
Maple-Swarm: Programming Collective
Behavior for Ensembles by Extending

HTN-Planning

Oliver Kosak(B) , Lukas Huhn, Felix Bohn, Constantin Wanninger ,
Alwin Hoffmann , and Wolfgang Reif

Institute for Software and Systems Engineering at the University of Augsburg,
Universitätsstraße 2, 86159 Augsburg, Germany

kosak@isse.de

Abstract. Programming goal-oriented behavior in collective adaptive
systems is complex, requires high effort, and is failure-prone. If the sys-
tem’s user wants to deploy it in a real-world environment, hurdles get
even higher: Programs urgently require to be situation-aware. With our
framework Maple, we previously presented an approach for easing the
act of programming such systems on the level of particular robot capa-
bilities. In this paper, we extend our approach for ensemble programming
with the possibility to address virtual swarm capabilities encapsulating
collective behavior to whole groups of agents. By using the respective
concepts in an extended version of hierarchical task networks and by
adapting our self-organization mechanisms for executing plans resulting
thereof, we can achieve that all agents, any agent, any other set of agents,
or a swarm of agents execute (swarm) capabilities. Moreover, we extend
the possibilities of expressing situation awareness during planning by
introducing planning variables that can get modified at design-time or
run-time as needed. We illustrate the possibilities with examples each.
Further, we provide a graphical front-end offering the possibility to gener-
ate mission-specific problem domain descriptions for ensembles including
a light-weight simulation for validating plans.

Keywords: Task orchestration · HTN-Planning · Swarm behavior ·
Robot swarms · Multi-agent systems · Multipotent systems

1 Motivation

The range of versatile applications for collective adaptive systems and espe-
cially for multi-robot systems steadily increased during the last years due to the
potential benefits these applications can deliver for research, our daily life, or
society in general. We can find examples that already profit from this develop-
ment everywhere, e.g., for research in space exploration [18] or meteorological
science [4,13,22], for autonomous search and rescue in major catastrophe scenar-
ios [2,15], among many others. One crucial hurdle that every application needs to

Partially funded by DFG (German Research Foundation), grant number 402956354.

http://orcid.org/0000-0003-0563-9797
http://orcid.org/0000-0001-8982-4740
http://orcid.org/0000-0002-5123-3918

508

[fire-fighter with ensemble] [swarming for

surveillance] [situative re-planning]

Fig. 1. Fire-fighter orchestrating an ensemble to deal with a forest fire scenario.

take before a user can actually profit from it is that of proper task-orchestration
for the collective. Unfortunately, the current trend is that instead of aiming for
a generic solution for that problem, every single new application requires a new
software approach for its realization [3,9]. Besides varying hardware require-
ments [21], the often high complexity of performing specific goal-oriented task
orchestration and planning for such ensembles hinders the reuse of previously
successfully applied approaches for a broader set of applications. Achieving a
general approach becomes even more complex as tasks show a high versatility
or the user requires the ensemble to act in different problem domains. With our
approach Maple [12], we already developed a task orchestration and execution
framework for multipotent robot ensembles [15] having the potential to fill that
gap. In multipotent systems, robot ensembles being homogeneous at design time
can become heterogeneous concerning their capabilities at run-time by combin-
ing physical reconfiguration on the hardware level with self-awareness [10].

In this paper, we demonstrate how we extend our approach to Maple-Swarm
for supporting the operation of whole collectives by introducing the concepts
of agent groups and virtual swarm capabilities. Swarm capabilities encapsulate
collective behavior, where the local interaction of individuals provides useful
emergent effects on the ensemble level, e.g., for distributing in an area with
a potential field algorithm [20] or searching for the highest concentration of
a parameter with an adapted particle swarm optimization algorithm [23]. We
assume that we can alternate the specific swarm behavior with different param-
eters for the swarm capability like we present in [11]. To integrate these new
concepts, we adapt to how we perform the designing, task planning, and task
allocation process of Maple. In Maple-Swarm, we further extend the concept of
hierarchical task networks (HTN) [6] we use for defining partial plans for specific
situations and for generating situation-aware plans with automated planning at
run-time. With agent groups, addressing all agents, any agent, a set of agents,
or a swarm of agents, we extend the flexibility the multipotent system has for
executing tasks. We thereby further increase the autonomy of multipotent robot
ensembles that can choose which concrete agents adopt the respective roles at
run-time in a self-organized manner while still preserving the possibility for the
user to keep control over actions of particular robots, when necessary.

 509

The running example we use for illustration purposes assumes a fire-fighter
requiring to handle a forest fire scenario (cf. Fig. 1). Within a defined area, fires
may ignite spontaneously. The fire-fighter needs to instruct its available ensemble
of mobile robots to move to that area, continuously observe it, identify new fires,
and extinguish them as fast as possible. Because of the size of the area, the high
amount of robots available, and other urgent tasks only a human can accomplish,
it is not always a feasible option for the fire-fighter to manually define routes
for all robots or to react ad-hoc to newly identified fires. Instead, the fire-fighter
wants to specify how the ensemble should react in different situations on an
abstract level and let the system act appropriately and as autonomously as
possible. Then, the system should decide on what to do according to its current
state and that of the environment, e.g., by applying useful collective behavior.

The remainder of the paper is structured as follows. In Sect. 5 we subsume
approaches for solving the problem of task orchestration for ensembles. In Sect. 2,
we briefly reflect on the current state of Maple and its integration in our reference
architecture for multipotent systems and illustrate our objectives. In Sect. 3, we
propose our solution Maple-Swarm. In Sect. 4 we demonstrate the functionality
of our approach for the firefighter scenario as proof of concepts. In Sect. 6 we
conclude our findings and point out possible future research challenges.

2 Current State and Objectives

In multipotent systems, we generally differentiate between the user device and
the multipotent ensemble consisting of multiple agents implementing a layered
software architecture (cf. Fig. 2). The user device offers the possibility for design-
ing problem domain definitions and thereby acts as an interface to the multi-
potent ensemble. The different layers each agent in the multipotent ensemble
implements encapsulate their own functionality and communication pattern.

Fig. 2. Simplified multipotent systems refer-
ence architecture for ensembles from [10].

On the lowest layer, we enable
hardware access to self-descriptive
hardware with the semantic hard-
ware layer. A self-awareness mech-
anism that detects changes in the
respective agent’s physical hard-
ware configuration updates the set
of capabilities the agent knows it
can currently execute with that
hardware autonomously [7]. On
the superordinate agent layer and
ensemble layer, we implement the
necessary self-organization mecha-
nisms to form ensembles with a
market-based task allocation app-
roach [14] and to autonomously exe-
cute tasks [13] introduced by the

510

task layer. On task layer, we evaluate the user-specified problem domain def-
inition against the current state of the world the system is currently aware of
and generate plans for this situation with an automated planner. We integrated
this automated planner in our approach for a multi-agent script programming
language for multipotent ensembles (Maple) [12]. There, we extend the approach
of hierarchical task network (HTN) planning [5] for defining a problem domain
and generating plans. We prefer this approach of plan-space planning over that
of state-space planning [8] because of its efficiency and a higher level of control in
real-world applications [6]. Plans in HTN are not “invented” by the planner (as in
state-space planners), but selected and combined from a set of predefined partial
plans. This achieves more control over the system where it is urgently needed,
e.g., our fire-fighter scenario from Sect. 1. We use partial plans to define how
robots need to execute capabilities for successfully accomplishing the plan, i.e.,
define partial plans on the level of the particular robot’s capabilities. According
to the situation of the system that is defined by the world state, the automated
planning in Maple then can generate plans that are relevant for the respective
situation. The multipotent system itself then updates the world state by exe-
cuting plans and thereby generates new situations. To make plans executable,
Maple includes a mechanism to transform generated plans into executable tasks
that include necessary coordination information. We provide the possibility to
define sequential, concurrent, alternative, and repeated as well as parallel and
synchronized capability execution. For the concrete execution of plans, we let
the multipotent system autonomously form appropriate ensembles at run-time.

