 and had at least one surgery.

• OR. The patient was treated in an OR in scope, that is, one

of the ORs in the central OR department.

• Medical specialty. The patient was associated with one of

eight medical specialties in scope, that is, using the ORs in

scope as well as the ICU stations in scope. A list of these

specialties is provided in Appendix B.

• Patient type. The patient was either elective or urgent,

either inpatient or outpatient.

The ORs in the central OR department at the reference hos-

pital are mainly utilized by J = 8 medical specialties. Hence,

patients belonging to one of these medical specialties are con-

sidered for this study, that is, Cardiothoracic Surgery (CAS),

General, Visceral, and Transplant Surgery (GES), Gynecol-

ogy (GYN), Oral and Maxillofacial Surgery (MAS), Neu-

rosurgery (NEU), Traumatology, Orthopedics, and Plastic

Surgery (TRA), Urology (URO), and Vascular and Intravas-

cular Surgery (VAS). All stations that belong to the same

supporting unit are aggregated to a hyper-unit. We consider

I = 4 supporting units, namely ICU covering HICU = 9 sta-

tions, IMC covering HIMC = 1 station, ED covering HED = 4

stations, and the ward covering Hward = 79 stations. The

extensive data set used in this study outnumbers comparable

contributions. Adan and Vissers (2002) base their work on

1 week of data comprising 760 patients, Fügener et al. (2015)

look at 6 months of data comprising 2480 patients in three

specialties, and Vanberkel et al. (2011b) consider 1 year of

data from a 150-bed hospital. The comprehensive data set

of Universitätsklinikum Augsburg provides a solid founda-

tion for the evaluation of our approach. As this study has

been conducted in close cooperation with key stakeholders

https://global.agfahealthcare.com/main/hospital-it/orbis/
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of the reference hospital, profound understanding on either

side is ensured and potential benefits are evident. Univer-

sitätsklinikum Augsburg plans to introduce a new, revised

MSS within 2020 where the results of this study form the

foundation.

5.2 Preprocessing results

Starting from plain hospital records containing information

about surgery timestamps and movements in supporting units,

we apply preprocessing to reconstruct all individual paths

that patients take through the hospital. Analyzing Univer-

sitätsklinikum Augsburg’s historical data from 2010 to 2016,

we found the patient paths as depicted in Figure 4. Those

patient paths represent the core of our approach since they are

essential to reconstruct occupancy levels and ex post surgery

schedules, derive features and labels, and finally train the

neural network based prediction model.

Nearly half of all patients follow the same patient path

(f = 1): admission to the hospital, stay in the ward, transfer

to the OR for surgery, return to the ward for another stay, and

finally discharge from the hospital (depicted in the first row

of Figure 4). The fourth path (f = 4) refers to outpatients with

surgeries. Overall, we found F = 1,017 distinct patient paths

through the hospital while nearly 90% of the patients choose

one of the 10 most common ones. Finally, we derive the occu-

pancy levels in up- and downstream units for each given day

by accumulating over all patients whose patient paths indicate

a stay in that station on that day. Analogously, we retrieve the

ex post surgery schedule from the patient paths such that also

cancellations, no shows, and rescheduling are reflected. The

occupancy levels and ex post surgery schedule are then trans-

formed to a data set composed of labels and features. Note

that ex ante data would be preferred, but we use ex post data

due to limited data availability.

We use scikit-learn’s train_test_split
(Pedregosa et al., 2011) to split the resulting data set ran-

domly into three subsets, that is, Mtrain samples are assigned

to the training set and Mval samples to the validation set.

Afterwards, each feature is scaled and normalized individu-

ally with scikit-learn’s MinMaxScaler such that

it is in the range between zero and one. When fitting the

estimator, we only used the training set in order to prevent a

spillover of information, that is, the constants computed with

the training set are also used to scale the validation and test

set. For an overview of the commonly-used notation, we refer

to Appendix A.

5.3 Prediction results

The proposed neural network model to predict bed occupancy

levels has been implemented in Python. For data processing,

we use Pandas, NumPy, SciPy, scikit-learn, and

Tensorflow. Preprocessing and training were performed

on a dedicated simulation node equipped with 56 phys-

ical Intel(R) Xeon(R) Platinum 8176 cores with enabled

hyperthreading. The computations are structured along three

configuration levels. First, the patient group in focus is

selected. Second, preprocessing is performed to develop the

data sets. Third, model hyperparameters are selected for the

training.

1 Patient selection. In the base case (see ID 1 in

Table 5), we consider all 77k patients. Further-

more, we also present results for subsets of this

patient group, that is, elective patients, inpatients, or

selected medical specialties.

2 Data set selection. In the base case, we consider

a memory depth of  = {−20, 10} and one-hot

encoded weekdays resulting in N = 255 features.

However, we also analyze the impact of the memory

depth  and the weekday feature. All samples are

shuffled randomly and split into training, validation,

and test sets as described in Section 4.3.

