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Quantum measurements of sums
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A method is proposed that allows one to infer the sum of the values of an observable taken during contacts
with a pointer state. Hereby, the state of the pointer is updated while contacted with the system and remains
unchanged between contacts while the system evolves in time. After a prescribed number of such contacts, the
position of the pointer is determined by means of a projective measurement. The outcome is specified in terms
of a probability distribution function for unitary and Markovian dissipative dynamics and compared with the
results of the same number of generalized Gaussian measurements of the considered observable. As a particular
example, a qubit is considered with an observable contacting to the pointer that does not commute with the
system Hamiltonian.
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I. INTRODUCTION

Measurements play an important role in science, in gen-
eral, and in quantum mechanics, in particular. While in clas-
sical systems measurements can, in principle, be performed
with unlimited precision and without any influence on the
measured object, for quantum systems often there are princi-
ple limits of the achievable precision and unavoidable, some-
times drastic backactions on the state of the measured object.
The frequent repetition of the same measurement may either
lead to the total freezing of the system’s dynamics, known
as the Zeno effect [1], or to a steady heating of the system
[2,3], effects that are alien to classical systems. The emerging
dissipative effects caused by so-called weak measurements of
the continuous trajectory of an observable provide another
instance of the unavoidable backaction of measurements in
quantum systems [4–6].

Because the only way of gaining information about the
state of a quantum system is by measuring, understanding the
measurement process and its impact on the considered system
is vital. From the point of view of a theoretician, projective
measurements, wherein the system state collapses to the mea-
sured state [7], are most convenient. This idea of projective
measurements leads to simple theoretical approaches, but
lacks information about the measuring device and its proper-
ties as well as about possible deviations from the ideal picture.
A more detailed scheme, originally also suggested by von
Neumann [7,8], describes a measurement as an interaction of
a system and a measurement apparatus, also called a pointer or
a meter, to which the wished information about the system is
transferred and finally read out. This approach is flexible in al-
lowing the description of the measurement apparatus at a level
as detailed as required for a specified study. In particular, it
provides the means to adjust the precision of the measurement
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and, moreover, yields the according backaction on the system.
The projective measurement of an observable is contained
within this model in the limit of maximal precision. Moreover,
in contrast to projective measurements, the von Neumann
scheme is considerably more flexible in covering not only
measurements of observables, given by Hermitian operators
acting on the system Hilbert space, but is able to address more
general questions, such as how to distinguish nonorthogonal
states [9,10] or how to specify the difference of an observable
at different times. In this way, the work performed by a an
external stimulus on a system can be determined by a single
measurement [11–13], in spite of the fact that work is not an
observable [14]. Here the pointer is brought in contact with the
system twice: the first time, immediately before the external
stimulus sets in, and the second time, when the stimulus has
ended. However, in contrast to the two-point measurement
scheme of work [14], the result of the first contact is not
immediately read out by means of a projective measurement,
but rather stored and subtracted from the result of the final
contact before the pointer is projectively read out.

Instead of differences, the sums of two or more values of
a quantum observable may also be of interest such as in the
theory of quantum walks [15]. Further, for a deeper under-
standing of reciprocating quantum engines [16,17], including
how they behave and perform over many cycles, the sum of
energies of the working substance repeatedly taken at the
same instant within a cycle provides a promising diagnostic
tool. However, when energies are determined by projective
measurements, their backactions may have a considerable
impact on the performance of the considered device [18–20].
Alternative tools to determine such sums are therefore of
major importance.

In the present work, we demonstrate how the von Neumann
scheme can be adapted to determine sums with high precision
and, at the same time, as little backaction as possible. For
this purpose, the values of an observable to be summed are
transferred by repeated contacts to a pointer such as in the von
Neumann scheme, however, without a readout of the pointer
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FIG. 1. Schematic illustration of the repeated contact and re-
peated measurement schemes. The solid lines represent the sys-
tem evolution, whereas the dashed lines correspond to the pointer
evolution. The system is periodically connected with the pointer at
intervals of duration τ . The repeated contact scheme is less invasive
as compared to the repeated measurements. The latter provides
information about the full “trajectory” of measured values, while the
former only allows one to infer about their sum.

following each contact. Instead, the state of the pointer is only
determined after the required number of contacts has been
performed. We develop the theory for the sum of an arbitrary
observable of a general system taken at equally distant time
points. The pointer is assumed to initially be prepared in
a Gaussian state and its free dynamics to be trivial, such
that its state is only altered by the contacts with the system.
We compare the proposed repeated contacts approach to the
repeated measurements case, where after each contact the
measuring device is read out (see illustration in Fig. 1) for
the same number N of contacts.

II. A SINGLE GENERALIZED MEASUREMENT

Following von Neumann’s approach [7,8], we consider a
quantum measuring device called a “pointer” that comes in
contact with the system for a short time τp with strength g. The
contact time is extremely short as compared to the timescale
of system dynamics, such that the system does not evolve
during the contact. Thus, whenever the pointer connects to the
system, the density matrix ρtot of the combined system pointer
immediately before the contact is modified to the postcontact
state ρ̃tot according to

ρ̃tot = V ρtotV †, (1)

where the unitary time evolution operator V , determined
by the action of the system-pointer interaction Hamiltonian
HSP = gMP, is given by

V = e−iκMP/h̄. (2)

Here, the system operator M represents the observable to be
measured and P is the momentum operator which is conjugate

to the pointer position operator Q; finally, κ = gτp is an
effective measure of the interaction strength. As an operator
that is exponential in the pointer momentum operator P, V
shifts the pointer position by an amount depending on the state
of the system. If immediately after the system pointer contact
a projective measurement of the pointer state with respect
to the position x is performed, the non-normalized density
matrix of the system follows by the action of the operation
φ1

x [21–23], which is given by

φ1
x (�) = (x|ρ̃tot|x)