Challenges for Maple-Swarm: For integrating agent groups and swarm capa-
bilities encapsulating collective behavior in Maple-Swarm, we obviously need to
adjust the way we design problem domains and generate plans for ensembles.
While in Maple, we can already design tasks for the ensemble by using a common
knowledge base enlisting all possible robot capabilities including their param-
eters and return values, we need to adapt this knowledge base accordingly for
swarm capabilities. For the valid application of the application of swarms we
present in the following, we assume swarms of robots to be ensembles of poten-
tially heterogeneously configured robots that nevertheless are capable of exe-
cuting the capabilities necessary for the respective swarm behavior (e.g., move
with a certain movement vector, communicate measurements with each other).
While we do not want to investigate the concrete execution of swarm capabilities
here (we focus on this in [11]), we nevertheless require to define an appropriate
interface including possible parameters and return types of swarm capabilities.
This is necessary for initializing the task designer interface that requires a fully
described capability knowledge base as well as for using return values of swarm
capabilities during plan design and planning. We thus need to integrate the
results of swarm capabilities in our concept of planning variables and adapt our
planning mechanism accordingly. Further, we require to integrate the concepts
for the respective agent groups we want to enable the problem domain designer
to make use of in partial plans.

 511

Addressing a group of robots with agent groups in a swarm capability requires
an adaptation of the market based, self-awareness enabled task-allocation mecha-
nism [13] we currently use in Maple for executing plans. To achieve this adapta-
tion, we need to address two related challenges: Our task-allocation mechanism
relies on the self-awareness information describing whether a robot can provide
all required robot capabilities a task requires, delivered by the semantic hard-
ware layer (cf. Fig. 2). Each robot uses this information it has available locally
for validating its fitness for participating in that task. In case of a task requiring
a swarm capability, we need to derive necessary self-awareness information on
whether the robot can execute the task according to the capability’s parametriza-
tion at run-time. A specific robot might be able to provide a swarm capability
implementing a dedicated collective behavior for some parametrization but not
for all : In case the swarm capability encapsulates the collective behavior of an
adapted particle swarm optimization (PSO) [23] algorithm like we present in [10],
the search parameter can require a wide range of different robot capabilities for
performing measurements, depending on the concrete parameter specified by the
user. The robot does not necessarily have all of these capabilities available and
thus is not capable of participating in all possible instances of the swarm capa-
bility. Thus, we need to extend our self-awareness mechanism to not only provide
information on whether a capability is available but also if it is executable, i.e.,
if the particular agent has all capabilities available that the swarm capability
addresses with its specific parameters.

We further need to enable the task-allocation mechanism to deal with agent
groups. In Maple [12], we can transform generated plans into tasks that address
specific agents at any time (e.g., directly after planning). Now, we need to per-
form this transformation with respect to the current situation at run-time before
we allocate them to actual robots. While in Maple, capabilities included in par-
tial plans directly address particular agents, this is no longer the case in Maple-
Swarm. Partial plans can contain any combination of capabilities, either address-
ing particular agents or any type of agent group. Thus, we require to adapt the
requirements for tasks included in plans concerning the set of necessary capa-
bilities a robot must provide for being able to work on that task accordingly.
We need to do this appropriately for all possible combinations of capabilities
addressing particular agents, any agent, all agents, a set of agents, or a swarm
of agents. Also when a plan includes these agent groups, we need to determine
the tasks we actually require and generate them at run-time.

Assumptions: We assume that in the simplified multipotent system, we eval-
uate our task orchestration framework with and perform task allocation in to
validate the functionality of Maple-Swarm, we already have an appropriately
configured system to abstract from physical reconfiguration needed otherwise.
If necessary, we can create such situations, e.g., with our self-organized resource
allocation mechanism we already proposed in [7].

512

[primitive node editor] [swarm capabilities

cv] [partial plan containing cv]

Fig. 3. The problem domain definition interface, here used for swarm capabilities.

3 Approach

In the following, we extend the possibilities available for defining the problem
domain with the concepts of configurable, virtual swarm capabilities, and agent
groups. Further, we describe how we extend our current graphical designer
interface based on HTN, illustrate the necessary adaptations to our plan-
ning algorithm, and the transformation process for generating executable tasks
from plans. Moreover, we describe how we adapt the self-awareness and self-
organization approach for task allocation accordingly. We refer to the human
creating a problem domain description in the form of Maple-Swarm hierarchical
task networks HT N with our graphical tool as the designer. Further, we call
our algorithm creating plans ρ ∈ P for the executing multipotent system as the
planner P. In our HT N and ρ resulting from executing P on the HT N and the
world state ws (holding the current variable assignments), we use the concept
of planning agents αρ ∈ Aρ to define roles of responsibility within a plan. To
robots that adopt roles in ρ and that form an ensemble E for executing that plan
at run-time, we refer to as executing agents αe ∈ Ae instead (Fig. 3).

3.1 Extending the Knowledge Base for Swarm Capabilities

In Maple, we already enlist possible (physical) robot capabilities cp ∈ Cp

including their necessary set of parameters and their return values as a triple
〈cp,parcp ,retcp〉 in a capability knowledge base. Cp are such capabilities a robot
can execute alone with physically available hardware, e.g., measure the concen-
tration of a gas of type g with a gasg sensor. For a physical capability cp

mv-pos,

 513

Fig. 4. Addressing cv
pso ∈ Cv to a swarm

of min = 4 and max = 8 agents and cp
str ∈

Cp to any agent of this swarm.

Fig. 5. Parallely addressing cp
temp ∈ Cp

to an agent set {αρ
1, α

ρ
3, α

ρ
5} and cp

gasg
∈

Cp to αρ
3 and then cp

mv-pos ∈ Cp to all
agents

that moves a robot to a certain position, e.g., the designer can find an entry
defining the respective parameter parcp

mv-pos

:= 〈x,y,z〉 and the return value
retcp

mv-pos

:= 〈x,y,z〉 within the knowledge base. The designer can use all entries
in the capability knowledge base to include them in partial plans ρpart and
address them to planning agents αρ ∈ Aρ within the problem domain descrip-
tion in the HT N . For expressing this association between capabilities and αρ ∈
Aρ, we use operators (op in our figures). We now extend this knowledge base with
virtual swarm capabilities cv ∈ Cv ⊂ C, i.e., cp ∈ Cp ⊂ C and Cp ∩ Cv = ∅ and
Cp ∪ Cv = C by adding their respective information. This enables the designer
to define ρpart addressing any capability, no matter whether it is physical or
virtual (cf. Sect. 3.1, addressing a swarm-agent introduced in Sect. 3.2). Despite
there is a great difference in executing a cv instead of a cp because all cv ∈ Cv

can only be executed by whole collectives while all cp ∈ Cp also by particular
robots alone, we enable the designer to abstract from the details when designing
any ρpart for the problem domain. To include a virtual swarm capability, e.g., for
executing PSO algorithm to determine the position of the highest concentration
of a certain gasg (cf. Sect. 3.1), we thus include an entry for cv

pso
∈ Cv with

the parameter parcv
pso

:= gasg and the identified position retcv
pso

:= 〈x,y,z〉
(cf. Sect. 3.1). This enables the designer to use virtual capabilities similar to
physical capabilities.