3 Model selection. We have identified the best hyper-

parameters for the neural network by running

an exhaustive search with scikit-learn’s
GridSearchCV, that is, a “200:50” topology and

ReLu activation for the ICU prediction model. Each

model has been trained for up to Nepochs = 100 000

epochs using stochastic gradient descent with a con-

stant learning rate 𝛼 = 0.00001 and MSE as loss

function. Furthermore, we also present results for

different hyperparameters.

After preprocessing (levels 1-2) and training (level 3), the

model is deployed to predict the bed occupancy for the sam-

ples in the test data set. Figure 5 compares the predicted ICU

bed occupancy level with the measured one. The ICU is most

critical since it is most expensive, represents an important

bottleneck in the hospital, bears the risk of blocking ORs,

and finally fosters inferior patient treatment (see Section 1).

On the entire test data set, the model achieves a root mean

squared error (RMSE) of 3.46. The overall occupancy level

is predicted correctly and also major peaks are reflected well,

for example, during weekends. Nevertheless, the two curves

slightly differ from each other. This seems reasonable since

even for two samples with exactly the same realization of all

features, the bed occupancy level might be still different due

to individual patient characteristics, uncertain medical con-

ditions, and individual behavior and decision making of the

medical staff. These characteristics make it difficult for the

model to predict exactly the same curve. Albeit the ICU is

most crucial, our model is able to predict occupancy levels

for other supporting units as well. Balancing the occupancy

level, that is, reducing the maximum number of required

beds, is a common goal in MSS optimization. In Section 5.6,

we formulate an optimization problem for the respective bed

occupancy level in the ICU. In an extensive numerical study,

different combinations of patient selection, data set selection,
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TABLE 5 Numerical results for ICU occupancy prediction based on neural networks

Patient selection Data set selection Model selection Test

ID Years Type Urgency Spec. LOS  WD Label Topology RMSE

1 2010-2016 In./out. El./ur. 8 All {−20, 10} Yes ICU 200:50 3.46

2 2010-2016 In./out. El. 8 All {−20, 10} Yes ICU 200:50 2.97

3 2010-2016 In./out. El./ur./em. 8 All {−20, 10} Yes ICU 200:50 4.27

4 2010-2016 Inpatient El./ur. 8 All {−20, 10} Yes ICU 200:50 3.46

5 2016 In./out. El./ur. 8 All {−20, 10} Yes ICU 200:50 3.76

6 2010-2016 In./out. El./ur. 4 All {−20, 10} Yes ICU 200:50 2.91

7 2010-2016 In./out. El./ur. 8 52 {-20,10} Yes ICU 200:50 3.44

8 2010-2016 In./out. El./ur. 8 20 {−20, 10} Yes ICU 200:50 2.78

9 2010-2016 In./out. El./ur. 8 All {−20, 0} Yes ICU 200:50 3.49

10 2010-2016 In./out. El./ur. 8 All {−50, 0} Yes ICU 200:50 3.55

11 2010-2016 In./out. El./ur. 8 All {−30, 10} Yes ICU 200:50 3.51

12 2010-2016 In./out. El./ur. 8 All {−20, 10} No ICU 200:50 3.59

13 2010-2016 In./out. El./ur. 8 All {−20, 10} Yes ICU 4:4 3.53

14 2010-2016 In./out. El./ur. 8 All {−20, 10} Yes ICU 200:200:200 3.47

Abbreviations: el., elective; em, emergency; in., inpatient; out., outpatient; ur., urgent; WD, weekday feature.

FIGURE 5 Measured and predicted bed occupancy level in the ICU for the test samples within 2013 to 2014

and model selection were computed. Table 5 summarizes

our major findings. We have analyzed the impact of differ-

ent patient selections (ID1 to ID8), various data sets (ID1

and ID9 to ID12), and different model hyperparameters (ID1

and ID13 to ID14). The first row (ID1) in Table 5 rep-

resents the base case for this numerical study, that is, the

patient selection containing 77k patients. The data set is com-

posed of OR block feature vectors with memory depth  =
{−20, 10} and the weekday feature vectors (WD). The model

is defined as neural network with topology “200:50”, a con-

stant learning rate of 𝛼 = 0.00001, and stochastic gradient

descent as optimizer. This base case yields a test error of

3.46 (RMSE). The bold values in each row indicate changes

compared to the base case (ID1). Limiting the patient selec-

tion to elective patients only (ID2) results in a reduced test

error of 2.97 (−14%), while expanding the selection to emer-

gency patients (ID3) yields an increased test error of 4.27

(+23%). As discussed in Section 5.1, it is not recommended

to include emergency patients, but we consider elective and

urgent patients. Training the network with only 1 year of data

results in fewer samples and, hence, an increased test error

(ID5). Considering only patients of four specialties, that is,

GYN, CAS, NEU, and URO, reduces the test error to 2.91

(ID6). Since long-term patients are rather difficult to predict

on a tactical level and have a significant impact on the occu-

pancy level, a better performance for patient selections with

a lower maximal LOS is observed (ID7 to ID8). Varying the

memory depth in ID9 to ID11 results in slightly increased

test errors. Furthermore, the weekday feature in the base

case is responsible for a 4%-improvement compared to ID12.

