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Abstract—Components made from carbon fiber reinforced
plastics (CFRP) offer attractive stability properties for the
automotive or aerospace industry despite their light weight. To
automate the CFRP production, resin transfer molding (RTM)
based on thermoset plastics is commonly applied. However, this
manufacturing process has its shortcomings in quality and costs.
The project CosiMo aims for a highly automated and cost-
attractive manufacturing process using cheaper thermoplastic
materials. In a thermoplastic RTM (T-RTM) process, the poly-
merization of ε-caprolactam to polyamide 6 is investigated using
an “intelligent tooling”. Multiple sensor types integrated into the
mold allow for tracking of several process-relevant variables, such
as material flow and state of polymerization. In addition to the
evaluation of the T-RTM process, a digital twin helps to visualize
progress and to make predictions about possible problems and
countermeasures based on machine learning. In this paper, the
combination of software and hardware developments is described
which will help to validate an optimal process setup for an
industrial CFRP demonstrator.

I. INTRODUCTION

The use of light-weight components in automotive or
aerospace vehicles is a key factor to reduce emissions and
energy consumption [1]. Composite structures made of carbon
fiber reinforced plastics (CFRP) make vehicles lighter by
50% to 70% compared to conventional metal structures and,
thus, are more energy-efficient. Concerning automation, resin
transfer molding (RTM) is the choice for manufacturing CFRP
in a highly productive and cost-efficient manner. In the first
step, a dry fiber preform is inserted into a two-piece mold
tooling. After closing the tooling, liquid reactive resin is
injected under high pressure until the fibers are thoroughly
wetted. Assisted by the heated tooling, a curing process takes
place after full impregnation. In the last step, the tooling is
opened and the finished composite product can be removed.

Although originally established for thermosets, the RTM
process has been adapted for thermoplastic materials like
polyamide 6 (PA6), which is cheaper and allows for recycling,
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welding, and additional forming capacities (then called T-
RTM). In this case, liquid ε-Caproclactam melt is used instead
of the reactive resin and the curing process is replaced by an
in-situ polymerization into PA6. Using the starting monomer
Caprolactam with a low viscosity instead of remelting the
long-chain polymer PA6 for the infiltration process allows for
an excellent impregnation of the preform.

However, producing ready-made components in a fully
automatic manner is error-prone due to several challenges. For
example, imperfect handling of the textile preform can lead to
dry spots; fluctuations in the raw materials may cause inho-
mogeneous polymerization, and closed molds make it hard to
diagnose or steer the process. To cope with such deficiencies,
online monitoring via sensors installed in the mold tooling,
followed by subsequent data analysis is a necessary step to
adapt the process and to identify faulty products (cf. [2], [3]).
In particular, the in-mold sensors can track the filling status
at certain points throughout an injection – yielding a spatially
and temporally distributed input field.

Having in-situ monitoring available opens up the possi-
bility to feed the data to the edge analytics of a digital
twin [4]. Detecting anomalies, predicting future flow front
dynamics, determining the fiber volume contents of the textile,
or predicting dry spots are among the application scenarios
relevant to reducing T-RTM rejects. Machine learning (ML)
methods are promising due to i) their adaptivity to slightly
changed process settings via generalization and ii) the presence
of measured sensor data which captures correlations beyond
simple models.

II. OBJECTIVES AND SYSTEM OVERVIEW

In order to implement the overall system and its digital
twin, we developed a system architecture in CosiMo which
is depicted in Figure 1. It consists of three different parts: the
T-RTM machinery, the in-situ sensors of the intelligent tooling,
and finally the digital twin. This architecture and the digital
twin, in particular, have been developed with the following
objectives O1 – O4 in mind:

O1: Monitor the manufacturing process of every compos-
ite part with the in-situ sensors of the tooling.
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Fig. 1. Overview of the system architecture: Besides the RTM machinery,
there are in-situ sensors inside the intelligent tooling. The digital twin records
all data from the process and offers prediction models using machine learning.

O2: Visualize each manufacturing process in real-time to
gain further process insights.

O3: Train ML models on simulated and real data for
predicting the outcome of the manufacturing process.

O4: Use the trained ML models during manufacturing to
reduce rejects.

The T-RTM machinery consists of two off-the-shelf compo-
nents: a Wickert hot press with a pressing force of 4400 kN,
and a T-RTM injection unit by KrausMaffei. Both are con-
nected over the ProfiNet field-bus to a PLC which is re-
sponsible for controlling the overall manufacturing process.
The pressure sensors as well as the temperature sensors of
the tooling are also connected over the ProfiNet field-bus
to the PLC. These two kinds of sensors are often used in
classical RTM machinery to have minimal process feedback.
However, to address objective O1, we use additional in-situ
sensors, i. e., acoustic sensors as well as dielectric sensors,
to achieve a better picture of the T-RTM process inside the
intelligent tooling (cf. Section III). Both sensor types need
real-time pre-processing to transform the raw data into higher-
level information about the flow front or the curing of the resin.
The overall process setup is shown in Figure 2.

