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Abstract. Swarm behavior can be very beneficial for real-world robot
applications. While analyzing the current state of research, we identi-
fied that many studied swarm algorithms foremost aim at modifying
the movement vector of the executing robot. In this paper, we demon-
strate how we encapsulate this behavior in a general pattern that robots
can execute with adjusted parameters for realizing different beneficial
swarm algorithms. We integrate the pattern as a virtual swarm capability
in our reference architecture for multipotent, reconfigurable multi-robot
ensembles and demonstrate its application in proof of concepts. We fur-
ther illustrate how we can lift the concept of virtual capabilities to also
integrate other known approaches for collective system programming as
virtual collective capabilities. As an example, we do so by integrating the
execution platform for the Protelis aggregate programming language.

Keywords: Swarm behavior · Multi-agent systems · Robot swarms ·
Multipotent systems · Collective adaptive systems · Ensembles

1 Motivation

The use of ensembles or swarms of autonomous robots, especially unmanned
aerial vehicles (UAV), is very beneficial in many situations in our daily life. This
statement is validated by the multitude of different applications for ensembles
that emerged during the past decade making use of the benefits collective behav-
ior can deliver, e.g., with emergent effects achieved by swarm behavior. Unfortu-
nately, the current trend is that every single new application also requires a new
software approach for its realization [3,8]. While these specialized approaches
show beneficial results for their dedicated applications, e.g., using collective
swarm behavior for searching [27], or distributed surveillance [15,16] among
many others, users can find it hard to adapt them and profit from previous
developments in (even only slightly) different use cases.

To come by this issue, we propose to make use of a common pattern instead
that can express the collective swarm behavior of a certain class in general. Devel-
opers of multi-robot systems can implement such pattern once at design time
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and parametrize it differently at run-time to achieve specific emergent effects.
We identified such a common pattern researchers frequently use for implement-
ing movement-vector based swarm behavior of different types in swarm robotic
systems. While producing a different emergent effect each, we can see that swarm
algorithms like the particle swarm optimization algorithm [27], the commonly
known flocking behavior originally analyzed in [21], shaping and formation algo-
rithms [22], and distribution algorithms [15,16] make use of the same set of
local actions: measuring one or multiple specific parameters, communicating with
neighbors in the swarm, and modifying the movement vector of the robot.

For this paper, we implement such a common pattern in our reference archi-
tecture for multipotent multi-robot ensembles [9,14]. Therefore, we introduce
the concept of configurable, virtual, collective capabilities that encapsulate com-
plex behavior of individual robots by composing other capabilities, i.e., services
a robot already provides, and produce collective behavior when executed coop-
eratively in an ensemble. For example, to realize flocking behavior following [21],
each individual robot requires to execute certain capabilities in an appropriate
combination, perform position and velocity measurements, needs to exchange
resulting values with swarm members and adapt its movement vector accord-
ingly, which then results in the collective emergent effect of the individuals form-
ing a flock as an ensemble. By executing such a virtual capability collectively in
a multi-robot system, we can realize swarm behavior and achieve useful emer-
gent effects. We further validate the concept of virtual collective capabilities by
demonstrating how other approaches for programming collective behavior can
be integrated into our multipotent systems reference architecture by the exam-
ple of Protelis [19] as a further example of a virtual collective capability. The
contributions of this paper thus are: 1) The identification and demonstration of
a common pattern for realizing swarm behavior for collective adaptive systems,
2) the extension of our current reference architecture for multipotent systems
with the concept of virtual capabilities, 3) the integration and evaluation of vir-
tual capabilities realizing collective behavior for multipotent systems with our
common swarm pattern and the external approach Protelis [19].

The remainder of the paper is structured as follows. In Sect. 2 we illustrate our
objectives and highlight the challenges we need to tackle and then propose our
solution in Sect. 3. In Sect. 4 we demonstrate the functionality of our approach
for our case study in a simulation environment and deliver proof of concepts
supported by expressive video materials. In Sect. 5 we subsume approaches for
programming collectives and analyze current implementations of swarm behavior
for swarm robotic systems. In Sect. 6 we conclude our findings and point out
possible future research challenges.

