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What do we learn from
high- throughput protein
interaction data?
Björn Titz, Mat thias Schlesner and Peter Uetz†

The biological significance of protein interactions, their method of generation and
reliability is briefly reviewed. Protein interaction networks adopt a scale-free topology
that explains their error tolerance or vulnerability, depending on whether hubs or
peripheral proteins are attacked. Networks also allow the prediction of protein function
from their interaction partners and therefore, the formulation of analytical hypotheses.
Comparative network analysis predicts interactions for distantly related species
based on conserved interactions, even if sequences are only weakly conserved. Finally,
the medical relevance of protein interaction analysis is discussed and the necessity for
data integration is emphasized.
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Currently, more than 150 bacterial and approx-
imately 15 eukaryotic genomes have been com-
pletely  sequenced  [101].  These  sequencing
projects provide  us with  a  wealth  of  informa-
tion about these organisms. Theoretically, most
gene  products  of  these  genomes  can  be  pre-
dicted  from  their  sequence.  Nevertheless,  the
biochemical  activities  and  biological  roles  of
many  gene  products  remain  unclear.  Surpris-
ingly,  even in new genome sequences approxi-
mately one third of the genes cannot be anno-
tated  functionally,  either  because  there  is  no
unambiguous homology  or  homologous genes
lack sufficient annotation.

High-throughput functional analysis appears
to  be  the  perfect  tool  to  turn  the  significant
number  of  uncharacterized  open  reading
frames  (ORFs)  into  biological  knowledge.
Although  high-throughput  screening  (HTS)
usually fails to yield a detailed understanding of
a  protein’s function,  it  often  provides the first
evidence  for  function  and  therefore,  an  in-
route to further characterization.

Currently  established  HTS  methodology
includes  expression  profiling  using  DNA
microarray  technology,  systematic  knockout
studies,  high-throughput  localization  studies
and  protein–protein  interaction  mapping
approaches [1].

This  review  focuses  on  protein–protein
interaction  mapping  (interactomics),  mainly
by  two-hybrid  approaches.  Three  questions
will be addressed:
• What can we learn from the interaction data

generated for several organisms?
• What other information is needed to derive

biological conclusions from these data?
• How can such additional data improve

our conclusions?

Biological significance of
protein–protein interactions
Protein–protein  interactions  greatly  expand
the  flexibility  of  proteins  beyond  their  indi-
vidual  activities.  For  example,  the  dimeric
transcription factors Myc and Max must asso-
ciate  in  order  to  recognize  their  DNA-bind-
ing motif. The Myc/Max dimer allows regula-
tion  by  altering  the  concentration  of  each
protein but also by the expression of competi-
tive inhibitors,  such as Mad,  which binds to
and  blocks Max.  Such  combinatorial  regula-
tion  also  expands  evolutionary  flexibility
since each gene’s encoded binding partner can
duplicate.  These  additional  proteins  can
adopt  different  specificities  and  eventually
biological roles. For an extensive discussion of
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protein interactions and their biological significance the reader
is referred to standard textbooks of molecular biology [2].

Generation of protein–protein interaction data
Although a number of methods are available for high-through-
put  analysis  of  protein–protein  interactions,  the  most  com-
monly used are the yeast two-hybrid (Y2H) system and a com-
bination  of  protein-complex  purification  with  subsequent
analysis by mass spectrometry (MS) [3–5].

The first genome-wide two-hybrid screen was performed by
Bartel and  coworkers  for  the  study  of  protein  interactions in
bacteriophage  T7  [6].  The  first  genome-wide  protein–protein
interaction  studies  of  a  free-living  organism  have  been  pub-
lished  by  Uetz and  coworkers [7]  and Ito and collaborators [8]

using  the  yeast  Saccharomyces  cerevisiae.  These  and  other  sys-
tematic screens have been reviewed by Uetz and Hughes [9].

Soon  after  these two-hybrid  screens,  Ho and  coworkers [10]

and  Gavin and  colleagues  [11]  used  a  large-scale  strategy  to
purify protein complexes from yeast and identified them using
MS. Some key differences of the resulting two-hybrid and MS
data sets are illustrated in FIGURE 1.

