EXTRINSIC SYMMETRIC SUBSPACES

Jost ESCHENBURG and Maкiкo Sumi TANAKA

(Received December 4, 2017, revised March 29, 2019)

Abstract

An extrinsic symmetric space is a submanifold $M \subset V=\mathbb{R}^{n}$ which is kept invariant by the reflection s_{x} along every normal space $N_{x} M$. An extrinsic symmetric subspace is a connected component M^{\prime} of the intersection $M \cap V^{\prime}$ for some subspace $V^{\prime} \subset V$ which is s_{x}-invariant for any $x \in M^{\prime}$. We give an algebraic charactrization of all such subspaces V^{\prime}.

1. Introduction

It is well known that totally geodesic subspaces of a symmetric space M correspond one-to-one to Lie subtriples of the corresponding Lie triple (which is the tangent space of M with the curvature tensor as algebraic structure). In the present note we study the same question for an important subclass of symmetric spaces, those which allow a nice embedding into euclidean space $V=\mathbb{R}^{n}$. These are the so called extrinsic symmetric spaces or symmetric R -spaces. More precisely, an extrinsic symmetric space is a submanifold $M \subset V$ such that for any point $x \in M$, the reflection s_{x} along the normal space $N=N_{x} M$ keeps M invariant. An extrinsic symmetric subspace $M^{\prime} \subset M$ will be a connected component M^{\prime} of the intersection $M \cap V^{\prime}$ with a subspace $V^{\prime} \subset V$ which is invariant under s_{x} for all $x \in M^{\prime}$; in particular, $M^{\prime} \subset M$ is totally geodesic. We may assume that $M^{\prime} \subset V^{\prime}$ is full. Our main result Theorem 2 characterizes these subspaces V^{\prime} as follows. By a result of Ferus [5, 6], after splitting off an affine subspace, V is itself a Lie triple (a tangent space of another symmetric space), and our result is:

A connected component M^{\prime} of $M \cap V^{\prime}$ which is full in V^{\prime} is an extrinsic symmetric subspace if and only if $V^{\prime} \subset V$ is a Lie subtriple.
The main idea for the proof is given by an alternative approach [3] to Ferus' theorem where the Lie structure is computed in terms of submanifold geometry. At the end we briefly discuss two questions.

1. Which Lie subtriples V^{\prime} actually do intersect a given extrinsic symmetric space M ?
2. Suppose that $V^{\prime} \subset V$ is a subspace preserved by s_{x} for all $x \in M \cap V^{\prime}$. Suppose further that $M \cap V^{\prime}$ spans V^{\prime}, but no single connected component of $M \cap V^{\prime}$ is full in V^{\prime} (e.g. $M \cap V$ could be discrete). Is $V^{\prime} \subset V$ still a Lie subtriple? The answer to this question seems to be open.

It is our pleasure to thank Peter Quast for several useful hints and discussion during the

[^0]preparation of this work.

2. Extrinsic symmetric spaces and subspaces

Let $M \subset V$ be a closed submanifold (not necessarily connected) of some euclidean vector space $V=\mathbb{R}^{n}$. For simplicity of notation ${ }^{1}$ we assume that M is contained in the unit sphere $\mathbb{S}=\mathbb{S}^{n-1} \subset V$. Let O_{n} denote the orthogonal group on \mathbb{R}^{n},

$$
\begin{equation*}
O_{n}=\left\{A \in \mathbb{R}^{n \times n}: A^{t} A=I\right\} \tag{1}
\end{equation*}
$$

where $\mathbb{R}^{n \times n}$ is the space of real $(n \times n)$-matrices, A^{t} the transposed of the matrix A and I the unit matrix. For any $x \in M$ let $s_{x} \in O_{n}$ be the reflection along the normal space $N=N_{x} M$, that is $s_{x}=I$ on N and $s_{x}=-I$ on $T=T_{x} M$. The submanifold M is called extrinsic symmetric if

$$
\begin{equation*}
s_{x}(M)=M \forall x \in M \tag{2}
\end{equation*}
$$

Then s_{x} is called the (extrinsic) symmetry at x and the subgroup $K \subset O_{n}$ generated by all $s_{x}, x \in M$ is the symmetry group of M. It acts transitively on every connected component $M^{o} \subset M$ since any two $y, z \in M^{o}$ can be connected by a geodesic $\gamma:[0,1] \rightarrow M$, and $z=s_{x} y$ where $x=\gamma\left(\frac{1}{2}\right)$ is the midpoint between z and y.

