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ABSTRACT

Introduction: Tumor mutational burden (TMB) is a quan-
titative assessment of the number of somatic mutations
within a tumor genome. Immunotherapy benefit has been
associated with TMB assessed by whole-exome sequencing
(wesTMB) and gene panel sequencing (psTMB). The
initiatives of Quality in Pathology (QuIP) and Friends of
Cancer Research have jointly addressed the need for
harmonization among TMB testing options in tissues. This
QuIP study identifies critical sources of variation in psTMB
assessment.

Methods: A total of 20 samples from three tumor types
(lung adenocarcinoma, head and neck squamous cell car-
cinoma, and colon adenocarcinoma) with available WES
data were analyzed for psTMB using six panels across 15
testing centers. Interlaboratory and interplatform variation,
including agreement on variant calling and TMB classifica-
tion, were investigated. Bridging factors to transform
psTMB to wesTMB values were empirically derived. The
impact of germline filtering was evaluated.

Results: Sixteen samples had low interlaboratory and
interpanel psTMB variation, with 87.7% of pairwise com-
parisons revealing a Spearman’s r greater than 0.6. A
wesTMB cut point of 199 missense mutations projected to
psTMB cut points between 7.8 and 12.6 mutations per
megabase pair; the corresponding psTMB and wesTMB
classifications agreed in 74.9% of cases. For three-tier
classification with cut points of 100 and 300 mutations,
agreement was observed in 76.7%, weak misclassification
in 21.8%, and strong misclassification in 1.5% of cases.
Confounders of psTMB estimation included fixation arti-
facts, DNA input, sequencing depth, genome coverage, and
variant allele frequency cut points.

Conclusions: This study provides real-world evidence that
all evaluated panels can be used to estimate TMB in a
routine diagnostic setting and identifies important param-
eters for reliable tissue TMB assessment that require careful
control. As complex or composite biomarkers beyond TMB
are likely playing an increasing role in therapy prediction,
the efforts by QuIP and Friends of Cancer Research also
delineate a general framework and blueprint for the eval-
uation of such assays.

                                              
                                                

                                              
                                            
         
Introduction
Immune checkpoint inhibitors (ICIs) have greatly

expanded therapeutic options in oncology.1 Although
many clinical trials have reported strong clinical responses
across various tumor types, evidence is increasing that
even in generally responsive tumor entities, many tumors
are resistant at baseline or develop resistance to ICIs, for
example, by immunoediting.2 Moreover, adverse events
associated with ICIs have been noted, particularly
with combinatorial regimens that target cytotoxic T
lymphocyte–associated protein 4 in addition to pro-
grammed cell death protein 1 or programmed death-ligand
1 (PD-L1).3 Collectively, these observations argue for a
sophisticated biomarker approach that reflects the inter-
play between the host’s immune system and the cancer
cells and is able to reliably separate likely responders from
nonresponders.

To date, two predictive ICI-specific biomarkers have
been approved in certain cancer types, which are as fol-
lows: (1) PD-L1, assessed by immunohistochemistry (IHC)
with a wide range of different scoring systems and cut
points depending on cancer type–specific trial results, and
(2) high-level microsatellite instability or mismatch repair
deficiency, assessed by either polymerase chain reaction
(PCR) or IHC.4,5 Whereas the former approach measures a
continuous variable that serves as an approximation for T-
cell anergy or tumor cells escaping immune response, the
latter identifies a subgroup of cancers with a high



                                                    
mutational burden and thus increased neoantigen load,
which likely results in a higher propensity of immune cell–
mediated tumor cell killing.

However, many cancer types, including NSCLC,
do not harbor deleterious mutations in one of the DNA
mismatch repair genes but have increased tumor
mutational burden (TMB) associated with higher loads
of neoantigens, which is caused by DNA damage through
external noxae (e.g., ultraviolet light and smoking)
or deleterious mutations affecting other DNA repair
genes.6

Although clinical trials assessing the utility of TMB
prospectively are ongoing, many retrospective analyses
of individual patient cohorts and clinical trials have re-
ported that TMB can be successfully used for patient
stratification. Initial seminal studies employed whole-
exome sequencing (WES) to measure TMB.7-10 Because
this approach has several limitations, including sample
requirements, necessity for concurrent germline
sequencing, extensive laboratory capacity for diagnostic
application, and economic constraints in consideration of
a diagnostic outreach setting, gene panels were designed
and used to estimate TMB values, primarily in formalin-
fixed and paraffin-embedded (FFPE) tissue and, more
recently, in cell-free circulating tumor DNA.11-13 Such
assays have been successfully used under controlled
trial conditions or at specific academic cancer centers.
However, a detailed evaluation of the overall perfor-
mance of commercially available sequencing panels
that can be used as laboratory-developed tests and of
the parameters affecting its diagnostic applicability is
missing.