These experimental approaches for high-throughput interac-
tion analyses have already taught us one important lesson: Y2H
and  MS  data  sets  are  strikingly  different  but  are  also  highly
complementary.  Interestingly,  transient  interactions  are  more
often found by Y2H analysis, whereas stable interactions (such

as those in  protein  complexes)  are more reliably  identified  by
in vivo  pull-down  techniques [12].  This finding  is  not  surpris-
ing, given the highly cooperative forces that stabilize a protein
complex.  Many interactions in a complex will not be detected
by  Y2H  analysis,  given  that  the pairs of proteins being tested
are not stabilized by the other subunits of a complex.

Recently, the first comprehensive protein–protein interaction
maps (PIMs)  of flies and worms have been published by Giot
and colleagues [13] and Li and coworkers [14]. These studies also
used  the  Y2H  system  and  obtained  high  confidence  maps of
approximately 5000 and 2200 unique interactions, respectively.

Protein complex purifications from these organisms have not
been  carried  out  successfully  on  a  larger  scale,  although  this
may be possible with improved protocols and MS sensitivity.

No  matter  how  they  are  generated,  interaction  data  have
been  used  by  both  experimentalists  and  theorists  for  further
analysis.  A breakdown  of  such  uses is  shown  in  FIGURE 2 and
discussed below in more detail.

Reliability of high-throughput data
Before  conclusions  from  high-throughput  interaction  data
can be drawn,  it  is necessary  to briefly  discuss the quality  of
available data sets.

No method  is able to identify  all  protein–protein  interac-
tions.  That  is,  each experimental  strategy  generates a signifi-
cant number of false negatives. The sources of this systematic
error  are poorly  understood.  Two-hybrid  false negatives may
be caused by sterical effects due to the use of two fusion pro-
teins (two-hybrid) or it may involve weak interactions within
complexes that require cooperative effects to be stabilized and
therefore  to  generate  a  two-hybrid  signal  [12].  Conversely,  a
major bottleneck for MS analysis are low abundance proteins
and  proteins  that  are  only  weakly  associated  with  protein
complexes  and  hence  tend  to  get  lost  during  purification.
False positives are usually  a  more serious problem since they
result  in  erroneous data  and  thus misleading conclusions.  In
Y2H  studies,  some bait  constructs activate the reporter  gene
without  interacting  with  a  prey  and  so  may  generate  large
numbers of technical false positives.  On the other hand, bio-
logical  false  positives  represent  true  interactions  that  take
place in the Y2H system but have no biological relevance [15].
A  case  in  point  are  interacting  proteins  that  are  usually
expressed in different cell types.

Several approaches were used to minimize the number of false
positives  in  high-throughput  studies.  Uetz and  coworkers  [7]

discarded Y2H interactions that could not be reproduced, while
Ito and collaborators [8] defined interacting protein pairs found
three or more times as the (supposedly reliable) core data set.

More elaborate statistical  scores were proposed by  Rain and
coworkers [16]  for  the  Helicobacter  interaction  map  and  by
Bader and colleagues [17] for yeast and other data sets.

Rain and coworkers screened bait  proteins against  a genomic
fragment prey library and considered overlapping prey fragments
as the most reliable. This approach combines reproducibility and
identifies the interacting domain at the same time.
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Figure 1. Interaction data gained by Y2H and M S are complementary.
Skp1 is a protein involved in ubiquit in-mediated protein degradation and
has been epitope tagged for both Y2H screens and MS analysis. The purif ied
complexes of Skp1 from three independent MS studies and the binary
interactions from two Y2H studies are compared. Despite the dif ferences in
the data sets, most of the discovered interactions seem to be plausible:
most proteins are known to be involved in protein degradation. Skp1 is
directed to its target proteins via so-called F-box proteins, which contain a
short peptide motif , the F-box (F) [8–10,47, MS3: ELLEDGE S &
AEBERSOLD R, PERS. COMM.].
MS: Mass spectrometry; Y2H: Yeast two-hybrid.



                                     

                    113

The critical  point  of any  attempt  to estimate the number of
true and false positives in an HTS interaction study is the choice
of the true positive data set against which the new interactions
are evaluated.  Bader and coworkers used the data set of known
protein  complexes  to  derive  other  parameters  that  allow  the
scoring of Y2H data [17]. A similar statistical model was applied
to the whole Drosophila data set  resulting in a high confidence
protein  interaction  network,  which  the  authors  estimated  to
retain 40% interactions of biological significance [13].