=
∑
m,m′

Pm�Pm′σ (x − κμm, x − κμm′ ), (3)

where we assumed that the density matrix of the total system
ρtot factorizes in a direct product of the density matrix of
the system S, �, and that of the pointer, σ . Here, |x) is
the eigenstate of the pointer position operator belonging to
the eigenvalue x, and e−iaP/h̄|x) = |x + a). Further, Pm is
the projection operator of the system observable M onto the
subspace belonging to the eigenvalue μm, and the position
matrix elements of the pointer density matrix are denoted by

σ (x, y) = (x|σ |y). (4)

The probability density function (PDF) P1(x) with which the
pointer position x is observed is determined by the trace of the
operation acting on the system density matrix, yielding

P1(x) = Tr φ1
x (�)

=
∑

m

pmσ (x − κμm, x − κμm), (5)

where

pm = TrPm� (6)

represents the probability to find a system with density matrix
� in the subspace belonging to the eigenvalue μm. For a
pure Gaussian pointer state with vanishing mean values of the
position and the momentum and the variance 〈Q2〉, the density
matrix takes the form

σ (x, y) = 1√
2π〈Q2〉

e−(x2+y2 )/(4〈Q2〉). (7)

Then, the PDF P1(x) becomes a mixture of Gaus-
sians g〈Q2〉(x − κμn) with weights pm, where gv (x) =
(2πv)−1/2 exp{−x2/(2v)} denotes a Gaussian PDF with van-
ishing mean value and variance v. By rescaling the pointer
variable according to x = κ x, the maxima of the accordingly
transformed PDF P1(x) are shifted towards the eigenvalues
μm. The resulting scaled PDF hence becomes

P1(x) =
∑

m

pm gσ 2
x
(x − μm). (8)

In the mixture (8), those maxima survive whose weights
are sufficiently large and for which the rescaled variance
σ 2

x = 〈Q2〉/κ2 is sufficiently smaller than the squared smallest
distance between the eigenvalues.
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III. MULTIPLE CONTACTS

Rather than considering the statistics of the outcomes of
a single measurement of some observable M, we are asking
for the statistics of the sum of N values of the observable
M that are assumed at subsequent times. The registration of
the observable can be realized in different ways, which, in
general, lead to different results. A straightforward procedure
is to repeat the above-described generalized measurement N
times always after the time τ has elapsed, as sketched in the
lower panel of Fig. 1. We shall come back to this approach
later. First, we follow the strategy illustrated in the upper panel
of Fig. 1. This approach consists in N repetitions of contacts
acting via the unitary operator V on the composed system,
each followed by a unitary time evolution U of the system
alone during a time τ while the pointer remains unaffected.
The time evolution of the system from a contact to the next
one is governed by the Hamiltonian HS and hence given by

U = e−iHSτ/h̄. (9)

The action of N combined contacts and time evolutions on the
total, initially factorizing, density matrix is then given by

ρtot(Nτ ) = (UV )N� ⊗ σ (V †U †)N . (10)

In analogy to the case of a single measurement, after the com-
pletion of the N contact protocol, one may read out the pointer
state by a projective measurement. The non-normalized re-
duced density matrix conditioned on the measured result x is
determined by the operation φN

x , which acts as

φN
x (�) = (x|ρtot(Nτ )|x)

=
∑
�m, �m′

ρ �m, �m′σ (x − S �m, x − S �m′ ), (11)

where �m = (m1, m2, . . . , mN ) and

ρ �m, �m′ = U NPmN ((N − 1)τ ) . . .Pm2 (τ )Pm1�

× Pm′
1
Pm′

2
(τ ) . . .Pm′

N
((N − 1)τ )U †N . (12)

Here, Pm(kτ ) = U k†PmU k denotes a time-evolved projection
operator. For a Gaussian pointer state as defined in Eq. (7), the
position matrix element can be expressed as

σ (x − S �m, x − S �m′ ) = gσ 2
x
(x − (S �m + S �m′ )/2)

× e−(S �m−S �m′ )2/(8σ 2
x ). (13)

The shift of the Gaussian is determined by sums of those N
eigenvalues that are labeled by �m and �m′, and hence reading

S �m =
N∑

k=1

μmk , (14)

and accordingly for the primed sequence �m′.
As in Eq. (5), the PDF PN (x) of finding the pointer at x

after N contacts with the system is given by the trace over the
non-normalized density matrix (11), and thus becomes

PN (x) =
∑
�m, �m′

D �m, �m′
� gσ 2

x
(x − (S �m + S �m′ )/2)

× e−(S �m−S �m′ )2/(8σ 2
x ), (15)

with the coefficients D �m, �m′
� reading

D �m, �m′
� = Tr ρ �m, �m′

= δmN ,m′
N
TrPm′

1
Pm′

2
(τ ) . . .Pm′

N−1
((N − 2)τ )

× PmN ((N − 1)τ ) . . .Pm2 (τ )Pm1�. (16)

These coefficients constitute the elements of a non-negative
definite tensor of rank N2 guaranteeing the positivity of the
PDF PN (x) in spite of some of them being complex quantities.
In view of the result of N measurements discussed in the next
section, we emphasize that the various Gaussian contributions
to PN (x) all have the same variance σ 2

x = 〈Q2〉/κ2, resulting
from the variance of the initial pointer state and the measure-
ment strength parameter κ . In particular, the width of these
contributions is independent of the number of measurements.
For a sufficiently narrow width, those contributions to the sum
on the right-hand side of Eq. (15) stemming from vectors �m
and �m′ that lead to different sums S �m and S �m′ are exponentially
suppressed. Hence, if the inequality

8σ 2
x � min

�m, �m′
S �m �=S �m′

(S �m − S �m′ )2 = min
m,m′,
m �=m′

(μm − μm′ )2 (17)

is satisfied, then the N contact strategy yields the statistics of
the sums of eigenvalues of an observable M read out at equal
intervals of length τ . In this case, one obtains, as the PDF of
the sums, the following expression:

PN (x) ≈
∑
�m, �m′

S �m=S �m′

D �m, �m′
� gσ 2

x
(x − Sm̃)

=
∑

S

w(S)gσ 2
x
(x − S). (18)

Then the peaks of the PDF PN (x) are isolated, lying at the pos-
sible values S of the sums of N eigenvalues of the considered
observable. The weights w(S) are determined by the sums of
the coefficient D �m, �m′

