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Abstract
DNA methylation patterns delineate clinically relevant subgroups of meningioma. We previously established the six men-
ingioma methylation classes (MC) benign 1–3, intermediate A and B, and malignant. Here, we set out to identify subgroup-
specific mutational patterns and gene regulation. Whole genome sequencing was performed on 62 samples across all MCs
and WHO grades from 62 patients with matched blood control, including 40 sporadic meningiomas and 22 meningiomas
arising after radiation (Mrad). RNA sequencing was added for 18 of these cases and chromatin-immunoprecipitation for
histone H3 lysine 27 acetylation (H3K27ac) followed by sequencing (ChIP-seq) for 16 samples. Besides the known muta-
tions in meningioma, structural variants were found as the mechanism of NF2 inactivation in a small subset (5%) of sporadic
meningiomas, similar to previous reports for Mrad. Aberrations of DMD were found to be enriched in MCs with NF2 muta-
tions, and DMD was among the most differentially upregulated genes in NF2 mutant compared to NF2 wild-type cases.
The mutational signature AC3, which has been associated with defects in homologous recombination repair (HRR), was
detected in both sporadic meningioma and Mrad, but widely distributed across the genome in sporadic cases and enriched
near genomic breakpoints in Mrad. Compared to the other MCs, the number of single nucleotide variants matching the AC3
pattern was significantly higher in the malignant MC, which also exhibited higher genomic instability, determined by the
numbers of both large segments affected by copy number alterations and breakpoints between large segments. ChIP-seq
analysis for H3K27ac revealed a specific activation of genes regulated by the transcription factor FOXM1 in the malignant
MC. This analysis also revealed a super enhancer near the HOXD gene cluster in this MC, which, together with general
upregulation of HOX genes in the malignant MC, indicates a role of HOX genes in meningioma aggressiveness. This data
elucidates the biological mechanisms rendering different epigenetic subgroups of meningiomas, and suggests leveraging
HRR as a novel therapeutic target.

                                                                                                            
          

Introduction

Most meningiomas harbor alterations of NF2, with smaller
subsets displaying mutations of SMO, BAP1, SMARCE1,
POLR2A, AKT1, and KLF4 (the last two mostly in combi-
nation with mutations of TRAF7) [5, 9, 10, 41, 47]. Also,
mutations putatively cooperating with NF2 loss have been
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reported, resulting in higher malignancy, particularly in the
TERT promoter and ARID1A  [1, 26, 44]. On the basis of
epigenetics, molecular subsets of meningioma can be identi-
fied [16, 38]. We recently devised a molecular approach to
assist in the classification of meningioma employing DNA
methylation profiling [45]. We identified six DNA methyla-
tion classes (MC): benign (ben) 1–3, intermediate (int) A
and B, and malignant (mal). The three benign MCs have
an outcome that is even more favorable than the average of
WHO grade I cases, while cases of the malignant MC pre-
sent with more rapid recurrence than the average anaplastic
meningioma WHO grade III. The MCs are associated with
distinct molecular alterations beyond DNA methylation:
Most strikingly, MC ben-2 has a flat copy number profile
and is virtually devoid of any NF2 alterations but instead
enriched for mutations in AKT1, KLF4, TRAF7, and SMO.
The other MCs harbor chromosome 22q deletions and NF2
mutations and accumulate further copy number alterations
with increasing malignancy. For meningiomas arising after
radiation (Mrad), often also referred to as “radiation-induced
meningiomas,” we previously showed that they harbor NF2
alterations and DNA methylation profiles similar to sporadic
NF2-altered meningiomas [46].

This  molecular  classification is  particularly  useful  in
identifying cases with inconspicuous histology but biologi-
cal features of aggressive growth, and in turn also cases with
criteria which already qualify for higher WHO grades but
have biologically low risk of recurrence. Consequently, this
approach has proven to significantly add to the risk predic-
tion assessment compared to histology alone. Thus, it is
already used to assist in the diagnostic workup for meningi-
oma in select centers.

However, the full regulatory landscape, particularly of
NF2 mutant meningioma, rendering some low grade and
others high grade on the basis of the same underlying muta-
tion, is not fully understood. Further insight into the path-
way activations  distinguishing  these  clinically  different
subgroups may yield important insight for novel treatment
approaches.  To address these questions,  we here set  out
to perform a comprehensive investigation of the genomic
landscape and its relation to transcriptomic and epigenomic
features of meningiomas across all WHO grades and MCs.

Materials and methods

Tissue of meningioma samples was acquired from the Dept.
of Neurology Zürich (Switzerland), Dept. of Neurosurgery
Homburg (Germany), Dept. of Neurosurgery Heidelberg
(Germany),  and the  Tel  Aviv  Medical  Center,  Tel  Aviv
(Israel). Tissues were subjected to histopathological evalu-
ation of the frozen section in order to ensure greater than
60% tumor cell content. In parallel, DNA was extracted from

matched blood samples. DNA extraction was performed
using the Promega Maxwell  device.  Samples were used
in accordance with local ethical approval. Data on DNA
sequencing of 17 Mrad was retrieved from a previous study
[46]. Sample characteristics are depicted in Fig. 1a. Few
samples had no accompanying information on WHO grade
and the provided tissues were not suitable for full histopatho-
logical assessment and are therefore not assigned to a WHO
grade. One case (sporadic_15) exhibited a very high number
of single nucleotide variants (SNVs) during the subsequent
pipeline of analyses (see below). Inspection of the patient’s
medical history revealed that the patient had developed acute
myeloid leukemia (AML) previously and had received an
allogenic bone marrow transplantation. Since this impedes
the reliable classification of variants into somatic or ger-
mline and hence leads to a higher fraction of misclassified
germline variants in the somatic calls, the patient has been
excluded from the analysis of mutational load, mutational
signatures, and genomic instability. Potentially, this menin-
gioma could also have arisen in association with irradiation
during therapy. Lacking further details about treatment, it
was however termed “sporadic.”