Edwards  and  coworkers selected  known  interactions  from
3D structures (RNA polymerase II, proteasome and the Arp2/3
complex) and additional complexes from the literature [18]. The
crystal  structures of complexes approximate the absolute truth
regarding stable protein interactions since they reveal all  inter-
actions in atomic detail, at least for the proteins that have been
cocrystalized. Based on crystal structures, Edwards and cowork-
ers  found  a  false-negative  rate  of  51–96%  for  Y2H  and
15–50% for in vivo pull-down experiments, respectively. In this
context  it  is  remarkable  that  conventional  low-throughput
methods  also  produce  a  large  fraction  of  false  positives,  for
example, 61% in a pull-down study of RNA polymerase II [18].

Several  studies  showed  that  interacting  proteins  tend  to  be
coexpressed  at  the messenger  RNA (mRNA)  level  under  vari-
ous  experimental  conditions  [19,20].  However,  while  coexpres-
sion  of  the  two  partners  increases  the  confidence  in  a  pro-
tein–protein  interaction,  it  is  only  an  indirect  measure  of  its
reliability.  While  proteins  in  a  complex  must  be  expressed  at
similar  levels  in  order  to  maintain  their  stoichiometric  ratios,
this  is  not  necessarily  true  for  transient  interactions  that  are
often found in Y2H screens.

Topology of protein interaction networks
Protein interactions identified on a genome-wide scale are com-
monly visualized as protein interaction networks. Such networks
are  graphs  with  proteins  as  nodes  and  interactions  as  edges
(FIGURE 3).  Although this representation does not reflect the true
nature  of  protein  interactions  (which  is  rather  composed  of
dynamically  forming  complexes),  it  serves  as  a  useful  mental
map and allows for the analysis of certain network properties.

Many biological networks, including protein interaction net-
works and metabolic networks, have a so-called scale-free topol-
ogy [21].  Scale-free networks are characterized  by  a  few highly
connected nodes (hubs)  and many less-well  connected periph-
eral  nodes.  The  distribution  of  the  node  degree  k  follows  a
power law (P[k]~ k−γ) (FIGURE 3) [22,23].

The  scale-free  nature  explains  several  properties  of  protein
interaction  networks.  For  example,  highly  connected  hubs
often appear to have central  roles in  a network,  which would
make them vulnerable to attack  by  mutation  or  drugs.  Jeong
and coworkers have shown that  the lack  of homogeneity  of a
network results in tolerance to errors [24].  Random mutations
in  the yeast  genome do not appear to affect  the overall  topo-
logy  of  the  network.  By  contrast,  when  the  most  connected
proteins are computationally eliminated, the network diameter
increases rapidly (i.e., the minimum number of nodes between

two arbitrary  proteins).  Although  proteins with  five or  fewer
links  constitute  approximately  93%  of  the  total  number  of
proteins in  the  data  set  of  Jeong  and  coworkers,  they  found
that  only  approximately  21%  of  them  are  essential.  By  con-
trast,  only  some  0.7%  of  the  yeast  proteins  with  known
phenotypic profiles had more than 15 links,  but a deletion of
62% of these proves lethal.

Experimentally  derived  interaction  networks,  such  as  that
shown  in  FIGURE 3B,  can  be  extremely  complex  and  biological
meaning is not immediately obvious in them. However, biologi-
cal systems are hierarchically organized into functional modules
and submodules [25]. For example, cells produce ATP via a set of
modules, such as the glycolytic pathway, the Krebs cycle and the
protein complexes involved in oxidative phosphorylation.  Even
if  their  annotation  cannot  be  used  for  clustering  as  shown  in
FIGURE 3C,  several groups have developed algorithms to identify
functional clusters (cliques) in protein interaction networks. For
example,  Spirin  and  Mirny  developed  an  algorithm  that  was
able  to  recover  many  previously  known  protein  complexes
(e.g.,  the  anaphase-promoting  complex)  and functional  mod-
ules (e.g.,  the yeast pheromone response pathway) [26]. In addi-
tion, new complexes (e.g., a complex of six proteins including a
YIP1 Golgi membrane protein) and new members of complexes
(e.g.,  two  40S  small  ribosomal  subunits  in  the  Lsm  splicing
complex)  were identified  and  thus these methods can  provide
information about single proteins and their biological context.