Also, varying the topology of the neural network in ID13 to

ID14 results in lower performance. We draw four conclusions

from the numerical study. First, the selection of the patient

group has a major impact on the prediction accuracy. In par-

ticular, considering less specialties, only elective patients,

or lower maximal LOS results in lower prediction errors.

Second, choosing the memory depth wisely improves the pre-

diction results. Third, including the weekday feature achieves
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TABLE 6 Numerical results for ICU occupancy prediction based on alternative models

Patient selection Data set selection Model selection Test

ID Years Type Urg. Spec. LOS  WD Label Model RMSE

1 2010-2016 In./out. El./ur. 8 All {−20, 10} Yes ICU NN (200:50) 3.46

15 2010-2016 In./out. El./ur. 8 All {−20, 10} Yes ICU SVM 3.72

16 2010-2016 In./out. El./ur. 8 All {−20, 10} Yes ICU KNN 3.83

17 2010-2016 In./out. El./ur. 8 All {−20, 10} Yes ICU DTR 5.17

18 2010-2016 In./out. El./ur. 8 All {−20, 10} Yes ICU RFR 3.73

Abbreviations: el., elective; in., inpatient; out., outpatient; Spec., specialty; ur., urgent; Urg., urgency; WD, weekday feature.

in general better predictions. Fourth, a neural network with

topology “200:50” achieved best results.

5.4 Comparison of predictive power

In order to better contrast the performance of our model to

the literature, we compare it with alternative models. First, we

keep the preprocessing (levels 1-2) as proposed in this study

and only vary the machine learning algorithm (level 3). Sec-

ond, we compare the entire model with the state-of-the-art

model presented in Section 2.

For the first comparison, we implemented various alter-

native algorithms, trained them on the data sets resulting

from the preprocessing process, and evaluated their per-

formance on the test set. The implementation was done

using scikit-learn’s SVR, KNeighborsRegres-
sor, DecisionTreeRegressor, and RandomFore-
stRegressor, respectively. Table 6 summarizes our find-

ings for this numerical comparison. The support vector

machine in ID 15 achieves a rather good performance (RMSE

of 3.72) being only slightly worse than the proposed neu-

ral network (ID 1). Also, the k-nearest neighbors algorithm

(ID 16) shows a convincing performance. The decision tree

regressor (DTR) in ID 17 achieves a RMSE of 5.17. Using

the random forest regressor (RFR) in ID 18 achieves a bet-

ter RMSE of 3.73. In summary, alternative machine learning

algorithms (except for DTR) are also well-suited for the pre-

diction problem at hand, however, do not outperform the

proposed neural network (ID 1). Furthermore, even though

the presented algorithms could be used as substitute for the

neural network in the prediction step, they still rely on the

preprocessing steps of our approach.

In the second comparison, we consequently compare our

entire model with a state-of-the-art prediction model that does

not require our preprocessing. We implemented the stochastic

analytical approach proposed by Fügener et al. (2014) using

Mathwork’s MATLAB6 and Python. According to the nota-

tion by Fügener et al. (2014), aj(p) reflects the probability

that p patients had surgery during one OR block of medical

specialty j, bj represents the probability that a patient of med-

ical specialty j is transferred to the ICU after surgery, and

6https://www.mathworks.com/products/matlab.

1− bj is the probability of a transfer to the ward. cWO
j (n), cI

j (n),
and cWI

j (n) represent the probabilities that a patient of med-

ical specialty j stays n days in the ward after surgery, in the

ICU after surgery, or in the ward after being released from the

ICU, respectively. dI
j,n(n) represents the conditional probabil-

ity that a patient of medical specialty j is transferred from the

ICU to the ward on day n, given that he/she was not released

before. Likewise, dWO
j,n (n), and dWI

j,n (n) refer to the probabili-

ties of a discharge from the ward on day n after surgery or

after the transfer from the ICU, respectively. The aforemen-

tioned parameters were calculated based on the entire data

set of Universitätsklinikum Augsburg for the years 2010 to

2016, that is, the base case containing all 77k patients. Due to

technical reasons, we even included the test samples into the

calculations which results in an advantage compared to our

model which has been trained without the test data . Given

those parameters, the model is able to predict the resulting

ICU bed occupancy for the OR blocks. Figure 6 compares the

original bed occupancy (dashed, gray) with the predictions

based on our model (solid, black) and the one by Fügener

et al. (2014) (dotted, gray). While both models predict the

overall level and the trend pretty well, our model is closer to

the original data for almost all dates. For the samples depicted

in Figure 6, Fügener et al. achieve an RMSE of 5.14 while

our model achieves an RMSE of 3.44. On the entire test set,

Fügener et al. achieve a RMSE of 6.06. In comparison, our

model achieves an prediction error that is 43% lower (RMSE

of 3.46).