Example: Orthogonal group. Let $M:=O_{p} \subset V=\mathbb{R}^{p \times p}$ be the orthogonal group (1). This is extrinsic symmetric (with two connected components): the symmetry at $x \in M$ is $s_{x}(v)=x v^{t} x$ for all $x \in M$ and $v \in V$. Clearly, $\operatorname{det} s_{x}(v)=\operatorname{det} v$, hence s_{x} preserves the two connected components of M.

Remark. In this example, the symmetry group does not act transitively on $M=O_{p}$ since the connected components of M are preserved. However, the full isometry group of all orthogonal maps of V preserving M does act transitively since it contains the left (or right) translations with all elements of O_{p}.

A subset $M^{\prime} \subset M$ is called an extrinsic symmetric subspace if M^{\prime} is a connected component of $M \cap V^{\prime}$ for some linear subspace $V^{\prime} \subset V$ with

$$
\begin{equation*}
s_{x}\left(V^{\prime}\right)=V^{\prime} \text { for all } x \in M^{\prime} \tag{3}
\end{equation*}
$$

Given an extrinsic symmetric subspace $M^{\prime} \subset M$, there might be several subspaces $V^{\prime} \subset V$ with (3) such that M^{\prime} is a connected component of $M \cap V^{\prime}$; we will always choose V^{\prime} to be the smallest one (the intersection of all such subspaces), or equivalently, V^{\prime} is just the linear span of M^{\prime} or M^{\prime} is full in V^{\prime}.

Every $s_{x}, x \in M^{\prime}$, preserves V^{\prime} and its orthogonal complement $V^{\prime \prime}$, thus it decomposes these spaces into its (± 1)-eigenspaces which are the intersections with T and N,

$$
\begin{equation*}
V^{\prime}=T^{\prime} \oplus N^{\prime}, V^{\prime \prime}=T^{\prime \prime} \oplus N^{\prime \prime} \tag{4}
\end{equation*}
$$

where $T^{\prime}=T \cap V^{\prime}, N^{\prime}=N \cap V^{\prime}$ etc. Let $\pi_{T}: V \rightarrow T$ and $\pi_{N}: V \rightarrow N$ be the orthogonal projection onto T and N. Then $\pi_{T}\left(V^{\prime}\right)=T^{\prime}$ by (4). Hence $\left.\pi_{T}\right|_{M^{\prime}}: M^{\prime} \rightarrow T^{\prime}$ is a diffeomorphism near x. Thus M^{\prime} is a submanifold of both M and V^{\prime}, and the tangent and normal

[^1]spaces of $M^{\prime} \subset V^{\prime}$ at x are T^{\prime} and N^{\prime}.
Let α, α^{\prime} denote the second fundamental forms of $M \subset V$ and $M^{\prime} \subset V^{\prime}$, respectively. E.g. $\alpha(v, w)=\pi_{N}\left(\partial_{v} w\right)=\left(\partial_{v} w\right)^{N}$ for all $v, w \in T$, where ∂_{v} is the directional derivative, $\partial_{v} w=\left.\frac{d}{d t}\right|_{t=0} w(x+t v)$. Then
\[

$$
\begin{equation*}
\alpha^{\prime}(v, w)=\left(\partial_{v} w\right)^{N^{\prime}}=\left(\partial_{v} w\right)^{N}=\alpha(v, w) \tag{5}
\end{equation*}
$$

\]

for all $v, w \in T^{\prime}$ since $\partial_{v} w \in V^{\prime}$ and $\left(\partial_{v} w\right)^{N} \in V^{\prime} \cap N=N^{\prime}$. As a consequence we obtain
Lemma 1. Every connected component M^{\prime} of $M \cap V^{\prime}$ is totally geodesic in M and extrinsic symmetric in V^{\prime}.

