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Magnetic field tuning of low-energy spin dynamics in the single-atomic magnet Li2( Li1−xFex)N
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We present a systematic 57Fe Mössbauer study on highly diluted Fe centers in Li2(Li1−xFex )N single crystals
as a function of temperature and magnetic field applied transverse and longitudinal with respect to the single-ion
anisotropy axis. Below 30 K, the Fe centers exhibit a giant magnetic hyperfine field of B̄A = 70.25(2) T
parallel to the axis of strongest electric field gradient V̄zz = −154.0(1) V/Å2. Fluctuations of the magnetic
hyperfine field are observed between 50 and 300 K and described by the Blume two-level relaxation model.
From the temperature dependence of the fluctuation rate, an Orbach spin-lattice relaxation process is deduced.
An Arrhenius analysis yields a single thermal activation barrier of ĒA = 570(6) K and an attempt frequency
ν̄0 = 309(10) GHz. Mössbauer spectroscopy studies with applied transverse magnetic fields up to 5 T reveal a
large increase of the fluctuation rate by more than one order of magnitude. In longitudinal magnetic fields, a
splitting of the fluctuation rate into two branches is observed consistent with a Zeeman induced modification
of the energy levels. The experimental observations are qualitatively reproduced by a single-ion effective spin
Hamiltonian analysis assuming a Fe1+ d7 charge state with the unquenched orbital moment and a J = 7/2 ground
state. It is demonstrated that a weak axial single-ion anisotropy D of the order of a few Kelvin can cause a two
orders of magnitude larger energy barrier for longitudinal spin fluctuations.
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I. INTRODUCTION

Single-molecule magnets (SMMs) and single-atomic mag-
nets (SAMs) are model systems to study fundamental as-
pects of magnetic relaxation including quantum tunneling of
magnetization and quantum coherence in nanoscale systems
[1,2]. Moreover, SMMs and SAMs are proposed for novel
data storage devices in spintronics or possible applications for
quantum computing [3–5].

Isolated magnetic moments with strong axial anisotropy
exhibit a bistability of magnetization with an energy barrier to
magnetization reversal resulting in slow magnetic relaxation.
Fluctuation of magnetization is driven by spin-lattice relax-
ation or hyperfine coupling processes. For thermally activated
fluctuations, the spin relaxation time τ at a temperature T is
described by

τ = τ0 exp

(
EA

kBT

)
, (1)

controlled by an effective energy barrier EA, an “attempt time”
τ0, and with the Boltzmann constant kB. The experimentally
observed energy barrier EA can be very different from the
magnetic anisotropy energy Em = DS2. Magnetic quantum
tunneling processes via degenerate Sz states above the ±S
ground state can considerably reduce EA. External magnetic
fields applied longitudinal to the magnetic anisotropy axis can

be used to tune the magnetic system through the level cross-
ing condition for specific Sz states via Zeeman interaction.
However, quantum tunneling can only occur if off-diagonal
elements in the spin Hamiltonian cause a mixing of these Sz

eigenstates and an avoided level crossing with a finite mini-
mum energy gap �m,m′ is generated. The Landau-Zener model
[6] is applied to describe the magnetic quantum tunneling
observed via magnetization steps in low-temperature magne-
tization experiments, e.g., in nanomagnets such as Mn12-ac
[7] or [Fe8 O2(OH)12(tacn)6]8+, briefly Fe8 [8]. In an external
magnetic field applied transverse to the anisotropy axis, the
quantum tunneling can be modulated by quantum interference
[9]. This topological quantum phase interference, described
by a Berry phase, is experimentally observed [10].

Li2(Li1−xFex )N crystallizes in a hexagonal symmetry
(space group P6/mmm) and alternating planes of (Li2N)
and (Li1−xFex) are stacked along the crystallographic c axis
[11]. Figure 1 shows the enhanced unit cell emphasizing the
hexagonal symmetry of the Fe site and the corresponding
linear N-Fe-N geometry. In Li3N, each N3− ion is surrounded
by eight Li+ ions. Six Li+ are located in plane in a hexag-
onal geometry (Li-2c sites). Two Li+ (Li-1b sites) are lo-
cated between the planes leading to a hexagonal-bipyramidal
geometry. The Fe ions occupy only the Li-1b site in be-
tween the Li2N planes. Studies on polycrystalline samples
of concentrated Li2(Li1−xFex )N with x ≈ 0.16 and ≈0.21

2469-9950/2020/102(5)/054426(17) 054426-1 ©2020 American Physical Society

https://orcid.org/0000-0002-1437-4762
https://orcid.org/0000-0002-8985-7128
https://orcid.org/0000-0002-7198-6511
https://orcid.org/0000-0002-8523-0491
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.054426&domain=pdf&date_stamp=2020-08-19
https://doi.org/10.1103/PhysRevB.102.054426


S. A. BRÄUNINGER et al. PHYSICAL REVIEW B 102, 054426 (2020)

FIG. 1. Crystal structure of Li2(Li1−xFex )N [11]. The host sys-
tem is an α-Li3N matrix, here Li+ shown in green (2c Wyckoff site,
in-plane) and N3− in gray (1a Wyckoff site). Fe substitution, shown
in brown, takes place only between the N3− (1b Wyckoff site). The
black lines show the primitive unit cell.

by Mössbauer spectroscopy revealed a static hyperfine field
below TC ≈ 65 K and long-range ferromagnetic ordering was
proposed on the basis of magnetization studies [12,13]. More
recently, magnetization studies on large single crystals of
Li2(Li1−xFex )N with x = 0.001–0.3 were reported [14,15].
Large magnetic moments exceeding the spin-only value with
a strong axial anisotropy parallel to the c axis are found. These
magnetic moments can be associated with isolated Fe ions lin-
early coordinated with two nitrogen ions in covalent N-Fe-N
bonds [16]. From low-temperature magnetization experiments
on single crystals a magnetic anisotropy field of B ≈ 88 T
(x ≈ 0.0032) was estimated together with a large effective
magnetic moment μeff = 6.5(4)μB per Fe atom parallel to
the c axis, largely independent of the Fe concentration [14].
For x ≈ 0.28, an even larger magnetic anisotropy field of

B ≈ 220 T was reported [14]. The deduced value of μeff is in
agreement with the fully spin-orbit coupled Hunds rule value
of an Fe1+ configuration [12,14]. The observation of steps in
magnetic hysteresis loops and relaxation phenomena with an
energy barrier EB ≈ 430 K indicate a SMM-like behavior. The
relaxation time is only weakly temperature-depended below
10 K indicating the importance of quantum tunneling in this
temperature range [16]. However, the microscopic process of
the thermally excited relaxation is not known. At low Fe dop-
ing concentrations, data suggest that the spontaneous magne-
tization and hysteresis is not caused by a collective magnetic
ordering but rather due to the strong axial magnetic anisotropy
in the linear N-Fe-N moiety [14]. A recent study reports a slow
paramagnetic relaxation stressing the proposed ferromagnetic
nature of nondiluted Li2(Li1−xFex )N (x ≈ 0.30) [15].

Xu et al. [17] performed electronic structure calculations
for Li2(Li1−xFex )N , which reveal large magnetic anisotropy
energies of 305 K for an Fe2+ d6 with J = 4 configuration
and 360 K for Fe1+ d7 with J = 7/2 configuration. Moreover,
the authors propose that an Fe2+ state could dominate at low
x � 1, whereas the Fe1+ state should play the major role
at larger x. However, it is not clear how such strong axial
anisotropy energies around 300 K can be reconciled with the
observation of electronic level crossings in the magnetic hys-
teresis experiments at very low longitudinal magnetic fields of
BL = 0.15, 0.55, and 3 T [14,16], i.e., energy scales μB/kB of
several degrees Kelvin only.