DNA methylation analysis

DNA methylation profiling of all samples was performed
using  the  Infinium  MethylationEPIC  (850k)  BeadChip
(Illumina, San Diego, CA, USA) or Infinium HumanMeth-
ylation450 (450k) BeadChip (Illumina) array as previously
described [45]. Filtering and genome-wide copy number
analyses were performed as previously described, using the
“conumee” package in R (https ://www.bioco nduct or.org/
packa ges/relea se/bioc/html/conum ee.html) [49].

Whole genome sequencing (WGS)

DNA libraries  were  prepared  according  to  the  Illumina
TruSeq Nano DNA Library protocol using the TruSeq DNA
Nano kit (Illumina, Hayward, CA) and sequenced on two
lanes on HiSeq X (2 × 151 bp) using the HiSeq X Ten Rea-
gent Kit v2.5 (both Illumina, Hayward, CA).

Alignment and detection of small variants

The raw reads were mapped to the human reference genome
(build 37, version hs37d5), using BWA mem (version 0.7.8,
with  parameter  -T  0),  sorted  using  SAMtools  (version
0.1.19), and duplicate reads were marked using Picard (ver-
sion 1.125, http://broad insti tute.githu b.io/picar d).  Using
the  tumor  and  corresponding  matched  normal  samples,
we called somatic small variants (SNVs and indels) using
the in-house pipelines as described earlier [46].  Briefly,
somatic SNVs were called using SAMtools mpileup (version
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0.1.19, with parameters -REI -q 30 -ug) and bcftools on
tumor sample and then queried in the control samples (with
parameters -ABRI -Q 0 -q 1). To enable calling of variants
with low allele frequency we disabled the Bayesian model
in bcftools (by setting -p 2). The raw calls were annotated
with ANNOVAR and many publicly available tracks such
as 1000 Genome variants, single nucleotide polymorphism
database  (dbSNP),  genomic  repeat  and  low complexity
regions and locally available controls. Confidence scores
for these variants were annotated as described previously
[24]. Indels were called using Platypus (version 0.8.1, with
parameters -bufferSize = 100,000 -maxReads = 5,000,000),

and were annotated similar to the somatic SNVs. High con-
fidence somatic indels were required to have the genotype
0/0 (homozygous to reference allele) in the control sample
and the platypus filter tag “PASS” or, to enable the detection
of somatic variants with low allele frequency, pass custom
filters when Platypus reported “allele bias.” Somatic small
variants present in ten or more samples in the local control
list consisting of 280 WGS control samples from different
cohorts, which were processed using the same pipelines,
were considered as technical artifacts and were removed.

Somatic small variants misclassified as germline because
of contamination of the matched normal samples with tumor

a

b c

Fig. 1  a  Characteristics  of  the  cohort,  sorted  by  meningioma  meth-
ylation class (MC), with annotation of sex, ploidy, tumor cell content
(TCC;  ploidy  and  TCC  were  estimated  from  sequencing  data  using
ACEseq), availability of RNA data, delineation of Mrad and sporadic

cases,  WHO grade,  score  for  MC,  and  respective  allocation  to  MC.
Single  nucleotide  variants  per  coding  megabase  (Mb)  stratified  for
WHO grade (b) and MCs (c). NA not available
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DNA/cells were rescued using the in-house tool TiNDA
(Tumor  in  Normal  Detection  Analysis).  Variant  allele
frequencies (VAFs) from variants which are classified as
“germline” (i.e., variant reads have been identified in both
tumor and the matched normal sample) and which are novel
or rare (minor allele frequency (MAF) < 0.001 in gnomAD
(version 2.0.1) and not present in the above local control
list) were clustered using EM-based unsupervised cluster-
ing from Canopy (version 1.2.0) [23]. Clusters in which at
least 85% of the members have a tumor VAF of at least 0.01
and a matched control VAF below 0.45 were considered as
misclassified somatic variants. These rescued somatic SNVs
and indels were mapped to the mpileup and Platypus raw
calls and variants with confidence score greater than 7 were
merged into the final somatic small variant calls. Variants in
the remaining clusters were classified as rare germline and
were annotated as rare high confidence germline variants if
they had a confidence score greater than 7 in the correspond-
ing raw calls.