To address this important issue, we present the re-
sults of the multi-institutional Quality in Pathology
(QuIP) study on a comparative assessment of TMB
estimated by gene panel sequencing (psTMB) from 11
different institutes of pathology and four industrial lab-
oratories. Analyzing 20 different FFPE cancer samples
from routine diagnostics that reflect the full continuum
of TMB, as measured by WES (wesTMB), provides real-
world data on the following six different targeted gene
panels designed for TMB estimation: Oncomine Tumor
Mutational Load Assay (OTML; Thermo Fisher Scientific,
Waltham, MA), QIAseq TMB panel (QIAseq; QIAGEN
GmbH, Hilden, Germany), NEOplus RUO assay (NEOplus;
NEO New Oncology, Cologne, Germany), TruSight
Oncology 500 panel (TSO500; Illumina, San Diego, CA), a
custom-designed academic panel (ACADEMIC; Agilent,
Santa Clara, CA), and the FoundationOne assay (F1;
Foundation Medicine, Cambridge, MA). Together with
the efforts led by the Friends of Cancer Research,14,15

this study sets the basis for harmonization of panel-
based TMB measurement and supports implementation
of TMB in routine diagnostic laboratories.
Materials and Methods
Samples

All patients provided written informed consent under
an institutional review board–approved protocol, and
the study was conducted in accordance with the Decla-
ration of Helsinki. FFPE tissue specimens of 10 lung
adenocarcinoma (LUAD), seven head and neck squamous
cell carcinoma, and three colon adenocarcinoma were
prepared and diagnosed at the Institute of Pathology
Heidelberg, Germany. See Supplementary Table 1 for
further detailed sample information. Only one block per
tumor was selected, and consecutive sections were used
for DNA extraction by the different laboratories. Tumor
content was controlled using hematoxylin and eosin–
stained slides on the first and last sections to ensure
homogeneity throughout the slices.
Library Preparation and Sequencing
Protocols for the six applied panel-sequencing ap-

proaches (OTML, QIAseq, NEOplus, TSO500, ACADEMIC,
and F1) and for WES are detailed in the Supplementary
Materials and Methods (Supplementary Table 2). All
assays were performed according to the manufacturers’
protocols if not specified otherwise.
Data Analysis and Visualization
Data analysis and visualization were performed using

the statistical programming language R (version 3.51).16

Levels of psTMB were visualized as boxplots and as
heatmaps, including hierarchical clustering of experi-
ments (Manhattan distance, average linkage clustering).
Spearman’s correlations (r) and Pearson’s correlations
(R) of psTMB were calculated between pairs of experi-
ments, clustered (Euclidean distance, average linkage
clustering), and visualized as heatmaps. Error bars were
plotted using the function plotCI from the R package
gplots. Violin plots were generated using the R package
vioplot.

Linear models without intercept were fitted to psTMB
levels with wesTMB levels. Measurement of psTMB is
influenced by different factors. Although misclassification
of germline mutations as somatic mutations is indepen-
dent of the TMB level, other factors, including the sub-
sampling error caused by interrogation of only a limited
part of the coding sequence, increase with a higher
TMB.17 Because the exact shape of the mathematical
dependence of the TMB error on the level of the TMB
is not known, linear models were fitted in the following
two different ways: (1) standard linear regression (least
square regression, LS) corresponding to constant error
contributions, and (2) weighted linear regression
(weighted least squares, WLS) with weights equal to the



                                                     
reciprocal of TMB taking into account heteroscedasticity.
The shape of the weights used in the WLS model reflects
the mathematical law for the variation of psTMB that
we recently uncovered and described—a linear increase
of the variation of psTMB proportional to the level of
TMB.17

Results
Study Outline

In this study (Fig. 1), FFPE tissue samples of 20 tu-
mors (Supplementary Table 1) with existing matched
WES data were analyzed using four commercial panel-
sequencing TMB assays (Supplementary Table 2). Each
assay was run by four different pathology laboratories
and a reference laboratory of the panel provider on all
samples. In addition, three pathology laboratories tested
the ACADEMIC assay, and all samples were analyzed
using the F1 assay. The analyzed study cohort was
selected to represent the full spectrum of TMB values as
characterized by The Cancer Genome Atlas for LUAD,
Figure 1. Outline of the QuIP TMB harmonization study. In this
analyzed using four commercial panel-sequencing TMB assays.
ratories using all 20 samples and by a reference laboratory of th
an “ACADEMIC” assay in three hospital laboratories and by app
from patients with LUAD (n ¼ 10), HNSCC (n ¼ 7), and COAD (n
samples and paired blood samples was available. ACADEMIC, cus
F1, FoundationOne assay; FFPE, formalin-fixed and paraffin-em
LUAD, lung adenocarcinoma; NEOplus, NEOplus RUO assay; O
assessed by gene panel sequencing; QIAseq, QIAseq TMB panel
TSO500, TruSight Oncology 500 panel; WES, whole-exome sequ
head and neck squamous cell carcinoma, and colon
adenocarcinoma, but it has a higher proportion of tu-
mors with an intermediate TMB (100–300 mutations)
(Supplementary Figure 1). In total, panel sequencing and
psTMB measurement were successful in 467 of the 480
performed analyses (97.3%).
TMB Levels and Correlations
Measurements of psTMB in the 20 tumor tissue

samples ranged between 0 and 244 mutations per
megabase pair (muts/Mbp) with a median of 9.2 muts/
Mbp (Fig. 2A). With respect to interlaboratory and
interpanel variance, four of the tumor samples (T4, T7,
T13, and T15) stood out by having a larger interquartile
range of psTMB compared with the remaining samples.
This was mainly owing to unfavorable preanalytic
quality parameters (degraded DNA or low tumor cellu-
larity) (Fig. 2A). Two samples (T4 and T15) had a large
interlaboratory variance of psTMB when each of the
panels was analyzed separately, whereas this was not
comparative study, FFPE tissue samples from 20 tumors were
Each assay was tested by four independent pathology labo-
e panel provider. In addition, all samples were analyzed using
lying the F1 assay. The study cohort consisted of 20 samples
¼ 3). For all tumors, wesTMB using fresh-frozen tumor tissue
tom-designed academic panel; COAD, colon adenocarcinoma;
bedded; HNSCC, head and neck squamous cell carcinoma;

TML, Oncomine Tumor Mutational Load Assay; psTMB, TMB
; QuIP, Quality in Pathology; TMB, tumor mutational burden;
encing; wesTMB, TMB assessed by WES.