To address these questions, in this manuscript we re-
port a detailed 57Fe Mössbauer investigation on single
crystals of highly diluted Fe in Li2(Li1−xFex )N with x =
0.0275, 0.0109, 0.0099, and 0.0013. The measurements were
performed at temperatures 2 K � T � 300 K in magnetic
fields 0 T � B � 5 T applied transverse and longitudinal to the
crystallographic c axis (magnetically easy axis). Below T =
30 K, the Fe centers exhibit a giant magnetic hyperfine field
of B̄A = 70.25(2) T parallel to the axis of strongest electric
field gradient V̄zz = −154.0(1) V/Å2. We demonstrate that
the diluted Fe ions in Li2(Li1−xFex )N indeed form isolated
single-ion paramagnets consistent with an Fe1+ d7 charge
state and an unquenched orbital moment, i.e., total angular
momentum J = 7/2. A continuous slowing down of the spin
fluctuations is observed by Mössbauer spectroscopy below
T = 300 K, which can be described by a thermally activated
Orbach process with an activation barrier of ĒA = 570(6) K.
The fluctuation rate is very sensitive to magnetic fields of
the order of a few Tesla even at elevated temperatures of
T ∼ 70 K. A quasistatic magnetic hyperfine field is observed
below 50 K. A clustering of nearest neighbor Fe ions is
ruled out by studies on samples with four different x � 0.028
proving the single-atomic-magnet behavior. The experimental
observations are qualitatively reproduced by a single-ion spin
Hamiltonian analysis. It is demonstrated that, for dominant
magnetic quantum tunneling relaxation processes, a weak
axial single-ion anisotropy D of the order of a few Kelvin can
cause a two orders of magnitude larger energy barrier EB for
longitudinal spin fluctuations in systems with a large angular
momentum quantum number. The slow spin fluctuations at
low temperatures suggest Li2(Li1−xFex )N to be a candidate
for a novel functional magnetic materials, e.g., in quantum
computing.
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TABLE I. Fe concentration x and estimated error �x in
Li2(Li1−xFex )N determined by ICP-OES.

x (%) �x (%) also denoted as

SC 1 2.75 0.16 Li2(Li0.9725 Fe0.0275)N
SC 2 1.09 0.07 Li2(Li0.9891 Fe0.0109)N
SC 3 0.99 0.06 Li2(Li0.9901 Fe0.0099)N
SC 4 0.13 0.01 Li2(Li0.9987 Fe0.0013)N

II. EXPERIMENTAL

Four single crystals (SCs) were investigated by 57Fe Möss-
bauer spectroscopy in this work. The crystals were grown out
of lithium rich flux [18]. The starting materials Li3N powder
(Alfa Aesar, 99.4%), Li granules (Alfa Aesar, 99%), and Fe
granules (Alfa Aesar 99.98%) were mixed in a molar ratio
of Li:Fe:Li3N = 6 − x : x : 1 with x = 1.5, 0.5, 0.5, and 0.1
for samples SC 1, SC 2, SC 3, and SC 4, respectively. The
mixtures with a total mass of roughly 1.5 g were packed into
a three-cap Nb crucible [19] inside an argon-filled glovebox.
The crucibles were sealed in ∼0.6 bar Ar via arc welding
and finally sealed in a silica ampule in ∼0.2 bar Ar. The
mixtures were heated to T = 900 ◦C within 5 h, cooled to
T = 750 ◦C over 1.5 h, slowly cooled to T = 500 ◦C over
60 h and finally decanted to separate the crystals from the
excess flux. The composition was determined by inductively
coupled plasma optical emission spectroscopy (ICP-OES)
using a Vista-MPX. To this end the samples were dissolved in
a mixture of hydrochloric acid and distilled water. Obtained
Fe concentrations based on the measured Li:Fe ratio are given
in Table I.

Mössbauer measurements were carried out in CryoVac and
Oxford instruments helium flow cryostats in under-pressure
mode or normal mode, respectively. We used a WissEl Möss-
bauer spectrometer. The detector was a proportional counter
tube or a Si-PIN-detector from KETEK. A Rh/Co source with
an initial activity of 1.4 GB was used. The superconducting
coil was powered by an Oxford instruments IPS 120-10 power
supply with an applied magnetic field parallel or perpendic-
ular to the γ beam with an angle error of <5◦. The absorber
SC 1 exceeded the thin absorber limit requiring a transmission
integral fit. The analysis was done using the MOESSFIT analysis
software [20]. All measurements were performed with the
γ beam parallel to the crystallographic c axis. The single
crystals were protected by paraffin wax to avoid oxidation.

III. RESULTS

A. Macroscopic magnetization

Magnetization measurements were performed using a 7 T
Magnetic Property Measurement System (MPMS), manufac-
tured by Quantum Design. Figure 2 shows the isothermal
magnetization of SC 1 measured at different temperatures
for magnetic field applied parallel to the crystallographic c
axis, BL ‖ c, i.e., parallel to the Fe ion anisotropy axis. The
effective sweep rate for the full loops was 2.9 mT/s with
10 mT/s between the measurements. Hysteresis emerges for
temperatures T < 50 K. At T = 2 K, steps appear at μ0BL ≈
0 and ±3.3 T as well as for μ0BL = 0.55 T, with the latter

FIG. 2. Isothermal magnetization of Li2(Li1−xFex )N with x =
0.0275 (crystal SC 1) for BL ‖ c at various temperatures given in the
plot.

being recognizable only in the derivative dM/dB. At lower x,
additional steps appear at μ0BL = 0.15 T and the anomalies
become sharper [14,16]. The M-H measurements shown in
Fig. 2 were performed after the Mössbauer experiment and
are in good agreement with results published earlier [14].

B. Low-temperature 57Fe Mössbauer spectroscopy at base
temperature TB

Mössbauer spectroscopy was performed at base tempera-
ture TB � 4 K in zero field (ZF) on the crystals SC 1–4. At
this temperature the lifetime of the electronic states exceeds
that of the nuclear states. Therefore the hyperfine interactions
are effectively stationary.

Figure 3 shows the 57Fe Mössbauer measurement at TB in
ZF of SC 1–4. For SC 1, two Fe sites A (green) and B (red)
are observed. The black line is given by the total transmission
integral fitting function

T (v) =
∫ ∞

−∞
L(E , v)e−σ (E )ta dE (2)

with the normalized Breit-Wigner resonance cross section
σ (E ) depending on the energy E and an effective thickness
ta = 2.39(10) reflecting a nonthin absorption limit. Therefore
the black line represents the transmission integral fit whereas
the lines for the sites A and B show the natural line L(E , v).
T (v) is proportional to the line intensity of the recoil-free
γ ray, a function of the absorber thickness, and v is the
Doppler velocity, for details see Appendix. A thin absorber
approximation is only valid for ta < 1 and then is the line
shape described by a Lorentzian L(E , v) [21]. The fit is for
SC 2–4 closer to the full thin absorption limit since the black
line is replaced and shown by the green single Fe site A.
The model used in Fig. 3 is the static crystal Hamiltonian
Ĥ = ĤM + ĤQ + ĤZ assuming the same electric monopole
ĤM and quadrupole interaction ĤQ for the two Fe sites A and
B and independent Zeeman terms ĤZ. We deduced an isomer
shift of δ = 0.100(21) mm/s with respect to α-Fe at room
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FIG. 3. Static Mössbauer spectra of Li2(Li1−xFex )N of the single
crystals SC 1–4 as specified in Table I at base temperature TB � 4 K
in ZF.

temperature assuming a negligible second-order Doppler shift
δSOD ≈ 0 of the absorber at this temperature. The electric
monopole interaction between the nuclear charge Ze = 26e
of 57Fe with the charge number Z and the s-electron charge
density ρe(0) = −e|ψ (0)|2A/S at the nucleus is shifted by the
energy EA of the absorber material relative to the energy shift
ES of the source and leads to an effective energy shift

δ = 2π

5
Ze2S(Z ){|ψ (0)|2A − |ψ (0)|2S}

(
R2

(e) − R2
(g)

)
. (3)

Here, R2
(g) = 〈r2

(g)〉 and R2
(e) = 〈r2

(e)〉 are the mean square
values of the radii of the 57Fe nucleus of the excited state
(e) with nuclear spin 3

2 and ground state (g) with nuclear
spin 1

2 , respectively. S(Z ) is the dimensionless relativity factor
which takes the spin-orbit coupling into account, e.g., for
57Fe around S(26) ≈ 1.32 or for neptunium S(93) ≈ 19.4.
These values vary slightly depending on the oxidation state.
The monopole interaction ĤM is given by a scalar ĤM ≡
δ + δSOD(T ) as a function of the temperature. δSOD is the
second-order Doppler shift and a direct consequence of the
time dilation according to the relativity theory of the lattice
dynamics. The γ -photon frequency ω0 is shifted according to
the transverse Doppler effect in the laboratory frame to