Supervised and stratified analysis of mutational
signatures

A supervised analysis of mutational signatures was per-
formed with the R package YAPSA (Huebschmann et al.
manuscript in preparation, https ://bioco nduct or.org/packa
ges/devel /bioc/html/YAPSA .html).  The  function  LCD_
complex_cutoff() in YAPSA was used to compute
an NNLS decomposition of the mutational catalogue with
the 30 known signatures from COSMIC (http://cance r.sange
r.ac.uk/cosmi c/signa tures ).  To  unambiguously  identify
the used signature set we denominate these signatures as
AC1–AC30 (as  abbreviation for  Alexandrov COSMIC).
YAPSA was also used for stratified analysis of mutational
signatures in order to identify enrichment and depletion
patterns. Breakpoint proximity was used as stratification
axis with three strata: vicinity (distance to closest break-
point < 100 kbp), intermediate (distance to closest break-
point between 100 kbp and 1 Mbp), background (distance
to closest breakpoint > 1 Mbp).

Structural variant detection

Genomic structural variants were detected using SOPHIA
(version  34.0;  https ://bitbu cket.org/utopr ak/sophi a)  as
described earlier [46], using a background population data-
base consisting of 3216 WGS controls across different dis-
eases (published TCGA cohorts and published/unpublished
DKFZ cohorts) and sequencing technologies (100 bp read
length Illumina HiSeq 2000/2500 and 151 bp read length
Illumina HiSeq X) aligned using the same alignment settings
and workflow as used in the present study. Gencode V19 was
used for the gene annotations.

Copy number variation detection

Copy number states were called and tumor purity and ploidy
were estimated using ACEseq (allele-specific copy number
estimation from sequencing; https ://www.biorx iv.org/conte
nt/early /2017/10/29/21080 7) as described previously [46].
In cases where ACEseq provides multiple purity and ploidy
solutions, the lowest ploidy solution which allowed one to fit
the majority of genomic segments to integer copy numbers
and which was consistent with the mutant allele frequency
distribution of somatic SNVs was manually selected.

Calculation of genomic instability scores

First,  genome  copy  number  data  from  ACEseq  was
smoothed to prevent artificially elevated genomic instabil-
ity measures due to oversegmentation caused by technical
noise. To this end, segments for which allele-specific copy
numbers did not deviate by more than 0.3 from each other
were merged. Furthermore, segments smaller than 3 Mb
were merged to the more similar neighboring segment as
previously described [2]. These smoothed segments were
used to calculate the homologous recombination deficiency
(HRD) score [2] and the number of large-scale transitions
(LST) as previously described [39]. Briefly, segments larger
than 15 Mb that were less than a whole chromosome in
length and corresponded to a loss of heterozygosity were
counted for the HRD score. For the quantification of LSTs,
breaks between segments of different total copy number
were counted with the constraint that both segments had to
be larger than 10 Mb but did not correspond to entire chro-
mosome arms. In addition, the telomeric-allelic imbalance
(TAI) score [4] was calculated using the smoothed ACEseq
results. Genomic instability was quantified as the sum of
HRD, LST, and TAI scores.

Comparison of genomic instability score
and methylation class

Differences in genomic instability scores between the dif-
ferent MCs were assessed by the Kruskal–Wallis test fol-
lowed by post hoc pairwise Wilcoxon signed-rank tests. The
R package ggpubr (version 0.1.6.999) was used to perform
the tests and generate the plots.

RNA sequencing

RNAseq libraries were prepared using the Illumina TruSeq
stranded mRNA kit and were sequenced on the Illumina
HiSeq X Ten V2.5 platform. The paired-end reads were
mapped to the STAR index generated reference genome
(build 37, version hs37d5) using STAR (version 2.5.2b).
Duplicate  reads  were  marked using  sambamba (version

https://bioconductor.org/packages/devel/bioc/html/YAPSA.html
https://bioconductor.org/packages/devel/bioc/html/YAPSA.html
http://cancer.sanger.ac.uk/cosmic/signatures
http://cancer.sanger.ac.uk/cosmic/signatures
https://bitbucket.org/utoprak/sophia
https://www.biorxiv.org/content/early/2017/10/29/210807
https://www.biorxiv.org/content/early/2017/10/29/210807
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0.4.6) and BAM files were coordinate sorted using SAM-
tools (version 1.19). featureCounts (version 1.5.1) was used
to perform gene-specific read counting over exon features
based on the gencode V19 gene model (without excluding
read duplicates). Both reads of a paired fragment were used
for counting and the quality threshold was set to 255 (which
indicates that STAR found a unique alignment).  Strand-
unspecific counting was used. For total library abundance
calculations, during TPM expression values estimations, all
genes on chromosomes X, Y, MT and rRNA and tRNA were
omitted as they are likely to introduce library size estimation
biases. Additionally, raw RNAseq reads from 32 formalin-
fixed paraffin-embedded (FFPE) samples from the previous
study used here for confirmatory analysis [45] were ana-
lyzed using the same data analysis pipeline. The TPM values
from both cohorts were log2 transformed and standardized
to z-scores [using the R code scale(log2(TPMs_of_
gene_in_cohort + 0.000001))] separately and then
concatenated for comparisons and clustering analysis.

Gene fusion analysis

We extracted high-confidence gene fusion predictions from
the chimeric alignments produced by STAR using our in-
house pipeline Arriba (version 0.8, https ://githu b.com/suhri
g/arrib a/), which removes recurrent alignment artifacts, tran-
script variants also observed in normal tissue, reads with
low sequence complexity, and events with short anchors or
breakpoints in close proximity or a low number of support-
ing reads relative to the overall number of predicted events
in a gene [21].