Figure 2. (A) Overview of the generated psTMB estimates with tumors ordered by increasing wesTMB levels. Applying a
three-tier classification system, four tumors (T1–T4) were classified as TMB low (<100 missense mutations), 11 tumors were
classified as TMB intermediate (100–300 missense mutations), and five tumors (T5–T7, T13, and T16) were classified as TMB
high (�300 missense mutations). Four samples stood out by high interquartile ranges and are marked by red IDs. Preanalytic
quality parameters were unfavorable for three of these samples (T15: low tumor cellularity; T4 and T13: degraded DNA).
(B) Heatmap of psTMB levels. Red color indicates psTMB level greater than 10 muts/Mbp. Green color indicates psTMB level
less than 10 muts/Mbp. White color indicates insufficient DNA quality. (C) Spearman’s correlations between psTMB and
wesTMB levels in the study cohort. ACADEMIC, custom-designed academic panel; F1, FoundationOne assay; muts/Mbp,
mutations per megabase pair; NEOplus, NEOplus RUO assay; OTML, Oncomine Tumor Mutational Load Assay; psTMB, TMB
assessed by gene panel sequencing; QIAseq, QIAseq TMB panel; QuIP, Quality in Pathology; TMB, tumor mutational burden;
TSO500, TruSight Oncology 500 panel; WES, whole-exome sequencing; wesTMB, TMB assessed by WES.

                                                    



                                                     
the case for the two other tumor samples (T7 and T13),
in which interpanel variance was an important
confounder (Supplementary Figure 2).

In a heatmap, including hierarchical clustering of the
psTMB levels, data readouts based on the same
sequencing panel often clustered together, indicating
independence from the operating laboratory (Fig. 2B).
Among most of the sequencing results, moderate to
strong pairwise correlations of psTMB measurements
were observed: of all pairwise Spearman correlations,
65.9% were greater than or equal to 0.7, 87.7% were
greater than or equal to 0.6, and 95.7% were greater
than or equal to 0.5 (Fig. 2C). In the study cohort, the
strength of Pearson’s correlations was dependent on the
inclusion or exclusion of a single sample (T16, POLE-
mutated colorectal carcinoma) that had a very high TMB
(>100 muts/Mbp) (Supplementary Figure 3). Hence, the
Spearman’s correlation was a more suitable approach for
the measurement of the psTMB correlations than the
Pearson’s method.
Bridging From psTMB to wesTMB
Linear regression models were fitted for bridging

from psTMB to wesTMB (Fig. 3). To this end, we per-
formed LS but also WLS (see the Materials and Methods
section for details) for each of the panels tested in the
study. Bridging factors (BFs) for transformation of
psTMB to wesTMB were calculated as reciprocals of
the regression slopes (Supplementary Table 3). For most
of the assays, the BF determined by WLS was very close
to the BF determined by LS. However, for the ACADEMIC
assay, the WLS BF was slightly lower than the LS BF
(17.7 versus 19.8), whereas it was considerably lower
for the QIAseq assay (15.8 versus 25.6).

A clinically relevant psTMB cut point of 10 muts/Mbp
in NSCLC was established in the CheckMate 568 study
using the F1 panel, evaluated in the CheckMate 227
study, and bridged to a wesTMB cut point of 199 mu-
tations using data from the CheckMate 026 study.18-20

Based on these findings, psTMB cut points correspond-
ing to 199 mutations were calculated for each of the
investigated assays (Supplementary Table 3). For most
of the psTMB assays, the calculated cut points were
consistently in the range of 9.4 to 11.5 muts/Mbp. There
were two exceptions, as follows: considerably different
cut points were obtained for the OTML assay (LS: 7.8
muts/Mbp, WLS: 7.9 muts/Mbp) and the QIAseq assay
(LS: 7.8 muts/Mbp, WLS: 12.6 muts/Mbp).
TMB Classification
Next, we evaluated and compared a two-tier system

with a three-tier system for TMB classification (Fig. 4)
after a recent indication to improve the misclassification
ratio. For the two-tier approach, a dichotomization into
“low TMB” and “high TMB” was conducted using a
wesTMB cut point of 199 mutations. The three-tier
approach classified TMB as “low” (<100 mutations),
“intermediate” (100–300 mutations), and “high” (�300
mutations). Classification with alternative cut points
(150 and 250 mutations) is found in Supplementary
Figure 4. For each of the panel-sequencing platforms,
psTMB values were converted to wesTMB values using
the BFs obtained by WLS regression. Altogether (20
samples � 24 experiments), we observed an agreement
between psTMB and wesTMB classifications in 74.9% of
the cases using the two-tier approach. For the three-tier
approach, a “strong misclassification” was defined by a
high TMB tumor classified as low TMB or vice versa
(difference spanning two tiers), whereas a misclassifi-
cation by a single tier (e.g., intermediate TMB to low
TMB) was termed “weak misclassification.” Here, we
observed an agreement in 76.7% of cases, compared
with a weak and strong misclassification in 21.8% and
1.5% of the cases, respectively. Of note, strong misclas-
sification occurred only for a single tumor sample (T4)
that was classified as low TMB by WES but as high TMB
in seven psTMB assays and was not analyzable in five
psTMB approaches. Assessment of this tumor (LUAD)
was priori expected to be challenging owing to highly
degraded DNA.