The  interconnections  between  different  modules  can  be
derived from individual protein interactions and their functional
annotation  (FIGURE 3D). When all proteins of a certain functional
class (or module)  are collapsed into one node each,  the protein
interactions  can  be  used  to  visualize  their  relationships.  For
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Figure 2. The use of large- scale protein interaction data sets as shown
by the number of citations that received during the past 4 years
(grouped into four categories) [7]. The high level of citat ion by
experimental (small scale, in depth) studies indicate the usefulness of high-
throughput interaction data for more focused analyses. The increasing
citation rate by bioinformatics studies, which mainly focus on the high level
organization of protein interaction networks, however, illustrates that both
a bottom-up, as well as a top-down, view of biological systems are
encouraged by these high- throughput studies.
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Figure 3. Network classification and analysis. (A) Protein interaction networks are scale- free networks. In contrast to exponential random networks, in
which all proteins (nodes) are regarded as equal,  scale- free networks have highly connected proteins which are more likely to interact with new proteins
added to the network. Exponential networks are therefore statist ically homogenous, whereas scale- free networks have a few highly connected proteins (hubs)
and many proteins with few interactions. The signature of scale- free networks is the power law distribution of the node degree (k; number of interacting
partners of a protein), P(k)~ k-γ, whereas the node degree follows a Poisson distribution in the exponential network model. Reprinted with permission from [23]
and [48]. (B) The protein interaction network of yeast reveals dif ferent levels of organization. (C) Computer algorithms can deduce molecular modules (protein
complexes and pathways) directly from the topology of protein interaction networks [26,49]. (D) Complex protein interaction networks can be collapsed into a
meta-network showing the interactions between functional categories. (B) and (D) reprinted with permission from [32].
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example,  in  FIGURE 3D  (top middle)  the 68  proteins involved  in
amino acid metabolism are connected by 23 protein interactions.
More importantly,  this class of proteins also interacts with pro-
teins  involved  in  protein  degradation  (arguably  to  generate
amino  acids),  the  cell  cycle  (which  controls  almost  everything
and therefore is highly connected by definition) and, surprisingly,
chromatin  structure.  Unexpected  interactions  such  as  the  one
between amino acid metabolism and chromatin structure point
to hitherto unnoticed crosstalk between biological pathways and
functions which in this case may be regulatory in nature. The
fact that some groups (such as the cell cycle proteins) are highly
connected indicates their  central  regulatory  role for  most  other
processes in a cell.

Another  method  for  the  detection  of  complexes  in  protein
interaction  networks  based  on  k-cores  was  used  to  detect  a
novel  nucleolar  network  in  yeast  [27,28].  A k-core  is  a  subnet-
work of the protein interaction network in which each protein
is connected  to at  least  k  proteins of this subnetwork.  There-
fore,  this set  of proteins forms a highly  connected complex in
the protein interaction network.  The identified nucleolar pro-
tein  interaction  network  showed  a  structure corresponding  to
the known electron  microscopic substructure of the nucleolus
(fibrillar  component,  dense  fibrillar  component  and  granular
component) [28].  This illustrates that the close examination of
protein  interaction  networks can  reveal  molecular  structures,
without a priori knowledge of protein functions.

Lessons from single interactions
The  ultimate  goal  of  molecular  biology  is  the  mechanistic
explanation of specific biological phenotypes. For such explana-
tions  a  detailed  understanding  of  single  proteins  is  necessary.
Protein  interaction  data  often  provide critical  information  on
the molecular behavior of a protein and almost always allow the
formulation  of  some  biological  hypothesis.  The  chromosome
cohesin  proteins  illustrate  this  point  (FIGURE 4):  a  few  interac-
tions of the Smc and Scc proteins in yeast  and their predicted
coiled-coil  structure  suggested  a  model  that  explained  their
ability to hold chromatids together.

Obviously,  the  lower  reliability  of high-throughput  interac-
tion data has to be taken into account and hypothesis building
should start with the most plausible interaction and then pro-
ceed to less likely ones. However, the power of interaction map-
ping is also based on the fact that it is not dependent on previ-
ous  knowledge  of  a  certain  protein.  Therefore,  completely
unexpected interactions may lead to spectacular new discover-
ies. For example, interactions between membrane proteins and
transcription factors have usually been considered as false posi-
tives.  However,  during  the  past  couple  of  years  it  has  been
shown  in  a  number  of  cases  that  such  interactions  represent
novel  methods  of  regulating  transcription  directly  by  mem-
brane receptors. Well-studied examples include the sterol regu-
latory element-binding proteins [29], Alzheimer protein amyloid
precursor protein and the signaling protein Notch [30].  In this
manner  protein  interactions  can  uncover  new  connections
between  previously  unlinked  processes  or  pathways.  Striking