Given the presented comparisons with alternative algo-

rithms and the state-of-the-art prediction model, we conclude

that machine learning is a suitable method to predict bed

occupancy levels and that the proposed neural network based

approach achieves convincing results. We have shown that

our suggested three-step method is suitable for predicting, can

accommodate different machine learning algorithms in step 3,

and outperforms the current state-of-the-art where a different

approach is used for the same task.

5.5 Training with bootstrapped ex ante data

The numerical results presented in this study are obtained by

a prediction model that was trained on ex post data, that is,

data on the actual surgeries performed rather than the planned

https://www.mathworks.com/products/matlab
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FIGURE 6 Measured ICU bed occupancy compared with the predictions based on A, our model (RMSE: 3.44) and B, the stochastic analytical model

(RMSE: 5.14)

surgery schedule. However, a prediction model trained on ex

ante surgery schedules would be most useful. Otherwise, it

is not clear how the prediction of the ex post behavior will

help with evaluating schedules made ex ante. In this section,

we address this aspect and show what one would do with

ex ante data. First, a data set with bootstrapped ex ante data

is generated. Second, the prediction model is trained on the

new data set. Third, the prediction results are compared to the

aforementioned results obtained with ex post data.

Due to the limited availability of ex ante data in the required

granularity for the reference hospital, the data set is gener-

ated by bootstrapping ex ante data from the given ex post

data set. The same P = 77k patients are considered and the

same assumptions apply as in the base case described in

Section 5.1. We reflect the canceled surgeries in the new data

set by amending the ex post data with additional surgeries.

To avoid duplicates, each new observation is composed as

perturbed combination of existing observations. In fact, we

randomly select the characteristics such as medical specialty,

OR, date, and duration from the ex post data set. As the proce-

dure durations are drawn from the ex post data set, the model

is still learning from the future to some extent. To mitigate

this limitation, one might develop a forecasting model for the

duration of surgeries in order to bootstrap the ex-ante data.

A simple approach could use the historical average duration

of all past surgeries or more specifically for the same type

of procedure. Following the same procedure as described in

Section 4.2, the ex ante surgery schedule is obtained from the

bootstrapped data set, that is, the allocation of OR blocks (r,

m) for all medical specialties.

Given the bootstrapped ex ante surgery schedule, we cre-

ate a data set (y, X) using the same data set selection as in

the base case (see Section 4.2), that is, a memory depth of

 = {−20, 10} and one-hot encoded weekdays. Finally, the

data set is used to train the neural network with a “200:500”

topology as in the base case.

Figure 7 compares the original ICU bed occupancy

(dashed, gray) with the predictions of our model based on

ex post data (solid, black) as well as bootstrapped ex ante

data (dotted, black) for a cancellation rate of 10%. While both

predictions are quite accurate, the model based on ex post

data is slightly closer to the original data for most obser-

vations. In fact, the prediction error for the bootstrapped ex

ante data (RMSE of 3.60) is 4% higher than for the ex post

data (RMSE of 3.46). This seems reasonable since the boot-

strapped ex ante data suffer from the additionally introduced

uncertainty in form of canceled surgeries. Clearly, the more

canceled surgeries reflected in the bootstrapped ex ante data,

the higher the prediction error. Table 7 summarizes our find-

ings for a numerical comparison of different cancellation

rates. At the reference hospital, we currently observe a can-

cellation rate of 14% for elective ICU patients, which can

reach up to 30% in intense times. This is reflected in our

calculations.

We conclude that training the model with ex ante data

results in slightly less accurate results than with ex post data.

Nevertheless, the performance difference is only minor and

the proposed prediction model also yields valuable results if

trained with potential ex ante data.

5.6 Application of prediction model in decision
making process

Among other possible applications, the proposed prediction

model will be most beneficial for the evaluation of a given

MSS. Since the benefits of a new prediction model comes not

only from the improvement in prediction quality but also from

the improvement in the quality of the decision that the model

informs, we present two options to incorporate it into a deci-

sion making process in order to inform a better decision. First,

in regular discussion rounds of the hospital management, in

which the actual MSS is discussed and modified, our predic-

tion model serves as valuable tool to adaptively evaluate a

given, feasible MSS with respect to the expected bed occu-

pancy levels in the ICU. Second, the prediction model can

be incorporated as the objective function in an optimization

model such as a genetic algorithm (GA).
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FIGURE 7 Measured ICU bed occupancy compared with the predictions of our model based on A, ex post data and B, bootstrapped ex-ante data for a

cancellation rate of 10%

TABLE 7 Numerical results for ICU occupancy prediction based on bootstrapped ex-ante data with different cancellation rates

ID Patient selection Ex ante Data set selection Model selection Test

Years Type Urg. Spec. LOS Cancel.  WD Label Model RMSE

1 2010-2016 In./out. El./ur. 8 All 0% {−20, 10} Yes ICU NN (200:50) 3.46

9 2010-2016 In./out. El./ur. 8 All 5% {−20, 10} Yes ICU NN (200:50) 3.49

20 2010-2016 In./out. El./ur. 8 All 10% {−20, 10} Yes ICU NN (200:50) 3.60

21 2010-2016 In./out. El./ur. 8 All 30% {−20, 10} Yes ICU NN (200:50) 3.64

Abbreviations: Cancel., cancellation rate; el., elective; in., inpatient; out., outpatient; Spec., specialty; ur., urgent; Urg., urgency; WD, weekday feature.