TMB classifications using BFs determined either by
WLS or LS regression were similar, as LS regression
resulted in 74.3% agreement for two-tier classification
and 75.0% agreement, 23.1% weak misclassifications,
and 1.9% strong misclassifications for the three-tier
classification.
Interlaboratory Comparison of the Identified
Variants

In-depth analysis of called variants included in the
calculation of TMB identified key factors that influence
precise psTMB estimation from the FFPE tissue (Fig. 5). A
sequencing approach without an application for PCR
duplicate removal, known as deduplication, has a higher
probability of erroneous calling of C>T or G>A fixation
artifacts and subsequent overestimation of psTMB,
especially in highly fragmented, low-quality DNA sam-
ples. Methods for deduplication include specialized soft-
ware solutions and the use of unique molecular
identifiers (or molecular barcodes).

False-positive variants in the generated data set were
identified by a side-to-side comparison of all variants
identified by the different laboratories using the same
panel. Variants were classified into nonreproducible var-
iants (detected by a single laboratory), partially repro-
ducible variants (detected by more than one laboratory,



Figure 3. Calibration of TMB measured by psTMB against wesTMB. Linear fits using LS and WLS regression. (A) Overview plots
revealing all psTMB and wesTMB measurements. (B) Zoom-ins to the intervals (0, 650) of wesTMB and (0, 65) of psTMB. The
intercepts in the linear regression models were set to zero. ACADEMIC, custom-designed academic panel; F1, FoundationOne
assay; LS, least squares; muts/Mbp, mutations per megabase pair; NEOplus, NEOplus RUO assay; OTML, Oncomine Tumor
Mutational Load Assay; psTMB, TMB assessed by gene panel sequencing; QIAseq, QIAseq TMB panel; TMB, tumor mutational
burden; TSO500, TruSight Oncology 500 panel; WES, whole-exome sequencing; wesTMB, TMB assessed by WES; WLS, weighted
least squares.

                                                    



Figure 4. TMB classification by panel sequencing compared with TMB classification by WES. Measurements of psTMB were
converted to wesTMB using the bridging factors in Supplementary Table 3. (A) Two-tier classification using the cut point of 199
mutations. Misclassifications: 25.1%. (B) Three-tier classification using the cut points of 100 and 300 mutations. Red indicates
high TMB, yellow indicates intermediate TMB, and green indicates low TMB. Strong misclassifications (¼misclassifications
mixing TMB high and TMB low cases): 1.5%. Weak misclassifications (¼misclassifications mixing intermediate TMB cases with
TMB high or TMB low cases): 21.8%. ACADEMIC, custom-designed academic panel; F1, FoundationOne assay; NEOplus,
NEOplus RUO assay; OTML, Oncomine Tumor Mutational Load Assay; psTMB, TMB assessed by gene panel sequencing; QIAseq,
QIAseq TMB panel; TMB, tumor mutational burden; TSO500, TruSight Oncology 500 panel; WES, whole-exome sequencing;
wesTMB, TMB assessed by WES.

                                                     
but not by all laboratories), and fully reproducible variants
(detected by all laboratories). Variant allele frequencies
(VAFs) were considerably lower for variants with low
degrees of interlaboratory reproducibility, and many of
the nonreproducible variants had VAFs close to the VAF
cut point (Fig. 5A). Thus, low-frequency variants close to
the VAF cut point contributed considerably to psTMB
variation. To minimize the rate of false-positive calls,
specific thresholds for VAF were used for each panel
according to the assay provider: VAFs greater than or
equal to 10% was applied for the OTML and NEOplus
panels and VAFs greater than or equal to 5% for the
remaining panels. The number of nonreproducible vari-
ants was considerably higher for the OTML assay (3497
variants), which did not include deduplication, compared
with the other assays (QIAseq: 1055; NEOplus: 94;
TSO500: 70; ACADEMIC: 691). In addition, as illustrated in
Figure 5B, the ratio of C>T or G>A transitions was
considerably higher for nonreproducible variants (red pie
charts) detected by the OTML panel (86%) compared with
the other panels (22%–42%), and compared with the ratio
of C>T or G>A of variants that were detected by all lab-
oratories (gray pie charts). These data identify paraffin
fixation artifacts and resulting C>T or G>A transitions as
important parameters contributing to false-positive
variant detection for assays that do not employ
deduplication.