2 Challenges Resulting for Multipotent Systems

Extending our multipotent systems reference architecture [9] with virtual swarm
capabilities for exploiting useful emergent effects and to easily program collective
systems poses some challenges. In multipotent systems, robot ensembles being
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homogeneous at design time can become heterogeneous concerning their capa-
bilities at run-time by combining physical reconfiguration on the hardware level
with self-awareness. We aim at exploiting this property for enabling robots to
implement the reference architecture to also adapt at run-time for participating
in swarm algorithms. While we already provide the possibility of extending the
range of domain-specific capabilities in multipotent systems when it is necessary,
we want to reduce the effort a system designer needs to invest when integrating
virtual capabilities. In our multipotent systems reference architecture (cf. Fig.
1), we integrate capabilities within the semantic hardware layer which is an
interface to self-descriptive hardware [25]. The semantic hardware layer recog-
nizes new hardware connected to the robot and updates the available capabilities
respectively in a self-aware manner. It provides these capabilities to its super-
ordinate agent layer that can make use of them when involved in an ensemble
(coordinated on ensemble layer) that currently executes a task introduced on
task layer.

Fig. 1. The multipotent systems reference
architecture for multi-robot ensembles, sim-
plified version adapted from [14].

We generate tasks by automated
planning on the task definition the
system’s user introduces through
an interface on task layer. Agents
α1..n ∈ A in the multipotent ensem-
ble then allocate these tasks coop-
eratively to agents capable of solv-
ing the task. These agents then
form an ensemble coordinated by
one specific agent through its ensem-
ble layer, e.g., α1 (cf. Fig. 1). The
ensemble then executes the respec-
tive task by the appropriate inter-
play of the coordinator’s ensemble
layer and the other ensemble mem-
bers’ agent layer. To enable the sys-
tem to make use of such new capa-
bilities that are coupled with physi-
cal hardware, an expert first needs to
make changes to this core element of

the system. Necessary adaptions include, e.g., extending the domain model of the
ensemble appropriately, implementing the hardware access (drivers) accordingly,
or integrating the new hardware physically into the system (hardware adapters,
wiring). While adaptations of the domain model are necessarily required when a
user introduces new hardware modules that offer new capabilities, e.g., an gasx

sensor module offering the previously unknown capability of measuring-gasx,
we aim at avoiding this for virtual capabilities. If a capability is not directly
associated with and not only available through the presence of dedicated physi-
cal hardware, e.g., for participating in swarm algorithm A instead of algorithm
B or for executing a Protelis program C instead of program D, we aim at avoid-
ing such modifications to the core system for certain classes of capabilities. Our
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challenge here is to identify such classes where it is possible to separate a fixed
part from a variable part. Then, we can implement that fixed part into the sys-
tem once at design-time as a virtual capability, and integrate the variable part
dynamically at run-time as the virtual capability’s parameters. Further, we also
require to adapt our current mechanism for task execution accordingly. For real-
izing virtual capabilities aiming at collective behavior, we need to introduce the
possibility of direct communication between instances of the same type of vir-
tual capabilities which was only possible through agent layer up to now. Without
the direct exchange of relevant information between participating entities many
external programming approaches for ensembles can not function because they
rely on some form of directly accessible messaging interfaces [19,20].

3 Approach

To be available to an agent α ∈ A in the multipotent systems reference architec-
ture [14], a capability requires a set of physical hardware modules, i.e., sensors
and/or actuators (S/A). While the set of S/A does not need to be the same
for every instantiation of a capability, we require the set of S/A to have the
necessary user-specified functionality [5,25], e.g., determine the presence of an
object. For their execution, capabilities do require a set of parameters, e.g., a
direction vector for a move capability. In this paper, we refine this capability
concept (cf. light-grey part of Fig. 2) by differentiating between virtual and phys-
ical capabilities (darker part of Fig. 2). Therefore, we demonstrate how we can
combine already existing physical capabilities Cp for achieving collective behav-
ior that we can parametrize in virtual capabilities for collectives Cv. We apply
this concept in a virtual capability for movement-vector based swarm behavior
(cf. Movement-Vector Based Swarm Capability in Fig. 2) realizing the general
pattern for individual agent participation in respective swarm algorithms. We
further introduce a second virtual capability offering an interface between agents
and their capabilities in our reference architecture and other collective program-
ming approaches (cf. External Collective Programming Capability Fig. 2).

We assume that every agent can communicate with any other agent in the
ensemble E it currently participates in. This is necessary to realize certain types
of swarm behavior (e.g., particle swarm optimization PSO [27]) because we can
not assume local sensors for all spatially distributed relevant values (e.g., mea-
surements of other agents). Moreover, we can not assume to have perfect local
sensors for every robot enabling it to externally determine the state of other
robots precisely enough in a real-world setting. We achieve this by exploiting
the communication middleware of the multi-agent framework Jadex [1]. With
this framework, we can ease the conceptualization and implementation of our
distributed multipotent systems through the use of Jadex Active Components,
which are autonomously acting entities. Implementing each instance of Cp, Cv,
and A as such active components and encapsulating their functionality in ser-
vices each enables their direct interaction where this is necessary. We further
assume that no outages (e.g., communication, sensor failures, broken robots)
occur.
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Fig. 2. General concept model for virtual capabilities. Instead of direct access to S/A,
we provide access indirectly through associated physical capabilities.