The preprocessed data of these two sensor types are
recorded directly at the edge using a data acquisition com-
ponent (i. e., ibaPDA from iba AG). The packets exchanged
on the ProfiNet field-bus are recorded by the data acquisition
component as well. Hence, all process and sensor data are
recorded and merged with a consistent time stamp and it is
possible to link the process data and part information with
the sensor data (cf. objective O1). The ibaPDA is capable of
forwarding the merged data in real-time to other components
of the digital twin, in particular to cloud-based storage and

Fig. 2. Overview of the real process setup at DLR including a hot press, a
T-RTM injection unit, and a sensor-integrated tooling.

visualization components as well as to a prediction component
located at the edge (see Figure 1).

We plan to realize a component as part of the digital
twin to visualize the manufacturing process based on the in-
situ sensors (cf. objective O2). This will enable composite
engineers to better understand the dynamics inside the tooling
during the T-RTM process and, thus, to identify problems as
well as to manually optimize the parameters of the process.
As all data is stored permanently in a data repository, it is
also possible to replay and visualize selected manufacturing
processes for analysis purposes.

To automatically optimize the manufacturing process, the
stored data is used to train ML models to address objective
O3. These models are responsible, e. g., for reconstructing the
flow front of the resin from the sensor network, for predicting
the flow front progress, and – ideally – for adapting the process
parameters to optimize the result either during a process
instance or for the subsequent runs. However, the amount of
real data is generally not sufficient to train reliable models.
That is why we make use of ESI PAM-COMPOSITES (PAM-
RTM module, Visual-RTM 15.5) to augment the measured
data with simulated runs. Within this software, the real process
is modeled for glass fiber nonwoven fabrics as reinforcement
material. The challenge is to set up a simulation that describes
reality as close as possible, knowing that the real process
is subject to variations, e. g., a different fiber volume con-
tent (FVC). Due to these variations and pending validation
of the kinematic models in the PAM-RTM software for the
polymerization process of ε-Caproclactam, a gap between
simulation and reality is expected.

Because of the simulation-reality gap, we pursue a transfer
learning approach (cf. Section IV). The (more abundantly
available) simulated data is used to pre-train the model while
the (scarce) real data is used to adapt the model to the real
sensors and machinery. When a model is adapted to real data,
it can be manually deployed as an edge analytics module (see
Figure 1) to work with live data from ibaPDA. Hence, the
model can make predictions to optimize the process manually
or automatically by adapting the process parameters of the
PLC (cf. objective O4).



Fig. 3. Sensor types and arrangement at the plate tooling

III. INTELLIGENT TOOLING

In-situ sensor concepts are often mostly limited to temper-
ature and pressure sensors. They can be beneficial for process
control as they help to regulate the tooling temperature and
the pumping pressure respectively. In the case of temperature
sensors, studies were conducted regarding flow front detec-
tion [5] and curing monitoring [6]. However, they require
close or direct contact with the cavity and a variety of material
parameters. To improve the monitoring of the T-RTM process,
we integrated different types of sensors into an intelligent
tooling. Their continuous measurements enable insight into
the filling of the tooling, the polymerization progress, and
the detection of crack formation due to thermal and chemical
shrinkage. The arrangement and type of sensors inside our
tooling are shown in Figure 3.

Monitoring the polymerization progress can be achieved
through dielectric analysis (DEA) where an alternating field
is applied to the electrodes of the dielectric sensors. By
measuring the electric permittivity, one can characterize the
molecular mobility of ions and dipoles which is affected by the
ongoing polymerization [7]. Several studies found correlations
between DEA and differential scanning calorimetry (DSC)
through kinetic observations [8], [7]. Moreover, the analysis of
phase transitions for thermoplastic materials like carbon fiber
reinforced PA6 shows the potential of DEA for characterizing
the polymerization of ε-Caprolactam to PA6 [9], [10].

In contrast to other methods, ultrasound measurement tech-
niques require no direct contact with the resin and therefore
allow monitoring without physical contact to the process. Us-
ing pulse-echo measurements, conclusions about the flow front
position and polymerization progress can be drawn [11]. The
arrival time of the flow front and the corresponding velocity at
each sensor position is found by evaluating the amplitude of
the echo caused by the transition between the tooling and the
incoming resin. The polymerization progress can be tracked
by measuring the sound propagation time in the resin layer,
which is in reverse proportion to the velocity of sound of
the material. It is also possible to detect structural damages
caused by shrinkage and demolding as well as the occurrence
of microscopic cracks by using acoustic emission analysis with
the same ultrasound sensors. Moreover, continuous acoustic
monitoring is suited for permanent monitoring of pumps,

Fig. 4. Exemplary depiction of different sensor signals during the process.

valves, flow noise, and the filling process, which allows for the
detection of abnormal states of the machinery in real-time.