Differential expression analysis

Differential expression (DE) of genes was analyzed using
DESeq2 (version 1.14.1) [33]. DE analysis was performed
with default settings in DESeq2 using raw read counts from
featureCounts. Genes without any count in all samples were
excluded from the analysis.

ChIP sequencing

Preparation  for  ChIP-seq  was  provided  by  ActiveMotif
(Carlsbad, CA, USA). Immunoprecipitation was performed
on 12 µg chromatin prepared from 200 mg of lysates from
snap-frozen meningioma tissue with 4 µg anti-H3K27ac
antibody 39133 at ActiveMotif. Three of the cases were
also in the WGS cohort (Mrad_8, Mrad_12, sporadic_1);
the other samples in the WGS cohort did not yield suffi-
cient material. The other samples in the ChIP-seq cohort
were selected from archival material based on availability
of frozen tissue and in order to cover all MCs. No sufficient
material was available for any ben-3 case. Thus, this MC

is not represented in the ChIP-seq analysis. Libraries were
sequenced on the Illumina HiSeq 2000 platform V4. The raw
paired-end reads were mapped to the human genome assem-
bly (build 37, version hs37d5) using BWA mem v0.7.15 with
default parameters. Duplicate marking was performed using
Sambamba v0.6.5 with the following parameters: -t 1 -l 0
–hash-table-size = 2,000,000 –overflow-list-size = 1,000,000
–io-buffer-size = 64. ChIP-seq peaks from the sample BAM
files were called against input DNA pool using MACS2 (ver-
sion 2.1.1 [53]) with the following parameters: -f BAMPE
-g hs -B -q 0.00001. ChIP-seq quality control was perfomed
using the ChIPQC package (version 1.18.2) [6]. Quality con-
trol metrics including read length and library size are listed
in Supplementary Table 4 (Online Resource 4).

Differential binding analysis

Differential peak binding was analyzed using DiffBind (ver-
sion 2.10.0) [42]. The peak files were read in without the
summit height detection option. Peaks that were present in
at least two samples were used to generate the consensus
peaks. DESeq 2 v1.22.2 via DiffBind was used for the dif-
ferential analysis. Differential peak binding was tested for
the samples of each methylation class (except Int-B) against
the rest of all samples and for the combination of samples
from two methylation classes against the rest of the samples
(in total 14 tests for differential peak binding). In each test,
peaks with a fold change of above three were considered
as significant and a unique set of peaks from these 14 tests
were used further.

A heatmap of the normalized peak counts from the sig-
nificant peaks was generated using the R package Complex-
Heatmap (version 1.99.0) [19]. ChIP-seq peaks (rows) were
grouped into five clusters using k-means clustering (param-
eter row_km in the function Heatmap(); the seed was set to
42). Samples (columns) were subjected to a semi-supervised
clustering using the MC information as group labels (param-
eter column_split in the function Heatmap()). The R package
rGREAT (https ://bioco nduct or.org/packa ges/relea se/bioc/
html/rGREA T.html; version 1.14.0) was used to submit the
significant peaks to the GREAT server [36] to perform path-
way enrichment analysis with the MSigDB (Molecular Sig-
nature Database). Pathways with multiple testing-corrected
(Benjamini Hochberg) p values less than 0.05 by binomial
testing were considered as significant.

Transcription factor enrichment analysis

The  HINT  tool  from  the  Regulator  Genomics  Toolbox
(RGT, https ://www.regul atory -genom ics.org/hint/metho
d/, version 0.11.4) was used to identify transcription fac-
tor footprints (TFF) in the MC-specific significant peaks on
all samples separately. Overlapping TFF regions with more

https://github.com/suhrig/arriba/
https://github.com/suhrig/arriba/
https://bioconductor.org/packages/release/bioc/html/rGREAT.html
https://bioconductor.org/packages/release/bioc/html/rGREAT.html
https://www.regulatory-genomics.org/hint/method/
https://www.regulatory-genomics.org/hint/method/
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than 20 × coverage in all samples of an MC were selected
for further analysis. These TFF regions were annotated for
TF binding sites from the HOCOMOCO database using the
MOTIF tool from RGT [30]. Enrichment of transcription
factor binding sites in these TFF regions was evaluated by
comparison to a set of random background regions (with the
number of background regions being 10 times the number of
input regions) using the MOTIF tool, as recommend by the
RGT. As background regions, a random set of peak regions
from the DiffBind consensus peaks were used.

Super enhancer analysis

Super enhancer (SE) analysis was performed using ROSE
(Rank Ordering of Super-Enhancers) [34, 52] on the sig-
nificant peaks from the malignant MC with the parameter
-t 2500 (excludes regions ± 2.5 kb distance from RefSeq-
annotated TSS in order to account for promoter biases).
Super enhancers identified in at least two of the malignant
samples were selected for further analysis.

The identified SE regions were visualized using the ChIP-
seq profile plots from fluff (version 3.0.3) [17].