ω = ω0

√
1 − v2/c2

1 − v cos α/c
≈ ω0

(
1 + v

c
cos α − v2

2c2

)
, (4)

where v is the velocity of the nucleus, α the angle between the
movement of the nucleus and γ -photon absorption and c the
speed of light. The last term assumes v � c. This yields in the
Debye approximation the expression

δSOD = −C

[

D + 8T

(
T


D

)3 ∫ 
D/T

0

x3dx

ex − 1

]
(5)

with

C = 9kBEγ

16Meff c2
, (6)

where Meff is the effective mass. Using this expression to
analyze the temperature dependence of the central shift in
SC 1 yielded a Debye temperature of 
D = 315(8) K. For
details see Appendix. To describe the electric quadrupole
interaction ĤQ, e.g., SC 1 has a principle axis of the largest
component of the EFG (electric field gradient) of Vzz =
−154.1(2) V/Å2, denoted as usual,

|Vzz| � |Vxx| � |Vyy| (7)

and the introduced asymmetry parameter

η = |Vxx| − |Vyy|
|Vzz| � 1. (8)

This leads to the reduced quadrupole Hamiltonian

ĤQ = eQVzz

4I (2I − 1)

[
3Î2

z − Î2 + 1

2
η(Î2

+ + Î2
−)

]
(9)

with the quadrupole moment Q and the raising and lowering
spin operators Î± = Îx ± iÎy.
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The pure quadrupole energy eigenvalues are given by

EQ(m) = eQVzz

4I (2I − 1)
[3m2 − I (I + 1)]

√
1 + η2

3
(10)

with I = 3/2. The negative sign of Vzz < 0 corresponds to
an elongation of the EFG charge distribution and an excess
of negative charges in c-axis, the elongated case of the EFG
ellipsoid [22]. The asymmetry parameter η = 0 assuming
axial symmetry was used due to the hexagonal structure.

The magnetic hyperfine or Zeeman term ĤZ of the Hamil-
tonian Ĥhf is given by ĤZ = −gNμN Î · B̂ with nuclear Landé
factor gN , the nuclear magneton μN = eh̄/2mpc, the proton
mass mp and the magnetic field B. Taking the scalar |B| = B
and expresses ĤZ by the polar angle 
 and the azimutal angle
� of B relative to direction of Vzz yields

ĤZ= − gNμN B

(
Î+e−i� + Î−e+i�

2
sin 
 + Îz cos 


)
. (11)

The values of the magnetic hyperfine fields for the two Fe sub-
species converged to BA = 70.21(1) T and BB = 65.0(2) T.
Site A is the dominant Fe site. Site B is only observed in SC
1 containing the highest Fe concentration with an intensity
fraction of 5.9(3)%.

The two transitions

m = ±1

2
→ m = ±1

2
(12)

with �m = 0 are not observed in the spectra of Fig. 3. The rel-
ative line intensities W (β ) depend on the polar texture angle
β describing the direction of the incident γ ray with respect to
the magnetic hyperfine field direction, W (β ) ∝ sin2 β. For the
analysis 
 = 0 was taken. The angle β between the principle
axis (largest component) Vzz of the EFG tensor and the γ beam
was assumed to be an identical fit parameter for the monomer
site A and the dimer site B. The resulting value β = 0 proves
that the magnetic hyperfine field and Vzz are aligned parallel to
the c axis. The result is the observed ratio of the spectral line
intensities of 3:0:1:1:0:3. Figure 4 shows the geometry of the
hyperfine interactions with respect to the linear N-Fe-N bond
and with respect to the γ beam.

No indications for Fe site B are observed in SC 2 as
well as in SC 3 and SC 4. The green line is the fit of
the model of the static crystal Hamiltonian Ĥhf with an
isomer shift δ = 0.119(20) mm/s and a principle axis of the
EFG of Vzz = −154.2(4) V/Å2. The asymmetry parameter is
assumed to be η = 0. The fit yielded a magnetic hyperfine
field BA = 70.24(1) T parallel to Vzz of the EFG tensor and
parallel to the γ beam as well. Table II shows the obtained
hyperfine parameters of SC 1–4 and the calculated mean
values of V̄zz, B̄A, ln ν̄0, and ĒA. The hyperfine parameters
are nearly concentration-independent. The absolute values of
the magnetic hyperfine fields BA and BB are above typical
spin-only values in solid state systems and can be understood
in terms of a strong unquenched orbital contribution. The
analysis to obtain the fluctuation rate parameters ln ν̄0 and
ĒA of the Arrhenius temperature dependence is described in
Appendix E.

FIG. 4. Geometry of hyperfine interactions as obtained from the
static hyperfine Hamiltonian with the magnetic hyperfine field B, the
γ beam and the strongest component Vzz of the EFG tensor parallel to
the crystallographic c axis (N-Fe-N bond), which is also the magnetic
easy axis, i.e., the quantization axis (z axis) discussed in the spin
Hamiltonian analysis below.

C. Zero-field 57Fe Mössbauer spectroscopy for TB < T < 300 K

Above 50 K, the 57Fe nucleus interacts with a fluctuating
magnetic hyperfine field. Figure 5 shows representative spec-
tra between 60 and 200 K of SC 1 with x = 2.75%. In the
following we will only consider Fe site A, site B is neglected
in this analysis. The fit represents a Blume dynamic line shape
model in the presence of quadrupole hyperfine interactions for
two states, described by absorption cross section

σ = −σa�0

2
Im

∑
α

Sp
(
V̂α 〈W | Â−1(ω,
) |1〉 V̂ +

α

)
. (13)

Here, V̂α is the operator of hyperfine interactions of the
γ beam with polarization α and the nucleus, σa the effective
absorber thickness and 〈W | and |1〉 as described by Chuev and
therein [23]. The superoperator

Â(ω,
) = ω̃ + i�0/2 − L̂(
) + iP̂ (14)

is defined by the Liouville operator of hyperfine interactions
L̂(
), the resonance transition energy E0 is given by the
corresponding frequency ω̃ = ω − E0/h̄, �0 the width of the
excited nuclear level and P̂ the matrix of hyperfine transitions
[20,23–25].

The initial conditions for the analysis are identical to
the static case at 2 K. A two level relaxation model was

TABLE II. Hyperfine parameters Vzz, BA as well as the Arrhenius
parameters ln ν0 and EA of SC 1-4. The errors represent standard
deviations obtained during linear regression.

Vzz (V/Å2) BA (T) EA (K) ln(ν0 [MHz])

SC 1 −154.1(2) 70.21(1) 552(26) 12.36(32)
SC 2 −154.2(4) 70.24(1) 563(12) 12.48(11)
SC 3 −154.0(2) 70.23(1) 581(12) 12.65(11)
SC 4 −154.0(6) 70.30(2) 552(44) 12.08(49)
Mean value −154.0(1) 70.25(2) 570(6) 12.64(7)
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FIG. 5. Mössbauer spectra of SC 1, Li2(Li1−xFex )N with x = 2.75%. Lines show a two level Blume model fluctuation spectrum analysis
[20]. The magnetic hyperfine field fluctuates between +BA and −BA with the frequency ν. BA in this model is assumed to be parallel to Vzz and
to the γ beam.

used taking into account an electronic spin reversal process.
The magnetic hyperfine field fluctuates with the fluctuation
frequency ν between the two values +BA and −BA. Above
60 K the spectral lines begin to broaden due to the fluctuations,
see Fig. 5. With increasing ν at 70 K, the two internal lines
collapse first yielding a singlet at 100 K. At 150 K and above,
the left resonance line of the quadrupole doublet, which is
expected to appear in the fast relaxation limit ν → ∞, results
from the collapse of the external lines [26]. The Arrhenius
parameter EA and ln ν0 are obtained by an Arrhenius analysis

ln ν = ln ν0 − EA

kB

(
1

T

)
(15)

of the extracted fluctuation frequencies ln ν of SC 1–4. In this
analysis, the values of ν for T < 50 K are not considered
since these value reflect the lower bound of the fluctuation
rate which the Mössbauer spectra analysis can resolve. This
yielded a thermal activation barrier of EA = 552(26) K and

ln ν0 = 12.36(32) GHz for SC 1. The fluctuation frequency
ν of Fe site A is essentially concentration-independent in
SC 1–4. Table II shows the Arrhenius plot fit parameter of
SC 1–4, for details see Appendix.