examples  are  moonlighting  proteins.  These  proteins  posses
multiple functions that are not due to gene fusions, splice vari-
ants or multiple proteolytic fragments. Clf1p, for example, is a
protein involved in pre-mRNA splicing in yeast. In addition to
its interaction with the U5 and U6 subunits of the spliceosome,
an interaction with the replication initiation protein Orc2p was
shown in a two-hybrid assay.  This interaction,  together with a
DNA replication phenotype, makes Clf1p a protein involved in
splicing and in DNA replication initiation and thus represents
a link between these putative unrelated processes. More gener-
ally,  many  proteins  appear  to  have  several  functions.  New
interactions may suggest such additional functions [31].

An important goal of proteomics is a functional assignment
for proteins which cannot be annotated by homology alone.
Several  approaches for  automated  functional  assignment  from
protein interaction networks have been developed. The major-
ity rule assignment is based on the observation that 70–80% of
the interacting proteins share at least one function, therefore an
unclassified protein  is assigned the most  common function in
the set of characterized interacting proteins [32,33].  A disadvan-
tage  of  this  simple  method  is  that  interactions  between  two
uncharacterized proteins are not taken into account.

Such predictions have also been experimentally tested. Kem-
meren  and  coworkers  verified  the  predicted  function  of  five
proteins that  had  interactions with  known  proteins that  were
also  coexpressed  [34].  For  example,  a  deletion  strain  of  an
uncharacterized  ORF  (YLR270W)  shown  to  interact  with  a
protein required for thermotolerance (NTH1, neutral trehalase
gene) showed sensitivity to heat shock.

Ideally, high-throughput interaction data are used by more tra-
ditional cell biological studies (FIGURE 2).  For example,  Tesse and
coworkers examined the role of Ski8p in Soradia meiosis [35].
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Figure 4. M odel building based on protein interaction data: cohesins
and condensins. The interactions between Smc1, Smc3 and Scc1 and the
coiled-coil structure of Smc proteins suggest a ring- like structure of the
three interact ing proteins. A protein ring model explains the cohesive
propert ies of cohesin, which holds together sister chromatids after DNA
duplicat ion. Interest ingly, the model also suggests a mechanism for
chromatin condensation since condensin most likely has an analogous
structure where Smc2, Smc4 and Brn1 replace the homologous cohesin
subunits [50].
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A role of Ski8p in meiotic DNA recombination was suggested
by the mutational phenotype. However, due to its known role
in  cytoplasmic  RNA  degradation  (nonpoly[A]  and  double-
stranded RNA), an indirect role of Ski8p was assumed. How-
ever,  a  direct  interaction  between  Ski8p  and  a  protein
involved  in  meiotic  recombination,  Spo11,  in  a  comprehen-
sive Y2H  study  led the authors to examine a  direct  effect  of
Ski8p  on  meiotic  recombination  which  was  subsequently
proven [7].

Evolution of protein interaction networks
It has been suggested that proteins involved in interactions are
more  conserved  than  proteins  that  participate  with  a  smaller
number  of  interaction  partners  [36].  However,  Jordan  and
coworkers  demonstrated  that  only  proteins  with  the  largest
number of interactions (the hubs of the protein interaction net-
work)  show a  slower  evolution  rate  [37].  Thus,  the correlation
found by  Fraser and colleagues may be an artefact caused by a
small subset of proteins rather than a general phenomenon [36].

Comparative interactomics: predicting
homologous interactions
Proteins evolve and so do their interactions.  If interacting pro-
teins have a weak homology to another pair of interacting pro-
teins,  the  interaction  will  support  both  their  functional  and
evolutionary  homology  (FIGURE 5A).  In  order  to  detect  such
homologous interactions and  pathways,  Kelley  and  coworkers
[38]  developed  the  program  PathBlast,  which  aligns  two  pro-
tein–protein interaction networks combining interaction topol-
ogy  and  sequence  similarity  [102].  Using  this approach,  it  was
possible to show that the protein–protein interaction networks
of yeast  and Helicobacter pylori  harbor a significant number of
evolutionarily  conserved  pathways.  A  spectacular  example
among  the  conserved  subnetworks  is  a  group  of  proteins
involved  in  bacterial  membrane  transport  and  nuclear–cyto-
plasmic  transport  in  yeast.  This  finding  indicates  that
nuclear–cytoplasmic  transport  may  have  originated  from  a
homologous system in bacterial plasma membranes.