Driver analysis

Driver gene analysis using somatic SNVs and Indels was
performed with IntOGen (version 3.0.5) [43] and MutSigCV
(version 1.4) [32]. Firstly, significantly mutated genes or
known cancer drivers as annotated by IntOGen that have
mutations in two or more samples were considered as genes
of interest (GOI). Second, for genes with more than two
somatic functional small variants in a methylation class, we
tested if mutations were significantly associated with the
particular methylation class using the two-sided Fisher test
and added genes with a p value less than 0.05 to the GOI
list. Third, the top three genes with recurrent direct SVs
(i.e., SVs with breakpoints in gene bodies) and the TERT,
LATS1, TFAP4, and ARID1B genes were added to the above
list. ComplexHeatmap was used to generate the oncoprint.

Data deposition

Data has been deposited at the European Genome-Phenome
archive under the accession numbers EGAS00001003480
(ChiP-seq data) and EGAS00001003481 (WGS data).

Results

Mutations and structural variants in sporadic
meningiomas and Mrad

We performed WGS on tumor tissue and matched blood to
an average coverage of 79 × from 62 patients with either
sporadic meningiomas (n  = 40) or Mrad (n = 22). DNA
methylation  profiling  was  performed  for  57  and  RNA
sequencing for 18 cases (Fig. 1a). Finally, pathway acti-
vation was interrogated by chromatin-immunoprecipitation
for H3K27Ac followed by sequencing on an additional 16
cases. We identified a median of 1657 somatic SNVs per
case (range 123–25,274). The somatic mutational load,
measured as the total  number of somatic exonic muta-
tions per Mb of exonic region, was higher in high-grade
meningiomas (Fig. 1b).  In  line  with  this,  stratification
along the MCs revealed the lowest mutational load in the
benign classes, a slightly increased mutational load in the
intermediate classes, and the highest load in the malignant
class (Fig. 1c).

Among the known meningioma-related genes, altera-
tions  in  NF2  (58%),  AKT1  (5%),  KLF4  (3%),  TRAF7
(10%), and TERT (5%, including two promoter mutations)
were found (Fig. 2). WGS also allowed the identification
of structural variants (SVs). Complete inactivation of the
NF2 gene product merlin was found to result not only from
SNVs or small insertions/deletions (InDels) but also from
SVs: While previously only reported for Mrad, we also
detected SVs causing breakpoints in the NF2 gene in two
sporadic cases (5%). Two samples had TERT promoter hot-
spot mutations (indicated as upstream in Fig. 2) and one
sample had a high amplification of the TERT gene body
excluding the promoter. As expected, all but one samples
classified as ben-2 were wild-type for NF2 and samples
of this MC were enriched for SNVs in TRAF7, AKT1, or
KLF4 (Supplementary Table 3, Online Resource 3). How-
ever, not all ben-2 cases harbored a mutation in one of
these genes. While all KLF4 mutations co-occurred with
TRAF7 mutations, we observed such co-occurrence with
KLF4 mutations only for one of three AKT1 mutations. We
identified TFAP4 as an additional recurrently mutated gene
in this MC; it was mutated in two ben-2 samples mutually
exclusive to TRAF7, AKT1, and KLF4.

In addition, we found other genes recurrently altered
by SNVs, indels, or SVs, most frequently LRP1B (15%),
PTPRD (11%), and DMD (19%). Eleven out of 12 DMD
mutant samples had NF2  “double hits” through a com-
bination of a chr22q deletion (including the gene NF2)
and a mutation of NF2. Interestingly, the only remaining
DMD-mutant sample harbored a deletion of chr6q where
the gene LATS1 is located and a somatic SNV affecting the
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remaining LATS1 allele. LATS1 acts downstream of NF2
in the Hippo signaling pathway, and its inactivation might
hence provide an alternative mechanism of blocking the
NF2 cascade [18, 37].

The  large  gene  size  of  DMD  (2.22  Mb)  could  point
towards a non-significant “passenger” effect, which is further
supported by its proximity to fragile sites on chromosome
X. To further characterize the association between SVs in
DMD and NF2 mutations we investigated DMD expression
levels in the methylation subgroups. DMD expression was

higher in those subgroups typically harboring NF2 muta-
tions than in the NF2 wild-type subgroup ben-2. This was
observed in both the present cohort in which RNA of frozen
tissue was used for sequencing and in RNA sequencing data
generated from FFPE tissue retrieved from a previous study
(Fig. 3a) [45]. Comparative assessment of NF2 mutations
and DMD status yielded that NF2 mutant cases had higher
DMD expression than NF2 wild-type cases, while no asso-
ciation between DMD alteration status and DMD expression
was apparent (Fig. 3b). Analysis of differentially expressed

Fig. 2  Oncoprint  of  alterations  found  in  the  cohort.  Annotations
include  the  total  number  of  structural  variants  (SVs),  single  nucleo-
tide variants (SNVs), and small insertions/deletions (indels). Further,
the  most  prevalent  chromosomal  alterations  are  provided,  filtered
for  those  affecting  more  than  30%  of  the  chromosomal  arm  (com-
plex  alterations  can  lead  to  combined  annotation  of  gain  and  loss  if
both  events  affect  > 30% of  the  chromosomal  arm).  “Structural  vari-

ants  with  breakpoints  in  the  gene  bodies  are  noted  as  “SV  direct.”
For  the  TERT  gene,  SNVs  in  the  promoter  have  been  indicated  as
“Upstream”.  WHO  grade  and  meningioma  methylation  class  (MC)
are  also stated.  The samples  are  hierarchically  sorted by their  muta-
tion  status  in  the  indicated  genes,  starting  with  the  most  commonly
affected gene, i.e., NF2. Genes are sorted by their alteration frequency
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genes between NF2 wild-type and mutant cases revealed that
DMD was among the most highly upregulated genes in NF2
mutant cases (Supplementary Fig. 1, Online Resource 4).