D. 57Fe-Mössbauer spectroscopy in transverse magnetic
fields BT

Here we present the results of Mössbauer spectroscopy
experiments under applied transverse magnetic fields BT up
to 5 T as illustrated in Fig. 6. Therefore the field is applied
perpendicular to the quantization axis of the Fe spins which
is determined by the direction of the magnetic hyperfine
field at the Fe nucleus, i.e., the crystallographic c axis. In
this geometry, an increasing field BT leads to an increasing
mixture of the Sz eigenstates of the electronic spins and an
increasing fluctuation rate of the magnetic hyperfine field
is expected supported by a theoretical treatment based on
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FIG. 6. Illustration of applied magnetic fields perpendicular (BT )
or parallel (BL) to the quantization axis (z axis) which is the crystal-
lographic c-axis.

the minimal spin Hamiltonian of a single-ion in the next
section. These experiments were performed on sample SC 1.
Figure 7 shows four typical Mössbauer spectra in different
transverse magnetic fields (TF) up to 5 T. The experimental
data clearly reveal an increase of the fluctuation frequency
ν with increasing field strength. The temperature and field
range for these experiments was chosen such that the slowly
fluctuating magnetic hyperfine field of ≈70 T can be regarded
as the dominant hyperfine interaction with the 57Fe nuclei
and the Blume model of axial fluctuations of the magnetic
hyperfine field described in the former subsection can be used
for the quantitative analysis (solid lines in Fig. 7). For higher
fields the vector sum of the external field and the internal
magnetic hyperfine field must be considered.

At T = 70 K, ν has increased in 1 T by a factor 2 and
in 5 T by a factor 8. This documents a strong transverse
field sensitivity. The dependence of the fluctuation frequency
ν on the transverse magnetic field BT and temperature T is
investigated in detail for SC 1. Figure 8 shows the logarithmic
frequency log10 as a function of the inverse temperature 1/T
for different transverse external fields and Fig. 9 shows the
logarithm of ν as a function of the transverse magnetic field
for different temperatures.

The used fit function is discussed in the spin-Hamiltonian
part below and in the Appendix. In Fig. 8, at low temperatures
1/T > 0.01 K−1, a pronounced field-induced non-linear devi-
ation from the zero-field Arrhenius line is observed. For high
temperatures 1/T < 0.01 K−1 the data converge to the zero-
field Arrhenius line, i.e., the temperature-induced fluctuations
are dominant. This is also seen in Fig. 9: the change of ν with
increasing BT is enhanced by lowering the temperature. Note
that for the lowest temperatures (30 and 40 K) the determined
fluctuations rates are close to the lower bound of the frequency
window of the Mössbauer method due to the effective time
window.

To describe the change of the spin fluctuation rates induced
by the applied transverse magnetic field, we considered a sim-
plified perturbation proportional to BT Jx ≡ BT (J+ + J−)/2.
Such a term can mix the states with different Jz, however with
one difference from the O6

6 processes discussed in section III F

FIG. 7. Mössbauer spectra of SC 1 in various transverse mag-
netic fields BT at 70 K. The corresponding ZF measurements are
shown in Fig. 5.
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FIG. 8. Dependence of the spin fluctuation rate on temperature
for Li2(Li1−xFex )N with x = 2.75%, SC 1, in transverse magnetic
fields BT . The solid line fitting function is described in the text.

below, namely, �Jz = 1. We have described our experimen-
tally observed fluctuation rate data by a function linear in BT .
The data can be described with the phenomenological model
function

ν(T, BT ) = ν0e− �1
T + ξBT e− �2

T . (16)

The first term describes the field-independent temperature-
activated Arrhenius contribution observed in the ZF exper-
iments using ν̄0 and �1 = ĒA/kB (see Fig. 16 and black
>line in Fig. 8). The second term describes the increase of
ν due to the transverse field scaling linear with BT . In a
global fit ν̄0, ξ and �i are constant parameters. The result is
ξ = 2332(995) MHz/T and �2 = 251(20) K. We associate

FIG. 9. Dependence of the spin fluctuation rate on the transverse
magnetic field for Li2(Li1−xFex )N with x = 2.75%, SC 1, for various
temperatures. The solid line fitting function is described in the text.

this relaxation process with a second Orbach process which
is observed by ac susceptibility below 30 K (see Fig. 13).
The applied transverse field increases the attempt frequency
so that it becomes detectable within the Mössbauer frequency
window.

E. 57Fe-Mössbauer spectroscopy in longitudinal magnetic
fields BL

57Fe-Mössbauer spectroscopy measurements were per-
formed with applied longitudinal magnetic fields (LF) at
100 K up to 3 T with the γ beam parallel to the applied field
parallel to the c-axis of the crystal as illustrated in Fig. 6.
Therefore the field is applied parallel to the quantization axis
of the Fe spins. It’s main impact is to modify the energy levels
of the Jz eigenstates.

Figure 10 shows the 57Fe Mössbauer measurements at
100 K up to 2 T longitudinal magnetic field (LF). The mea-
surements at 0.5 and 1 T show an increase of the linewidth
of the central absorption line compared to the ZF spectrum.
The spectra at 2 T clearly reveals a splitting into two lines
corresponding to two different fluctuation rates. The analysis
model to describe the LF spectra is the Blume two-state spin
reversal fluctuation model between the states with hyperfine
fields Bh = BA + BL and Bh = −BA + BL. Since the Zeeman
interaction will lift the degeneracy between the “spin up” and
“spin down” transitions two different fluctuation frequencies
νup describing the frequency to flip the spin into longitudinal
magnetic field direction and νdown to flip it against the applied
field direction are considered. The population of the two states
are assumed to be the same as shown by the equal central line
intensities at 2 T in Fig. 10. Note that a small static external
field at the 57Co-source caused by the Helmholtz magnet
leads to a slight increase of the linewidth (0.24(2) mm/s at
2 T). Figure 11 shows the deduced frequencies log10 νup and
log10 νdown as a function of the longitudinal magnetic field BL.
The observed change of the fluctuation rate is one order of
magnitude smaller than in the case of applied transverse fields.
The data show a linear dependence of log10 νup and log10 νdown

as a function of BL up to 3 T. We clearly observe an asymmetry
of the observed positive and negative frequency changes, i.e.,
a stronger increase of νup(BL ) than decrease of νdown(BL ).
This cannot be explained by the Zeeman-induced decrease of
the energy differences for the transition Jz = −7/2 → Jz =
5/2 and increase of the energy difference for Jz = 7/2 →
Jz = −5/2 since these changes are of equal absolute value.
The experimental slopes are given by 0.084(5)log10[MHz]/T
for νup and −0.015(3)log10[MHz]/T for νup, respectively.
The theory curves (orange lines) shown in Fig. 11 will be
discussed in Sec. III G.

F. Effective single-ion Jeff = 7/2 Hamiltonian calculation of spin
dynamics

A striking result of the temperature and transverse mag-
netic field dependent Mössbauer spectroscopy is that the acti-
vation energy scale for thermal fluctuations of the individual
electronic Fe spins EA ≈ 570 K is two orders of magnitude
larger than the Zeeman energy gtμBBxSx ∼ 5 K which is
needed to induce similar changes of the fluctuation rate.
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FIG. 10. Mössbauer measurements of SC 1 at 100 K in ZF and
in applied longitudinal magnetic fields BL of 0.5 T, 1 T and 2 T.

FIG. 11. The fluctuation frequencies νup and νdown as a function
of the applied longitudinal magnetic field BL . The dashed orange
lines describe the expected values of νup(BL ) and νdown(BL ) for
Zeeman contributions to the energy levels of the J = 7/2 Fe ions
and �Jz = ±6, for details see Sec. III G.