Pathway  comparison  cannot  only  uncover  conserved  path-
ways  but  can  also  identify  additional  components  that  have
been found in one organism but not in another.  For example,
the  homologous  proteins  shown  in  FIGURE 5A  have  different
interaction partners. This information can be exploited to pre-
dict  unknown  interaction  partners  based  on  homologs  in
another model.  Such predictions are particularly supported by
protein complexes that tend to be well conserved, especially as
they usually require several conserved subunits for stability.

Integrating protein interaction data with other HTS data
Obviously,  high-throughput  data  are  not  sufficient  to  explain
complex  biological  processes.  However,  it  has  been  demon-
strated that the combination of several data sets can contribute
significantly  to the  understanding  of certain  processes [39].  In
addition,  high-throughput  approaches  can  also  be  used  to
improve data quality and therefore, their predictive power. For

example,  it  has  been  shown  that  the  intersection  of  high-
throughput  interaction  data  sets  contains  more  interactions
from the same MIPS complex than single data sets [18].

A major drawback of this method is that all high-throughput
data sets are far from being comprehensive,  which results in  a
very small intersection between different data sources (e.g., 133
common  interactions  between  Uetz’s  and  Ito’s  core  data  sets)
[28].  Therefore,  a  very  limited  number  of  interactions  are
marked as reliable using this method.

A more elaborate approach is the use of a Bayesian network,
which allows for the probabilistic combination of multiple data
sets.  It  has been shown that  the fraction of false positives and
false  negatives  can  be  reduced  using  this  method  [18].  This
approach  has  also  been  used  in  a  comprehensive  study  by
Jansen and coworkers [40], in which the high-throughput inter-
action data sets for the yeast proteome (Y2H and in vivo pull-
down) were combined with genomic features only weakly asso-
ciated  with  an  interaction  (e.g.,  coexpression of two proteins)
to generate a more reliable interaction data set.

Can a combination of high-throughput data replace
traditional experiments?
As has been  seen,  HTS  data  are  often  of  lower  quality  than
individually obtained data.  On the other hand,  HTS data are
often  better  controlled  internally  since  they  have  been  col-
lected  under  standard  conditions.  What  if  all  kinds  of  data
were  collected  under  such  standardized  conditions  and  were
subsequently  combined?  For  example,  why  are  intracellular
transport processes not studied by:

• Localizing all proteins in organelles such as the Golgi

• Identifying all protein interactions and complexes

• Measuring their transcription, degradation and
post-translational modifications under various conditions

• Their mutant phenotypes

Such data  can  easily  be collected  but  will  not  explain  any
biological  mechanism  unless  experiments  that  explicitly
address defined causal  relations are performed.  Most impor-
tantly,  cause and  effect  cannot  be distinguished  in  advance.
For  example,  deleting  all  genes  in  a  genome  is  useful  for
investigating which proteins are essential,  but  if a protein  is
not  essential  under  the  tested  conditions  it  will  not  tell  us
much. For instance, it is assumed that a protein of previously
unknown function (e.g., YHR105W) is involved in vesicular
transport  since  it  interacts  with  other  transport  proteins  in
two-hybrid  assays.  However,  one  screen  of  a  yeast  mutant
collection  has  not  found  YHR105W  as  being  defective  in
transport [41].  For  further  clarification,  other  hypotheses are
needed  that  reconcile  the  interaction  data  and  the  mutant
phenotype.  Such  hypotheses  are  often  not  foreseeable  by
standardized  HTS  analysis:  the  interaction  screen  was most
likely  not  comprehensive (i.e.,  there are probably  false posi-
tives  and  false  negatives)  and  the  mutant  screen  has  only
looked at one transport phenotype, namely carboxypeptidase Y
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export,  which  mainly  affects Golgi-to-vacuole  transport.  More
subtle effects of YHR105W on protein transport must now be
studied, as it is entirely possible that the interaction has a mod-
ulatory role in transport as opposed to being absolutely essen-
tial. One needs to remember that most mutations are not dele-
terious but rather show no, or only subtle, defects. This is due
to the fact that gene functions can be substituted on the single
gene  level  by  duplicate  or  redundant  genes.  Such  special  cir-
cumstances usually  cannot be identified by HTS and thus have

to  be  analyzed  by  a  painstaking  hypothesis-driven  approach,
where the hypothesis is refined by each additional experiment.