TABLE 8 MSS A and MSS B. Number of OR blocks assigned to each specialty per weekday

j ∈  Mon Tue Wed Thu Fri Sat Sun

(a) MSS A (based on status quo)

CAS 3 3 3 3 3 0 0

GES 2 3 3 4 4 0 0

GYN 3 3 2 1 2 0 0

MAS 1 0 1 0 0 0 0

NEU 2 2 1 2 2 0 0

TRA 4 4 5 6 4 0 0

URO 1 1 1 1 1 0 0

VAS 2 2 2 1 2 0 0

(b) MSS B (based on discussion with hospital management)

CAS 2 5 5 3 0 0 0

GES 1 1 4 5 5 0 0

GYN 0 2 2 1 6 0 0

MAS 1 0 0 1 0 0 0

NEU 6 3 0 0 0 0 0

TRA 5 6 5 5 2 0 0

URO 3 1 1 0 0 0 0

VAS 0 0 1 3 5 0 0

MSS A depicted in Table 8a is based on the status quo in

the reference hospital. Each row shows the number of OR

blocks that are assigned to the respective medical specialty per

weekday. For example, GES obtained dGES = 16 weekly OR

blocks from strategic planning and uses 𝜉Mon, GES = 2 rooms

each Monday. In total, R = 18 surgery rooms are used on

each weekday by eight medical specialties. This ensures suf-

ficient capacity for emergency patients and patients of other

specialties. Furthermore, the maximum number of assigned

OR blocks is b = 6.

First, we used the prediction model for the evaluation of

a sequence of MSSs suggested by the hospital management
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FIGURE 8 Predicted ICU bed occupancy corresponding to MSS A (based on status quo), MSS B (based on discussions with hospital management), MSS C

(based on GA optimization), and MSS D (based on state-of-the-art model (Fügener et al., 2014))

with the aim to avoid peaks in the ICU occupancy. In MSS

B (see Table 8b), every medical specialty is provided with

the same number of OR slots per week as in MSS A. More-

over, the total number of utilized rooms per day remains

unchanged, that is, 18 ORs per weekday. The resulting bed

occupancy levels for both MSS are depicted in Figure 8.

Second, the prediction model can as well be incorporated

as objective function in an optimization model. However, due

to the nonlinearity of our model, this integration is not triv-

ial. Being one of the possibilities, we used metaheuristics to

incorporate the prediction model. Nonlinearity is introduced

in the neural network by the nonlinear activation function g(z)

in each neuron.

As motivated in Section 1, one of the most important evalu-

ation criteria for a MSS is the impact on the ICU, particularly

the maximum number of occupied beds. Hence, Equation (12)

describes a reasonable objective function for a MSS 𝜉:

c(𝜉) = max(y(𝜉)), (12)

where the vector y denotes the number of occupied beds per

day. The max-operator is defined to operate component-wise.

The maximum weekly bed occupancy level was chosen since

it determines the number of beds that need to be provided

in the ICU. Hence, it directly impacts the associated costs

for beds and required nursing staff. This is also commonly

used in the literature, for example, Beliën and Demeule-

meester (2007) and Fügener et al. (2014). The goal of our

work is to conduct the same surgical program while reduc-

ing the maximum number of required ICU beds per week. In

fact, the model does not require any predetermined capacity

nor target utilization levels, but rather addresses the shortage

of ICU beds which is often caused by a shortage of nursing

staff. One of the most critical challenges in German hospitals

is to find, recruit, and retain qualified nursing staff. The situ-

ation has further intensified in 2019 with the introduction of

the German regulation for the threshold of nursing staff.7 We

7https://www.bundesgesundheitsministerium.de/personaluntergrenzen.

use a rather simple model to show how the proposed predic-

tion model can be integrated in an optimization framework.

A valid MSS needs to meet the total weekly number of OR

blocks Tj for each specialty j ∈  obtained from strategic

planning and cannot exceed the total available OR capacity R
per day. Consequently, we define the problem to minimize the

costs c(𝜉) resulting from a MSS 𝜉 as in (13):

min
𝜉

c(𝜉)

s.t.
∑
j∈

𝜉e,j ≤ R, e ∈ 

∑
e∈

𝜉e,j ≥ Tj, j ∈ 

𝜉e,j ≤ be,j, e ∈  , j ∈ 

𝜉e,j ∈ {0, … ,R}, e ∈  , j ∈  (13)

.To consider availability of staff, rooms, and equipment it

might be reasonable to force the MSS to a maximum num-

ber of OR blocks be, j per specialty and weekday. Since y is

unknown, we use the approximated bed occupancy ŷ(𝜉) that

is derived by our prediction model.