Moreover it is important to note, that the low-temperature
longitudinal magnetic field magnetization data on this system
presented in Fig. 2 also reveal an energy scale for longitudinal
magnetic field induced system changes of the order of 1 to 5 K
from the appearance of level crossing induced magnetization
steps at μ0Hz = 0.15, 0.55, and 3 T.

For a qualitative understanding of the transverse magnetic
field and temperature dependence of the spin fluctuation fre-
quency ν we present a calculation of the spin dynamics using
a single-ion spin Hamiltonian model. We demonstrate that an
axial anisotropy of energy scale D � 570 K, consistent with
the Zeeman response of the system, can indeed give rise to
an effectively two orders of magnitude larger energy barrier
for thermal fluctuations. Moreover, qualitatively, the obtained
results can be extended to a broad class of SAM and SMM by
the introduced effective mixing term.

We consider the single-ion properties of Fe ions in
Li2(Li1−x Fex )N. Considering spin-orbit interaction and the
hexagonal point symmetry of the Fe site (1b Wyckoff site,
point symmetry 6/mmm [11]), the crystalline electric field
yields the single-ion magnetic anisotropy Han = B0

2O0
2 +

B0
4O0

4 + B0
6O0

6 + B6
6O6

6, where Om
n are Stevens’ operators, and

Bm
n are the parameters of the magnetic anisotropy [27–29].

The Fe ions in Li3N can be either Fe+ (which, according
to Hund’s rules have the lowest multiplet with S = 3/2,
L = 3, and J = 9/2), or Fe2+ (with S = 2, L = 2, and J =
4). For diluted Fe in α-Li3N, however, we can apply the
arguments used in Refs. [12,30], where a ground state of
|ML = −2, MS = −3/2〉 was proposed. The oxidation state
Fe1+ d7 is consistent with our obtained hyperfine parameters,
see discussion. The arguments, namely, the strong uniaxial
anisotropy of the hexagonal lattice (due to O0

2, O0
4 and O0

6 op-
erators, which distinguish only z ‖ c axis) lifts the degeneracy,
and only L = 2 states are coupled with S = 3/2 for Fe+ in
α-Li3N. It yields the effective total moment Jeff = 7/2. The
splitting of the Mössbauer lines (see Fig. 10) also confirms
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that assumption: The splitting is too large for pure spin states
S = 3/2 or S = 2. In what follows, we call J a pseudo-spin
and drop the index “eff” for simplicity. However, qualitatively,
the calculated results below are independent of the detailed
value of J .

The most important part of the Hamiltonian Han can be
written as Han ≈ −DJ2

z , where D is the parameter of the
magnetic anisotropy. We can conclude from the magnetization
experiments and the spin-reversal Blume model with axis c
||BA||Vzz, that we deal with “easy-axis” magnetic anisotropy,
D > 0. Consider the Hamiltonian of the Fe ion in the exter-
nal magnetic field Bz = BL, directed along the “easy” axis,
namely H0 = −DJ2

z − glμBBzJz, where μB is the Bohr mag-
neton, and gl is the (longitudinal) z-component of the effective
g tensor. The levels of that Hamiltonian cross each other
at several values of Bz, depending on the value. The only
Stevens’ operator from Han, which does not commute with
Jz, and, hence, which can mix states with different values of
Jz and lift the degeneracies at the crossover points, is O6

6 ≡
(J6

+ + J6
−), where J± = Jx ± iJy. Such a mixing is the crucial

point for the quantum tunneling [31]. Notice that according
to standard quantum mechanics in the basis with diagonal
action of the operator Jz the eigenstates of O6

6 for J = 3/2 and
J = 2 are zero. The operator O6

6 corresponds to the processes
with �Jz = 6, hence connecting the states Jz = −7/2 with
Jz = 5/2, and Jz = −5/2 with Jz = 7/2.

Unfortunately, the explicit results for the relaxation rate
due to quantum tunneling cannot be realized for O6

6 because
of the numerical effort. Therefore, to mimic the action of
the operator O6

6 we consider a more simplified perturbation
related to the transverse magnetic field, for example, Jx ≡
(J+ + J−)/2. Such a term also can mix the states with dif-
ferent Jz, however with one difference from the O6

6 processes,
namely �Jz = 1. This substitution of O6

6 by Jx, while giving
the opportunity to obtain a qualitative agreement with the
results of our experiments, still cannot give a full quantitative
description of Li2(Li1−x Fex )N.

Summarizing, we consider, an effective Hamiltonian,
which permits quantum tunneling in Li2(Li1−x Fex )N. It has
the form

H = −DJ2
z − gt tμBBxJx − glμBBzJz, (17)

where gt is the value of the effective g-tensor in the plane,
transverse to the easy axis. Note that Bx can include not
only the effective field, introduced to mimic the action of
the O6

6, but also internal (dipole) or external magnetic fields
applied transverse to the z axis, i.e. perpendicular to the
crystallographic c axis. According to Refs. [31,32] the lowest
(2J + 1) eigenvalues and eigenfunctions of that Hamiltonian
coincide with those of the discrete spectrum of a quantum
particle in the effective potential

U = DB2

4

[
sinh(x) − C

B

]2

− DB

2
(2J + 1) cosh(x), (18)

where B = gtμBBx/D and C = glμBBz/D. The spin quantum
tunneling in that approach is totally equivalent to the tunneling
of that quantum particle between the minima of the potential
U . The tunneling rate can be calculated using the Euclidean
version of dynamical equations, using dynamics of instantons

of the Eulcidean action, i.e., solitons, connecting two minima
of the potential U with each other [33]. Consider the range
of the field values, limited by the region [B2/3 + C2/3]3/2 <

2J + 1, in which the potential U has two minima (the lowest
minimum is related to the stable state, and the highest one to
the metastable state). The energy barrier between the minima
is finite, hence there exists a probability for the metastable
state to decay due to the quantum tunneling. It is possible to
calculate the values of the relaxation rate due to the quantum
tunneling [31,32], expanding the expression for U near the
position of the metastable minimum. The decay rate is deter-
mined by the analytic continuation of the energy value to the
complex plane. Analyzing the results obtained this way, we
conclude that two regimes, T0 � T � T1, and T � T1, where
T0 = D

√
a/πkB, and T1 = 2D

√
a/πkB can be related to the

conditions of our experiments with Li2(Li1−x Fex )N. Here and
below we use the notations

a = 31/2

23/2
BC1/3(2J + 1)2/3δ1/2 ,

b = 1

12
B4/3C1/3(2J + 1)1/3 ,

δ = 1 −
(
B2/3 + C2/3

)3/2

2J + 1
. (19)

For T0 � T � T1, i.e., at low temperatures for our experiment,
the relaxation rate can be approximated as, according to
Ref. [31],

h̄γ1 = D

√
a sinh(D

√
a/kBT )

π sin(D
√

a/kBT )

× exp
[−4Da3/27b2kBT

]
. (20)

On the other hand, for higher temperatures T � T1, the relax-
ation rate is

h̄γ2 = D

√
a

π
exp

[−4Da3/27b2kBT
]
. (21)

This higher-temperature behavior of the relaxation rate caused
by the quantum spin tunneling is similar to the Orbach re-
laxation [34], i.e., it has the Arrhenius form. Notice that the
“true” quantum spin tunneling-induced relaxation rate exists
only at T = 0 [31,32].

Given that the pre-expontial factor, ν0, obtained from
Mössbauer spectroscopy is temperature-independent [as the
pre-exponential factor in Eq. (21)], the most essential regime
for our experiments with Li2(Li1−x Fex )N is the region
with T � T1. We see that the relaxation rate γ2 follows
an Arrhenius law in the temperature dependence, γ2 =
ν0 exp(−EA/kBT ) with the prefactor ν0 and the activation
energy EA determined as

ν0 = D
√

a

π h̄
∼ B1/2

x B1/6
z δ1/4 ,

EA = 4Da3

27b2
∼ (BxBz )1/3δ3/2 . (22)

In detail,

EA ≈ 4.89B1/3C1/3(2J + 1)4/3δ3/2, (23)
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FIG. 12. The dependence of the activation energy EA for the
relaxation rate γ2 on the longitudinal Bz and transverse Bx .

where the factor (2J + 1)4/3 is the dominant scaling factor for
J > 3/2.