As an interesting new development, King and coworkers have
devised algorithms to automate such hypothesis-driven research
[42].  Computer  algorithms  can  replace  human  reasoning  to  a
certain extent and it may be possible to push HTS to a degree
that  its  experimental  conditions  can  be  automatically  refined
based  on  previous  experiments  and  therefore,  do  simulate
hypothesis-driven experimentation.
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Figure 5. Comparison and evolution of protein interactions. (A) The comparison of protein interaction networks of dif ferent species reveals conserved
pathways. PathBlast, an algorithm for the alignment of protein interaction networks, was used to identify conserved pathways between Helicobacter pylori and
yeast [38]. As an example, a protein degradation/DNA replicat ion pathway is shown. Proteins with a certain sequence similarity are placed in one row. Direct
protein interactions appear as solid lines and gaps or mismatches are dotted. This pathway alignment demonstrates an associat ion of two pathways which
were not previously known to be linked. The network contains proteins associated with DNA polymerase (Rfc2, 3, 4, 6) and subunits of the 19S proteasome
regulatory cap (Rpt1, 2, 3, 4, 6) and thereby provides evidence from both yeast and bacteria that the protein degradation and the DNA replicat ion pathways
associate in vivo. This method can be helpful for predict ing protein functions and identifying functional orthologs from among mult iple homologous
sequences. Furthermore, the comparison of pathways and functional modules helps to understand and visualize protein network evolution [38].
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Protein interaction networks for
medical research
Most  diseases are caused  by  malfunction-
ing proteins in one way or another. How-
ever, there are only a few known examples
of disease-causing defects in protein inter-
actions.  The best-studied cases are proba-
bly receptors that bind (or do not bind) to
peptide  hormones  or  oncoproteins,  such
as Ras, which may cause cancer when their
signaling interactions are defective.

When  analyzing  mutant  proteins  it  is
usually  not  easy  to tell  an  impaired pro-
tein  interaction  apart  from  some  unre-
lated  effect,  such  as  a  folding  problem.
Hence  it  is  difficult  to  say  if  a  certain
phenotype arises from a defective protein
interaction  or  some  indirect  cause,  such
as  an  instability  that  prevents  a  protein
from interacting.

For a detailed understanding of disease-
causing  mutations  it  would  be  desirable
to have the  crystal  structures of proteins
and  their  mutants.  This would  tell  us if
the  structure  is  really  unaffected  by  a
mutant  or  if  the  mutant  affects  an
exposed interaction surface.

Interestingly,  Giot  and  colleagues
present  a  human  disease  protein  view in
their Drosophila  PIM,  in  which  proteins
with  sequence  similarity  to  human  dis-
ease genes are highlighted (FIGURE 6A) [13].
74%  of  human  disease  genes  in  the
Online  Mendelian  Inheritance  in  Man
(OMIM)  database  have  strong  matches
(BLAST  e-value  <10-10)  to  one  or  more
sequences in the Drosophila  database [43].
This clearly  shows the utility  of PIMs in
model organisms for medical research.

Using protein interaction networks for
drug discovery
The goal of drug discovery is to design or
identify  small  molecular  compounds
which  help  to  cure  or  at  least  ameliorate
disease. Protein interaction mapping can be useful at several lev-
els of the drug  discovery  process.  The first  step  should  be the
drug target identification. PIMs can help to identify proteins of
relevant molecular pathways or complexes which are involved in
a specific disease. For example, a highly connected protein (hub)
may be a suitable target for an antibiotic whereas a more periph-
eral protein with few interactions may be more appropriate for a
highly specific drug that needs to avoid side effects.

Proteins and their protein–protein interaction surfaces are
promising  targets  for  specific  drugs,  although  only  a  few

published examples of interaction inhibitors are available. One
example  are  agents which  inhibit  the  interaction  between  the
BH3 domain and Bcl-xl (FIGURE 6B) [44].

Another recently  published  example is the hepatitis C  virus
protease, which cleaves the virus-encoded polyprotein. Lamarre
and coworkers used interactions of the protease with a substrate
to  identify  short  peptides that  are  recognized  by  the  protease
[45].  Starting  from  a  six  amino acid  peptide  which  acted  as a
weak  enzyme  inhibitor,  three  amino  acid  inhibitors  were
selected.  These short  peptides could  then  be used  to design  a
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to apoptosis. Inhibitors such as BH3I-1 can offer new options for antitumor therapy by sensit izing
transformed cells to chemotherapy. Figure adapted and reprinted with permission from [44].
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specific  chemical  inhibitor  of  similar  structure.  The  inhibitor
had to be designed to enter the cell and appears to have  anti-
viral  activity  in  preliminary  clinical  trials.  Theoretically  this
approach can also be applied to other interactions. The limiting
problem is to find compounds that mimic peptides and are able
to enter epithelia or cells [46].