� restricted to those trajectories �m and �m′
yielding the same value S for the sum of the corresponding
eigenvalues, and hence reading

w(S) =
∑
�m, �m′

S �m=S �m′ =S

D �m, �m′
� . (19)

In the special case in which the system Hamiltonian HS and
the observable M commute, the projection operators Pm are
constants of motion, Pm(t ) = Pm, and the coefficients D �m, �m′

�

simplify to read

D �m, �m′
� =

N−1∏
k=1

δmk ,mk+1δmk ,m′
k
, (20)

yielding, for the N-contact PDF,

PN (x) =
∑

m

pm gσ 2
x
(x − Nμm), (21)

with pm defined in Eq. (6). This multiple-contact PDF resem-
bles the single-measurement PDF (8) with the difference that
all eigenvalues are multiplied by the number of contacts. The
multiple-contact PDF is thus accordingly spread.
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IV. MULTIPLE MEASUREMENTS

In order to perform N measurements of the same observ-
able M at equally spaced times nτ , n = 0, 1, . . . , (N − 1), one
may use the same number of equally prepared pointers, which
are initially uncorrelated with each other as well as with the
system. They are subsequently brought in contact with the
system and, after the contact, read out by a projective mea-
surement. Consequently, the non-normalized density matrix
of the system conditioned on the sequence of measurements
�x ≡ (x1, x2, . . . , xN ) takes the form

mφ�x(�) = φ1
xN

[
Uφ1

xN−1

(
. . .Uφ1

x1
(�)U †) . . .U †]

=
∑
�m, �m′

ρ �m, �m′

N∏
k=1

gσ 2
x
(xk − (μmk + μm′

k
)/2)

× e
−(μmk −μm′

k
)2/(8σ 2

x )
. (22)

The PDF mPN (�x) to find the sequence �x of the measurement is
thus given by

mPN (�x) = Tr mφN
�x (ρ)

=
∑
�m, �m′

D �m, �m′
�

N∏
k=1

gσ 2
x
(xk − (μmk + μm′

k
)/2)

× e
−(μmk −μm′

k
)2/(8σ 2

x )
. (23)

Hence, the PDF mPN (x) to find the value x for the sum of the
individual measurement results becomes

mPN (x) =
∫

dNx δ

(
x −

N∑
k=1

xk

)
mPN (�x)

=
∑
�m, �m′

D �m, �m′
� gNσ 2

x
(x − (S �m + S �m′ )/2)

×
N∏

k=1

e
−(μmk −μm′

k
)2/(8σ 2

x )
. (24)

As for the N-contact PDF (15), the N-measurement PDF of
the sum is a linear combination of Gaussians with centers
at the same positions (S �m + S �m′ )/2, but with the N-fold vari-
ances. Consequently, the N-contact PDF will, in general, have
a much more detailed structure than the N-measurement PDF.

For a sufficiently small variance σ 2
x , the last product term

in Eq. (24) suppresses all terms with mk �= m′
k . Therefore,

only the diagonal part of the tensor D �m, �m′
� contributes. For any

observable having a nondegenerate spectrum, it can be further
simplified to read

D �m, �m
� =

N−1∏
k=1

T (mk+1|mk )pm1 , (25)

where

T (m|n) = |〈m|U |n〉|2 (26)

denotes the transition probabilities between eigenstates |n〉
and |m〉 of the observable M governed by the unitary dynamics
U . These probabilities form a bistochastic transition matrix of
a Markovian chain [24], with the number of measurements

specifying the chain length. The coefficients D �m, �m
� are deter-

mined by the probability with which the sequence �m starting at
m1 with probability p1 occurs for this Markovian chain, where
the number of states that can be taken at each step equals the
dimension dH of the Hilbert space of the system. For a large
number of measurements, such a Markovian chain typically
approaches a stationary regime in which the probability 1/dH

is assigned to all eigenvalues of the observable M. Hence
the memory is lost of where the chain has started. Therefore,
those vectors �m with a uniform distribution of elements mk

acquire the highest probability for large N . One may expect
that the average and the variance of the sums of N eigenvalues
asymptotically both grow in proportion to N as in a normal
random walk [25]. In exceptional cases, the Markovian chain
may cause strictly periodic trajectories, which consequently
also result in an asymptotically periodic variation of the
variance of the eigenvalue sum.

Another exceptional case occurs when the transition matrix
agrees with the identity, such as for observables commut-
ing with the system Hamiltonian. Then, one obtains, with
T (m|n) = δm,n, the expression

mPN (x) =
∑

m

pm gNσ 2
x
(x − Nμm), (27)

which leads, as for the corresponding N-contact protocol,
to a mixture of Gaussians at the positions of the N-fold
eigenvalues, however with substantially enlarged variances. In
both cases, the variance of the eigenvalue sum grows as N2.

V. DISSIPATIVE DYNAMICS

In the previous sections, the dynamics of the system be-
tween two consecutive contacts was considered to be gov-
erned by the unitary operator U . In most systems of prac-
tical interest, ensuring perfectly unitary dynamics is highly
nontrivial and can only be achieved during a limited time
span. In general, the implementation of the influence of an
environment on the dynamics of a system, in general, poses
a difficult problem. Here we assume weak coupling between
the considered system and its environment, resulting in a
Markovian dynamics of the system described by a Lindblad
master equation [26]. This dynamics maps the density matrix
from an instant after a contact with the pointer to a new state
at a time τ later by means of a linear, completely positive and
trace-preserving propagator G. Hence, the initially factorizing
density matrix of the total system after subsequent N contacts
and Markovian propagation of the system becomes

dρtot(Nτ ) = (GV )N (� ⊗ σ ), (28)

where V describes the action of a contact on the total density
matrix, which is given by

V (ρtot ) = V ρtotV
†, (29)

with the unitary contact operator V defined in Eq. (2). As the
result of a projective measurement of the pointer position after
N contacts, one obtains, as the non-normalized density matrix
conditioned on the measurement result x, an expression of the
same structure as for a unitary dynamics, given by Eq. (11),
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reading, for an initially Gaussian pointer state,

dφ
N
x (�) =

∑
�m, �m′

dρ �m, �m′ gσ 2
x
(x − (S �m + S �m′ )/2)

× e−(S �m−S �m′ )2/(8σ 2
x ), (30)

where the system operators dρ �m, �m′ in the presence of a Marko-
vian dissipative dynamics are defined as

dρ
�m, �m′ = G

{
PmNG

[
PmN−1G

(
. . .Pm2G(Pm1�Pm′

1
)

× Pm′
2
. . .