3.1 Static and Dynamic Model of Virtual Capabilities

We differentiate between virtual capabilities Cv and physical capabilities Cp

which both refine the previous concept of a capability, i.e., a service a robot pro-
vides for execution. In comparison to physical capabilities, virtual capabilities are
not directly associated with S/A. Instead, for executing a virtual capability we
require it to invoke associated other (physical) capabilities. Thus, virtual capabil-
ities do only have indirect access to hardware but can be used to construct more
complex behavior. Consequently, the set of parameters for a virtual capability
needs to include additional information, e.g., the set of other capabilities it needs
for its execution. This has also consequences for our currently established self-
awareness [13], and self-organization mechanisms [12] we use to execute plans in
multipotent systems. Because the execution of a virtual capability might require
the cooperation within the ensemble E ⊆ A executing it, we allow for every αi

executing a specific cv ∈ Cv to directly exchange information with other αj �=i

within the same ensemble that are executing the same instance of cv. Further,
communication is an urgent requirement for collective programming approaches
we want to enable as external capabilities. We therefore separate each cv ∈ Cv

in an active part cv:act and a passive part cv:pas. While the active part differs
for all cv ∈ Cv, we can define the passive part as a procedure receive(cv, Vαi

)
used for receiving relevant data Vαi

from another agent αi executing the same
virtual capability cv in general for all cv ∈ Cv. receive updates the values for
these other agents stored in a shared map M

E := 〈α ∈ E〉, 〈Mα〉 holding the
most recent values Mα received from all α ∈ E . To enable the exchange of data,
the active and passive part of each cv ∈ Cv share this map. This means, when
receiving Vαi�=j

in cv:pas, an agent αj can update the entries referenced in Vαi

concerning αi in M
E and subsequently access the data in cv:act. In our code

snippets, we indicate that αj executing cv sends Vαj
to a specific other agent

αi executing the same instance of cv with αi.send(cv, Vαj
). Besides shared data

and data received from other agents, in our algorithms we indicate local input
with name := 〈input1, ..., inputn〉.

3.2 Termination and Results of Virtual Capability Executions

Like for physical capabilities, we can define different termination types for vir-
tual capabilities. Physical capabilities can terminate internally on their own or
require external events for termination. A robot executing, e.g., its physical
capability for moving to a certain position cp

mv pos can rely on the automatic
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Algorithm 1. cv:fin-coord := 〈f:aggrcv , f:termcv 〉
1: Raggr ← f:aggrcv (ME) # aggregates the ensemble’s current measurements
2: term ← f:termcv (Raggr) # decide for termination using the aggregated result
3: if term then
4: store(Raggr) # if terminating, store the result for external evaluation
5: for αi ∈ E do
6: αi.send(cv,term) # broadcast the termination decision in the ensemble

termination of cp
mv pos when it reaches the position defined in the parameters.

Instead, a physical capability cp
mv vec that moves a robot in a direction using a

speed vector does not terminate itself as the movement does not have a natural
end and thus needs to be terminated externally. Likewise, virtual capabilities
can terminate their execution internally or require external termination. This is
especially relevant for all virtual capabilities that implement collective behavior.
We can define termination criteria with appropriate parameters for some swarm
behavior, e.g., executing a virtual capability implementing a PSO can terminate
itself when all agents in the swarm gather within a certain distance [27]. For
other swarm behavior, e.g., achieving the equal distribution of robots in a given
area with the triangle algorithm [15], we do not want to define such criteria (e.g.,
for achieving the continuous surveillance of that area) or even can not do it at
all (e.g., for steering a swarm in one direction with guided flocking [2]) and thus
rely on an external event for termination. Besides defining when to terminate a
cv implementing swarm behavior or other collective behavior, we also require to
quantify the emergent effect of executing cv and store it for up-following evalua-
tion like we do with the results originating from physical capability executions.
For PSO, e.g., we finally want to determine the position the highest concentra-
tion of a parameter an ensemble was searching for was measured. In this case,
we can calculate the position of relevance by calculating the ensemble’s center of
gravity when the geometrical diameter of the swarm, i.e., the euclidean distance
between the αi, αj ∈ E having the greatest distance between each other, gets
lower than a user-defined threshold. For such calculations and to determine ter-
mination for virtual capabilities therewith, we extend the role of the ensemble
coordinator that is responsible to coordinate a plan’s execution [10]. Concerning
the results of (physical) capability executions, the coordinator only acts as a
pass-through station for results originating from any capability execution in the
ensemble. The coordinator stores each result in a distributed storage and eval-
uates data when necessary, e.g., for deciding on the current plan’s progress or
during replanning on the task layer (cf. Fig. 1). To determine the termination of
a virtual capabilities execution, we now enable the coordinator to also aggregate,
analyze and post-process the intermediate results from virtual capabilities before
storing them by using capability specific procedure cv:fin-coord (cf. Algorithm 1).
Because we guarantee with an additional constraint in our constraint-based task
allocation mechanism [6] that the agent adopting the coordinator role always
also participates in the execution of the collective behavior, i.e., executes the
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Algorithm 2. cv:act
sw