Note that we cannot use the limits Bx → 0, and
Bz → 0 in the expression for the relaxation rate caused by
the spin tunneling, because the latter is absent there: without
Bz there is no crossover, and without Bx there is no lifting
of the degeneracy of crossover points. However, we can
evaluate the field dependence of the activation energy, not
taking into account the limiting cases Bx → 0 and Bz → 0.
A weak effective tilted magnetic field can originate, e.g.,
from the long-range magnetic dipole-dipole interaction in the
mean field approximation. We also suppose that the region
of applicability of the results can be expanded to all δ < 1,
which implies the difference between the potential U and its
expansion near the position of the metastable state being small
(this difference produces higher-order quantum corrections).
The result is shown in Fig. 12 for J = 7/2. We see that for
very small but finite values of the components of the external
magnetic field the activation energy is much larger than the
value of the magnetic anisotropy D. It explains the observation
of the giant activation energy for the relaxation rate in our
Mössbauer studies of Li2(Li1−x Fex )N. Furthermore, we see
that the application of the external field of the order of (2J +
1)D reduces drastically the value of the activation energy.

Now we can compare the transverse field dependence of
the relaxation rate, extracted from Mössbauer experiments in
Li2(Li1−x Fex )N with the calculated one. In Fig. 13(a), the
logarithm of the relaxation rate γ2 is plotted as a function
of the applied transverse field Bx at glμBBz = 0.001 for J =
7/2 and several values of the temperature. To have better
agreement with experiment we have to add the constant g =
3.5 to log10(γ2), which implies additional sources of relax-
ation that are temperature- and magnetic field-independent.
Figure 13(b) shows the logarithm of the relaxation rate γ2 as
a function of the inverse temperature, 1/T , for several values
of the transverse external magnetic field Bx. We see that the

FIG. 13. (a) The dependence of the logarithm of the relaxation
rate γ2 on the transverse field Bx for several values of T . From top
to bottom: T = 247, 134, 92, 60, 50 and 40 K. (b) The dependence
of the logarithm of the relaxation rate γ2 on the inverse temperature
1/T for several values of the transverse field Bx . From bottom to top:
Bx = 1, 2, 3, 4, and 5 T.

general tendency is well described by our simplified theory,
while there is no quantitative agreement.

We conclude that this single-ion theory, based on the spin
properties of Fe impurities, which at low energies produce
quantum spin tunneling, well reproduces the most dramatic
feature of dynamical experiments in Li2(Li1−x Fex )N: the
giant value of the activation energy in the Arrhenius law for
the temperature dependence of the relaxation rate, and much
smaller values of the external magnetic field, which drastically
change that relaxation rate.

G. Zeeman analysis of spin dynamics in longitudinal fields BL

The splitting of the resonance line in longitudinal fields
(Fig. 10) can be understood as a consequence of the Zeeman
term in the effective spin Hamiltonian. For Bz = 0 the relevant
relaxation processes with �Jz = ±6 introduced in the last
section are equivalent. However, a finite longitudinal field
Bz = BL removes the degeneracy of the ±Jz energy levels
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FIG. 14. Illustration of the transitions between Jz = −7/2 and
Jz = 5/2 and −7/2 to +5/2. The energy levels Jz are shifted in LF
(red points) leading to different transition energies according to the
Zeeman energy EZ ∼ JzBZ .

via Zeeman interaction. The values of the energy differences
between the states Jz = −7/2 and 5/2, and between the states
Jz = −5/2 and 7/2 become nonequal (see Fig. 14).

To calculate these energy differences we need to specify
the longitudinal g-factor gl . Here, we model the complex
many electron state of the Fe ions including strong spin-orbit
interaction by a simplified J = 7/2 system with a fixed Landé
g-factor value of gl = 1.43 (based on L = 2 and S = 3/2,
see Appendix) for both, the ground state (assumed to be
Jz = ±7/2) and the excited state (assumed to be Jz = ±5/2).
This choice of gl leads to an effective paramagnetic moment
μeff = glμB

√
J (J + 1) ≈ 6.15μB which is consistent with the

experimental value.
According to the Arrhenius law, the change of the spin

fluctuation rate with respect to its ZF value can be calculated
according to

ν(BL )/ν(BL = 0) = exp

(
EZ

kT

)
. (24)

Here, EZ = ±glμB�JzBL is the Zeeman term with the tran-
sition rule ±�Jz. The ±-sign corresponds to the positive and
negative branches in Fig. 11. To calculate the Zeeman induced
change of the spin fluctuation rate ν(BL ), we use �Jz = 6
according to the hexagonal symmetry. The resulting slope of
ν versus BL is

� log10 ν

�BL
≈ ±0.025/T. (25)

The results of this calculation are included in Fig. 11 as orange
lines. The calculated values for ν(BL ) are below the experi-
mental results for the branch νup(BL ) as well as the branch
νdown(BL ). This is expected since a second contribution stem-
ming from the BL dependence of the B6

6O6
6 term in the crystal

field spin Hamiltonian is not included in this model. Such a
term is always positive, linear in BL and identical for both
branches. Therefore the Zeeman contributions to νup and νdown

must be located below the experimental values, ideally shifted

by identical values with respect to the experimental values.
The latter is not fulfilled (cf. Fig. 11), however increasing the
absolute value of both slopes [Eq. (25)] by ≈80% would lead
to such a situation. Note that a correction of this size is feasible
since from all experiment performed on Li2(Li1−xFex )N so far
we cannot determine the ground state and excited state values
of Jz exactly. Moreover, also the longitudinal g-factors gl for
both states in this effective spin Hamiltonian approach can
be modified strongly due to the subtle interplay of the crystal
electric field with the spin-orbit coupling in this 3d7 state. A
more realistic many-body electronic structure calculation is
needed to calculate the effective crystal field energies as well
as the longitudinal and transverse g-factors of the ground and
excited states seperately.

IV. DISCUSSION

A. Mössbauer sites and sample homogeneity

Two Fe sites A and B are observed in the low-temperature
Mössbauer spectroscopy on sample SC 1. The main site A
is associated with monomer Fe sites without relevant mag-
netic exchange with other Fe ions since it is observed also
in samples SC 2–4 which contain an up to one order of
magnitude lower Fe concentration x. Site B is not observed in
SC 2–4. We associate site B with a nearest-neighbor in-plane
or out-of-plane Fe-dimer site. The magnetic hyperfine field
for the two Fe subspecies is determined to BA = 70.21(1) T
and BB = 65.0(2) T at 2 K. These values are in agreement
with Refs. [12,13,15], in which Klatyk et al., Ksenofontov
et al. have performed a powder study of x > 0.15 proposing
ferromagnetic ordering for T < 65 K.

The temperature dependence of the Mössbauer spectrum
shown in Fig. 5 is consistent with the expected behavior of
SAM. The observed spin fluctuations are consistently de-
scribed by a thermal activation crossover rather than by a co-
operative long-range ordering transition. However, this does
not exclude by itself that Fe site A arises from small cluster-
like SMM units like Fei clusters in the Li3N matrix with
ferromagnetic interaction between the Fe ions with various
size numbers i of Fe depending on x. The deduced hyperfine
parameters are within error bars identical for samples SC 1–4.
The spin dynamics described by the fluctuation frequency
ν(T ), ν0 and EA are concentration-independent for Fe site A
of SC 1–4. The invariant parameters as a function of x proves
well isolated Fe sites like in a SAM.

A combinatorial expression to calculate the probability for
n Li ions among six neighbors in the [001] plane for the Fe
concentration x yields

Wn = 6![n!(6 − n)!]−1(1 − x)nx6−n ≈ 14% (26)

for x = 0.027 and n = 5, i.e., an in-plane Fe dimer [12]. This
value is twice as large as the observed value. The area contri-
bution of site B is overestimated in this statistical treatment in
which every kind of Coulomb repulsion is neglected. Either
due to Coulomb repulsion a more homogeneous mononuclear
SAM is preferred or an out-of-plane Fe-N-Fe dimer configura-
tion is the observed site B. Interestingly, the total contribution
of the Fe-N-Fe in a binomial distribution is supposed to be
≈5.3% which is closer to the experimentally determined value
of 5.9(3)% of Fe site B. A systematic Mössbauer study on a
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TABLE III. Characteristic Mössbauer parameters obtained at
T ∼ 4 K assuming η = 0 compared with Zadrozny et al. [35].