)
Pm′

N−1

]
Pm′

N

}
. (31)

The probability d PN (x) to find the result x again results from
the trace of the non-normalized density matrix and hence
becomes

d PN (x) =
∑
�m, �m′

d D �m, �m′
� gσ 2

x
(x − (S �m + S �m′ )/2)

× e−(S �m−S �m′ )2/(8σ 2
x ). (32)

It only differs from the above unitary result (15) through the
form of the coefficient matrix, which is given by

d D �m, �m′
� = Tr dρ �m, �m′

= δmN ,m′
N
TrPmNG

[
PmN−1G

(
. . .Pm2

× G
(
Pm1�Pm′

1

)
Pm′

2
. . .

)
Pm′

N−1

]
= δmN ,m′

N
TrPm′

1
G∗(Pm′

2
. . .G∗(PmN )

. . .Pm2

)
Pm1�,

(33)

with G∗ denoting the dual propagator satisfying Tr uG(χ ) =
TrG∗(u)χ for all bounded operators u and all trace-class
operators χ [27]. The last line can be identified with
a multitime correlation function 〈Pm′

1
Pm′

2
(τ ) . . .PmN ((N −

1)τ ) . . .Pm2 (τ )Pm1〉, as given by the quantum regression hy-
pothesis [28], in analogy to the expression (16) for unitary
dynamics. The Gaussians which are weighted by the above
coefficients are located at the same positions and all have the
same width as for a unitary dynamics.

Assuming that the Markovian dynamics asymptotically
approaches a uniquely defined stationary state ρst , the prop-
agator acts as G(χ ) = ρst Tr χ on all trace-class operators χ ,
provided that the time τ between subsequent measurements
is large enough. Under this condition, the coefficients d D �m, �m′

�

simplify considerably to read

d D �m, �m′
� = δ �m, �m′ p �m, (34)

where p �m = pm1

∏N
k=2 pst

mk
with pm = TrPm� and pst

mk
=

TrPmk ρ
st denotes the probability of finding the sequence of

N eigenvalues μ �m whose first member is drawn from the
initial distribution and all others are independently taken from
the stationary distribution. Further, we use, as a shorthand,
δ �m, �m′ ≡ ∏N

k=1 δmk ,m′
k
. Hence, the PDF d PN (x) simplifies to

read

d Pst
N (x) =

∑
�m

gσ 2
x
(x − S �m)p �m. (35)

Using the characteristic function of a Gaussian random
variable given by

∫
dx eiuxgσ 2 (x − S) = eiuSe−u2σ 2/2, one ob-

tains the following expression for the characteristic function

G(u) = ∫
dx d PN (x) eiux:

G(u) = e−u2σ 2
x Tr eiuM� (Tr eiuMρst )N−1. (36)

This expression, which is a product of the N characteristic
functions of the observable M in the initial and subsequent
stationary states, and of the characteristic function of the
pointer position in its initial state, reflects the statistical inde-
pendence of the individual contributions to the total outcome.
Accordingly, the mean value d〈x〉 = ∫

dx d PN (x) x and the
variance d�

2
x = ∫

dx d PN (x) (x − d〈x〉)2 result as

d〈x〉 = 〈M〉0 + (N − 1)〈M〉st , (37)

d�
2
x = σ 2

x + 〈(M − 〈M〉0)2〉0

+ (N − 1)〈(M − 〈M〉st
)2〉st , (38)

with 〈M〉0 = TrM� and 〈M〉st = TrMρst . For large values of
contact numbers, the first moment as well as all cumulants
grow proportionally to N . Hence, x behaves as a function
of N as a random walk. In particular, the contribution x/N
per step acquires asymptotically a Gaussian distribution. This
will also remain true as an asymptotic result for large N if
the time τ between two measurements is not large enough
to lead to a complete approach to the stationary state. Due
to its repeated action, any dissipative dynamics leading to
a uniquely defined stationary state will generate a Gaussian
random walklike behavior after sufficiently many contacts.

Finally, we note that a protocol with N measurements, as
discussed in Sec. IV, in the presence of dissipation leads, for
the sum of measurements, to an analogous expression as given
in Eq. (24) with coefficients D �m, �m′

� replaced by d D �m, �m′
� . The

main difference to the N-contact result (32) is the broadening
of the individual Gaussian contributions.

VI. COMPARING THE IMPACT OF CONTACTS AND
MEASUREMENTS

In order to quantify the average impact of repeated con-
tacts on the state of the system, we determine the reduced
density matrices ρk and mρk of the system immediately after
the kth contact and the kth measurement, respectively, and
compare them with each other as well as with the density
matrix ρ(kτ ) which has evolved in the same time kτ in the
absence of any contacts or measurements. The density matrix
of the system after k contacts is obtained by performing
the partial trace over the pointer state of the total density
matrix, ρtot(kτ ) = V (GV )k−1(� ⊗ σ ), where V (ρ) = V ρV †.
As above, G denotes the propagator of the Markovian dy-
namics between two contacts. In the case of unitary dynam-
ics, it acts as G(ρ) = UρU †; see, also, Eq. (10). Likewise,
the reduced density matrix after k nonselective measure-
ments is obtained as the k-fold trace over the pointers of
the total density matrix, mρtot(kτ ) = Vk[GVk−1( . . .GV1(ρ ⊗
σ1) . . . ⊗ σk−1) ⊗ σk], where an index at the maps V indicates
on which of the identical pointer state copies σ it acts. For a
pointer initially staying in a Gaussian state, the partial pointer
state trace can be performed to yield, for the reduced density
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matrix after k contacts,