Proof. $M^{\prime} \subset M$ is totally geodesic by (5). Further, the group

$$
K^{\prime}=\left\{k \in K: k\left(V^{\prime}\right)=V^{\prime}\right\}
$$

contains the symmetries $s_{x}, x \in M^{\prime}$, and any s_{x} preserves both M and V^{\prime} and thus $M \cap V^{\prime}$, and its connected component through x which is M^{\prime}. Hence $M^{\prime} \subset V^{\prime}$ is extrinsic symmetric by (4).

Example: Grassmannians. Let $V=\mathbb{R}^{p \times p}$ and $M=O_{p}$ as in the previous example. Let $V^{\prime}=S_{p}=\left\{x \in V: x^{t}=x\right\}$. Then $O_{p} \cap S_{p}$ is the set of involutions in O_{p} ("reflections") since for each $x \in O_{p}$, that is $x^{t}=x^{-1}$, the condition $x^{t}=x$ is the same as $x^{-1}=x$. Orthogonal reflections are in $1: 1$ correspondence to their fixed spaces, thus $O_{p} \cap S_{p}$ can be considered as the union of all Grassmannians $G_{k}=G_{k}\left(\mathbb{R}^{p}\right)$ with $k \in\{0, \ldots, p\}$. These are the connected component of $M \cap V^{\prime}$. Hence each Grassmannian G_{k} is an extrinsic symmetric subspace of one of the components of M. The map $x \mapsto-x$ on $\mathbb{R}^{p \times p}$ is an isometry of O_{p} which interchanges G_{k} and G_{p-k} while G_{k} and G_{l} for $l \neq k, p-k$ are non-isometric.

3. Lie triples and submanifold geometry

A connected extrinsic symmetric space $M \subset \mathbb{S} \subset V$ is extrinsic homogeneous, $M=K x$ for some $x \in \mathbb{S}$. In other words, it is an orbit of a representation. By a theorem of D . Ferus $[3,6]$, both the representation and the point x are very special. The vector space V carries the structure of an orthogonal Lie triple \mathfrak{p} (cf. [7]) and x satisfies

$$
\begin{equation*}
\left(\operatorname{ad}_{x}\right)^{3}=-\operatorname{ad}_{x} \tag{6}
\end{equation*}
$$

More precisely, $V=\mathfrak{p}$ is a linear subspace of a Lie algebra \mathfrak{g} with an involution σ with (± 1)-eigenspace decomposition

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p} \tag{7}
\end{equation*}
$$

hence $[\mathfrak{f}, \mathfrak{f}] \subset \mathfrak{f},[\mathfrak{f}, \mathfrak{p}] \subset \mathfrak{p}$, and $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{f}$. In other words, $V=\mathfrak{p}$ is the tangent space of another symmetric space $P=G / K$, and the Lie triple structure on $V=\mathfrak{p} \subset \mathfrak{g}$ is $R(u, v) w:=$ $-[[u, v], w]$. The Lie bracket can be chosen such that $M=\operatorname{Ad}(K) x$ where $x \in \mathfrak{p}$ satisfies (6).

Recall from [3] that the Lie structure on \mathfrak{p} can be derived from the submanifold geometry of $M \subset \mathfrak{p}$ as follows. Consider the decomposition $\mathfrak{f}=\mathfrak{f}_{+} \oplus \mathfrak{E}_{-}$where \mathfrak{f}_{+}is the Lie algebra of the stabilizer group of $x \in M$ and $£_{-}$denotes the space of infinitesimal transvections at x (the Killing fields A with $\nabla A=0$ at x) which can be identified with the tangent space $T=T_{x} M$.