We obtain a real-valued, multivariate, nonlinear, nondiffer-

entiable objective function that cannot be solved with classic

optimization methods such as stochastic gradient descent,

quasi-newton methods, or integer programming. Instead, we

use a GA that does not require derivatives (Goldberg, 1989).

Being an evolutionary algorithm, GA is inspired by different

mechanisms present in nature, such as mutation, recombina-

tion, and selection. GA optimizes a problem by iteratively

creating new candidate solutions based on an existing popu-

lation and keeping the ones with the best performance. We

use the GA provided by MATLAB’s Global Optimization

Toolbox and ensure feasibility of the solution by incorpo-

rating inequality constraints and integers. In future work,

one could also develop customized optimization methods for

this problem. To find an optimized MSS for the reference

hospital, we implemented the aforementioned minimization

problem and solved it with GA where the approximated bed

https://www.bundesgesundheitsministerium.de/personaluntergrenzen
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TABLE 9 MSS C and MSS D. Number of OR blocks assigned to each specialty per weekday

j ∈  Mon Tue Wed Thu Fri Sat Sun

(a) MSS C (based on GA optimization)

CAS 0 6 6 3 0 0 0

GES 0 0 4 6 6 0 0

GYN 0 2 2 1 6 0 0

MAS 1 1 0 0 0 0 0

NEU 6 3 0 0 0 0 0

TRA 6 6 6 5 0 0 0

URO 5 0 0 0 0 0 0

VAS 0 0 0 3 6 0 0

(b) MSS D (based on state-of-the-art model; Fügener et al., 2014)

CAS 5 2 1 4 3 0 0

GES 3 4 4 2 3 0 0

GYN 1 4 1 2 3 0 0

MAS 0 1 0 1 0 0 0

NEU 3 0 2 1 3 0 0

TRA 5 3 5 5 5 0 0

URO 1 0 3 1 0 0 0

VAS 0 4 2 2 1 0 0

occupancy ŷ is computed by deploying our trained prediction

model.

Given those parameters and our prediction model, we find

that MSS C in Table 9a achieves a particularly low maxi-

mum ICU bed occupancy. Note that MSS C provides the same

weekly number of OR blocks to every medical specialty and

does not exceed the daily number of used ORs compared to

MSS A.

Finally, we compare the performance with an optimization

algorithm that has been used in the literature. The optimiza-

tion approach proposed by Fügener et al. (2014) is well suited

since it represents state-of-the-art, has the same objective,

that is, ward leveling, and similar constraints to ours. We use

the prediction model as well as the optimization model by

Fügener et al. (2014). We reached out to the corresponding

author of this article to ensure that our implementation is in

line with their work. The parameters of the prediction model

were calibrated to our reference hospital (see Section 5.4).

As a straightforward branch-and-bound algorithm based on

complete enumeration is only feasible for very small problem

instances, we run the optimization using simulated annealing

(Aarts, Korst, & Michiels, 2005) with a geometric cooling

schedule as proposed by the authors. A swap of two OR blocks

is accepted if it decreases the objective function. Otherwise, it

is accepted with a probability that decreases over time. Start-

ing with MSS A (based on status quo) as initial solution,

the algorithm finally yields MSS D (based on state-of-the-art

model) as depicted in Table 9b.

Figure 8 shows the resulting ICU bed occupancy levels for

the four MSS A to D evaluated with our prediction model.

As all MSSs are designed for a weekly cycle, also the result-

ing bed occupancy patterns repeat every week. The dotted

curve in gray shows the expected bed occupancy level for

the currently implemented MSS A. The maximum occupancy

level of 29.3 beds is reached on Thursday and the minimum

of 17.1 beds on Sunday. The dashdotted curve in gray shows

the expected bed occupancy level if we would implement

the MSS B. The maximum occupancy level of 28.8 beds is

reached on Thursday and the minimum of 18.4 beds on Sun-

day. The solid curve in black shows the expected bed demand

if we would implement MSS C. One observes that the bed

occupancy for MSS C shows a better leveling compared to the

one of MSS A and MSS B. The peak on Thursday is reduced

to 26.7 beds and the utilization of the ICU beds on Monday

and the weekend is increased, that is, to 20.7 beds on Sun-

day. In summary, we can expect a reduction of the maximum

ICU bed demand by 8.9% when implementing the new MSS

C. The dashed curve in gray shows the expected bed occu-

pancy level if we would implement MSS D. The maximum

occupancy level of 28.6 beds is reached on Friday and the

minimum of 14.8 beds on Sunday. Hence, our proposed model

performs better on the objective of leveling ICU bed occu-

pancy. This is also what we would expect since our model was

developed to optimize over the presented metric that is used

for the evaluation (our prediction model) and the model by

Fügener et al. uses a different metric.