Mutational signatures and genomic instability

We have previously described the presence of mutational
signature  AC3 in  Mrad  [46].  This  mutational  signature
results from failure of double strand break repair by homolo-
gous recombination [3]. In Mrad, we had found that SNVs
attributed to signature AC3 were enriched in the vicinity of
breakpoints, which we could now confirm in additional Mrad
cases in the present cohort (BH-corrected Kruskal–Wallis
test p = 0.014). This finding led us to the hypothesis that this
signature results from genomic rearrangements as a conse-
quence of the irradiation [46]. Surprisingly, we identified in
the current study a similar exposure (i.e., number of SNVs
attributed to a mutational signature) to mutational signa-
ture AC3 in sporadic meningiomas (Supplementary Fig. 2,
Online Resource 2). In contrast to Mrad, however, there was
only a very slight non-significant enrichment of SNVs attrib-
uted to AC3 in the vicinity of breakpoints (Fig. 4a for Mrad
and Fig. 4b for sporadic). To elucidate the origin of SNVs
attributed to mutational signature AC3 in spontaneous men-
ingiomas and to further characterize the differences between
Mrad and spontaneous meningiomas, we tested if the abso-
lute exposure to AC3 is correlated with genomic instability.
Different measures of genomic instability have been estab-
lished previously and have been shown to be associated

with defects in homologous recombination repair: (i) The
number of deletions or loss of heterozygosity (LOH) events
larger than 15 Mb, which has been termed the “homologous
recombination deficiency score” (HRD score) [2]; (ii) The
number of copy number changes between regions of at least
10 Mb in size denoted as large scale state transitions (LSTs)
[39]; and (iii) The number of regions in allelic imbalance
that extend to one of the subtelomeres of a chromosome, but
do not cross the centromere, termed telomeric allelic imbal-
ances (TAIs) [50]. As joint measure of genomic instability
we have chosen the sum of HRD, LST, and TAI, calculated
as described in Sect. “Calculation of genomic instability
scores.” This analysis revealed a significant correlation in
sporadic meningiomas (Pearson’s correlation test p = 0.003,
r = 0.47), but not in Mrad (Pearson’s correlation test p = 0.27,
r = 0.24, Supplementary Fig. 3, Online Resource 4). Of note,
AC3 is particularly enriched in meningiomas of the malig-
nant MC (Fig. 4c), for which a high proliferative activity
and high amounts of chromosomal alterations are typical.
With the known correlation of large-scale chromosomal
alterations being enriched in NF2 mutant high-grade men-
ingiomas, we investigated general differences in genomic
instability between the MCs (Fig. 4d). Genomic instability
was significantly higher in the malignant MC than in the
low-grade NF2 mutant ben-1 group (Wilcoxon p = 0.003)
and in the low-grade NF2 wild-type ben-2 group (Wilcoxon
p = 0.0011). Altogether, these results indicate that both Mrad
and sporadic meningiomas exhibit characteristics of a failure
of HRR, but that the underlying cause might be different.

a b

Fig. 3  a Expression of DMD in the cohort stratified for MC. In addi-
tion  to  the  main  cohort  of  this  study  (fresh  frozen  samples),  previ-
ously  generated  data  from  FFPE  tissue  was  also  analyzed.  Both
batches show lower DMD  expression in the MC ben-2 that typically
is devoid of  NF2  alterations. b DMD  expression in relation to DMD

mutation  status  and  NF2  mutation  status.  “Mutated”  indicates  that
the respective gene is affected by exonic SNVs or indels, or SVs with
breakpoints  in  the  gene  body.  NF2  mutated  samples  showed  higher
DMD  expression;  DMD  alterations  occurred  only  in  NF2  mutant
cases. Expression values are displayed as z-scores
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Transcription factor recruitment

To further explore which molecular features distinguish the
clinically different MCs we performed a comparative analy-
sis of the epigenetic landscape by ChIP-seq of H3K27ac
as active enhancer mark. A median of 61.85% of the reads
per sample mapped to the identified peak regions; further

quality  control  metrics  are  reported  in  Supplementary
Table 4 (Online Resource 4). We identified 4566 unique
peaks that exhibited differential binding between the MCs,
which were grouped into five clusters using k-means clus-
tering  (Fig. 5a).  Cluster  1  contained  1042  peaks  which
were specific for the malignant MC. Enrichment analysis
using GREAT [36] and gene sets from MSigDB revealed

a

c d

b

Fig. 4  Exposure to the most prevalent mutational signatures in Mrad
(a)  and sporadic meningiomas (b),  stratified for distance to genomic
breakpoints.  Notably,  AC3,  associated  with  failure  of  homologous
recombination  repair  and  potential  compensation  by  non-homolo-
gous  end-joining  repair,  accumulates  close  to  genomic  breakpoints
in  Mrad  but  not  in  sporadic  cases.  The  y-axis  displays  the  relative
exposures  to  the  mutational  signatures,  i.e.,  the  fraction  of  single
nucleotide variants  (SNVs) explained by the respective signatures.  c
Exposure to AC3 in the different MCs. AC3 is significantly enriched