Then the infinitesimal transvection S_{v} corresponding to any $v \in T$ is essentially ${ }^{2}$ the second fundamental form $\alpha: S(T) \rightarrow N$ of $M \subset V$:

$$
S_{v}:\left\{\begin{array}{lllll}
T & \rightarrow & N: w & \mapsto\left(\partial_{v} w\right)^{N}=\alpha(v, w), \tag{8}\\
N & \rightarrow & T & \xi & \mapsto\left(\partial_{v} \xi\right)^{T}=-A_{\xi} v
\end{array}\right.
$$

Moreover, the Lie brackets on \mathfrak{p} are also given in terms of α : for all $v, w \in T$ and $\xi, \eta \in N$ we have by [3]:

$$
\begin{array}{rlll}
{[v, w]} & =\left[S_{v}, S_{w}\right] & \in \mathfrak{f}_{+}, \\
{[v, \xi]} & =S_{A_{\xi} v} & \in & \mathfrak{E}_{-}, \tag{9}\\
{[\xi, \eta]} & =-\left[A_{\xi}, A_{\eta}\right] & \in \mathfrak{Ł}_{+} .
\end{array}
$$

On the other hand, when $M=\operatorname{Ad}(K) x \subset \mathfrak{p}$ and $\left(\operatorname{ad}_{x}\right)^{3}=-\operatorname{ad}_{x}$, the extrinsic symmetry s_{x} can be expressed by the Lie structure of $\mathfrak{p} \subset \mathfrak{g}$ as follows:

$$
\begin{equation*}
s_{x}=e^{\pi \mathrm{ad}_{x}} \tag{10}
\end{equation*}
$$

since ad_{x} is a complex structure on $£_{-} \oplus T$ interchanging these two subspaces while it vanishes on $\mathfrak{f}_{+} \oplus N$.

4. Extrinsic symmetric subspaces

Theorem 2. Let $M=\operatorname{Ad}(K) x \subset \mathfrak{p}$ with $\left(\operatorname{ad}_{x}\right)^{3}=-\operatorname{ad}_{x}$ be an extrinsic symmetric space and \mathfrak{p}^{\prime} a linear subspace of \mathfrak{p} intersecting M. Let M^{\prime} be a connected component of $M \cap \mathfrak{p}^{\prime}$ and suppose that \mathfrak{p}^{\prime} is the linear span of M^{\prime}. Then $M^{\prime} \subset \mathfrak{p}^{\prime}$ is an extrinsic symmetric subspace if and only if \mathfrak{p}^{\prime} is a Lie subtriple.

Proof. Let $\mathfrak{p}^{\prime} \subset \mathfrak{p}$ be a Lie subtriple intersecting M. Let M^{\prime} be a connected component of $M \cap \mathfrak{p}^{\prime}$ and $x \in M^{\prime}$. We have to show that the symmetry s_{x} preserves \mathfrak{p}^{\prime}. Since $s_{x}=e^{\pi \mathrm{ad} x}$ by (10), it has a natural extension to an automorphism of the full Lie algebra \mathfrak{g}. Now $x \in \mathfrak{p}^{\prime}$ lies in the Lie subalgebra $\mathfrak{g}^{\prime}=\mathfrak{p}^{\prime}+\left[\mathfrak{p}^{\prime}, \mathfrak{p}^{\prime}\right] \subset \mathfrak{g}$. Thus s_{x} preserves both \mathfrak{g}^{\prime} and \mathfrak{p} and hence its intersection $\mathfrak{q}^{\prime} \cap \mathfrak{p}=\mathfrak{p}^{\prime}$ is preserved. Therefore $M^{\prime} \subset \mathfrak{p}^{\prime}$ is an extrinsic symmetric subpace.