False-negative calls (defined here as mutations called
by all but one laboratory) can be connected to insuffi-
cient depth of coverage at the respective positions.
Because the pipelines for capture-based fragment li-
braries typically include deduplication and unique mo-
lecular identifier filtering, the depth of coverage directly
correlates with the amount of DNA input, as found
representatively for the TSO500 panel in Figure 5C.
Here, the median exon coverage that could be analyzed
was significantly higher (p < 0.01) in laboratory 1 using
80 ng as DNA input compared with 40 ng that was used
for the other TSO500 approaches (laboratories 2, 7, 11,
and Illumina). Furthermore, the amount of DNA input had
a strong impact on the average size of the covered
sequencing region (Fig. 5C, middle). Although the



Figure 5. Interlaboratory reproducibility of the detected mutations (pooled analysis of 20 samples). (A) Distribution of VAFs
in dependence of the number of laboratories that detected the mutation. (B) Mutation type (C>T, G>A, or other) of the
mutations detected by a single laboratory. (C) Impact on DNA input is representatively revealed for the TSO500 panel. DNA
input: 80 ng (laboratory 1), 40 ng (labs 2, 7, 11, and Illumina). Left: Median exon coverage for each sample; the number on
top gives the percentage of cases with a median exon coverage of more than 150 times. Middle: covered coding region size for
each sample. The number on top gives the percentage of cases with a covered coding region of more than 1.0 Mbp. Right:
coverage of mutations not-called by a single laboratory (false negatives). ACADEMIC, custom-designed academic panel;
NEOplus, NEOplus RUO assay; OTML, Oncomine Tumor Mutational Load Assay; QIAseq, QIAseq TMB panel; TSO500, TruSight
Oncology 500 panel; VAF, variant allele frequency.

                                                    



                                                     
maximum covered coding region size of 1.28 Mbp was
reached for all samples using 80 ng (laboratory 1), lower
DNA input resulted in significantly (p < 0.01) lower
covered coding region sizes, which were larger than 1.0
Mbp in 35% to 100% of the analyzed samples. To enhance
specificity, only mutations with minimum coverage of 100
times were included in the psTMB calculation. Therefore,
and connected to the lower coverage, we observed a
higher rate of false-negative variants in analyses using 40
ng DNA (laboratories 2, 7, 11, and Illumina) compared
with 80 ng (Fig. 5C, right). Similar findings were seen for
100-ng versus 200-ng DNA input using the NEOplus assay
(data not shown).

Germline Mutation Filtering
Germline mutation filtering is an important step in the

calculation of psTMB because only the tumor’s somatic
mutations are relevant for recognition by the immune
system. In the absence of sequencing of paired normal
tissue or blood samples in most diagnostic scenarios,
germline mutation filtering needs to be performed in
silico. For all assays evaluated in the current TMB
harmonization study, the bioinformatic pipelines include
a step of negative filtering for entries in single-nucleotide
polymorphism (SNP) databases, such as gnomAD, ExAC,
and dbSNP. In addition, some of the pipelines include
further steps, for example, filtering by algorithms spe-
cifically designed to distinguish somatic versus germline
mutations such as somatic-germline zygosity or filtering
with respect to the mutations detected by panel
sequencing of reference cohorts of normal samples (e.g.,
NEOplus and ACADEMIC panel).21 We evaluated the
performance of filtering using SNP databases for the
LUAD samples (n ¼ 10) (Supplementary Figure 5). Var-
iants detected by WES in matched blood samples were
used as a reference. The sensitivity for classifying muta-
tions as somatic was 87%, 90%, and 79%, with corre-
sponding positive predictive values of 90%, 90%, and
91% when using gnomAD, ExAC, and dbSNP for filtering
(pooled analysis of the 10 tumor samples). Filtering out
only common SNPs (minor allele frequency > 0.001 in
gnomAD) increased sensitivity to 98% but decreased
positive predictive value to 81%.

Although germline mutation filtering using gnomAD
and ExAC performed well, rs-filtering (dbSNP) seemed to
be too stringent. Restriction of filtering to common SNPs
considerably decreased the number of false negatives
but increased the number of false positives. Additional
filters that are implemented in the panel-specific bio-
informatic pipelines, such as somatic-germline zygosity
algorithm or the TSO500 “proxy filter” (Supplementary
Figure 6), can further improve germline mutation
filtering.
Discussion
Tumor versus matched blood WES was used in many

initial clinical immuno-oncology studies and may be
considered a reference standard for TMB assessment.
However, clinical implementation of WES-based TMB
assessment may be impractical, considering the financial
costs and the limited availability of appropriately pre-
served samples or quality DNA, and matched normal
samples for germline sequencing. Gene panel assays
offer a number of economical and practical advantages
for clinical assessment of patient samples, including
increased sequencing depth, in silico germline subtrac-
tion (negating the requirement for matched samples),
and concurrent evaluation of actionable mutations.

The QuIP study provides a thorough analysis of real-
world performances of six select TMB panels. Using real-
world diagnostic FFPE samples, which included different
types of challenging cases with poor DNA quality, heavy
fixation artifacts, or low tumor cellularity, our results
reveal that, in principle, all assays tested in this study
were able to estimate TMB values and could be applied
in a diagnostic setting.

The effect of panel size and coverage on the accuracy
of psTMB assessment has been previously studied using
in silico simulations of gene panels derived from WES
data.17,22 The gene panels used in the laboratory-
developed tests covered at least 1 Mbp of the coding
sequence, which was found to be essential for valid panel-
based TMB assessment.22 However, even with these large
panels, variability of the TMB score can be expected
because psTMB measurement has a probabilistic nature:
the overall TMB is extrapolated by investigating only a
fraction (about 1:30) of the exome. Simulating five com-
mercial panels in WES data, only 17% to 28% of addi-
tional error occurred on top of the unavoidable
probabilistic error, demonstrating that sufficient panel
size is more critical than the particular localization of the
panel in the exome.17