6 CONCLUSION

In the paper at hand, a neural network based approach for

the integrated OR scheduling problem was presented. We

have formulated a model to predict the resulting bed occu-

pancy levels in the ICU for a given MSS. The model reflects
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more supporting units, patient types, and patient paths than

any related work. Furthermore, we have applied the model

to a 1700-bed maximum-care hospital located in South-

ern Germany and showed that our model outperforms a

state-of-the-art model by 43% in predicting the ICU occu-

pancy level. To conclude this study, we discuss managerial

insights, limitations of our model, and options for future

research.

6.1 Managerial insights

We encourage hospital managers to consider the impact of

surgery planning on connected departments. In particular,

the ICU is one of a hospital’s most expensive resources and

an important bottleneck. To avoid blocked ORs and inferior

patient treatment, also supporting units should be considered

for OR scheduling. The proposed model supports hospital

managers to predict the consequences of any modifications to

the MSS and to develop better ones.

This study is intended to provide guidance for hospital man-

agers. In case of modifications to the hospital data manage-

ment system, it might be useful to consider the data sources

and parameters presented in this study. We have shown, that

surgery and ward records serve as valuable resource for fur-

ther data processing if linked by an unique patient identifier.

Given these hospital records, the path of an individual patient

can be reconstructed. Accumulating over all patients provides

valuable insights into internal processes, occupancy levels,

and bottlenecks within the hospital. Hence, we strongly rec-

ommend to include historical data into the decision making

process. Albeit most hospital managers already do a good

job based on their experience, we see four major advantages

of formalizing the OR scheduling process. First, additional

information might unveil further optimization potential which

has not been identified so far. Second, transparency and con-

sistency are important factors to ensure acceptance of the

resulting MSS. Third, the valuable expertise is less concen-

trated on a single person, easier accessible by colleagues,

and preserved for successors. Fourth, dedicated steps of the

process can be automated more easily freeing up valuable

resources and allowing hospital managers to spend more time

on the most critical aspects.

Our data-driven model improves OR scheduling and con-

tributes to make hospitals more efficient. In the reference

hospital, we expect to reduce the peak ICU bed demand

by 8.9%. In hospitals that have a less sophisticated MSS or

more distinct specialties, the savings potential might be even

higher. On the other side, we might also experience a lower

potential for hospitals with a more sophisticated MSS or less

distinct specialties. We believe that the presented prediction

model serves as valuable resource to support hospital man-

agers in developing a MSS that increases the efficiency in

the supporting units. Increased efficiency, reduced peak bed

demands, and less surgery cancellations contribute to a safer

patient stay.

6.2 Limitations

The prediction model achieves convincing results for the ref-

erence hospital. In the following, we still discuss some poten-

tial shortcomings of the proposed model. This study is limited

to ex post data since no ex ante data are available for the ref-

erence hospital at hand. We added Section 5.5 to demonstrate

what one would do with ex ante data. The accuracy of the pre-

diction depends on the amount and variety of samples that are

shown to the model during the training process, and hence,

the predictive power might be impacted in case of very dif-

ferent MSS patterns. However, we expect only a rather small

impact since the training data already reflect high volatility of

the MSS during the 7 years. Furthermore, these shortcomings

might be mitigated by periodically re-training the model with

up-to-date samples. Furthermore, besides the day of the week,

there might be additional confounding factors to hospital data

that have an impact on the prediction accuracy. For example,

there might be operational differences between summer and

winter. While changes to the number of OR slots obtained

from strategic planning are already directly reflected in the

model, the typical impact resulting from one OR block of the

same specialty on the same weekday might still be different,

which is difficult to capture. However, such confounding fac-

tors can be counteracted by introducing additional features.

This is also the reason why the introduction of weekday fea-

tures leads to improved prediction results. For this study, we

do not expect unobserved confounding resulting from infre-

quent visits of surgeons since physicians in Germany—unlike

sometimes in the United States (O’Neill & Hartz, 2012)—are

directly employed by their respective hospitals. Hence, the

German health care system relies on teams of surgeons that

are replaceable which also allows to counteract in case of

unavailability of OR staff due to sick leaves. The authors’

choice of error metric is informed by discussions with the

hospital management considering robustness of the model as

most important. As a consequence of this choice outliers are

not well reflected and the predicted values tend to have a bias

towards the mean. This limits the model in making predictions

for high congestion periods. One could think of alternative

error metrics such as a weighted MSE with more weight on

high congestion periods. However, it is difficult to define high

congestion periods since actual capacity limits are not con-

sidered and an additional parameter for the threshold would

be introduced. Research has shown that high utilization levels

negatively affect clinical outcomes and patient safety (Kuntz,

Mennicken, & Scholtes, 2014). The proposed model, how-

ever, might struggle to fully reflect those effects since the

real-time bed capacity is not explicitly used as input. As dis-

cussed in Section 6.3, we believe that merging operational

and tactical planning might be beneficial in many aspects, for

example, one could also integrate up-to-date bed occupancy

levels in the scheduling process. Finally, we are also aware

that the objective function used for the MSS evaluation in the

numerical study does not necessarily fit the individual settings
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of all hospitals. In particular, staff availability might be less