3.2 Extending the Maple Domain Description Model

For creating a HT N and the partial plans ρpart it contains, the designer can
use all elements of our extended HTN planning approach from [12], i.e., com-
pound nodes (cn), primitive nodes (pn), world state modification nodes (ws),
re-planning nodes (rp), as well as our concept for looped execution of nodes.
A partial plan ρpart thus consists of nodes containing information the designer
requires the system to execute, e.g., ρpart1 := [pn1,pn2,ws,rp] ∈ HT N . In con-
trast to cn (a commonly known element of HTN [6]) we use for structuring the
HT N and for achieving situation awareness concerning the world-state during
planning (cf. Sect. 3.3), all other nodes can occur in a plan ρ and thus contain
instructions the multipotent system should execute. We now describe the new
possibilities the designer has to define instructions in these other nodes.

514

Planning Agent Groups and Virtual Swarm Capabilities: In Maple,
one specific plan ρ can contain one or more pn that can assign capabilities to
different planning agents αρ ∈ Aρ in multiple operators (op). Thereby, each ρ
generates requirements for executing agents αe ∈ Ae to be met at run-time.
We distinguish between multiple classes of planning agents. Particular planning
agents αρ

i ∈ Aρ
I ⊂ Aρ can be reused across the plan. To adopt the role of an αρ

i

we consequently require αe
i to provide all capabilities assigned to αρ

i within ρ in
any node. While it was only possible to require the execution of a capability from
such a specific αρ

i in Maple [12] (cf. Sect. 3.1), we now allow the designer to also
specify that a swarm of agents αρ

{min

max
}, all agents αρ

∀, any agent αρ
∃, or a set of

particular agents {αρ
1, ..., α

ρ
n} need to execute a specific capability in an operator.

This becomes necessary for swarm capabilities cv ∈ Cv encapsulating collective
behavior (cf. Sect. 3.1). We can not or even do not want to determine precisely
how many executing agents αe ∈ Ae in an ensemble should execute a swarm
capability cv ∈ Cv at run-time. An ensemble executing cv

pso
∈ Cv (cf. Sect. 3.1),

e.g., can achieve the desired emergent effect with very different swarm sizes
and thus we want to decide on the number of participating entities at run-time
rather than at design-time concerning the current situation the system finds
itself located in. Nevertheless, there may be minimum and maximum bounds
for swarm behavior to emerge at all and stay efficient [1]. For enabling the
designer to define such bounds, we introduce a swarm-agent αρ

{min

max
} ∈ Aρ

S ⊂ Aρ.
This can become handy, e.g., if at least min and at most max agents should
execute cv

pso
(cf. primitive node search in Fig. 4). An execution agent can take

the role of up to one αρ
i and additionally adopt any number of swarms-agent

roles. Thus, we can also express the concept of any-agent αρ
∃ = αρ

{1

1
} as a specific

swarm-agent. With an operator addressing a capability in ρ to the all-agent
with αρ

∀ ∈ Aρ
∀ ⊂ Aρ, the designer can achieve that all i agents in an ensemble E

= {αe
1, ..., α

e
i } created at run-time need to execute the associated capability (Aρ

I ,
Aρ

S , and Aρ
∀ are pairwise disjunct sets). This can be useful, e.g., when all agents

should gather at a dedicated position pos1 by executing cp
mv-pos after measuring

parameters of interest at different locations (cf. pn gather in Fig. 5). Similarly,
by associating a capability with an agent-set {αρ

1, ..., α
ρ
n} ⊆ Aρ

I , the designer
can require that a concretely specified set of particular agents {αe

1, ..., α
e
n} ⊆ E

executes the associated capability (cf. measuring temperature with cp
temp in pn

measure in Fig. 5). Like with associating a capability to a particular planning
agent αρ

i in an operator, the designer can reference to a single planning agent
with the any-agent αρ

∃. Both αρ
i and αρ

∃, require that one αe ∈ E executes the
capability at run-time. But instead of determining a particular role αρ

i at design-
time that needs to execute all capabilities in ρ assigned to αρ

i , using αρ
∃ allows

for any αe to take the role of αρ
∃ in addition to any role it already took. This

means that any one of {αe
1, α

e
2, α

e
3} adopting the roles {αρ

1, α
ρ
2, α

ρ
3} later on can

also execute the capabilities assigned to αρ
∃. This can also be useful when using

αρ
{min

max
} in plans, e.g., if after determining a point of interest with cv

pso
, anyone of

the agents that executed cv
pso

should stream a video from that point of interest
with cp

str (cf. pn observe in Fig. 4). While we introduce the swarm-, all-, set-,

 515

Fig. 6. Modify var1 at planning time pws Fig. 7. Modify pos at run-time rws

and any-agent having virtual swarm capabilities in mind, a designer can also
make use of them for addressing physical capabilities Cp. To indicate to the
designer, that for executing a virtual swarm capability we require a collective
and not a particular planning agent, we restrict the possibilities the designer has
for addressing any cv ∈ Cv to the respective planning agents.

Planning Variables: We further extend the concept of variables we use for
expressing situations of the world state in our problem domain description, aim-
ing for more flexibility and expressiveness. The designer now can require that
values of variables update dynamically in partial plans not only during planning
time but also at run-time. Moreover, we extend the way how updated variable
values can be used within parameters of capabilities and in conditions, we eval-
uate during execution or planning. During planning time, we can update vari-
able values only by explicitly using planning time world-state modification nodes
(pws) in partial plans [12]. A pws node can contain one or multiple assignments
to variables where the left side is a variable and the right side is an expression
containing variables or constants, e.g., {var1 := 1}, {var2 := 2 · var1}, or {var1

:= 1, var2 := 2}. This can be useful, e.g., if we want to create plans contain-
ing iterative behavior. We can achieve such by using a variable in a capability’s
parameter and in a condition the planner P evaluates during planning at the
same time. If, e.g., we require an ensemble to repeat a primitive node containing
cp
mv-pos with parcp

mv-pos

:= 〈0, 0, var1〉 for 10 iterations, where var1 is a variable we
update during planning, we can achieve this by explicitly updating the value of
var1 in a pws node (cf. Fig. 6).