Compound δ (mm/s) �EQ (mm/s) B (T)

[Fe(C(SiMe3)3)2]1− 0.402(1) −2.555(2) 63.68(2)
[Fe(C(SiMe3)3)2] 0.460(3) −1.275(5) 150.7(1)
Li2(Li1−x Fex )N (x � 1) 0.100(2) −2.572(2) 70.25(2)

series of Li2(Li1−xFex )N with larger x on single crystals is
needed to identify nearest neighbor Fe-cluster configurations
in this system. However, this is beyond the scope of this work.

B. Oxidation and spin state of Fe ions in Li2(Li1−xFex)N

The observed isomer shift value around 0.10 mm/s is
unconventional for a Fe oxidation states of Fe1+ or Fe2+. It
can possibly arise from the linear N-Fe-N low-coordinated
electronic structure of Fe in Li2(Li1−xFex )N . Because of the
paramagnetic behavior a Fe2+ low spin state S = 0 can be
excluded.

A 57Fe Mössbauer study was performed on the
linear complexes [K(crypt-222)][Fe(C(SiMe3)3)2]
and [Fe(C(SiMe3)3)2] with a similar Fe linear
coordination by carbon [35]. [Fe(C(SiMe3)3)2]1− in
[K(crypt-222)][Fe(C(SiMe3)3)2] is proposed to contain
Fe+1, whereas Fe2+ is present in [Fe(C(SiMe3)3)2]. The
assumed asymmetry parameter η = 0 is according to the
axial symmetric EFG tensor discussed by Lewis et al.
[36] (and references therein). Table III shows the values
of the isomer shift δ, the quadrupole splitting �EQ and
the magnetic hyperfine field B. The smaller δ value of
Fe site A can be explained by the increase of s-electron
density at the nucleus and the 4s mixing. The EFG value
Vzz, here given by �EQ of Fe-diluted Li2(Li1−x Fex )N (site
A) and the Fe1+-SMM, [Fe(C(SiMe3)3)2]1−, are very close
to each other whereas the Fe2+-SMM shows only half of
this value. Moreover, also the magnetic hyperfine fields of
[Fe(C(SiMe3)3)2]1− and Fe-diluted Li2(Li1−x Fex )N are
comparable. Therefore, we conclude a strong similarity of
the Fe electronic systems in these two systems with oxidation
state Fe+1 for Li2(Li1−xFex )N . An oxidation state of Fe1+

is also consistent with calculated electronic band structure
[12,30].

C. Energy barrier and spin dynamics

Figure 15 shows the temperature dependence of the spin
fluctuation rate of SC 1, determined from Mössbauer spec-
troscopy, ac susceptibility and direct magnetization relaxation
measurements, respectively. At three Mössbauer data points
at 1/T � 0.05 K−1, essentially static Mössbauer spectra are
measured, i.e., the fluctuation rate becomes smaller than the
lower bound of the frequency window of the method and these
data points are not shown. The quantum tunneling regime
with a nearly constant low fluctuation frequency of the order
of 0.01 s−1 is reached for temperatures below ≈15 K, i.e.,
1/T > 0.08 K−1 in Fig. 15.

The relaxation rates, ν, obtained by Mössbauer and ac
susceptibility measurements can be well described by a

FIG. 15. Fluctuation frequencies of SC 1 determined by Möss-
bauer spectroscopy, ac susceptibility and magnetization relaxation
measurements (direct time dependence), shown in form of an Ar-
rhenius plot. The red line shows a fit to the high temperature region
and yields an effective energy barrier of ĒA = 515(20) K. The gray
points describe a second low frequency activated relaxation process
with an activation energy of ĒA = 270(12) K, observed in the ac
susceptibility at low temperatures.

single effective energy barrier of ĒA = 515(20) K. Note that
there is another, larger peak observable in the temperature-
dependent ac susceptibility that corresponds to a faster re-
laxation with an effective energy barrier of ĒA = 270(12) K
(grey stars in Fig. 15). The pre-exponential factor of the Ar-
rhenius behavior amounts to ν0 = 150(10) GHz. We conclude
that this relaxation process is enhanced by the application
of transverse magnetic fields and becomes visible in the
Mössbauer frequency window (see Sec. III D above). The
deduced activation energies are consistent within error bars.
For T < 10 K the relaxation rates were determined by fitting
the time-dependent magnetization to stretched exponential
M(t ) = M0 exp[−(tν)β].

At zero external field, the two allowed phonon-assisted re-
laxation processes Jz = −7/2 → Jz = 5/2 and Jz = 7/2 →
Jz = −5/2 have equal energy differences. They become non-
equal under applied longitudinal magnetic field as presented
above. The direct quantum tunneling regime is reached below
10 K (see Fig. 15).

In Table IV, we compare the thermal activation energy
barriers for several SAM systems with large energy barriers

TABLE IV. Selected SAMs with a large energy barrier EA and
the corresponding paramagnetic ion.

Compound magn. unit EA (K) Reference

[Dy(bbpen)X] Dy3+ 1025 [37]
TbBis(phthalocyaninate) Tb3+ 940 [38]
Li2(Li1−x Fex )N Fe1+ 570(6) this work
[Fe(C(SiMe3)3)2]1− Fe1+ 354 [35,39]
[ Sr10(PO4)6(Cux OH1−x−y )2] Cu3+ 69 [40]
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EA compared to Fe-diluted Li2(Li1−x Fex )N. The thermal
activation barrier EA is often associated with a two-phonon
Orbach process [22]. Above 50 K, the dominant character of
this process is plausible: the direct spin transition process in
the Debye model accompanied by the creation or annihilation
of a single phonon is dominant only for lower temperature
T < 50 K with τ−1

S ∝ T .
In the literature, the energy barrier is often identified with

the zero-field splitting value D rather than considered as an ef-
fective experimental quantity, which depends on different mi-
croscopic parameters as discussed above. However, as demon-
strated by our spin Hamiltonian approach, the energy barrier
is a function of the (internal or applied) transverse magnetic
field and a general scaling proportional to (2J + 1)4/3 [cf.
Eq. (23)]. The effective spin Hamiltonian calculation pre-
sented in this work can qualitatively account for the temper-
ature and transverse field dependencies of the experimentally
observed spin fluctuation rates.

The spin dynamics in applied longitudinal magnetic fields
can be understood considering the Zeeman shift of the Jz states
which induces a splitting of the spin fluctuation rate into two
branches. The observed experimental asymmetry is expected
theoretically and is caused by higher-order Stevens’ operator
terms produced by the hexagonal symmetry of the lattice.

V. CONCLUSIONS

In this work, we present 57Fe Mössbauer studies on diluted
Fe centers in a linear N-Fe-N configuration along the crys-
tallographic c axis in single crystalline specimen of hexago-
nal Li2(Li1−xFex )N. The homogeneity of the nanoscale dis-
tributed isolated Fe centers is shown and the single-atomic
magnet nature confirmed. Below 30 K, the magnetically iso-
lated single-ion Fe centers exhibit a large quasistatic magnetic
hyperfine field of B̄A = 70.25(2) T parallel to the c axis,
which is the strongest principle axis of the electric field
gradient V̄zz = −154.0(1) V/Å2.