flexible in other hospitals, for example, in case of physicians

with admitting privileges at multiple hospitals. However, this

can be individually adjusted by changing the objective func-

tion or the respective parameters in the linear constraints. We

are currently working on the introduction of the revised MSS

to Universitätsklinikum Augsburg which allows us to evalu-

ate the realized performance of the revised MSS in a future

study. During the implementation of a new MSS, also the

reasons for cancellations of surgeries might provide valuable

information.

6.3 Future work

The proposed model is tailored to the specific conditions

of the integrated OR scheduling problem. However, it is

the merit of machine learning that the model can easily be

enriched with additional features. Instead of limiting the allo-

cation of OR blocks to medical specialties, one could rather

think of smaller patient groups or even individual patients.

This would allow to include additional features such as patient

type, urgency, diagnostic group, number of previous surg-

eries, gender, and patient age. Ultimately, we believe that a

joint consideration of tactical and operational decision levels

would be beneficial. Even today, the allocation of OR blocks

to medical specialties could already be amended by additional

recommendations, for example, dedicated OR blocks that are

mainly intended for the treatment of patients that belong to a

specific diagnostic group or show a high probability for being

transferred to the ICU.

It is our intention to encourage further research on the

intersection between health care operations management and

machine learning. In a fully integrated model, also emer-

gency patients should be considered. Neural network based

models can be applied to predict their arrival times based

on environmental factors such as weather and traffic. Fur-

thermore, surgery duration can be predicted given medical

records and information about surgical staff and equipment.

Operations research techniques are well suited to deter-

mine optimal surgery schedules whereas machine learning

is powerful for predictions that can be integrated as con-

straints into the optimization model. Research on the inter-

section of those two disciplines will support hospital man-

agers to make OR scheduling even more efficient in the

future.
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APPENDIX A: MACHINE LEARNING NOTATION

The notation commonly used in machine learning is listed in

Table A1.

TABLE A1 Machine learning notation

Description Notation

Label y(m)

Feature x(m)
n

Data set (y, X)

Sample (y(m), x(m)
1

, … , x(m)
N )

Sample index m∈ = {1, … , M}, where

M = Mtrain +Mval +Mtest

Feature index n ∈  = {1, … ,N}
Size of training data set Mtrain

Size of validation data set Mval

Size of test data set Mtest

Model ŷ
Model parameter 𝜽

Loss function J(𝜽)

Learning rate 𝛼

Regularization parameter 𝜆

Number of epochs Nepochs
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APPENDIX B: MEDICAL SPECIALTIES

In this study, the following eight medical specialties of Universitätsklinikum Augsburg were considered.

CAS Cardiothoracic Surgery

GES General, Visceral, and Transplant Surgery

GYN Gynecology

MAS Oral and Maxillofacial Surgery

NEU Neurosurgery

TRA Traumatology, Orthopedics, and Plastic Surgery

URO Urology

VAS Vascular and Intravascular Surgery

APPENDIX C: HOSPITAL RECORDS

The hospital records provided by Universitätsklinikum Augsburg serve as foundation for this study. The data set comprises

more than 600k patients covering the years 2010 to 2016. Table C1 illustrates the surgery records and Tables C2 to C4 show

the records for wards including IMC, ICU, and ED stations.

TABLE C1 Excerpt of surgery records

PAT Type Date Urgency OR Specialty Incision Suture

510033 Inpatient 1 April 2010 12:05 PM Elective 10 GES 1 April 2010 12:05 AM 1 April 2010 2:20 PM

TABLE C2 Excerpt of ward admission records

Station PAT Specialty Room Admission Discharge Admission category

313 510033 GES 1067 1 April 2010 10:05 AM 4 April 2010 4:15 PM Inpatient

TABLE C3 Excerpt of ward transfer records

PAT Admission Transfer Origin station Origin room Dest. station Dest. room

510033 1 April 2010 10:05 AM 1 April 2010 8:15 PM 45 4132 50 5135

TABLE C4 Excerpt of ward discharge records

Station PAT Specialty Room Admission Discharge Discharge category

107 510033 GES 10245 1 April 2010 10:05 AM 4 April 2010 4:15 PM Regular
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APPENDIX D: HISTORIC DATA FOR REFERENCE HOSPITAL

FIGURE D1 Number of patients for selected specialties at reference hospital remained nearly unchanged

FIGURE D2 Case mix indices for selected specialties at reference hospital remained nearly unchanged