We further extend our problem domain description in a way that we can
also use the results of capability executions to update variable values during
run-time. If we want to use variables updated that way, we need to differentiate
between two cases concerning the way we want to use them in partial plans. A)
When we use variables in primitive nodes that are updated by the executing
ensemble during run-time within the same partial plan, there is no need for

516

Fig. 8. if/else block evaluating the result
of cp

dnf that can detect fires.
Fig. 9. while block, terminated if a fire
is detected.

making these updates explicit within world state modification nodes. Because the
ensemble executing the plan produces the new variable value itself by executing
the respective capability, it is aware of that update and thus can use it in a
following pn. In the partial plan in Fig. 4, e.g., we can use the result r1 from
executing cv

pso
in the pn search as a parameter for cp

str in the pn observe after
storing the result r1 with a rws node in the variable pos which we can use in a
subsequent rp node. B) When we use the results of any capability’s execution
contained in one specific partial plan ρpart1 in another partial plan ρpart2 , we
require to make the update to that variable explicit within a run-time world
state modification node (rws). We can use this if we do not necessarily want
the ensemble executing ρpart1 to be the same than that executing ρpart2 . If, e.g.,
in contrast to the example in Fig. 4 we want to explicitly let another ensemble
consisting of αρ

1 execute cp
str instead of the ensemble executing cv

pso
, we can

store the result of cv
pso

in an additional variable (pos) in a rws node. Now, we
can still access pos after finishing the value-producing plan during a subsequent
re-planning that is aware of the update in pn observe (cf. Fig. 7). We further
can use rws to generate even more situation awareness, e.g., decide on the next
pn according to the result of a capability’s execution with conditional successor
nodes (cf. Figs. 8 and 9). Each pn in a ρpart ∈ HT N can have any number of
conditional successors assigned with variables in addition to a default successor
(cf. planning variables in Sect. 3.2), evaluated by the ensemble at run-time.

3.3 Extending the Maple Planner

Executing the automated planner P on an HT N and its accompanying world
state ws (that holds the current values of relevant variables), i.e., applying P

(HT N , ws), results in a plan ρ and a modified version of ws. Depending on
the current situation represented in an up-to-date world state (updated by pre-
vious capability executions or world state modifications, cf. planning variables
in Sect. 3.2), this ρ then connects partial plans (using ⊕) from HT N whose
execution the designer intended to be necessary for that situation (cf. Fig. 10).

 517

Fig. 10. Because val = 1 in the world state, P (HT N ,
ws) results in the plan ρ = [split1] ⊕ (ρpart

1 ⊕ ρpart

4 |
ρpart

2), consisting of two concurrent sequences.

By evaluating condi-
tions on variables in the
world state, P decomposes
a compound node cn into
a HT N ’, which is a sub-
component of the original
HT N . Each HT N ’ then
includes the associated par-
tial plans, i.e., when decom-
posing cn root in Fig. 10a
with the variable val = 1,
the resulting HT N ’ con-
sists of the subordinated
partial plans ρpart1 :=
[pt1, pt2, pt5, pt6], ρpart2 :=
[pt3, pt4], and a successor
ρpart4 := [pt7] (ρpart3 :=
[pt5, pt6] is not included).
If the designer intends to
have multiple concurrent
plans, the designer can add

multiple concurrent successors to a decomposition node. If a decomposition node
with concurrent successors is encountered when running P (HT N , ws), then a
split node(e.g., split1 in Fig. 10) connects the concurrent partial plans resulting
in the plan ρ = [split1] ⊕ (ρpart1 | ρpart2), where the | operator indicates that
those partial plans can be executed concurrently. Using split nodes results in a
plan consisting not only of one but multiple sequences as the output executing P,
each consisting of concatenated partial plans (cf. Fig. 10b). To make explicit how
these concurrent sequences of partial plans are concatenated, a split node speci-
fies which sequence continues the original plan (cf. double lined arrow in Fig. 10b)
and which are concurrent sequences. If the cn is decomposed and has a default
successor (e.g., ρpart4), then this successor gets concatenated with the previous
original plan, i.e., ρ = [split1] ⊕ (ρpart1 ⊕ ρpart4 | ρpart2) in Fig. 10. The operation
ρpart1 ⊕ρpart4 sets the starting node of ρpart4 as the default successor of each node
in ρpart1 which has no default successor yet. In contrast to cn and pws, the other
nodes pn, rws, and rp are effectively included in a plan ρ if they occur in a
partial plan ρpart that P selects during planning. By using a rp, the designer can
enforce the generation of new plans at run-time. rp nodes hold a reference to
another node of the HT N indicating where to start a subsequent execution of
P at run-time with updated variables in the world state (cf. planning variables
in Sect. 3.2).

518

3.4 Extending the Self-awareness and Market-Based
Task-Allocation

We extend our local self-awareness mechanism to maintain the functionality
of our market-based task-allocation mechanism introduced in [14]. While we
redefine the task allocation problem in this section, we do not modify the task
allocation process itself and still fall back to our constraint satisfaction and
optimization-based solution from [13] and [7]. Referring to our multipotent sys-
tems reference architecture (cf. Fig. 2), each αe ∈ Ae can only provide a (phys-
ical) capability cp and participate in a specific plan ρ requiring that capability,
i.e., adopt the role of the associated αρ included in ρ, if all necessary hardware
for cp is connected. Thus, αe can execute, e.g., the capability cp

gasg
for measuring

the concentration of gasg when it has a respective gasg connected. If this is the
case, we add this capability to the set of available capabilities Cae ⊂ C of αe.

In contrast to physical capabilities, virtual swarm capabilities cv ∈ Cv do not
require any hardware. Instead, the parametrization parcv of a specific swarm
capability referencing other capabilities cp ∈ parcv determines whether the agent
can execute cv or not and thus, if the virtual capability is available to the execut-
ing agent or not. A virtual swarm capability cv

pso
, e.g., parametrized to find the

source of a gasg (e.g., a fire) requires the physical capabilities cp
gasg

and cp
mv-vel

(for moving with a given velocity) to be executable. Thus, a cv ∈ Cv is only avail-
able to a αe, if all capabilities included in the virtual capability’s parameters are
also available to the agent, i.e., cv ∈ Cαe ⇔ ∀cp ∈ parcv | cp ∈ Cαe .

To form an ensemble E consisting of executing agents that are collectively
able to execute a certain plan ρ, we formulate a task allocation problem. We
define a task tαρ

i
for each different role of an identified planning agent αρ

i ∈ Aρ
I

that is included in a plan ρ first. Thereby, we generate a set T ρ
I := {tαρ

i
| αρ

i ∈ ρ}
of tasks we need to assign to executing agents for finally executing ρ at run-
time. Besides information on how to execute ρ cooperatively within E , which
we do not further focus on here1, we include a set Ct of required capabilities
in each task’s description. An executing agent αe can adopt the role of a αρ

i if
it has all necessary capabilities available for the respective task, i.e., we require
Ct ⊆ Cαe for the respective role’s task to achieve a valid adoption. If this is the
case, an executing agent αe can participate in the market-based task allocation
mechanism by generating a proposal proαe(t) for that task t ∈ T ρ

I , cf. Eq. (1).
All αe ∈ Ae then send their proposals to the plan’s coordinator. This coordinator
then can select one proposal for every task t ∈ T ρ

I generated from the planning
agent roles αρ

i contained in the current plan ρ to achieve a valid task assignment.
The coordinator can perform a valid task allocation ta for ρ if there exists
an injective function f mapping each task tαρ

i
generated from ρ to a distinct

executing agent αe ∈ Ae, cf. Eq. (2). This executing agent then adopts the role
of the planning agent the task was generated for.

1 We describe how we coordinate plans containing only physical capabilities cp ∈ Cp

in [12] and how we extend that process for virtual swarm capabilities cv ∈ Cv in [11].