ρk =
∑

k�m,k�m′
R

k�m,k�m′
e
−[

∑k
j=1(μm j −μm′

j
)]2/(8σ 2

x )
, (39)

where k �m denotes a vector whose number of components is
k and whose components are taken from the set indexing the
eigenvalues of the tested observable M. Further, R

k�m,k�m′
is a

trace-class operator of the system indexed by a double series
of left- and right-hand shifts of the pointer state. It is defined
as

R
k�m,k�m′ = PmkG(Pmk−1 . . .G(Pm1�Pm′

1
)Pm′

k−1
)Pm′

k
. (40)

In contrast, after k nonselective measurements, the reduced
density matrix is given by

ρm
k =

∑
k �m,k �m′

R
k�m,k�m′

e
− ∑k

j=1(μm j −μm′
j
)2/(8σ 2

x )
. (41)

Both the k-contact and the k-measurement density matri-
ces are linear combinations of the contact-specific operators
R

k�m,k�m′
, however being weighted by different coefficients. In

the limit of a very wide initial pointer state, σ 2
x → ∞, these

coefficients approach unity. With the completeness of the
projection operators,

∑
m Pm = 1, all sums can be performed

and, in both cases, the backaction-free density matrix results
equally for k contacts and k measurements, i.e.,

lim
σx→∞ ρk = lim

σx→∞ ρm
k

=
∑

k�m,k�m′
R

k�m,k�m′ = Gk−1(ρ). (42)

In the other limit of precise measurements when the variance
σ 2

x is larger than zero but satisfies the inequality (17), the
exponential factors on the right-hand side of Eq. (41) suppress
all nondiagonal contributions after multiple measurements
and one finds

lim
σx→0

ρm
k =

∑
k�m

R
k�m,k�m, (43)

as for k nonselective projective measurements. In contrast, in
the same limit for k contacts, only those nondiagonal elements
of the reduced density matrix are suppressed that belong to
pairs of sequences k �m and k �m′ with different eigenvalue sums
Sk �m �= Sk �m′ , thus yielding

lim
σx→0

ρk =
∑
k �m,k �m′

S �m=S �m′

R
k�m,k�m′

. (44)

Therefore, in this limit, coherences with respect to the eigen-
basis of the observable M are much less suppressed than in
the measurement scheme.

Finally, we note that in the limit of large τ for dissipative
dynamics, such that stationarity is reached, one obtains the
same result for multiple contacts and multiple measurements,
reading

ρ
(m)
k =

∑
mk ,m′

k

Pmk ρ
stPm′

k
e
−(μmk −μm′

k
)2/8σ 2

x . (45)

Note that this density matrix is independent of the number
of contacts or measurements because the dynamics between

contacts or measurements erases any memory on the prehis-
tory. For the example discussed below, the deviations of the
reduced density matrices after k contacts and k measurements
from the unperturbed time-evolved density matrix are quanti-
fied by means of the respective trace distances.

VII. EXAMPLE: QUBIT

In order to illustrate the general theory outlined in the
previous section, we consider a quantum qubit as the system
of interest whose Hamiltonian reads

H = h̄Bτz, (46)

with τz being the z component of the Pauli spin-1/2 matrix
and B being the strength of the Hamiltonian. We measure τx

for the qubit such that the operator M = τx. We first consider
the case of unitary dynamics

A. Unitary dynamics

In spite of the fact that both the time evolution of the free
qubit, given by U = cos θ − iτz sin θ , and the spectral repre-
sentation of M with μ1 = −1, P1 = (1 − τx )/2 and μ2 = 1,
P2 = (1 + τx )/2 are very simple, the exponential growth of
the number of terms contributing to the PDF (15) characteriz-
ing the N-contact protocol renders its analytic presentation for
more than N = 2 contacts basically impossible. Here, θ = Bτ

specifies the duration of the unitary time evolution between
two contacts in units of the inverse frequency of the qubit. For
N = 2, one obtains, after some lengthy algebra, the expression

P2(x) = 1√
2πσ 2

x

[(
p1e

− (x+2)2

2σ2
x + p2e

− (x−2)2

2σ2
x

)
cos2 θ

+ e
− x2

2σ2
x sin2 θ

+ q e
− 1

2σ2
x

(
e
− (x+1)2

2σ2
x − e

− (x−1)2

2σ2
x

)
sin 2θ

]
,

(47)

where pi = TrPi�, as defined in Eq. (6), q = Tr τy�/2, and
w = Tr τz�/2 is restricted by w2 + q2 � p1 p2 because of the
positivity of the initial density matrix �. For sufficiently small
variances, say σ 2

x � 0.1, one observes well-separated peaks at
the positions x = 0,±2. At larger variances, the peaks merge
into a broad distribution. The contributions at x = ±1 are
never visible as peaks. At small variances, their contribution
is exponentially suppressed; at larger ones, they influence
the form of the PDF as seen in Fig. 2. The peak heights
are governed by the probabilities p1 and p2 with which the
eigenstates of the measured operator τx with corresponding
eigenvalues μ1 = −1 and μ2 = 1, respectively, contribute to
the initial density matrix �. Since we choose the state with
μ = −1 to have a higher occupancy, the distribution is skewed
to negative x, a property that is carried forward to large N , as
seen in Fig. 3.

Another analytic result emerges for θ = nπ . In this case,
the time-evolution operator U commutes with the observable
M and hence yields, with Eq. (21), a bimodal PDF [Figs. 3(c)
and 3(f); red solid lines],

PN (x)|θ=π = 1√
2πσ 2

x

(
p1e

− (x+N )2

2σ2
x + p2e

− (x−N )2

2σ2
x

)
. (48)
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FIG. 2. The PDFs P2(x) (blue solid lines) for unitary dynamics
and d P2(x) for dissipative dynamics at different dissipation rates (red
dashed and black dotted lines) given by Eqs. (47) and (51) char-
acterizing unitary and dissipative dynamics. For unitary dynamics,
the relative weights of the central peak at x = 0 and the two side
peaks x = ±2 depend on the time between two contacts (a) θ =
Bτ = 11.7π/4 and (b) θ = 10.7π/4. In the presence of dissipation
[γ = (�1 + �2)/B = 0.1], the height ratio of the side peaks stays
constant, while they exchange weight with the central peak (red
dashed lines). In the limit rd = θγ → ∞, the weights of the central
peak equals the sum of the weights of the side peaks [black dotted
curves in (a) and (b)]. For all cases, the initial density matrix is τx =
0.5, yielding p1 = TrP1� = 0.75; further, q = Trτy�/2 = 0.43 and
w = Tr τz�/2 = 0. The initial Gaussian state has variance σ 2

x = 0.1.