Our research focus is on combining the signals from all
sensor types to establish a comprehensive characterization of
the process. Temperature, pressure, dielectric, and ultrasound
sensors form a network of sensors that provide real-time
measurements for discrete positions in the tooling. An example
of measurement signals for different sensor types over time
is depicted in Figure 4. The total force of the main press is
included in light grey to show the closing of the tooling before
the injection process. All sensor signals show significant
changes during the process.

After performing the necessary data reduction steps, the
results can be interpolated between the discrete positions
to calculate the status inside the whole tooling. Hence, the
polymerization progress and the position of flow front can
be extended beyond the few known sensor positions. The
discrete sensor positions have to be chosen carefully to find
the right balance between enough interpolation points and
the increasing cost with each additional sensor (see Figure
3). As ultrasound sensors provide the most information and
can be manufactured with low cost, they form the backbone
of a network with periodic distances and additional ones at
complex geometry. DEA, pressure, and temperature sensors
complement these with measurements at important positions.

IV. TRANSFER LEARNING

In manufacturing in general and in composite manufacturing
in particular, there are often not enough data for machine
learning. Hence, our proposed remedy is to train models on
simulated data which is easily available in high volume (cf.
objective O3) After pre-training a model on simulated data,
it is fine-tuned on real-world data. This strategy is commonly
known as Transfer Learning and adopted successfully in com-
puter vision [12] and other domains such as natural language
processing [13].

To address the real-life issue of changes in the starting
material - the textile, we used PAM-RTM to automatically
by altering the FVC. More specifically, we added patches
with lower and higher permeability, with values drawn from a
random distribution, to get an irregular flow front and finally
to provoke dry spots. By that, we hope to produce a database
that is closer to reality due to noise and thus obtains more



robust classifiers. Until now, the 2D simulation of a plate was
simulated 40k times, resulting in 5m frames. For geometries
with higher complexity, this procedure can be repeated to
collect data again. When compared to the amount of collected
data in the real world, the advantages of simulated data become
apparent. In the CosiMo project, the aim is to perform several
hundreds of processes.

When using only simulation data to predict the future in the
real world or to parameterize processes, the simulation-reality
gap is often obstructive to the original cause. For the RTM
process, in particular, there have been several studies on the
gap between simulation and reality [14], [15], [16]. Factors
such as capillary effects, multiple types of sensors with their
accompanying noises, or timing issues make reality diverge
from simulation. To bridge this gap for predictions in RTM,
we devised the following steps. Since we do not only use
pressure sensors in the real world (which is the only available
sensor type in simulation), we extract data from the simulation
results to mimic the data coming from the sensors described
in Section III: We extract arrival and speed information of the
flow front at certain points of the simulated tool.

A wider gap to cover will be the lack of fast adap-
tive changes in the viscosity. Caprolactam polymerizes very
quickly at a certain temperature and therefore the advancement
of the flow front has to be completed before polymerization.
Sensing this crystalization is possible with the DEA sensors
in our sensor network and has to be correlated with additional
simulation data from PAM-RTM. To overcome all other dif-
ferences between simulation and reality, we will fine-tune a
model initially trained on simulated data using real data in a
second step. By doing so, we hope to get a model that is more
robust in reality than a pure simulation model. Furthermore,
the fine-tuned model will perform much faster on a certain
narrow task, such as classifying a dry spot, than the simulation
model with wider abilities. This will enable on-line adaptations
to the process, leading to a higher quality in components and
a lower rejects rate (cf. objective O4).

A first learning approach only with simulation data was
conducted [17] with differently sized networks of pressure
sensors to classify if there are dry spots in the mold. By
training a deconvolutional neural network to first learn a
representation of the flow front and then to classify dry spots
with a convolutional network, it outperformed feed-forward
networks: for dry-spot classification, 91 % accuracy on single
frames was obtained with the densest sensor network.

V. CONCLUSION

In the project CosiMo, the RTM process is innovated
at multiple levels. Instead of a regular thermoset resin, a
thermoplastic resin is used which is more cost-effective, makes
it possible to easily impregnate the textile, and resulting
components can be melded and recycled. The sensor network
consists of novel types of sensors that can monitor the process
more thoroughly than state-of-the-art in-situ monitoring. The
resulting data is used to create a digital twin that enables not
just a visualization of the process, but also advanced analytics

with the help of machine learning. The first steps towards this
real-time process monitoring for RTM have been completed:
the process, the sensor network, and data collection are set up,
and the first successful injections have been carried out. From
the machine learning perspective, an initial breakthrough on
merely simulated data has been achieved. The next step is to
bring the real world and simulation together.
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