 519

∀t ∈ T I
ρ : proαe(t) ⇔ Ct ⊆ Cαe (1)

ta(T I
ρ) ⇔ ∃f :T I

ρ →Ae∀tj �=k∈T I
ρ

: f(tj) �= f(tk) ∧ prof(tj)(tj) ∧ prof(tk)(tk) (2)

While this adaptation of the self-awareness of executing agents in the market-
based task allocation mechanism can handle virtual swam capabilities, we need
to perform a second adaptation to also support the agent groups introduced
in Sect. 3.2. For realizing the αρ

∀, αρ
∃, and αρ

{min

max
}, we need to extend the original

requirements concerning the necessary capabilities for tasks t ∈ T ρ
I before we

start the task allocation ta. If the designer addresses capabilities with αρ
∀ in the

plan ρ which we can collect in the set of capabilities C∀, for creating a proposal
an αe needs to provide all these capabilities in addition to the capabilitites each
task t ∈ T ρ

I already requires, i.e., proαe(t) ⇔ (Ct ∪ C∀) ⊆ Cαe (cf. Eq. (1)).
Concerning adaptations of the task allocation, we fortunately can handle αρ

∃
and αρ

{min

max
} equally as we can express αρ

∃ as cρ
{1
1}. For every occurrence of αρ

∃ or
αρ

{min

max
}, we create a swarm task tsw which we collect in a set T ρ

sw. Similar to tasks
t ∈ T ρ

I we request proposals from executing agents for all tsw ∈ T ρ
sw. Further, we

extend the requirements for a valid task allocation to ta(T ρ
I) ∧ ta(T ρ

sw), where
ta(T ρ

sw) is valid if we have at last min proposals from distinct executing agents
for every task tsw ∈ T ρ

sw (cf. Eq. (2)). To select a range of min and max agents for
every tsw ∈ T ρ

sw, we can optionally accept any further proposal for the respective
task from a distinct agent until we reach the respective limit of max.

4 Proof of Concepts

We demonstrate the new possibilities of Maple-Swarm within an exemplary
HT N consisting of partial plans ρpart1 , . . . , ρpart4 and the plans resulting in dif-
ferent situations for our motivating example in Fig. 11.

In a first partial plan ρpart
1

:= [pws1,pn1] we include in HT N during the
designing process, we initialize the relevant variables in the world state (pws1

sets variables fws to Nil, initializes the area of interest A where 〈0, 0, 40, 40〉
defines x and y coordinates as well as length and width, and F to {}) and direct
the whole ensemble to the center of the forest at 〈20, 20〉 which we want to
survey in an altitude of 50 m. We achieve this by using the physical capabil-
ity cp

mv-pos with the parameter 〈20, 20, 50〉 and addressing the agent group αρ
∀

(commanded in the respective operator included in pn1). If we do not know
any fires located in the forest (i.e., pfire = Nil), we design another partial plan
ρpart
2

:= [pn2,rws2,rp2] to let a swarm of agents αρ
{10

50
} consisting of a mini-

mum of 10 and a maximum of 50 agents execute a virtual swarm capability to
equally distribute in the area of interest (A) with the potential field algorithm

520

Fig. 11. An example HT N consisting of situation-aware par-
tial plans for handling the fire-fighter scenario from Sect. 1
including possible plans resulting from executing P (HT N).

encapsulated in cv
pot

in pn2. We assume,
that the swarm can
autonomously adapt
the altitude for gain-
ing surveillance qual-
ity according to the
amount of swarm
members like it is pro-
posed to be achiev-
able in [20]. We can
achieve such behav-
ior with an appropri-
ate implementation of
the respective swarm
capability cv

pot
(we

explain how we can
achieve this in the
accompanying publi-
cation concerning the
execution of swarm
capabilities [11]). In
that partial plan, we
use the capability cp

dnf

for detecting new fires
(i.e., such not already
included in F) on the
ground as the param-
eter of cv

pot
to return

the position of a fire
f := 〈fx, fy, 0〉 as
soon as one member
of the swarm detects
a fire. Detecting a
fire then causes an

update of the world state in rws2 that sets the variable fws to the result of
cv
pot

, i.e., fws := f , followed rp2 referencing the only cn in the HT N (keep ara
fire-save). If the ensemble is aware of a fire, i.e., the world state holds a respec-
tive entry and fws �= nil and contains the location of the fire (cf. Fig. 11a), we
design two concurrent partial plans and ρpart

3
:= [pn3] and ρpart

4
:= [pws4-a,

pws4-b, pws1, pn1] we want the ensemble to execute in that situation. In ρpart
3

,
we address αρ

1 to execute a physical capability cp
ext for extinguishing the fire at

the identified location and αρ
∃ to should stream a video from that execution to the

user by executing a respective capability cp
str, parcp

str

:= fws which we include
in an respective operator in pn3. We can thus let the system decide with respect

 521

to the current availability of capabilities in the ensemble whether one executing
agent αe is sufficient for executing that plan (i.e., αρ

1 = α∃) or two agents are
used instead. As parameter for both, cp

str and cp
ext, the planning process gen-

erates a copy of the concrete position of the fire, e.g., if fws := 〈23, 47, 11〉, we
use the parameter parcp

ext

:= 〈23, 47, 11〉 and parcp
str

:= 〈23, 47, 11〉. We need
that copy because in an the concurrent partial plan ρpart

4
, we add the identified

location of the fire fws to a set of known fires F in pws4-a and then reset fws to
Nil in pws4-b before an other ensemble again executes observe area in the con-
catenated partial plan ρpart

2
. Given this problem domain description, executing

P on HT N and ws thus results in a plan consisting of ρpart
1

⊕ ρpart
2

if fws = Nil
(cf. Fig. 11b) and in a plan consisting of ρpart

3
concurrent to ρpart

4
if fws �= Nil

(cf. Fig. 11c). Besides this exemplary HT N , we demonstrate the functionality of
our approach with video materials and provide our application including source
files for the presented examples from previous sections on GitHub2.

5 Related Work

Some research already exists focusing on the problem of task orchestration for
collectives, ensembles, aggregates, or swarms. A framework providing a script-
ing language for multi-vehicle networks is Dolphin [17]. With Dolphin, a human
operator is able to define tasks for particular robots and teams of robots with-
out explicit knowledge of the concrete implementation of these tasks’ execution.
While a user can define tasks for pre-formed robot teams with Dolphin, it does
not support a possibility for exploiting emergent effects of collective behavior
like, e.g., swarm algorithms can deliver. Further, Dolphin does not include the
possibility for online and situation-aware re-planning that can generate new tasks
at run-time as we support in Maple-Swarm. PaROS [3] is another multi-robot
tasks orchestration framework. It introduces primitives for collectives the user
can define tasks with and let them distribute within a swarm of UAV. Unfortu-
nately, only homogeneously equipped UAV are in the focus of PaROS and there
is no support for multi-robot systems in general. While PaROS does support
some promising abstractions for encapsulating certain swarm behavior in tasks
for groups of UAVs, it does not aim at interconnecting those tasks in complex
programs with parallel, concurrent, alternating, or iterated execution of differ-
ent swarm algorithms we aim for in Maple-Swarm. Further, there is no feature
providing situation-awareness and run-time task generation. With TeCola [16],
users can program missions for heterogeneous teams of robots on an abstract
level. By abstracting the robots and capabilities of robots as services avail-
able to the user, TeCola reduces complexity for coordinating ensembles. TeCola
eases the programming of robot teams with primitives for abstracting robots in
teams and missions but still requires fine-grained management of those during
task specification. Neither collective behavior achieved by swarm algorithms nor
situation-aware task generation is supported by TeCola. Voltron [19] provides
a task orchestration framework for robot teams. While the authors can achieve
2 Materials on https://github.com/isse-augsburg/isola2020-maple-swarm.git.