There is a multitude of other wet-laboratory param-
eters, ranging from biological factors (e.g., tumor het-
erogeneity) and preanalytics (e.g., DNA quality) to
sequencing (e.g., coverage) and bioinformatics parame-
ters (e.g., germline subtraction) that can influence TMB
scores.23-26 Hence, as expected, absolute TMB values
slightly varied. This scenario is not unknown to pathology
in general and immune oncology response prediction in
particular: just as for TMB, the established PD-L1 IHC
assay for NSCLC quantifies a continuous variable in tu-
mor cells ranging from 0% to 100% PD-L1 expressing
cells, and several parameters, such as tumor heteroge-
neity and fixation, are known to influence PD-L1
scores.4,27 Just as with PD-L1, for clinical purposes,
TMB as a continuous measure must be categorized. In our



                                                    
approach, we stratified samples into one of three groups,
which categorized the continuum of TMB ranging from
0 to greater than 200 muts/Mbp: low, intermediate, and
high TMB, according to a concept proposed by us
recently.17 In contrast to a two-tier system with one
defined cutoff, this concept allows for a definition of a
certain “intermediate” gray zone of TMB measurements
in an area around the currently proposed clinical cut
point. Using cut points of 100 mutations (corresponding
to approximately 5 muts/Mbp) and 300 mutations (cor-
responding to approximately 15 muts/Mbp), strong
misclassifications occurred only for a single tumor sam-
ple (T4), a case that was particularly challenging because
of poor DNA quality, which would justify to decline
analysis in a clinical setting. Misclassification of other
highly degraded samples (T12 and T19) or critical cases
with a low tumor-cell content (T15), high-level micro-
satellite instability status (T13 and T15), or a loss-of-
function mutation in POLE (T16) was prevented using
the three-tier system instead of the two-tier system.

We observed an overall low influence of the specific
laboratory performing the analysis; data generated by
the industrial partners for their specific panel were in
the range of the respective TMB scores determined by
Figure 6. Schematic representation of assay-independent and
scores. Lower lane: four representative samples revealing the
material (#3) or low tumor purity (#4) on DNA input, coverage,
psTMB scores. Red arrow pointing down indicates false-negative
psTMB, TMB assessed by gene panel sequencing; wesTMB, TMB
the hospital laboratories. Moreover, we found that most
panels had moderate to strong correlations with TMB
measured by WES (r ¼ 0.64–0.84).

Our study also found that germline subtraction using
bioinformatic pipelines can be used to identify likely
somatic variants in the probabilistic setting of psTMB
measurement. Nevertheless, as revealed by us recently,
incorrect filtering can influence TMB scores in individual
cases, and future studies are warranted to further
investigate the influence of in silico versus blood-based
subtraction of germline events.25,28 As current germ-
line variant databases are biased toward, for example,
white populations, ethnicity-related aspects require
careful analysis in this context.

We identified assay-independent and assay-specific
parameters (Fig. 6) that will require careful control
when psTMB is implemented in routine diagnostics. Of
these, the effects of tumor-cell content, DNA input, and
coverage are most critical to prevent the miss of muta-
tions which would result in too low psTMB scores.
Another important aspect are deamination artifacts
(C>T transitions) created by formalin fixation, which can
be diagnostically challenging when left uncontrolled. In
this regard, DNA amplification during panel sequencing
assay-specific parameters influencing the accuracy of psTMB
effect of deduplication strategies (#2), insufficient sample
covered coding sequence, variant calling, and the resulting
effect. Red arrow pointing up indicates false-positive effect.
assessed by WES.



                                                     
can be critical as overamplification of artifacts or addi-
tional errors during replication can occur, leading to
false-positive mutation calls and subsequently to over-
estimated psTMB scores. This issue can be compensated
by setting an appropriate limit of detection (LOD) for the
allelic frequency and especially by applying in silico or
technical (molecular barcodes) approaches, or both, for
deduplication (removal of PCR duplicates). In the present
data set, a LOD of 5% in combination with deduplication
yielded reliable mutation calling, and eventually TMB
values. Hybrid-capture–based target enrichment was
favorable in this context. In panels without deduplication,
deamination artifacts may be controlled by increasing
the LOD to, for example, 10%, rendering cases with
low tumor cellularity challenging owing to the impaired
sensitivity. Recent reports indicate that the application
of uracil-DNA glycosylase, an enzyme selectively digest-
ing uracil-containing nucleic acid, can reduce deamina-
tion artifacts, when assessing TMB in FFPE samples
using assays without a deduplication approach.29-31

However, the effect of this approach was not tested in
this study.

We also calculated BFs to convert psTMB to wesTMB
for the assessed panels. Although future studies exploring
larger sample sets will likely improve this analysis, we
believe that the data revealed here provide a strong and
sound basis that will facilitate the comparison of TMB
values obtained by different panels.

A limitation of our study is the limited number of
cases and the use of three different cancer types. The
latter selection was influenced by (1) a case mix that
reflects the continuum of TMB, (2) avoiding result bias
owing to a single cancer type, (3) tissue availability for
the entire study and all partners, and (4) availability of
corresponding WES data. Because the predictive power
of TMB is currently being tested in many immuno-
oncology trials across various cancer types, and as our
study is primarily aimed at investigating the ability of
panels to measure TMB, we believe that these points do
not interfere with our results and conclusions.