:= 〈Cp
sw,calcsw, Esw〉

1: repeat
2: for each ci ∈ Cp

sw parallel do
3: M

self[ci] ← exec(ci) # execute all relevant capabilities and store the results
4: M

E [self] ← M
self # store local results in the map for all ensemble results

5: for each αi ∈ Esw parallel do
6: αi.send(cvsw,Mself) # distribute stored results in the ensemble
7: parc

p
mv vec

← calcsw(ME) # calculate the new movement vector
8: exec(cpmv vec) # update the current movement vector
9: until term # decide on termination using the received value

respective cv:act, it can also receive values other ensemble members send and
thus has access to M

E . By using an aggregation function f:aggrcv taking M
E

as input parameter that is specific for each cv, we can quantify the emergent
effect every time the entries in M

E change (L. 1 in Algorithm 1). If the ter-
mination criteria (f:termcv in Algorithm 1) holds for the current result (L. 2
in Algorithm 1), the coordinator can store that result in the distributed stor-
age (L. 4 in Algorithm 1) and distribute the current termination state term

within the ensemble (L. 6 in Algorithm 1). Each agent can receive this signal
with a respective service cv:fin-part to receive the coordinator’s termination sig-
nal term with receive(cv,term). The service cv:fin-part shares term with the
active part cv:act of cv in term

E , which we use to stop the execution of cv. For
cv ∈ Cv that can terminate externally only, we can thus enable the user to also
have the possibility to terminate the execution of cv.

3.3 A Capability for Movement-Vector Based Swarm Algorithms

For achieving emergent effects generated by movement-vector based swarm
behavior, we introduce a Movement-Vector Based Swarm Capability cv

sw
with its

according parameters parcv
sw

(cf. Fig. 2). This virtual capability realizes swarm
behavior from the class of movement-vector-based swarm algorithms such as the
PSO [7,27], flocking [21], or the triangle formation [18] among others, that can
be of use for multipotent systems. We illustrate the respective active part cv:act

sw

of cv
sw

in Algorithm 2 that executes a general pattern capable of producing the
mentioned swarm behaviors. In a first step, each agent executing cv

sw
measures

and remembers relevant values according to the set of physical parameters Cp
sw

included in parcv
sw

in parallel (cf. L. 3 in Algorithm2). After finishing the exe-
cution of all capabilities in case of self-terminating capabilities or after starting
to execute non-self-terminating capabilities respectively, agents executing cv

sw
in

parallel exchange these local measurements M
self with all agents in the current

ensemble Esw that execute the same instance of cv
sw

(cf. L. 6 in Algorithm 2).
Each agent α ∈ Esw remembers these measurements in the virtual capability’s
locally shared map M

E that holds the most recent values for all neighbors includ-
ing itself (cf. L. 4 in Algorithm2). By using this aggregated measurements M

E ,
each agent then is able to determine the necessary adaption to its current move-
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Algorithm 3. cv
ext

:= 〈progext,pcext, Eext〉
1: repeat
2: M

E
snap ← M

E # create a snapshot of the current ensemble values
3: 〈Cp

ext,termext, pcext, Vext〉 ← prog(pcext,M
E
snap) #execute the program

4: for each ci ∈ Cp
ext parallel do

5: M
self[ci] ← exec(ci) #execute capabilities required by the program

6: M
E [self] ← M

self #store results for next iteration of the program
7: for each αi ∈ Eext parallel do
8: αi.send(cvext, Vext) #distribute relevant data of the program
9: until termext ∨ term #check termination set by the program or coordinator

ment vector (cf. L. 8 in Algorithm 2) for achieving the intended specific swarm
behavior encapsulated in calcsw (cf. L. 7 in Algorithm 2). As all agents in Esw

repeatedly execute this behavior until a specific termination criteria term holds
(passed over to the passive part cv:pas of cv

sw
from the coordinator, cf. Sect. 3.2),

they achieve the specific swarm algorithm’s emergent effect collectively (cf. L. 9
in Algorithm 2). By adjusting calcsw in particular, we can exploit this generally
implemented form of a virtual capability to execute different swarm algorithms
that would require an individual implementation each otherwise.