For this limiting case, the average becomes 〈x〉 = N (p1 − p2)
and the variance �2

x = 〈x2〉 − 〈x〉2 = σ 2
x + 2p1N2. The re-

peated measurement case [Eq. (24); Figs. 3(c) and 3(f), black
dashed lines] can also be analytically evaluated for θ = π ,
resulting in a similar expression as above with σ 2

x → N2σ 2
x .

In general, the PDF for a repeated contact PN (x) displays a
complex behavior, as shown by the red solid lines in Figs. 3(a)
and 3(d). As expected, performing repeated measurements
significantly broadens the PDF and we lose all individual
measurement-related information even for a small number of
measurements [see Figs. 3(a) and 3(d)].

Yet another special case turns out to be θ = π/2. Because
the time evolution flips the projection operators Pm(nπ/2) =
P(−1)nm for n odd, and leaves them unchanged for n even, a
unimodal PDF, being centered at x = 0, emerges for any even
number of contacts [N = 6, see Fig. 3(b)], while it becomes
bimodal with a higher weight at negative values of x (due to
the initial � with p1 > p2) for an odd number of contacts [N =
9, see Fig. 3(e)]. The behavior as a function of θ is captured in
Fig. 4, displaying a perfect bimodal distribution occurring at
θ = 0, π/2, π . At all other values, intermediate peaks of the
distribution are visible, but much weaker as compared to the
dominant peak at negative x skewing the average to negative
values of x.

We restrict the discussion of repeated measurements to
cases with a sufficiently narrow initial pointer state vari-
ance σ 2

x . The PDF mPN (x) characterizing the N measure-
ment scheme then contains only diagonal coefficients D �m, �m

� ,
which are determined by a transition matrix with the el-
ements T (1|1) = T (2|2) = cos2 θ and T (1|2) = T (2|1) =
sin2 θ ; see Eqs. (25) and (26). With an increasing number of
N , the relatively narrow lying lines typically merge, result-
ing in a broad PDF with a most probable value at x ≈ 0.
Accordingly, the variance grows proportional to N for all

FIG. 3. The PDF PN (x) given by Eq. (15) of the pointer state
after (a)–(c) N = 6 and (d)–(f) N = 9 contacts with a unitarily
evolving qubit is displayed as a function of x (red solid lines) to-
gether with the corresponding PDFs mPN (x) [Eq. (24)] characterizing
multiple measurements (black dashed lines). The time between two
contacts, as well as between two measurements, is (a),(d) θ = 1,
(b),(e) θ = π/2, and (c),(f) θ = π . For all cases, the initial density
matrix is determined by 〈τx〉 = 0.5, 〈τy〉 = 0, and 〈τz〉 = 0.78. The
initial Gaussian pointer state has variance σ 2

x = 0.1, leading, for the
contact scheme at the generic value θ = 1, to well-separated lines
centered at all but the two extreme positions of possible sums of the
two eigenvalues (μ = ±1). The extreme positions have a too small
weight to be visible. For the exceptional value θ = π/2 and N = 6,
there is only a single line centered at x = 0 and two lines for N = 9 at
the positions of the eigenvalues, x = ±1. For the other exceptional
period θ = π , two lines are located at x = ±N . The width of the
individual lines is always determined by σx for repeated contacts. For
repeated measurements, the individual contributions merge to yield
broad distributions. Only for θ = π , the lines remain visible as they
are separated by 2N and the width is proportional to

√
N .

generic values of θ , such as θ = 1; see the black dashed
curves displayed in Figs. 3(a) and 3(d). The exceptional cases
θ = nπ , n = 0, 1, 2 yield the identity for the transition matrix.
According to Eq. (27), the PDF mPN (x) displays two separate
lines at ±N , each of which has a width proportional to N [see
Figs. 3(c) and 3(d), and Figs. 6(a) and 6(c)]. Consequently,
the variance �2

x increases as N2. On the other hand, the
choice θ = π/2, 3π/2 leads to a periodic Markov chain,
which entails an alternatingly uni- and bimodal PDF for even
and odd N , respectively. Then, the variance is also periodic
[see, also, Figs. 6(a) and 6(c)].

B. Dissipative dynamics

Next, we discuss the case of dissipative dynamics, which is
assumed to be governed by a Lindblad-type master equation
[29] reading

ρ̇(t ) = −iB[τz, ρ(t )] + �1([τ−, ρτ+] + [τ−ρ, τ+])

+ �2([τ+, ρτ−] + [τ+ρ, τ−]), (49)

where �1 > �2. The operators τz, τ+ = (τx + iτy)/2, τ− =
(τx − iτy)/2 and 1 form a complete set, which transforms
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FIG. 4. A color-coded presentation of the PDF P7(x) as a func-
tion of the duration of the time θ and the pointer position x. For
generic values of θ , the PDF exhibits local maxima at the possible
values of the sums of seven eigenvalues ±1 at −7, −5, . . . , 5, 7.
For particular times θ = 0, π , the bimodal PDF (48) and, for π/2,
a unimodal PDF with maximum at x = 0 results. All distributions
disclose a bias towards a negative value due to the chosen initial
density matrix which was chosen as specified in Fig. 3.

under the dual propagator as

G∗(τ+) = e(2i−γ )θτ+, G∗(τ−) = e−(2i+γ )θτ−,

G∗(τz ) = e−2γ θτz + �1 − �2

�1 + �2
(1 − e−2γ θ )1, G∗(1) = 1.