https://github.com/isse-augsburg/isola2020-maple-swarm.git

522

the abstraction of particular robot actions including parallel task execution, scal-
ing, and concurrent execution, by introducing so-called team-level programming,
they lose the ability for controlling and specifying tasks for particular robots.
Up to now, with Voltron a user can not specify collective behavior in the form
of swarm algorithms. While Voltron does include a mechanism to compensate
for failures at run-time, e.g., to maintain the execution of once-defined tasks, it
does not support other situation-aware modifications of missions. There is no
possibility for an autonomous generation of tasks at run-time like we provide
with re-planning in Maple-Swarm. Recapitulating the findings in the literature,
we can see that up to now there exists no task orchestration framework support-
ing all features we integrate into Maple-Swarm. While all presented approaches
deliver benefits for programming collectives, each lacks some aspects that are of
great relevance in our opinion.

6 Conclusion

Performing task orchestration for multi-robot systems is complicated, especially
for domain-only experts. In this paper, we propose our approach for easing this
by extending the task definition layer of our multi-agent script programming lan-
guage for multipotent ensembles with virtual swarm capabilities encapsulating
collective behavior. We, therefore, extended our current approach Maple con-
cerning the graphical task designer interface, the automated planner, and the
market-based task allocation mechanism including the local self-awareness func-
tionality for every robot to Maple-Swarm. Users are now able to address tasks
not only to particular robots but whole ensembles. Thereby, users can make
use of collective adaptive behavior, e.g., of swarm behavior and useful emergent
effects arising thereof. We demonstrated the new possibilities in examples as
well as in the proof of concepts for a fire-fighter case study we provide online.
Our next steps include the integration with our reference implementation for a
multipotent system that can execute swarm capabilities with mobile robots.

Acknowledgement. The authors would like to thank all reviewers for their valuable
suggestions.

References

1. Barca, J., Sekercioglu, Y.: Swarm robotics reviewed. Robotica 31, 345–359 (2013)
2. Daniel, K., Dusza, B., Lewandowski, A., Wietfelds, C.: Airshield: a system-of-

systems MUAV remote sensing architecture for disaster response. In: Proceedings
of 3rd Annual IEEE Systems Conference (SysCon) (2009)

3. Dedousis, D., Kalogeraki, V.: A framework for programming a swarm of UAVs. In:
Proceedings of the 11th Pervasive Technologies Related to Assistive Environments
Conference, pp. 5–12 (2018)

4. Duarte, M., Costa, V., Gomes, J., et al.: Evolution of collective behaviors for a real
swarm of aquatic surface robots. PLoS ONE 11(3), 1–25 (2016)

 523

5. Erol, K., Hendler, J., Nau, D.S.: HTN planning: complexity and expressivity. AAAI
94, 1123–1128 (1994)

6. Georgievski, I., Aiello, M.: An overview of hierarchical task network planning
(2014). CoRR abs/1403.7426, http://arxiv.org/abs/1403.7426

7. Hanke, J., Kosak, O., Schiendorfer, A., Reif, W.: Self-organized resource allocation
for reconfigurable robot ensembles. In: 2018 IEEE 12th International Conference
on Self-Adaptive and Self-Organizing Systems (SASO), pp. 110–119 (2018)

8. Koenig, S.: Agent-centered search. AI Mag. 22(4), 109 (2001)
9. Kosak, O.: Facilitating planning by using self-organization. In: IEEE 2nd Inter-

national Workshops on Foundations and Applications of Self* Systems (FAS*W),
pp. 371–374 (2017)

10. Kosak, O.: Multipotent systems: a new paradigm for multi-robot applications. Org.
Comp. Doc. Dis. Coll. 10, 53 (2018). Kassel university press GmbH

11. Kosak, O., Bohn, F., Eing, L., et al.: Swarm and collective capabilities for multipo-
tent robot ensembles. In: 9th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (2020)

12. Kosak, O., Bohn, F., Keller, F., Ponsar, H., Reif, W.: Ensemble programming for
multipotent systems. In: 2019 IEEE 4th International Workshops on Foundations
and Applications of Self* Systems (FAS*W), pp. 104–109 (2019)

13. Kosak, O., Wanninger, C., Angerer, A., et al.: Decentralized coordination of het-
erogeneous ensembles using jadex. In: IEEE 1st International Workshops on Foun-
dations and Appl. of Self* Systems (FAS*W), pp. 271–272 (2016). https://doi.org/
10.1109/FAS-W.2016.65

14. Kosak, O., Wanninger, C., Angerer, A., et al.: Towards self-organizing swarms of
reconfigurable self-aware robots. In: IEEE International Workshops on Foundations
and Applications of Self* Systems, pp. 204–209. IEEE (2016)

15. Kosak, O., Wanninger, C., Hoffmann, A., Ponsar, H., Reif, W.: Multipotentsys-
tems: combining planning, self-organization, and reconfiguration inmodular robot
ensembles. Sensors 19(1), 17 (2018)

16. Koutsoubelias, M., Lalis, S.: Tecola: a programming framework for dynamic and
heterogeneous robotic teams. In: Proceedings of the 13th International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 115–
124 (2016)

17. Lima, K., Marques, E.R., Pinto, J., Sousa, J.B.: Dolphin: a task orchestration
language for autonomous vehicle networks. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 603–610. IEEE (2018)

18. Lorenz, R.D., Turtle, E.P., Barnes, J.W., et al.: Dragonfly: a rotorcraft lander
concept for scientific exploration at titan. Johns Hopkins APL Tec. Dig. 34, 374–
387 (2018)

19. Mottola, L., Moretta, M., Whitehouse, K., Ghezzi, C.: Team-level programming of
drone sensor networks. In: Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems, pp. 177–190 (2014)

20. Villa, T.F., Gonzalez, F., Miljievic, B., Ristovski, Z.D., Morawska, L.: An overview
of small unmanned aerial vehicles for air quality measurements: present applica-
tions and future prospectives. Sensors (Basel, Switzerland) 16(7), 1072 (2016)

21. Wanninger, C., Eymüller, C., Hoffmann, A., Kosak, O., Reif, W.: Synthesizing
capabilities for collective adaptive systems from self-descriptive hardware devices
bridging the reality gap. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS,
vol. 11246, pp. 94–108. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03424-5 7

http://arxiv.org/abs/1403.7426
https://doi.org/10.1109/FAS-W.2016.65
https://doi.org/10.1109/FAS-W.2016.65
https://doi.org/10.1007/978-3-030-03424-5_7
https://doi.org/10.1007/978-3-030-03424-5_7