In summary, the QuIP study provides real-world ev-
idence that all panels tested in this study can be used to
estimate TMB by panel sequencing from FFPE samples in
a routine diagnostic setting. However, this study has
identified several critical parameters, including sample
fixation, DNA input, sequencing depth, genome coverage,
and VAF cut points, that may confound psTMB estima-
tion and require careful control to achieve successful and
reliable psTMB analysis. Beyond TMB, in conjunction
with efforts by the Friends of Cancer Research, this study
provides a blueprint and framework for the systematic
analysis of complex or composite predictive biomarkers,
which will likely play an increasing role in guiding
oncological therapy.
Acknowledgments
The authors thank all teams of the participating in-
stitutions for their contributions and the QuIP team for
excellent administration. The authors also thank the entire
team of the Center for Molecular Pathology (CMP) at the
Institute of PathologyHeidelberg (IPH) for expert technical
assistance and fruitful discussions. The support of the
Heidelberg Center for Personalized Oncology (HIPO) pro-
gram and Genomics and Proteomics Core Facility (GPCF)
(both DKFZ) is gratefully acknowledged. Editorial assis-
tance was provided by Stuart Rulten, PhD, and Jay Rathi,
MA, of Spark Medica Inc., funded by Bristol-Myers Squibb.
The authors thank David Fabrizio for fruitful discussions
related to this project. The authors thank Sandra Siesing for
expert editorial assistance and overall handling of the
manuscript. The study was partly sponsored by Bristol-
Myers Squibb, Illumina, Merck & Co, Inc, Foundation
Medicine, Inc, Neo NewOncology, QIAGEN, F. Hoffmann-La
Roche, AG, and Thermo Fisher Scientific.

MD, RB, SMB, FH, WW, AJ, JM, PS, MH, TK, HM, DK, JB,
VE, and AS conceived and designed the study; DH, SF, PS,
HG, AS, and VE provided samples; AS, VE, JB, SMB, DK,
WD, NP, US, MH, SH, JA, MZ, LT, ER, MS, HG, SF, JA, DH,
GB, CW, MT, ME, HM, TK, RB, OS, AJ, FH, WW, and MD
sequenced and analyzed cases; JB, ER, VE, DK, and AS
conducted statistical analyses; AS, DK, VE, JB, PS, and MD
contributed to the preparation of the manuscript draft;
all authors contributed to the writing of the manuscript.
All authors read and approved the manuscript.
                 
                                             
                                                    
                                              
                               

References
1. Havel JJ, Chowell D, Chan TA. The evolving landscape of

biomarkers for checkpoint inhibitor immunotherapy. Nat
Rev Cancer. 2019;19:133–150.

2. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of
resistance to immune checkpoint inhibitors. Br J Cancer.
2018;118:9–16.

3. Brahmer JR, Lacchetti C, Schneider BJ, et al. Manage-
ment of immune-related adverse events in patients
treated with immune checkpoint inhibitor therapy:
American Society of Clinical Oncology Clinical Practice
Guideline. J Clin Oncol. 2018;36:1714–1768.

4. Buttner R, Gosney JR, Skov BG, et al. Programmed
death-ligand 1 immunohistochemistry testing: a review
of analytical assays and clinical implementation in non-
small-cell lung cancer. J Clin Oncol. 2017;35:3867–3876.

5. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors
with mismatch-repair deficiency. N Engl J Med.
2015;372:2509–2520.

http://refhub.elsevier.com/S1556-0864(20)30135-0/sref1
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref1
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref1
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref2
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref2
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref2
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref3
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref3
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref3
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref3
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref3
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref4
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref4
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref4
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref4
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref5
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref5
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref5


                                                    
6. Campbell BB, Light N, Fabrizio D, et al. Comprehensive
analysis of hypermutation in human cancer. Cell.
2017;171:1042–1056.e10.

7. Carbone DP, Reck M, Paz-Ares L, et al. First-line nivolu-
mab in stage IV or recurrent non-small-cell lung cancer.
N Engl J Med. 2017;376:2415–2426.

8. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immu-
nology. Mutational landscape determines sensitivity to
PD-1 blockade in non-small cell lung cancer. Science.
2015;348:124–128.

9. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for
clinical response to CTLA-4 blockade in melanoma.
N Engl J Med. 2014;371:2189–2199.

10. Van Allen EM, Miao D, Schilling B, et al. Genomic cor-
relates of response to CTLA-4 blockade in metastatic
melanoma. Science. 2015;350:207–211.

11. Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of
100,000 human cancer genomes reveals the landscape of
tumor mutational burden. Genome Med. 2017;9:34.

12. Gandara DR, Paul SM, Kowanetz M, et al. Blood-based
tumor mutational burden as a predictor of clinical
benefit in non-small-cell lung cancer patients treated
with atezolizumab. Nat Med. 2018;24:1441–1448.

13. Zehir A, Benayed R, Shah RH, et al. Mutational landscape
of metastatic cancer revealed from prospective clinical
sequencing of 10,000 patients. Nat Med. 2017;23:703–713.

14. Merino DM, McShane LM, Fabrizio D, et al. Establishing
guidelines to harmonize tumor mutational burden (TMB):
in silico assessment of variation in TMB quantification
across diagnostic platforms: phase I of the Friends of
Cancer Research TMB harmonization project. J Immun-
other Cancer. 2020. In press.

15. Merino DM, McShane L, Butler M, et al. TMB standardi-
zation by alignment to reference standards: phase II of
the Friends of Cancer Research TMB Harmonization
Project [abstract]. J Clin Oncol. 2019;37(suppl 15):2624.