(50)

FIG. 5. The multiple contact PDF d PN (x) [Eq. (32), red solid
lines] and the repeated measurement PDF m

d PN (x) (black dashed
lines) are displayed as functions of the pointer position x for various
dissipation ratios (a), (d) rd = γ θ = 0.1, (b), (e) rd = 0.31, and (c),
(f) rd = 5. (a)–(c) N = 6 and (d)–(f) N = 9. The individual rates are
chosen as �1/B = 7.5 × 10−2 and �2/B = 2.5 × 10−2. The initial
density matrix of the qubit and the initial variance of the pointer are
chosen as in Fig. 3.

Here, the dimensionless damping rate is defined as γ = (�1 +
�2)/B. Similarly as in the unitary case, we can find the
analytic form of the distribution when two measurements are
made (N = 2),

d P2(x) = 1√
2πσ 2

x

[(
p1e

− (x+2)2

2σ2
x + p2e

− (x−2)2

2σ2
x

)
fc(θ )

+ e
− x2

2σ2
x fs(θ )

+ qe
− 1

2σ2
x

(
e
− (x+1)2

2σ2
x − e

− (x−1)2

2σ2
x

)
e−γ θ sin 2θ

]
,

(51)

with

fc(θ ) = (1 + e−γ θ cos 2θ )/2,

fs(θ ) = (1 − e−γ θ cos 2θ )/2. (52)

In the absence of dissipation, Eq. (51) maps exactly to
Eq. (47). The presence of any finite dissipation exponentially
reduces the influence of the Gaussian contributions at x = ±1.

FIG. 6. (a), (b) The mean values 〈x〉 and (c), (d) the variances
�2

x of the pointer position as a function of the number of repeated
contacts (solid lines) and the number of repeated measurements
(dashed lines) for (a), (c) unitary and for (b), (d) dissipative dy-
namics. For unitary dynamics with the atypical duration θ = π/2,
the oscillation of the PDF between a bimodal and a unimodal form
leads to an oscillatory behavior of the mean and an N-independent
variance [black plus symbols in (a) and (c)] for repeated contacts.
For repeated measurements, the mean follows the same oscillatory
behavior with the variance of each Gaussian peak scaling with N ,
giving �2

x a weak dependence on N . For θ = π , both the repeated
contact and measurement schemes yield, with Eqs. (21) and (27),
respectively, a linear increase of the absolute mean value 〈x〉 and a
quadratic increase of the variance �2

x , as displayed in the inset of
(c). For typical values of θ , the repeated contact scheme with unitary
dynamics gives rise to a qualitatively similar, but less pronounced
ballistic diffusion behavior. In contrast, repeated measurements lead
to a saturation of the mean value and a linear growth of the variance,
i.e., to normal diffusion of x. A transition to normal diffusion is also
observed in the presence of dissipation. For the largest dissipation
with rd = 5, the mean value and the variance are in good agreement
with Eqs. (37) and (38). Other parameters are chosen as in Fig. 3.
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Further, it changes the relative weights of the peaks at x = ±2
and x = 0: The side peaks increase if cos 2θ > 0 [Fig. 2(a),
blue solid line], while the central peak grows if cos 2θ < 0
[Fig. 2(b), blue solid line]. In the limit of large times θ → ∞,
the asymptotic result following from Eq. (35) for N = 2 is
approached (Fig. 2, black dotted lines). This is because the
stationary density matrix resulting from the master equation
(49) is diagonal with respect to the τz eigenbasis such that
both stationary probabilities pst

1,2 have the same value of
1/2, independent of the stationary expectation value, 〈τz〉st =
(�1 − �2)/(�1 + �2).

For two larger values of N , some results are presented in
Fig. 5. For the small dissipation parameter rd ≡ γ θ = 0.1,
the system does not have enough time to thermalize between
measurements and hence the PDFs displayed in Figs. 3(a) and
3(d) resemble those for unitary dynamics. At the intermediate
value of rd = 0.31, the additional two peaks at the maximal
positions x = ±N become visible with maximal weight at
−N , while all other peaks are of approximately the same
height; see Figs. 3(b) and 3(e). With a further increase of the
dissipation parameter, the system between two measurements
is driven into the stationary state, yielding the asymptotic
result given by Eq. (35) for the PDF. It takes a further
simplified form for any initial density matrix that commutes
with τz such that, with p �m = (1/2)N , the PDF assumes the
form of a mixture of Gaussians with binomial weights. The
centers of these Gaussians are located at the possible values
taken by the sums of all combinations of eigenvalues. The
binomial weights reflect the number of different combinations
of N eigenvalues with the same sum. In this particular case,
the PDF hence reads

d Pst
N (x) =

(
1

2

)N N∑
k=0

(
N

k

)
gσ 2

x
(x − N + 2k). (53)

In spite of the fact that the initial state has an off-diagonal
matrix element with respect to the τz basis, the agreement of
the results displayed in Figs. 5(c) and 5(f) is very good.

A rough characterization of the N dependence of the
statistics of x, specifying either the number of contacts or
of measurements, both for the unitary and the dissipative
case, is provided by the mean value and the variance, 〈x〉
and �2

x , as displayed for a few cases in Fig. 6. Typically, the
mean value grows proportionally to the number of contacts
as well as to the number of measurements, both for unitary
and for dissipative dynamics, as illustrated by the upper two
panels of Fig. 6. An exception from this rule occurs for
θ = π/2, displaying oscillations of the mean value for unitary
dynamics in agreement with the above-described behavior of
the underlying PDFs alternating as a function of N between
the same unimodal and bimodal shapes.