3.4 An Interface for External Collective Programming Languages

During the design of multipotent systems, we can not foresee all necessary func-
tionality in specific use cases a user of the system might have in mind. Therefore,
we offer the possibility of external programming to the system’s user. We do this
by introducing virtual capabilities cv

ext
∈ Cv for external collective programming

approaches which become a fixed part of the multipotent system and represent an
interface to the run-time environment of a specific programming language each.
In contrast to cv

sw
, where we need to define the actual calculation calcsw within

the host system and its respective programming language (i.e., that the multipo-
tent system reference architecture from Sect. 2 is implemented with), we are not
restricted to that when using a specific cv

ext
. Instead, we encapsulate necessary

information in a program written in the respective external programming language
and only need to define the interface for the communication of that programming
language’s execution environment and the multipotent system’s implementation.
These external programs then define, how values we generate within the multipo-
tent system are used and transformed into instructions for the multipotent system.
Like for any cv ∈ Cv, we enable each cv

ext
to execute other already existing capabil-

ities cp ∈ Cp of the multipotent system, i.e., choose respective parameters and read
results from those capabilities’ execution that we store in ME through the defined
interface (L. 5 in Algorithm 3). This way, a user can program new complex behav-
ior progext in the external programming language while also using already avail-
able functionality provided by Cp within our system. The programmer only needs
to know the interface to relevant cp ∈ Cp and does not require further knowledge
of the underlying multipotent system, e.g., if the progext requires the change the
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current movement vector of the executing robot. For its execution, the respective
cv
ext

then uses progext as an additional parameter (cf. Algorithm3). This way,
and to allow for changing the behavior of cv

ext
, the programmer can dynamically

exchange the external program at runtime. With the start of the capability exe-
cution within the active part of each cv:act

ext
, we run progext from its entry point

by handing over a program pointer pcext and a snapshot of the current state of
M

E (initially empty, L. 2 and 3 in Algorithm3). When the execution of progext

stops, we require it to return a data vector 〈Cp
ext,termext,pcext, Vext〉 encapsu-

lating instructions from the external program to the multipotent system. The first
entry indicates whether the external program’s control flow requires that physi-
cal capabilities Cp

ext get executed in the following (L. 4 and 5 in Algorithm3).
The second entry determines, whether progext already reached its termination
criteria termext and the execution of cv

ext
can be finished internally (L. 9 in Algo-

rithm3). The third entry determines, what the next program counter pcext is if
termext does not hold. Because information on which values need to be within
the ensemble Eext is encapsulated in progext but the distribution itself is per-
formed by the multipotent system’s agent communication interface, in a fourth
entry Vext determines those values (L. 7 and 8 in Algorithm 3). While termext

does not hold and no termination signal is received from the coordinator of Eext in
cv:fin-part (cf. Sect. 3.2), the execution of cv

ext
continues to execute progext with

the current pcext in the following iteration. Thereby, it uses an updated version
of ME (L. 2 in Algorithm3) containing latest local values (L. 6 in Algorithm3)
as well as such received in cv:pas

ext meanwhile (Sect. 3.1). Each progext adhering
to this convention thus can access the set of locally available physical capabilities
and use the communication middleware of our multipotent system in the current
ensemble. This creates a high degree of flexibility in the way of programming with
our approach.

4 Proof of Concepts

To demonstrate the flexibility of our approach we give proof of concepts in the
following. We, therefore, implemented a virtual capability for movement-vector
based swarm algorithms cv

sw
and evaluated it with different parameters to achieve

different emergent effects. We demonstrate the concept of a virtual capability
for the movement-vector based swarm behavior with video materials1 isolated
in a NetLogo simulation2 and integrated with our multipotent systems reference
implementation. Further, we demonstrate the feasibility of integrating an exter-
nal programming language for collectives as a virtual capability by example.