Vice versa, let $M^{\prime} \subset \mathfrak{p}^{\prime}$ be an extrinsic symmetric subspace. Choose $x \in M^{\prime}$. Let $T^{\prime}=$ $T_{x} M^{\prime}$ and $N^{\prime}=\mathfrak{p}^{\prime} \ominus T^{\prime}$ be the tangent and normal spaces of $M^{\prime} \subset \mathfrak{p}^{\prime}$. We want to show that \mathfrak{p}^{\prime} is a Lie subtriple. We know already that $M^{\prime} \subset M$ is totally geodesic (see Lemma 1), thus the second fundamental form α^{\prime} of $M^{\prime} \subset \mathfrak{p}^{\prime}$ satisfies $\alpha^{\prime}=\left.\alpha\right|_{S\left(T^{\prime}\right)}$. Hence by (9), the restriction of the Lie bracket of \mathfrak{p} to $\mathfrak{p}^{\prime}=T^{\prime} \oplus N^{\prime}$ takes values in \mathfrak{q}^{\prime}. Thus $\left[\mathfrak{p}^{\prime}, \mathfrak{p}^{\prime}\right] \subset \mathfrak{q}^{\prime}$ and $\mathfrak{p}^{\prime} \subset \mathfrak{p}$ is a Lie subtriple.

5. Lie subtriples $\mathfrak{p}^{\prime} \subset \mathfrak{p}$ intersecting $M \subset \mathfrak{p}$

It remains to determine those Lie subtriples \mathfrak{p}^{\prime} which have non-empty intersection with M. This can be seen from M and the Dynkin diagrams of \mathfrak{p} and \mathfrak{p}^{\prime}.

Let $x \in \mathfrak{p}$ be an extrinsic symmetric vector, that is x satisfies (6) or in other words, $i, 0,-i$ are the eigenvalues of ad_{x}. We choose a maximal abelian subalgebra $\mathfrak{a} \subset \mathfrak{p}$ containing x and a simple root system $\alpha_{1}, \ldots, \alpha_{r}$ with $\alpha_{i}(x) \geq 0$ for $i=1, \ldots, r$. Let α be any positive root.

[^2]On the corresponding root space $\mathfrak{g}_{\alpha} \subset \mathfrak{g} \otimes \mathbb{C}$ we have $\operatorname{ad}_{x}=i \alpha(x) \cdot$ id. Thus $\alpha(x) \in\{0, \pm 1\}$. In particular this holds for the highest root, $\alpha=\delta=\sum_{i} n_{i} \alpha_{i}$, hence $\delta(x)=\sum_{i} n_{i} \alpha_{i}(x)=1$. Since all $n_{i} \geq 1$, the element x must be a dual root $x=\xi_{j}$ for some $j \in\{1, \ldots, r\}$, that is $\alpha_{j}(x)=1$ for some j with $n_{j}=1$ and $\alpha_{i}(x)=0$ for all $i \neq j$. Below we display the Dynkin diagrams of the simple root systems ${ }^{3}$ with the numbers n_{j} attached to α_{j} [7, p. 477]. The extrinsic symmetric elements x are precisely the dual vectors to simple roots α_{j} with $n_{j}=1$.

When we have a Lie subtriple $\mathfrak{p}^{\prime} \subset \mathfrak{p}$, we may choose maximal abelian subalgebras \mathfrak{a}^{\prime}, \mathfrak{a} of $\mathfrak{p}^{\prime}, \mathfrak{p}$ with $\mathfrak{a}^{\prime} \subset \mathfrak{a}$. Since M is an $\operatorname{Ad}(K)$-orbit, it intersects \mathfrak{a} at some point x in a closed Weyl chamber $\bar{C} \subset \mathfrak{a}$, and x is a dual root of weight 1 for the simple root system corresponding to the Weyl chamber C. Thus:

Theorem 3. Let $M=\operatorname{Ad}(K) x$ with $x \in \mathfrak{a}$. Then $M \cap \mathfrak{p}^{\prime}$ is non-empty if and only if $x \in \mathfrak{a}^{\prime}$ up to transformations of the Weyl group W_{P} of $P=G / K$ (with $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$), more precisely, if (up to Weyl transformations) x is a dual root of weight one with respect to a simple root system of \mathfrak{p}^{\prime}.

An obvious necessary condition is that \mathfrak{p}^{\prime} contains dual roots of weight one at all. In particular we see:

Corollary 4. If $\mathfrak{p}^{\prime} \subset \mathfrak{p}$ is a Lie subtriple of the same rank as \mathfrak{p}, then $M \cap \mathfrak{p}^{\prime}$ is nonempty and its connected components are extrinisic symmetric subspaces.