524

22. Wolf, B., Chwala, C., Fersch, B., et al.: The scalex campaign: scale-crossing land
surface and boundary layer processes in the tereno-prealpine observatory. Bull.
Am. Meteorol. Soc. 98(6), 1217–1234 (2017)

23. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarmoptimization
algorithm and its applications. Math. Prob. Eng. (2015)

	Introduction
	Organization
	Contents – Part II
	Automating Software Re-Engineering
	Automating Software Re-engineering*12pt
	1 Introduction
	2 Track Organization
	3 Track Contributions
	3.1 Verification for Program Analysis
	3.2 Formal Foundations
	3.3 Formal Verification for Concurrency

	4 Conclusion
	References

	Formal Verification of Developer Tests: A Research Agenda Inspired by Mutation Testing
	1 Introduction
	2 Background
	2.1 Formal Specification and Verification
	2.2 Mutation Testing

	3 Research Agenda
	3.1 Equivalent Mutants
	3.2 Infinite Loops
	3.3 Flaky Tests
	3.4 Test Clones
	3.5 Test Amplification

	4 Related Work
	5 Conclusion
	References

	Modular Regression Verification for Reactive Systems
	1 Introduction
	2 Foundations
	2.1 Regression Verification
	2.2 Programmable Logic Controllers
	2.3 Formal Equivalence Relations

	3 Modularisation
	3.1 Motivational Example
	3.2 Formalisation
	3.3 Modularisation for Conditional and Relational Equivalence

	4 An Algorithm for Modular Regression Verification
	4.1 Conformance by Syntactical Congruence
	4.2 Conformance by Symbolic Execution
	4.3 Conformance by Reduction to SMT
	4.4 Conformance by Modular Abstraction
	4.5 Conformance by Model Checking

	5 Evaluation
	5.1 Selected Evolution Scenarios
	5.2 Results
	5.3 Discussion

	6 Related Work
	7 Conclusion
	References

	Finding Idioms in Source Code Using Subtree Counting Techniques
	Abstract
	1 Introduction
	2 Idiom Formalization
	3 Data Structures for Subtree Representation
	4 Function Optimization on Subtree Space
	5 Using Developed Algorithm for Source Code Analysis
	6 Idiom Extraction Experiment
	7 Conclusion
	References

	Parametric Timed Bisimulation
	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Timed Bisimulation

	3 Parametric Timed Automata
	3.1 Illustrating Examples
	3.2 Defining Parametric Timed Automata
	3.3 L/U-PTA

	4 Parametric Timed Bisimulation
	4.1 Illustrating Examples
	4.2 Defining Parametric Timed Bisimulation
	4.3 Parameter-Abstracted Timed Bisimulation

	5 Related Work
	6 Conclusion
	References

	A Unifying Framework for Dynamic Monitoring and a Taxonomy of Optimizations
	1 Introduction
	2 Preliminaries
	2.1 Labeled Transition Systems and Properties
	2.2 Finite Automata and Formal Languages

	3 A Framework for Monitoring and Enforcement
	3.1 Policies and Anti-policies
	3.2 Monitors and Enforcement of Policies
	3.3 Watch-Dogs and Prevention of Anti-policies

	4 A Performance Model for Monitors
	5 Towards a More Formal Treatment of Optimizations
	5.1 Formal Definitions of Optimizations and Performance Gain
	5.2 Application Scenarios for the Optimizations
	5.3 Preservation Theorems

	6 Optimizations for Run-Time Monitoring
	6.1 A Taxonomy of Optimizations for RTM
	6.2 Classifying Optimizations into Optimizing Transformations

	7 Conclusion
	References

	Thirty-Seven Years of Relational Hoare Logic: Remarks on Its Principles and History
	1 Introduction
	2 Preliminaries
	2.1 The Inductive Assertion Method
	2.2 Hoare Logic

	3 Relational Properties, Alignment, and Program Products
	3.1 Product Automata Represent Alignments
	3.2 Examples

	4 Rules of Relational Program Logic
	4.1 Diagonal and One-Side Rules
	4.2 From Unary Correctness to Relational
	4.3 From Relational Correctness to Unary
	4.4 Reasoning About Specs
	4.5 Transformations
	4.6 Alignment Completeness

	5 Selected Additional Related Work
	6 Conclusion
	References

	Safer Parallelization
	1 Introduction
	2 Restructuring for Parallelization
	3 Abstract Execution and Dynamic Frames
	4 Correctness of Transformation Schemata with Loops
	5 Preconditions for Safe Transformation Schemata
	5.1 CU Repositioning
	5.2 Loop Splitting
	5.3 Geometric Decomposition
	5.4 Practical Application of Abstract Program Models

	6 Related Work
	7 Conclusion and Future Work
	References

	Refactoring and Active Object Languages
	1 Introduction
	2 The ABS Language
	3 Refactorings and Their Effects on Concurrency
	3.1 Hide Delegate
	3.2 Async-to-Sync Refactoring
	3.3 Inline Method
	3.4 Move Field
	3.5 Move Method
	3.6 Extract Class
	3.7 Discussion

	4 Related Work and Conclusion
	References

	Rigorous Engineering of Collective Adaptive Systems
	Rigorous Engineering of Collective Adaptive Systems Introduction to the 3rd Track Edition
	References

	Composition of Component Models - A Key to Construct Big Systems
	1 Motivating Examples
	1.1 Example: a producer, a broker, and a client
	1.2 Example: The Business Process of a Car Insurer
	1.3 Example: A BPMN Model
	1.4 UML Diagram

	2 A Fundamental Problem
	3 Components
	3.1 The Notion of Component
	3.2 Elementary Components and Abstractions

	4 Composition of Components
	4.1 The Composition Operator
	4.2 Some Aspects of Composition

	5 Adapters
	6 An Algebraic Calculus
	7 Derived Components
	7.1 The Mirror of a Component
	7.2 Semi Closed Components

	8 The Closure Operator
	9 Related Work
	References

	Degrees of Autonomy in Coordinating Collectives of Self-Driving Vehicles
	1 Introduction
	2 Coordinating Collectives of Self-Driving Vehicles
	2.1 Overview of Coordination Problems
	2.2 Coordination Solutions and Decision Making Autonomy

	3 The Case of Intersection Crossing
	3.1 Centralised
	3.2 Negotiation-Based
	3.3 Agreement-Based
	3.4 Emergent

	4 Adjustable Autonomy
	5 Additional Research Challenges
	5.1 Systemic Coordination
	5.2 Intersection Markets
	5.3 Mixed Scenarios

	6 Conclusions
	References

	Engineering Semantic Self-composition of Services Through Tuple-Based Coordination
	1 Introduction
	2 State of the Art
	2.1 Service Composition
	2.2 Linda and TuSoW

	3 Formal Model
	3.1 Syntax
	3.2 Operational Semantics

	4 Architecture
	4.1 Linda-Based Architecture
	4.2 Implementation Details

	5 Case Study
	6 Conclusion
	References

	A Dynamic Logic for Systems with Predicate-Based Communication
	1 Introduction
	2 Component Systems
	3 Ensemble Specifications
	4 Semantics of Ensemble Specifications
	5 Ensemble Realisations
	6 Conclusion
	References

	Abstractions for Collective Adaptive Systems
	1 Introduction
	2 A Bird-Eye View of AbC
	3 AbC-inspired Behavioural Types
	4 Speculating on ABeT
	5 Autonomous Robots
	5.1 A Coordination Protocol
	5.2 A Specification in ABeT