in  the  malignant  MC.  The  y-axis  displays  the  absolute  exposures  to
the mutational signatures, i.e., the number of SNVs explained by the
respective  signatures.  d  General  genomic  instability  is  found  in  all
high-grade MCs (int-A, B, malignant) and is lowest in the MC ben-2
which is predominantly NF2-wild-type. The genomic instability score
on the y-axis displays the sum of the homologous recombination defi-
ciency score,  number of  large-scale transitions score,  and telomeric-
allelic imbalance score (as explained in the main text)
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that among the peaks in cluster 1 genes from the FOXM1
transcription factor (TF) network were most highly enriched
(Fig. 5b), indicating activation of FOXM1-regulated genes
specifically in meningiomas from the malignant MC. In
turn, clustering the expression for FOXM1-regulated genes
revealed a cluster enriched with malignant MC cases, but
also some lower grade cases (Fig. 5c). Motif enrichment
analysis  revealed  enrichment  of  HOX genes  among the
peaks in cluster 1 (data not shown), and super enhancer
(SE) analysis of these peaks additionally identified an SE in
the HOXD cluster on chromosome 2 (Fig. 5d). In line with
this, we observed increased expression of several HOX genes
in the malignant samples (Supplementary Fig. 4, Online
Resource 4). In addition, we observed SEs specific to the
malignant MC within the keratin gene clusters (Fig. 5d) on
chromosome 17 and in an established SE of ADARB1 [27].
Overall, these findings imply that the transcription factor
FOXM1 and several HOX genes contribute to malignancy
of meningiomas.

Discussion

We here provide a multi-omics integrative analysis of spo-
radic meningiomas and meningiomas arising after radia-
tion with data from WGS, RNA sequencing, and H3K27ac
ChIP sequencing. Several previously established correla-
tions between meningioma DNA methylation classes and
genomic alterations were replicated, e.g., the low amount
of NF2  alterations  in  ben-2.  In  the  other  methylation
classes NF2 inactivation was common as expected, usu-
ally as a double hit with loss of one allele due to a large
deletion on chr22 and an SNV or indel affecting the second
allele. We have observed structural variations affecting

the NF2 gene locus, including truncating gene fusions of
NF2, in sporadic meningioma, which had so far only been
reported in Mrad [5, 46]. This finding provides an explana-
tion why some meningioma with the expected double hit
could so far not be resolved by copy number assessment
and exome sequencing alone and highlights the advantages
of WGS analysis for understanding the pathogenetic mech-
anisms of tumors. Furthermore, we detected a double hit
in LATS1, a gene downstream of NF2 in the Hippo signal-
ing pathway, in a case where no second hit of NF2  was
detectable. This suggests that LATS1 inactivation might
present  a  rare  alternative mechanism to inactivate  this
pathway. Finally, we have found a copy number gain of the
TERT locus as a potential alternative mechanism of TERT
activation to promote meningioma growth in addition to
TERT promoter mutations and the recently reported TERT
fusions [25]. However, the TERT status was not related
to telomerase expression or telomere length (not shown),
similar to the findings from other recent studies [48].

In addition, WGS allowed the assessment of mutational
signatures to investigate the mutational mechanisms which
shaped the meningioma genomes. Our analysis revealed
a difference between Mrad and sporadic meningiomas in
the genomic distribution of  mutational  signature AC3,
which is associated with failure of DNA double strand
break repair by homologous recombination. Specifically,
AC3 was strongly enriched close to genomic breakpoints
in Mrad (Kruskal–Wallis test; corrected p value 0.014)
but  not  significantly  enriched in  sporadic  meningioma
(Kruskal–Wallis  test;  corrected  p  value  0.660).  These
findings indicate a different origin of signature AC3 in
Mrad and sporadic meningioma: In Mrad, AC3 most likely
results from the repair of radiation-induced DNA double
strand breaks by non-homologous end joining [35]. This
may be due to an exhausted capacity of HRR at the loci
of radiation-induced breakpoints and is hence enriched
in the vicinity of these genomic breakpoints. In sporadic
meningiomas, however, it might be a consequence of a
constitutive repair deficiency, even if causative mutations
in the homologous recombination repair pathway have not
been detected. This is further supported by a correlation
between AC3 exposure and genomic instability in spo-
radic meningioma but not in Mrad. According to our data,
this instability is not only reflected by alterations of whole
chromosomal arms as previously reported for high-grade
NF2 mutant meningiomas [20] but also finds a correlate
at the level of sub-chromosomal events as quantified by
HRD, LST, and TAI scores as well as SNV triplet patterns
identified in mutational signature analysis. Importantly,
genomic instability in combination with a high fraction
of AC3 has previously been implicated as a BRCAness
signature [8]. These findings on genomic instability and
particularly a BRCAness signature might suggest the use