Examples. 1. Let $\mathfrak{p}=\mathbb{R}^{p \times p}$ and $M_{ \pm} \subset \mathfrak{p}$ be the connected components of O_{p} (with $M_{+}=S O_{p}$). Further, let $\mathfrak{p}^{\prime}=S_{p} \subset \mathfrak{p}$ be the space of symmetric $(p \times p)$-matrices. This is the example of the real Grassmannians (see end of section 2). Then \mathfrak{p}^{\prime} is of type $A I$ [7, p. 532] with Dynkin diagram A_{p-1}. The maximal abelian subalgebra of \mathfrak{p} is the space of diagonal matrices \mathfrak{a}. Since $\mathfrak{a} \subset \mathfrak{p}^{\prime}$, the Lie triples \mathfrak{p}^{\prime} and \mathfrak{p} have the same rank and hence \mathfrak{p}^{\prime} intersects $M_{ \pm}$. The positive dimensional connected components of $M_{ \pm} \cap p^{\prime}$ are the real Grassmannians $G_{k}\left(\mathbb{R}^{p}\right), k=1, \ldots, p-1$, which correspond to the $p-1$ dual roots with weight one in the table above.
2. Let $\mathfrak{p}=\mathfrak{u}_{n}$ with $n=2 m$ be the Lie algebra of U_{n} with maximal abelian subspace $\mathfrak{a}=\left\{i \operatorname{diag}\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}$. We identify \mathfrak{a} with \mathbb{R}^{n} and let $\left\{e_{k}: k=1, \ldots, n\right\}$ denote the standard orthonormal basis of \mathbb{R}^{n}. The root system is of type A_{n-1}. The fundamental roots are $\alpha_{k}=e_{k}-e_{k+1}$ with $k=1, \ldots, n-1$; all of them have weight one. The dual root vector for α_{k} is $\xi_{k}=\frac{1}{2}\left(\sum_{i=1}^{k} e_{i}-\sum_{j=k+1}^{n} e_{j}\right)$. The corresponding extrinsic symmetric space

[^3]$M_{k}=\operatorname{Ad}\left(U_{n}\right) \xi_{k}$ is isomorphic to the complex Grassmannian of k-planes in \mathbb{C}^{n}.
Now consider $\mathfrak{p}^{\prime}=\mathfrak{s o}_{n} \subset \mathfrak{p}$. Passing to a conjugate $\tilde{\mathfrak{p}}^{\prime}=g \mathfrak{p}^{\prime} g^{-1}$ for some suitable $g \in U_{n}$, the maximal abelian subspace of $\tilde{\mathfrak{p}}^{\prime}$ becomes
$$
\tilde{\mathfrak{a}}^{\prime}=\left\{x \in \mathfrak{a}: x_{j+m}=-x_{j} \text { for all } j=1, \ldots, m\right\} .
$$