	6 Quantitative Analysis
	7 Conclusions, Related and Future Work
	References

	Verifying AbC Specifications via Emulation
	1 Introduction
	2 Translating AbC into C
	2.1 AbC in a Nutshell
	2.2 Emulating AbC Systems in C
	2.3 Encoding Properties

	3 Experimental Evaluation
	3.1 Case Studies
	3.2 Verification Results

	4 Concluding Remarks
	References

	Adaptive Security Policies
	1 Introduction
	2 Syntax
	3 Semantics
	4 Agent-Level Security
	5 System-Level Security
	6 Precomputing Security Checks
	7 Conclusion
	References

	Capturing Dynamicity and Uncertainty in Security and Trust via Situational Patterns
	1 Introduction
	2 Classification of Uncertainty in Security and Trust
	2.1 State of the Art in Access Control and Uncertainty
	2.2 Classification of Uncertainty in Access Control

	3 Representative Examples/Use-Cases
	3.1 Examples Analysis
	3.2 Summary

	4 Situational Patterns for Uncertainty
	4.1 Pattern 1a – Adding an allow Rule
	4.2 Pattern 1b – Adding a deny Rule
	4.3 Pattern 2a – Removing an allow Rule
	4.4 Pattern 2b – Removing a deny Rule
	4.5 Pattern 3 – A New Access Rule Validator

	5 Applying Patterns in an Adaptation Framework
	6 Conclusion
	References

	Guaranteeing Type Consistency in Collective Adaptive Systems
	1 Introduction
	2 Overview
	3 The TFG Language
	4 Type-Checking TFG
	5 GraphQL Generator
	6 TypeScript Generator
	6.1 Static Type-Checking in the Generated Client
	6.2 Assuring Type Safety at Run Time

	7 Related Work
	8 Conclusion
	References

	Epistemic Logic in Ensemble Specification
	1 Introduction
	2 Preliminaries
	2.1 Ensembles, Worlds, Information Asymmetry
	2.2 A Short Primer to Epistemic Logics

	3 Ensemble-Specific Atomic Propositions and Axioms
	3.1 Peer Relationship
	3.2 Collaboration and Membership
	3.3 Ensemble Lifecycle and State Mapping

	4 Epistemic Logic and Dynamic Ensembles
	4.1 A New Knowledge Operator: Ensemble Knowledge
	4.2 Instantiation of Roles
	4.3 Evolution of Ensembles and Their Environments

	5 Conclusion and Future Work
	6 Appendix
	6.1 Kripke Structures
	6.2 Semantics of L
	6.3 Semantics of Le

	References

	FScaFi: A Core Calculus for Collective Adaptive Systems Programming
	1 Introduction
	2 Background
	2.1 Aggregate Computing
	2.2 Related Work

	3 Featherweight ScaFi: A Core Calculus for ScaFi
	4 Showcasing FScaFi: Programming Examples
	4.1 Scala Syntax
	4.2 Programming Examples

	5 Conclusion and Future Work
	References

	Writing Robotics Applications with X-Klaim
	1 Introduction
	2 Background Notions
	2.1 Klaim
	2.2 Klava and X-Klaim
	2.3 ROS

	3 Our Approach and Framework
	4 X-Klaim at Work on a Robotics Scenario
	5 Related Work
	6 Concluding Remarks and Future Work
	References

	Measuring Adaptability and Reliability of Large Scale Systems
	1 Introduction
	2 Background
	3 A Calculus of Interacting Agents
	4 Measuring the Adaptability and Reliability of Systems
	4.1 A Metric over Systems: The population Metric
	4.2 System Adaptability and Reliability

	5 Statistical Estimation of Adaptability and Reliability
	5.1 Computing Empirical evolution sequences
	5.2 Computing Distance Between Two Configurations
	5.3 Estimating Adaptability and Reliability

	6 Mean-Field Approximation of Adaptability and Reliability
	7 Concluding Remarks
	References

	Centrality-Preserving Exact Reductions of Multi-Layer Networks
	1 Introduction
	2 Background
	2.1 Networks and Multiplex Multi-Layer Networks
	2.2 Centrality Measures
	2.3 Intermediate Drift Oriented Language (IDOL)
	2.4 Backward Differential Equivalence

	3 Centrality-Preserving MLN Reduction
	4 Experimental Results
	5 Conclusions and Future Work
	References

	Towards Dynamic Dependable Systems Through Evidence-Based Continuous Certification
	1 Introduction
	2 Approach
	3 Related Work
	4 Formal Underpinning
	4.1 SupERLog
	4.2 System Model
	4.3 Observers and Boolean Monitors

	5 The Supervisor
	5.1 Overall Role and Tasks
	5.2 Reasoning About Component Explications

	6 Component Analysis
	7 Micro-Experiments
	8 Discussion and Outlook
	References

	Forming Ensembles at Runtime: A Machine Learning Approach
	1 Introduction
	2 Running Example
	3 Methods
	3.1 As a Constraint Satisfaction Problem
	3.2 As a Classification Problem

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation of Classification Performance
	4.3 Experiments Using Classifiers for Ensemble Resolution

	5 Related Work
	6 Conclusion
	References

	Synthesizing Control for a System with Black Box Environment, Based on Deep Learning
	1 Introduction
	2 Preliminaries
	3 Controlling a System Interfacing with a Black Box
	4 Experiments
	5 Conclusions and Discussion
	References

	A Formal Model for Reasoning About the Ideal Fitness in Evolutionary Processes
	1 Introduction
	2 Definitions
	2.1 Evolutionary Processes
	2.2 Evolutionary Algorithms
	2.3 Example

	3 Approach
	3.1 The Ideal Fitness
	3.2 Proof Design
	3.3 Example

	4 Related Work
	5 Conclusion
	References

	A Case Study of Policy Synthesis for Swarm Robotics
	1 Introduction
	2 Background
	3 Carma-C for Policy Synthesis
	3.1 Local Store
	3.2 Processes
	3.3 Environment
	3.4 System

	4 Case Study
	4.1 Stationary Target
	4.2 Moving Target
	4.3 Simulation Results

	5 Related Works
	6 Conclusion
	References

	Maple-Swarm: Programming Collective Behavior for Ensembles by Extending HTN-Planning
	1 Motivation
	2 Current State and Objectives
	3 Approach
	3.1 Extending the Knowledge Base for Swarm Capabilities
	3.2 Extending the Maple Domain Description Model
	3.3 Extending the Maple Planner
	3.4 Extending the Self-awareness and Market-Based Task-Allocation

	4 Proof of Concepts
	5 Related Work
	6 Conclusion
	References

	Swarm and Collective Capabilities for Multipotent Robot Ensembles
	1 Motivation
	2 Challenges Resulting for Multipotent Systems
	3 Approach
	3.1 Static and Dynamic Model of Virtual Capabilities
	3.2 Termination and Results of Virtual Capability Executions
	3.3 A Capability for Movement-Vector Based Swarm Algorithms
	3.4 An Interface for External Collective Programming Languages

	4 Proof of Concepts
	4.1 Executing Movement-Vector Based Swarm Algorithms
	4.2 Protelis as an Example for an External Virtual Capability

	5 Related Work
	6 Conclusion
	References

	Author Index