Fig. 5  a  Heatmap  of  normalized  count  data  from  4566  H3K27ac
ChIP-seq peaks found to be significantly enriched in at least one MC.
Columns were split  on the basis  of  the MCs and rows were split  by
k-means clustering into five clusters. Cluster 1 contains peaks which
are  specific  for  the  malignant  MC.  b  Enrichment  analysis  of  peaks
from cluster  1  (i.e.,  peaks  which are  specific for  the  malignant  MC)
using GREAT and gene sets  from MSigDB.  The FOXM1 transcrip-
tion  factor  network  was  found  to  be  highly  enriched  among  these
peaks. The x-axis represents the corrected binomial p values, and the
size  represents  the  number  of  peaks/regions  enriched  for  the  corre-
sponding gene set. c The expression of 240 FOXM1-regulated genes
(source:  genes near the ChIP-seq peaks identified in Chen et al.)  [7]
from  50  RNA-seq  samples  (18  fresh  frozen  and  32  FFPE  samples)
were  clustered  using  k-means  clustering  and  ordered  using  hierar-
chical  clustering.  FOXM1  expression  and  MC  classification  were
added  as  column  annotations.  Biologically  more  aggressive  MCs,
particularly  the  malignant  MC  cases,  are  enriched  in  cluster  3  in
which FOXM1  and FOXM1-regulated genes have higher expression.
d  ChIP-Seq profile  plots  for  the super  enhancer  peaks in  the keratin
gene cluster on chromosome 17 and HOXD  gene cluster on chromo-
some 2. The profiles are grouped on the basis of MCs

◂
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of PARP inhibitors in high-grade meningiomas similar to
other entities with this pattern [13, 14, 29, 39].

The overall genomic instability may also be the cause of
the high number of DMD SVs in NF2 mutant cases, par-
ticularly of the malignant MC. The large gene size of DMD
(2.22 Mb) could point towards a non-significant “passenger”
effect, which is further supported by its proximity to fragile
sites on chromosome X. The almost as frequently altered
LRP1B gene is also located close to a fragile site, possibly
indicating that these tumors are prone to SVs at fragile sites.
Our data does not provide a clear proof for or against a spe-
cific functional role of DMD mutations in meningioma, and
while the close correlation of DMD alterations and DMD
expression with NF2 mutations supports a distinct role in
particularly NF2 mutant cases, the high expression may also
be associated with an open chromatin status with susceptibil-
ity to unselective mutations. A recent report by Juratli et al.
found recurrent deletions of DMD in progressive or higher-
grade meningioma [25], which also primarily affected exons
1 to 15, similar to our data set. They further investigated a
potential functional and prognostic role of DMD in men-
ingioma and found changes in the ultrastructural architec-
ture of affected cells. They also identified an association
of DMD deletions with progression and aggressive growth
[25]. Thus, DMD could be valuable as an additional marker
for identification of high-grade meningioma, which is also in
line with our data. Gallia et al. found a very high prevalence
of DMD deletions in olfactory neuroblastoma with 12 out
of 14 investigated tumors being affected [15], which adds
further evidence for a functional role of DMD in the devel-
opment of certain tumors. Interestingly, also in the olfactory
neuroblastoma predominantly exons towards the 5′ end of
the gene were deleted, which might indicate that specifically
deletion of this part of the gene while preserving the 3′ part
confers an advantage during tumorigenesis. However, since
in our data set only the 5′ exons of DMD were expressed in
meningioma, it can also not be ruled out that the location of
the deletion is the result of the underlying mutational mecha-
nism which might be dependent on transcriptional activity
[22]. Further studies are warranted to identify whether and
how DMD loss contributes to development and aggressive-
ness of meningioma and if it may even represent a marker
for sensitivity towards novel targeted therapies.

ChIP-seq analysis for H3K27ac as an active enhancer
mark revealed an enrichment of FOXM1 targets in peaks
which are specific for meningiomas of the malignant MC,
indicating a higher activity of the FOXM1 transcription
factor in this MC. FOXM1 has already been implicated in
aggressive meningioma by previous studies [20, 31], and has
most recently been proposed as a key transcription factor for
meningioma proliferation [51]. Clustering of meningiomas
according to the expression of FOXM1 target genes revealed
a cluster of high-grade cases but did not sharply dissect the

MCs. The expression of these genes highly correlated with
the expression of FOXM1 itself.

We have found super enhancer activity specific for the
malignant MC in the keratin gene cluster, the HOXD gene
cluster, and near the ADARB1 gene. The specific enhancer
activity of HOXD is in line with several reports on deregu-
lation of HOX genes in high-grade meningioma based on
expression and DNA methylation data  [11, 12, 16, 38],
with the HOXA gene cluster being hypermethylated and the
HOXD gene cluster being hypomethylated [28]. The strong
activity of an SE cluster near ADARB1 is consistent with
differential methylation of this locus in aggressive menin-
giomas [38] and might pinpoint a role of RNA editing in
driving malignancy in meningiomas. Of note, an association
between high expression of ADARB1 and decreased survival
has previously been described in malignant mesothelioma
[40].

Collectively, these data add to our understanding of what
regulates meningioma growth and progression besides the
underlying initiating mutations. In addition to the already
implicated FOXM1 network, our findings of distinct muta-
tional signatures being associated with the overall genomic
instability of aggressive meningiomas may provide a novel
target for therapies.
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