16. R Core Team. R: a language and environment for statis-
tical computing. http://www.r-project.org. 2018.
Accessed March 11, 2020.

17. Budczies J, Allgauer M, Litchfield K, et al. Optimizing
panel-based tumor mutational burden (TMB) measure-
ment. Ann Oncol. 2019;30:1496–1506.

18. Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab
plus ipilimumab in lung cancer with a high tumor
mutational burden. N Engl J Med. 2018;378:2093–2104.

19. Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivo-
lumab plus ipilimumab in advanced non-small-cell lung
cancer. N Engl J Med. 2019;381:2020–2031.

20. Ready N, Hellmann MD, Awad MM, et al. First-line nivo-
lumab plus ipilimumab in advanced non-small-cell lung
cancer (CheckMate 568): outcomes by programmed
death ligand 1 and tumor mutational burden as bio-
markers. J Clin Oncol. 2019;37:922–1000.

21. Sun JX, He Y, Sanford E, et al. A computational approach
to distinguish somatic vs. germline origin of genomic
alterations from deep sequencing of cancer specimens
without a matched normal. PLoS Comput Biol. 2018;14,
e1005965.

22. Buchhalter I, Rempel E, Endris V, et al. Size matters:
dissecting key parameters for panel-based tumor muta-
tional burden analysis. Int J Cancer. 2019;144:848–858.

23. Ascierto PA, Bifulco C, Palmieri G, Peters S,
Sidiropoulos N. Preanalytic variables and tissue stew-
ardship for reliable next-generation sequencing (NGS)
clinical analysis. J Mol Diagn. 2019;21:756–767.

24. Buttner R, Longshore JW, López-Rios F, et al. Imple-
menting TMB measurement in clinical practice: consid-
erations on assay requirements. ESMO Open. 2019;4:
e000442.

25. Kazdal D, Endris V, Allgäuer M, et al. Spatial and tem-
poral heterogeneity of panel-based tumor mutational
burden in pulmonary adenocarcinoma: separating
biology from technical artifacts. J Thorac Oncol.
2019;14:1935–1947.

26. Stenzinger A, Allen JD, Maas J, et al. Tumor mutational
burden standardization initiatives: recommendations
for consistent tumor mutational burden assessment
in clinical samples to guide immunotherapy treatment
decisions. Genes Chromosomes Cancer. 2019;58:578–588.

27. Kerr KM, Tsao MS, Nicholson AG, et al. Programmed
death-ligand 1 immunohistochemistry in lung cancer: in
what state is this art? J Thorac Oncol. 2015;10:985–989.

28. Chang H, Sasson A, Srinivasan S, et al. Bioinformatic
methods and bridging of assay results for reliable tumor
mutational burden assessment in non-small cell lung
cancer. Mol Diagn Ther. 2019;23:507–520.

29. Alborelli I, Leonards K, Rothschild SI, et al. Tumor
mutational burden assessed by targeted NGS predicts
clinical benefit from immune checkpoint inhibitors in
non-small cell lung cancer. J Pathol. 2020;250:19–29.

30. Do H, Molania R, Mitchell PL, Vaiskunaite R, Murdoch JD,
Dobrovic A. Reducing artifactual EGFR T790M mutations
in DNA from formalin-fixed paraffin-embedded tissue
by use of thymine-DNA glycosylase. Clin Chem. 2017;63:
1506–1514.

31. Heeke S, Benzaquen J, Long-Mira E, et al. In-house
implementation of tumor mutational burden testing to
predict durable clinical benefit in non-small cell lung
cancer and melanoma patients. Cancers (Basel).
2019;11:1271.

http://refhub.elsevier.com/S1556-0864(20)30135-0/sref6
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref6
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref6
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref7
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref7
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref7
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref8
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref8
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref8
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref8
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref9
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref9
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref9
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref10
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref10
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref10
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref11
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref11
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref11
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref12
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref12
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref12
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref12
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref13
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref13
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref13
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref14
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref14
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref14
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref14
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref14
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref14
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref15
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref15
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref15
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref15
http://www.r-project.org
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref17
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref17
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref17
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref18
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref18
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref18
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref19
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref19
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref19
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref20
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref20
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref20
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref20
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref20
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref21
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref21
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref21
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref21
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref21
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref22
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref22
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref22
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref23
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref23
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref23
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref23
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref24
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref24
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref24
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref24
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref25
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref25
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref25
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref25
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref25
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref26
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref26
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref26
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref26
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref26
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref27
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref27
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref27
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref28
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref28
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref28
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref28
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref29
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref29
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref29
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref29
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref30
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref30
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref30
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref30
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref30
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref31
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref31
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref31
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref31
http://refhub.elsevier.com/S1556-0864(20)30135-0/sref31

	Harmonization and Standardization of Panel-Based Tumor Mutational Burden Measurement: Real-World Results and Recommendation ...
	Introduction
	Materials and Methods
	Samples
	Library Preparation and Sequencing
	Data Analysis and Visualization

	Results
	Study Outline
	TMB Levels and Correlations
	Bridging From psTMB to wesTMB
	TMB Classification
	Interlaboratory Comparison of the Identified Variants
	Germline Mutation Filtering

	Discussion
	Acknowledgments
	Supplementary Data
	References