4.1 Executing Movement-Vector Based Swarm Algorithms

We validate the concept of the virtual capability for movement-vector based
swarm algorithms cv

sw
we introduced in Sect. 3.3 using different parameters for

1 https://github.com/isse-augsburg/isola2020-swarm-capabilities.git.
2 NetLogo download on https://ccl.northwestern.edu/netlogo/download.shtml.

https://github.com/isse-augsburg/isola2020-swarm-capabilities.git
https://ccl.northwestern.edu/netlogo/download.shtml
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(a) Gathering (b) Guided Boiding (c) PSO (d) Triangle

Fig. 3. Screen shots of a simulation environment showing the use of a swarm capability
for different parameters resulting in respective emergent effects (top down perspective).
See footnotes 1, 2 for video material and a respective NetLogo simulation source file.

realizing different emergent effects. In a simplified major catastrophe scenario, a
firefighter might want to a) gather its ensemble of mobile robots, b) move them
collectively to the area where, e.g., a gas accident happened, c) search for the
source of the gas leak, and d) survey the area close to the leak (video materials
on our GitHub). We can instruct our system, e.g., with our task-orchestration
approach for ensembles Maple-Swarm [11]. To handle this scenario we can use
the cv

sw
with different sets of parameters in steps a)-d) each (cf. Figs. 3a to

3d), illustrating the flexibility of our concept of cv
sw

including its termination
functionality. For all instances of cv

sw
we execute to realizing the desired emer-

gent effect for achieving a)-d), we assume the following: A sufficiently equipped
ensemble Esw is available concerning the set of physical capabilities Cp

sw necessary
for that concrete instantiation which we can achieve, e.g., with our self-aware
and market-based task allocation mechanism [13] in combination with our self-
organized resource allocation mechanism [6]. For each result of calc, we nor-
malize (norm) the resulting distance (dist) vector originating from the robots
current position posα and scale it with the robots maximum velocity with ν. We
assume a working collision avoidance system provided by the robotics controller.

a) For gathering the ensemble, we can execute cv
sw

with Cp
sw := {cp

pos},
where cp

pos measures the executing robot’s current position (cf. Fig. 3a). Each
robot can terminate the execution of cv

sw
locally when the diameter diam() of

the swarm is below a user-defined threshold x, calculated with the measure-
ments available in M

E , i.e., termsw := diam(ME [∗][cp
pos]) ≤ x. We calculate

the desired moving vector using the ensemble’s center of gravity grav(), i.e.,
calc() := ν ·norm(dist(posα,grav(ME [∗][cp

pos]))). Both, diam() and grav()

only require information concerning the position of each robot in Esw, thus results
from executing cp

pos stored in M
E are sufficient therefore.

b) For controlling the ensemble to a goal location with an adapted flock-
ing approach following the idea of boiding in [21], we execute cv

sw
with Cp

sw :=
{cp

pos, c
p
vel}, where cp

pos measures the executing robot’s current position and cp
vel

its current velocity (cf. Fig. 3b). We can calculate the desired moving vector by
appropriately weighting the three urges for the cohesion coh of the ensemble,
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the separation sep from the closest neighbor in the ensembles, and the align-
ment ali of the individual robot’s moving direction with that of the ensemble
known from [21]: calc := ω1 · sep(ME [∗][cp

pos]) + ω2 · coh(ME [∗][cp
pos]) + ω3 ·

ali(ME [∗][cp
vel]). To guide the ensemble to the goal location we exploit how

ensemble members evaluate M
E for adapting their movement vector (L. 7 in

Algorithm 2) by adding an additional entry for a non-ensemble member (i.e., a
dedicated leader robot or any other position-aware device) that also measure-
ments of Cp

sw frequently. Because all ensemble members use the complete map
M

E , the emergent effect is what we aim for: guiding the collective to a goal
location the non-ensemble robot is moving to. Robots can not terminate the
execution of cv

sw
locally in this case because they have no information on the

goal location and thus rely on an external termination signal term from their
coordinator (who possibly requires to receive it from the user itself).

c) For searching for the highest concentration of a certain parameter, we
execute cv

sw
with an adapted version of the particle swarm optimization algorithm

(PSO) [27] (cf. Fig. 3c). Obviously, we require to contain the respective capability
for measuring the parameter of interest cp

par in Cp
sw, in addition to cp

pos and cp
vel,

i.e., Cp
sw := {cp

par, c
p
pos, c

p
vel}. To determine the movement vector of robot α,

we define calc := ω1 · dist(posα,max(max(ME [self][cp
par],maxself))) + ω2 ·

dist(posα,max(max(ME [*][cp
par],maxE))+ω3 ·dist(posα,rand(x, y, z)) as the

weighted sum of distance vectors pointing from the robot α’s current position
αpos to the position with the iteratively updated highest measurement of the
parameter of interest from the robot itself maxself, the whole ensemble max