This contains $\xi_{k} \in \mathfrak{a}$ precisely for $k=m$, and ξ_{m} is a complex structure in $\mathfrak{s o}_{n}$. Hence $M_{k} \cap \mathfrak{p}^{\prime}=\emptyset$ for $k \neq m$, and $M_{m} \cap \mathfrak{p}^{\prime}$ is the space $S O_{n} / U_{m}$ of complex structures in $\mathfrak{s o}_{n}$. This has two connected components which are conjugate in O_{n} and hence in U_{n}; these correspond to the two fundamental roots with weight 1 at the bifurcation of the Dynkin diagram D_{m} of $\mathrm{SO}_{2 m}$.
3. An extrinsic symmetric space $M \subset \mathfrak{p}$ is hermitian symmetric if and only if \mathfrak{p} is a Lie algebra, $\mathfrak{p}=\mathfrak{g}$, and all other extrinsic symmetric spaces are the real forms of hermitian symmetric spaces, see [1, p. 310f] or [2]. The real forms are obtained as extrinsic symmetric subspaces from a hermitian extrinsic symmetric space $M=\operatorname{Ad}(G) x \subset \mathfrak{g}$ as follows. Let σ $\mathfrak{b e}$ an involution on \mathfrak{g} with eigenspace decomposition $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ and $x \in \mathfrak{p}$. Then $M^{\prime}:=M \cap \mathfrak{p}$ is a real form of M, and every real form arises that way [8].
E.g. let $G=U_{n}$. Then $M \subset \mathfrak{g}$ is the complex Grassmannian $G_{p}\left(\mathbb{C}^{n}\right)$ for $p \in\{1, \ldots, n-1\}$. There are three types of real forms: real Grassmannians, quaternionic Grassmannians if both p, n are even, and the unitary group U_{p} if $n=2 p$. Let us consider the latter case, $M^{\prime}=U_{p}$. The embedding of U_{p} into the Grassmannian $G_{p}\left(\mathbb{C}^{2 p}\right)$ is by assigning to each $A \in U_{p}$ its graph $E_{A}=\left\{(x, A x): x \in \mathbb{C}^{p}\right\} \subset \mathbb{C}^{p} \times \mathbb{C}^{p}$. The subgroup $U_{p} \times U_{p} \subset U_{2 p}$ acts transitively on it since for all $(B, C) \in U_{p} \times U_{p}$,

$$
\begin{aligned}
\left({ }^{B}{ }_{C}\right) E_{A} & =\left\{(B x, C A x): x \in \mathbb{C}^{p}\right\} \\
& =\left\{\left(\tilde{x}, C A B^{-1} \tilde{x}\right): \tilde{x} \in \mathbb{C}^{p}\right\} \\
& =E_{C A B^{-1}} .
\end{aligned}
$$

The embedding of $M=G_{p}\left(\mathbb{C}^{2 p}\right)$ into $\mathfrak{g}=\mathfrak{u}_{2 p}$ is obtained by assigning to a p-dimensional subspace $E \subset \mathbb{C}^{2 p}$ the matrix r_{E} with eigenvalues i on E and $-i$ on E^{\perp}. This matrix is not only in $\mathfrak{u}_{2 p}$ but also in $U_{2 p}$. In particular, for the subspace $E_{I}=\left\{(x, x): x \in \mathbb{C}^{p}\right\}$ we have $r_{E_{I}}=i\left({ }_{I}{ }^{I}\right)$. The group $U_{2 p}$ acts by conjugation on these matrices, hence for $E^{\prime}=\left({ }^{B}{ }_{C}\right) E_{I}$ we have

$$
r_{E^{\prime}}=\left({ }^{B}{ }_{C}\right) i\left(I^{I}\right)\left(B^{B^{*}} C^{*}\right)=i\left(C_{C B^{*}}{B C^{*}}\right)=\left({ }_{-A^{*}}{ }^{A}\right)
$$

with $A=i B C^{*}$. Thus $M^{\prime} \subset \mathfrak{p}^{\prime}:=\left\{\left(-_{x^{*}}{ }^{x}\right): X \in \mathbb{C}^{p \times p}\right\}$. Vice versa, if $\left({ }_{-x^{*}}{ }^{x}\right) \in M \subset U_{2 p}$, then $X \in U_{p}$, thus $M^{\prime}=M \cap \mathfrak{p}^{\prime}$. The subtriple \mathfrak{p}^{\prime} belongs to the Grassmannian $G_{p}\left(\mathbb{C}^{2 p}\right)$ and has Dynkin diagram C_{p}, see [7, pp. 517,532], which has just one weight 1.