The diversity of interactions of a targeted protein could also
help to estimate or explain side effects of a drug. PIMs indicate
immediately which other proteins or processes may be affected
by inhibiting a certain interaction. Therefore PIMs can help to
design  selective  agents  which  target  specific  interactions  of  a
protein but do not affect others.

Conclusions
High-throughput protein–protein interaction data provide a start-
ing point for the analysis of complexity,  signaling and the struc-
tural and dynamic organization of cells. In addition, it illuminates
an important aspect of the evolution of molecular systems.

If combined with results from other high-throughput meth-
ods, such as microarray analysis, a systematic, global view of the
molecular  functioning  of  organisms can  be  gained  which  for
the first time gives us a glimpse of an organism as a whole. By
contrast,  conventional  biological  methods are  hardly  compre-
hensive, no matter how detailed they are since they always have
to focus on certain selected aspects.

Knowledge about biological networks will  help us to under-
stand the complexity of biological systems not just as an intel-
lectual  achievement.  Systems biology  will  eventually  facilitate
the  simulation  and  even  manipulation  of  living  systems,  for
example  to  cure  diseases  or  for  the  generation  of  safe  and
healthy food.

Expert opinion & five-year view
Today,  only  a  limited  number  of  protein  interaction  studies
have been  completed.  Moreover,  the available studies are far
from  being  complete.  The  most  comprehensive  data  set  is

available for  the yeast  proteome,  for  which  several  Y2H  and
in vivo pull-down studies have been published.  Protein inter-
action  data  sets for  other  organisms would  not  only  provide
insights into the biology  of these organisms,  but  would  also
tell  us  about  the  evolution  and  general  structure  of  protein
interaction networks.  In 5 years,  many new PIMs for viruses
and bacteria as well as other eukaryotes will become available.
This will  permit the assessment of the diversity of organisms
from a systems perspective.

Of  course,  the  protein–protein  interaction  map  of  the
human  proteome  is  an  important  goal  since  this  knowledge
would promote the understanding of human biology and the
therapy of diseases.  In 5 years,  the human protein interaction
map will  be far from being complete but there will  be several
partial interaction maps which elucidate specific pathways and
modules, such as those related to human diseases.

While a plethora of data are already available,  todays protein
interaction  networks  only  give  a  static  view  of  the  molecular
organization of the cell.  In  contrast,  the dynamic regulation of
protein  interactions,  for  example,  in  signal  transduction  cas-
cades,  is  central  to  the  understanding  of  biological  processes.
Small-scale studies have succeeded in analyzing the dynamics of
single protein–protein  interactions,  for  example,  of the bacte-
rial  chemotaxis  system.  In  2009,  the  investigation  of  the
dynamics of several  biological  subsystems (e.g.,  specific  signal
transduction  cascades)  will  provide  a  deeper  insight  into  the
complex  temporal  regulation  of  the  interactome.  In  addition,
new high-throughput techniques which capture these dynamic
properties of protein–protein interactions will be available and
thus  make  it  possible  to  initiate  projects  to  understand  their
dynamics on a proteome-wide scale.

Last but not least, improved databases and visualization tools
are  urgently  needed  to  make  available  data  more  accessible,
ideally even to nonspecialists.

Only when we have a clear idea of what is known can we
imagine what we do not know.

Key issues

• Protein interaction maps (PIMs) are generated either by the yeast two-hybrid system or by mass spectrometric analysis of
protein complexes.

• Both methods produce a certain number of false negatives and false positives. However, the reliability can be improved by
combining several data sets.

• Visualization of protein interaction networks as a graph with nodes (proteins) and edges (interactions) reveals the scale- free
topology of these networks.

• Biological, meaningful and functional modules can be identif ied in these networks and interconnections between these modules
can be explored.

• A function can be assigned to an unknown protein by examining its binding partners (guilt-by-association approach).

• Protein interaction networks help to identify evolutionary conserved pathways.

• PIMs can be applied in drug discovery to identify target proteins and to minimize side effects.
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