E ,
and a random direction rand(x, y, z) included for exploration. Similar to the
execution of cv

sw
for gathering in a), we can let the agents in the ensemble decide

on the termination on cv
sw

by determining whether the diameter of the ensemble
is below a threshold x, i.e., termsw := diam(ME [∗][cp

pos]) ≤ x.
d) For realizing the distributed surveillance of an area of interests, we adapted

the triangle formation algorithm from [15] to also work within a 3D-environment
(cf. Fig. 3d). With this algorithm, we can exploit the emergent effect of a swarm
distributing in an area holding a predefined distance s to each other at a given
height h. To produce the desired emergent effect, a robot α requires position mea-
surements of its two closest neighbors only, i.e., Cp

sw := {cp
pos}. To determine the

required movement vector, we first need to determine the two closest neighbors
α1,2 of α in the ensemble, i.e., ¬∃αi ∈ E : dist(α, αi) < dist(α, α1) ∧ ¬∃αi ∈
E \ α1 : dist(α, αi) < dist(α, α2). We then calculate the center of gravity
grav(α1, α2) between α1 and α2 and determine the distance vector pointing
from α to the closest intersection point of the plane at height h (defined parallel
to ground level) and the circle around the center of gravity with radius

√
3 · s

2
(being perpendicular to the straight defined by α1 and α2) as the goal position of
α. While we can define a condition for termination of the execution of cv

sw
, e.g.,

in case that all distances between closest neighbors only vary marginally for all
robots in the ensemble, we do not want to specify such in the case of continuous
surveillance. Like in b), we require an external termination term signal from
the user or another external entity.
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1 module count neighbors
2 let num of neighbors = sumHood(nbr(1))
3 num of neighbors

1 module term after iterations
2 def iterations () = rep(x <− 0) { x + 1 }
3 def term after(x) =
4 if ( iterations () > x) { self .term() }
5 else { iterations () }
6 terminate after(10)

1 module measure temp
2 import ParamFactory.get;
3 def measure temp() {
4 let cap type = self .getType(”temp”)
5 let measurement param = get(cap type)
6 let param = measurement param.get()
7 param.set(”measureOnce”, true)
8 let temp = self.request(param, cap type)
9 temp

10 }
11 measure temp()

Fig. 4. Minimal Protelis programs demonstrating the feasibility of the integration:
Communication between agents (top left), enforcing the self-termination from the host
system (bottom right), and accessing to capabilities of the host system (right).

4.2 Protelis as an Example for an External Virtual Capability

We demonstrate the feasibility of integrating an external programming lan-
guage into the multipotent systems reference architecture by example. There-
fore, we instantiate the concept of an external collective programming capabil-
ity with cv

prot
providing an interface for the Protelis Aggregate Programming

approach [19]. To validate the concepts we introduced in Sect. 3.4, we give a
proof of concepts concerning the relevant parts executing an external capability.
These concepts are the communication between participating agents, command-
ing the execution and making use of the results of capabilities running on the
host system, and ensuring self-termination of the external capability, if neces-
sary. According to [19], for communication between entities, Protelis requires
a network manager. With cv

prot
we implement such (L. 7 in Algorithm 3). We

can validate its functionality with the minimal example of a Protelis program
we give in Fig. 4 (top left) that counts all members of the ensemble using the
nbr construct in L. 2 in Fig. 4 (top left). The example showcases the ability of
communication between agents executing cv

prot
. In the Protelis program in Fig. 4

(right), we demonstrate how external capabilities can define required access to
physical capabilities of the multipotent system host system (implemented in
JAVA) using the self construct of Protelis for measuring temperature (L. 11 in
Fig. 4 - right). In L. 4–7 of Fig. 4 (right), we access the knowledge base of our
architecture by importing the ParamFactory (L. 2 in Fig. 4 - right). We use this
knowledge base for loading the correct format of the necessary parameters for
the measure temperature capability. For achieving this, we make use of the JAVA
Reflection API. With self.request (L. 8 in Fig. 4 - right), we define the request
the external capability has concerning the execution of physical capabilities (L.
3 in Algorithm 3) whose result we return in L. 9 in Fig. 4 (right) when it is avail-
able. To avoid the blocking of the Protelis program’s execution when it requests
a capability execution, we implement the data interface to our multipotent sys-
tem as a reload cache. To validate the correct program flow and validate correct
self-termination of cv

prot
, in the Protelis program we give in Fig. 4 (top left) we

let each member of the ensemble iterate a counter (L. 6 in Fig. 4 - bottom left).
Because there is no access to physical capabilities included in the program, the
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execution of each instance terminates after 10 iterations and accordingly noti-
fies the encapsulating external capability cv

prot
with termext evaluating true

when it finally reaches self.terminate() in L. 4 in Fig. 4 (bottom left). Thus, we
demonstrate the feasibility of integrating an interface between Protelis and our
multipotent systems reference architecture with a specific virtual capability as
a proof of concepts for our concept of from Sect. 3.4. We provide video mate-
rial for demonstration purposes on GitHub. The integration of cv

prot
currently is

limited to only execute one Protelis program per agent in parallel and relies on
capabilities provided by the host system to terminate on their own (cf. Sect. 3.2).