The influence of dissipation suppresses correlations be-
tween the shifts of the pointer states at contacts that are
separated by a sufficiently large dissipation ratio rd , leading
to a variance asymptotically growing proportionally to the
number of contacts displaying the characteristic feature of
normal diffusion. For the here-considered most simple qubit,
and as we also expect for other so-called integrable quantum
systems [30], the variance increases with N2 as in the case
of classical, ballistic diffusion. This observation, though, is

FIG. 7. The trace distances ||ρ1 − ρ2|| according to Eq. (54)
from a density matrix ρ2 ≡ ρ(kθ ) uninterruptedly evolved up to
the time kθ , either by (a) unitary or (b) dissipative dynamics, to
the corresponding dynamical scheme ρ1 with k repeated contacts
(solid lines) or k measurements (dashed lines). In the case of unitary
dynamics, the time between contacts or measurements is θ = 1 (red
plus symbols) and θ = π/2 (blue closed circles). In the case of
dissipative dynamics, results are displayed for the dissipation rates
rd = 0.1 (orange plus symbols) and rd = 5 (green closed circles).
Typically, the distance between the interrupted and uninterrupted
scenario is smaller for repeated contacts than for repeated measure-
ments, indicating a less severe backaction by the contacts compared
to the measurements. Exceptions are found for unitary dynamics at
θ = π/2 with an odd number of interruptions and for the case of the
large dissipation rate leading to an almost perfect approach to the
stationary state of the qubit. The remaining parameters are chosen as
in Fig. 3. The lines connecting the points at integer values of k are
meant to guide the eye.

based on our numerical results, which are restricted to a
relatively low number of contacts. One might speculate that
for unitary chaotic dynamics, the variance still grows su-
perdiffusively, but governed by a power law with an exponent
between one and two. The different behavior of unitary and
dissipative dynamics for a qubit is illustrated in Figs. 6(c) and
6(d), respectively.

C. Trace distance

In Fig. 7, the trace distances between the density matrices
of systems affected by a number of contacts or measurements
and those freely propagating are compared as a function of the
number of contacts. Here we use the trace distance between
two density matrices ρα (α = 1, 2), describing qubits having
the expectation values 〈τk〉α = Tr τkρα (k = x, y, z), given by

||ρ1 − ρ2|| ≡ Tr|ρ1 − ρ2| =
[∑

k

(〈τk〉1 − 〈τk〉2)2

]1/2

.

(54)

It turns out that the trace distance is typically smaller for the
less-invasive repeated contact scheme (solid lines) than for
repeated measurements (dashed lines) in Fig. 7. In the case
of repeated contacts with unitary dynamics in between with
θ = π/2 [blue solid lines with closed circles in Fig. 7(a)],
the odd number of contacts and measurements results in the
same trace distance because then one finds operators R

k�m,k�m′ =∏k
l=1 δml ,m′

l
Pmk ρPmk yielding equal exponential weights in

Eqs. (39) and (41). The other exception from the rule is for
complete equilibration where the k contacts and k measure-
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ments lead to the same density matrix; see Eq. (45) [green
closed circles in Fig. 7(b)].

VIII. CONCLUSIONS

We investigated in some detail a particular strategy to gain
information about the values of an observable taken at sub-
sequent times with as little backaction on the system as pos-
sible. The primary information on the system is taken within
intervals of time that are negligibly short; it is transferred to
the state of a pointer where their subsequent contributions
are accumulated. After each contact, the system is allowed
to move freely, i.e., without being influenced by the pointer.
The pointer itself is assumed to be idle until it is contacted
again. The final readout of the pointer in terms of a projective
measurement yields a value that coincides, within some error
margin, with the sum of the observable at the instants of
contacts. Other values, corresponding to the algebraic mean
of two such sums, are exponentially suppressed as long as the
mentioned error margin is narrow enough.

The resulting statistics of the final pointer state may be
interpreted in terms of discrete quantum walks [15]. Here, the
walker is realized by the pointer and the system performs as
the coin deciding in which direction and how far the walker
moves in a step. In the example of a qubit, the Hilbert space
of the coin has dimension two, as frequently assumed in the
theory of quantum walks but generalizations to coins living in
arbitrarily large Hilbert spaces are straightforward. Discrete
quantum walks performing a small number of steps on a lat-
tice can be used as generalized measurements distinguishing
nonorthogonal states [31–33].

In general, depending on the kind of dynamics of the
system, the resulting random walk may vary from ballistic,
i.e., with a variance growing proportionally to the square of
the number of steps, to normal diffusion, with a linear growth
of the variance. The latter behavior is found for dissipative
dynamics of the system governed by a Markovian master
equation. For the qubit, undergoing unitary dynamics, the
persistent correlations of the system dynamics apparently lead
to a ballistic behavior for the relatively small numerically
accessible numbers of contacts. The behavior of the variance
for large numbers of contact as well as for more complex

systems undergoing unitary dynamics poses an interesting
problem and might provide a novel way to characterize so-
called quantum chaotic systems. Presently, the investigation
of this problem is hampered by numerical problems because
it requires both large-system Hilbert spaces as well as a large
number of contacts. Both demands request huge storage and
computational capacities, which can possibly be realized with
future quantum computers.

We would like to emphasize that the proposed strategy
to reduce the backaction by repeated contacts differs from
weak measurements specifying the probabilities of so-called
quantum trajectories of a continuously measured observable
[4–6,34], in several respects: Instead of a continuum of neces-
sarily weak measurements determining a quantum trajectory,
i.e., with a measurement strength typically scaling with a
vanishing time step τ as τ 1/2, we consider a discrete sequence
of contacts which are not restricted to be weak. The final
measurement then yields a random number representative for
the sum of the sequence of the observable taken at the contacts
provided that the contact strength is sufficiently strong such
that the spectrum of the considered observable can be resolved
with a single measurement of the same strength.

We are aware of the fact that the experimental realization
of a continuous pointer which is idle if not in contact with
the system might be difficult. We intentionally presented the
approach of repeated contacts with an idealized model in
order to highlight the principle idea without technical com-
plications being specific for a particular realistic application.
The inclusion of a realistic pointer dynamics as well as the
consideration of protocols prescribing contacts with variable
time delay are doable.

As a particular problem that can be attacked by the pre-
sented strategy, we finally mention the diagnosis of a quantum
engine performing in finite time. The so-far employed analysis
in terms of projective energy measurements [19] suppresses
any coherences extending over a single cycle. Their possible
impact on the performance with respect to power, efficiency,
and reliability is of major importance [35].
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