6. Open problems

In some sense, $\hat{M}^{\prime}:=M \cap \mathfrak{p}^{\prime}$ should be considered as one single object with several connected components, like in the case of the Grassmannians. However, given \hat{M}^{\prime}, we are not able to show that in general the smallest linear subspace p^{\prime} containing \hat{M}^{\prime} is a Lie triple. The question is easy when \hat{M}^{\prime} is the fixed set of a group of isometries: any isometry of $M \subset \mathfrak{p}$ extends as a linear isometry to the ambient space \mathfrak{p}, see [4], and \mathfrak{p}^{\prime} is the common
fixed space of these extensions which is a Lie subtriple. In general, if M_{i}^{\prime} are the connected components of \hat{M}^{\prime}, then $\mathfrak{p}^{\prime}=\sum \mathfrak{p}_{i}^{\prime}$ where $\mathfrak{p}_{i}^{\prime}$ is the linear span of M_{i}^{\prime}, and all $\mathfrak{p}_{i}^{\prime}$ are Lie triples acted on by the same group $K^{\prime}=\left\{k \in K: k\left(\mathfrak{p}^{\prime}\right)=\mathfrak{p}^{\prime}\right\}$ containing the symmetries s_{x} for all $x \in \hat{M}^{\prime}$. But is \mathfrak{p}^{\prime} itself a Lie triple? So far, we have no information on the Lie brackets $\left[\mathfrak{p}_{i}^{\prime}, \mathfrak{p}_{j}^{\prime}\right]$ for $i \neq j$.

Maybe the worst case is when \hat{M}^{\prime} is discrete. This happens when \mathfrak{p}^{\prime} is abelian. In particular, when $\mathfrak{p}^{\prime}=\mathfrak{a}$ is maximal abelian in \mathfrak{p}, then $\hat{M}^{\prime}=M \cap \mathfrak{a}$ is a Weyl orbit: It is the intersection of the $\operatorname{Ad}(K)$-orbit M on \mathfrak{p} with the section \mathfrak{a} of this polar representation. We conjecture that the converse is also true:

Conjecture 5. Let $M \subset \mathfrak{p}$ be extrinsic symmetric and $\mathfrak{p}^{\prime} \subset \mathfrak{p}$ a Lie subtriple intersecting M. Then $M^{\prime}=M \cap \mathfrak{p}^{\prime}$ is discrete (finite) if and only if \mathfrak{p}^{\prime} is abelian.

References

[1] J. Bernd, S. Console and C. Olmos: Submanifolds and holonomy, Chapman \& Hall, Boca Raton, FL, 2003.
[2] J.-H. Eschenburg: Extrinsic symmetric spaces, available at www.math.tsukuba.ac.jp/~tasaki/akihabara/ extsym.pdf.
[3] J.-H. Eschenburg and E. Heintze: Extrinsic symmetric spaces and orbits of s-representations, Manuscripta Math. 88 (1995), 517-524.
[4] J.-H. Eschenburg, P. Quast and M.S. Tanaka: Isometries of extrinsic symmetric spaces, Asian J. of Math. 23 (2019), 439-454.
[5] D. Ferus: Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87-93.
[6] D. Ferus: Symmetric submanifolds of euclidean space, Math. Ann. 247 (1980), 81-93.
[7] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New YorkLondon, 1978.
[8] M. Takeuchi: Stability of certain minimal submanifolds of compact hermitian symmetric spaces, Tohoku Math. J. 36 (1984), 293-314.
Jost Eschenburg
Institut für Mathematik
Universität Augsburg
D-86135 Augsburg
Germany
e-mail: eschenburg @ math.uni-augsburg.de
Makiko Sumi Tanaka
Faculty of Science and Technology
Tokyo University of Science
Noda, Chiba, 278-8510
Japan
e-mail: tanaka_makiko@ma.noda.tus.ac.jp

[^0]: 2010 Mathematics Subject Classification. 53C35, 53C40, 57S15.
 The second author was partly supported by the Grant-in-Aid for Science Research (C) (No.15K04855), Japan Society for the Promotion of Science.

[^1]: ${ }^{1}$ It turns out that indecomposable extrinsic symmetric spaces (other than straight lines) lie in euclidean spheres, cf. [1].

[^2]: ${ }^{2}$ Note that $\left(\xi \mapsto A_{\xi}\right): N \rightarrow S(T)$ is the adjoint of $\alpha: S(T) \rightarrow N$.

[^3]: ${ }^{3}$ Remind that $B C_{n}$ and B_{n} have the same simple root system.