5 Related Work

The literature on swarm behavior, swarm algorithms, or swarm intelligence is
manifold. When swarm behavior should be exploited in a real-world application,
there are two common directions researchers currently follow. The first direction
is that of focusing on one specific behavior found in nature that gets analyzed and
migrated to technical systems. Examples for that direction are manifold, thus we
only can give an excerpt of research relevant for this paper. To achieve a collective
transport of an object, the authors in [4,17] developed a specialized controller by
using an evolutionary algorithm for mobile ground robots. While they achieve
the desired effect, suffer from the evolutionary algorithms inherent properties of
high specialization and the lack of generality: The generated controller can not
be used in any other use case. To achieve a close-to equal distribution of swarm
entities in a given area, e.g., for distributed surveillance, the authors in [16] adapt
a potential-field based deployment algorithm. Unfortunately, the algorithm thus
can only be used for exactly that use case. While the authors of [15] propose that
they can adapt their swarm approach for distributed surveillance to also achieve
flocking and obstacle avoidance they, unfortunately, do not further investigate
in this direction. In our opinion, this is a step in the right direction to generate
a general pattern for achieving swarm behavior which we try to make with our
approach. In [23] the authors adapt the particle swarm optimization algorithm
(PSO) [27] for the use of UAV in disaster scenarios to explore an area and detect
victims. While the authors can adapt parameters to achieve different goals, the
approach is still limited to that narrowly defined area and can not easily be
extended. With an adapted flocking algorithm based on the approach of [21],
the authors in [24] demonstrate how UAVs can achieve swarm behavior that is
very close to that of natural swarms. Unfortunately, the implementation is very
specific and can solely achieve this specific swarm behavior.

The second direction researchers follow is that of abstracting from spe-
cific applications and use cases and developing a general framework for col-
lective behavior that can be programmed or parametrized in different ways.
There already exist interesting approaches for programming collective behavior
addressed in the ASCENS project [26]. Protelis [19] is one approach we also
categorize in this direction. The authors center it around the idea of abstracting
entities in a collective system as a point in a high dimensional vector field. Pro-
gramming of the collective happens by performing operations on that field. By
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using implicit communication between entities, the programmer can achieve that
changes performed in these fields are distributed within the collective. While a
user can exploit this behavior to implement complex collective on an abstract
level, it is not easy to achieve swarm behavior for complex mobile robot tasks
solely with Protelis. Its lack of general hardware integration and a general task
concept necessary for goal-oriented robot collaboration requires Protelis to be
integrated into a further framework as we perform it in this paper. Another
programming language aiming at collective systems is Buzz [20]. In comparison
to Protelis, the authors of Buzz directly aim at integrating their programming
language within robot operating systems. They provide swarm primitives for
achieving a certain desired collective behavior each. Unfortunately, Buzz also
lacks a concept for goal-oriented task orchestration. Further and like for using
Protelis, a user of Buzz currently requires a system specifically designed for the
respective programming language. With our approach, we can overcome this by
providing the possibility to use programs written with any of the two languages
in an integrated task orchestration framework. Further, we also try to find some
general abstraction from specific applications and use cases in our approach.
Moreover, we can use it to analyze and implement specific swarm behavior.
Thus, we try to close the gap between the two methods currently existing in the
literature.

6 Conclusion

The research community already exploits the positive properties of swarm behav-
ior like robustness and scalability within many different approaches for control-
ling the behavior of collective adaptive systems. In this paper, we demonstrated
how we can subsume many of these approaches by extracting their general swarm
behavior in a virtual capability for movement-vector based swarm algorithms.
We integrated this virtual capability into our reference architecture for multi-
potent systems. We further demonstrate how we can use instances of virtual
capabilities to provide adapters to other programming approaches for collective
systems on the example of Protelis [19]. Thus, virtual capabilities, in general,
can compose existent capabilities of robots, i.e., complexly integrate already
provided robot services, which we can exploit to create collective behavior in
ensembles. In future work, we will elaborate on if and how we can drop our
current assumption of having a steady communication link between ensemble
members. This will help us to better deal with failures or complete break down
of robots.
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