Fluctuations of the magnetic hyperfine field clearly ob-
served in the Mössbauer spectra between 50 and 300 K are
described by a Blume two-level relaxation model. The spin
dynamics in Li2(Li1−xFex )N is concentration-independent for
x � 0.028. From the temperature dependence an Orbach pro-
cess is deduced as the dominant spin-lattice relaxation pro-
cess. An Arrhenius analysis ν = ν0e−EA/kBT yields a thermal
activation barrier of ĒA = 515(20) K and an attempt fre-
quency ν̄0 = 150(10) GHz. Mössbauer spectroscopy studies
with applied transverse magnetic fields up to 5 T reveal a
huge increase of the fluctuation rate by two orders of mag-
nitude. In applied longitudinal magnetic fields a characteristic
splitting of the spin fluctuation frequency is observed. These
experimental observations are qualitatively reproduced by a
single-ion spin Hamiltonian analysis. It demonstrates that for
dominant magnetic quantum tunneling a weak axial single-ion
anisotropy D of the order of a few Kelvin can cause a two
orders of magnitude larger energy barrier for temperature-
induced longitudinal spin fluctuations. We think that this is
one of the most spectacular manifestations of the macroscopic
quantum spin tunneling observed in the solid-state based
single-atomic magnet Li2(Li1−x Fex )N. The experiments sug-
gest Li2(Li1−xFex )N to be a candidate for novel functional

TABLE V. Mass absorption coefficients μa according to Chen
et al. and therein [21].

Element Atomic mass (u) absorption coefficient (cm2/g)

Li 3 0.277
N 7 1.4
Fe 26 64
Os 76 165

magnetic materials, e.g., for quantum computing or spintronic
devices.
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APPENDIX A: MASS ABSORPTION COEFFICIENTS

The Fe concentration of sample SC 4 is with below 0.2%
rather small, even for a 57Fe Mössbauer experiment of a non-
57Fe-enriched sample. Li2(Li1−xFex )N contains only light
elements with small absorption coefficients of the 14.41 keV
radiation energy, see table V. The mass absorption coefficient
μa describes the exponential Intensity reduction of the initial
γ -ray intensity I0,

I (d ) = I0(1 − fs)eμad , (A1)

where d is the absorber thickness and fs the recoil-free
fraction of transitions. μa describes the non-resonance atomic
absorption, mainly by the photoelectric effect. For a com-
parison, the value of Osmium represents a heavy element in
table V showing the rather small mass absorption coefficient
μa of Li and N since Fe is highly diluted. We have used for
this reason large crystals of a thickness of a few millimeter
and the effective thickness ta = 2.39(10) of SC 1 reflects
still absorption far away from the saturation limit. The Fe
concentration of SC 4 is even below the concentration of Ho
in LiY0.998 Ho0.002 F4 or at least in the same order which is a
prominent example for a SAM in a solid crystal [41,42].

APPENDIX B: MAGNETIC HYPERFINE FIELD

The results of the calculations are discussed assuming
the Fe+ oxidation state [30]. In general, the total magnetic
hyperfine field B is the sum of different contributions

Bh = Bc + Borb + Bdip + Blat. (B1)

The sign of the Fermi contact contribution Bc is negative and
arises from the spin polarization of the s electrons by unpaired
valence electrons. Borb is the orbital contribution scaling with
the orbital quantum number L which is expected to be nonzero
since the observed value of important because of the exceeded
spin only value of the magnetic moment. Bdip is the dipolar
contribution arising from nonsperical electron spin density
contribution which is approximately proportional to Vzz. Blat

is the lattice contribution, i.e., the magnetic field generated by

054426-14



MAGNETIC FIELD TUNING OF LOW-ENERGY SPIN … PHYSICAL REVIEW B 102, 054426 (2020)

neighbor electronic moments in the lattice. This contribution
can be neglected in the diluted system. The detailed values
depend on the used computational method [30]. The general
result is that Borb is the dominant contribution and ≈10 times
stronger and of opposite sign as Bc for the Fe1+ (S = 3/2,
L = 2) state [30].

APPENDIX C: MAGNETIZATION HYSTERESIS LOOPS

The presented hysteresis loops of magnetization were mea-
sured at different temperatures for magnetic fields applied
parallel to the crystallographic c axis, B ‖ c. The obtained data
were corrected for the diamagnetic sample holder (sample
sandwiched between two torlon discs and fixed inside a straw)
for which the magnetization was determined separately using
a similar setup. The diamagnetic contribution of the α-Li3N
host was subsequently subtracted from the sample holder
corrected data using ρ(Li1+) = −8.8 × 10−12 m3 mol−1 [43]
and ρ(N3−) = 1.63 × 10−10 m3 mol−1 [44].

APPENDIX D: BREIT-WIGNER FORMULA

The cross-section

σ (E ) = σa(E )

σ0
(D1)

of the transmission integral is given by the Breit-Wigner
formula

σ0(E ) = σ0�
2
a/4

(E − E0)2 + �2
a/4

, (D2)

where

σ0 =
(

λ2

2π

)
1 + 2I(e)

1 + 2I(g)

1

1 + α
(D3)

is the maximum cross section, e.g., see Chen [21]. Here, α is
the internal conversion coefficient, I(e),I(g) are the nuclear spin
numbers of the ground state and excited state, respectively,
and λ the energy of the γ ray. σ (E ) and σ0(E ) are given as
a function of the photon energy E , E0 is the energy of the
γ ray corresponding to the Mössbauer transition. The excited
state is not strict monochromatic and has a natural distribution
given by a Lorentzian line

L(E )dE = �s

2π

1

(E − E0)2 + �2
s /4

dE (D4)

with ∫
L(E )dE = 1. (D5)

�s is the natural linewidth of the Mössbauer nuclei and �a is
the natural linewidth of the absorber. Here,

L(E , v) = L
(

E − v

c
E0

)
(D6)

is the relation to our notation with the speed of light c.

FIG. 16. Logarithmic frequency log10 ν of Fe site A of SC 1–4
as a function of temperature.

APPENDIX E: ARRHENIUS PLOT

Figure 16 shows the Arrhenius plot (reciprocal T scaling)

ln ν = ln ν0 − EA

kB

(
1

T

)
(E1)

of the extracted fluctuation frequencies ln ν of SC 1–4 in
MHz. The fluctuation frequency is concentration independent
as reflected by the parameter EB and ln ν0 of table II.

APPENDIX F: LANDÉ FACTOR

To estimate the Zeeman splitting, it is important to recall
the large effective magnetic moment μeff = 6.5(4)μB per Fe
atom parallel to the c axis [14] which is close to the full
Hunds’ rule value of Fe+. This indicates the validity of the
Hunds’ rules in this system. Using Russel-Saunders coupling
and the proposed spin quantum number L = 2 and S = 3/2,

FIG. 17. Isomer shift relative to α-iron as a function of the
Pauling electronegativity of the ferrous halides compared with SC
1 [45].
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TABLE VI. Comparison of the Debye-temperature 
D for
Li2(Li1−xFex )N with results for similar linear Fe1+ and Fe2+ com-
plexes [35].

Compound 
D (K)

[Fe(C(SiMe3)3)2]1− 313(16)
[Fe(C(SiMe3)3)2] 125(1)
Li2(Li1−x Fex )N 315(8)

we get the Landé factor for J = 7/2,

gJ = 3

2
+ S(S + 1) − L(L + 1)

2J (J + 1)
≈ 1.43. (F1)

Here, gL = 1 and gS = 2 are used.

APPENDIX G: COMPARISON WITH FERROUS HALIDES

Axtmann et al. have found a linear relationship between
the Pauling electronegativity and the isomer shift δ in fer-
rous halides is discussed [45]. The difference of the ligand
electronegativity is related to the isomer shift. This is treated
as direct evidence for the participation of 4s electrons in
the formation of the chemical bonds [21]. Figure 17 shows
the presented ferrous halides by Axtmann et al. and the
isomer shift of SC 1. The observed isomer shift deviates
strongly. In the ferrous halides, the electronic configuration
is 3d4sx where x measures the ionicity. The ionicity increased
with x [21]. The electric monopole hyperfine interaction in
Li2(Li1−xFex )N is far away from the values of the Fe2+

ferrous halides. The quadrupole splitting in the ferrous halides
behaves linear as a function of the isomer shift as well [45].
The values are between 1.4 mm/s (FeI2) and 2.6 mm/s
(FeF2). For conversion [20], one can use

�vQS = ceQ

2Eγ

Vzz

√
1 + η2

3
(G1)

FIG. 18. Center shift as a function of the temperature and fit to
determine the Debye temperature 
D.

FIG. 19. Comparison of the Mössbauer measurements at 80 K
in ZF and in an applied longitudinal field of 2 T. The fit model is
described in the main text.

with

ceQ

2Eγ

≈ 0.0167
mm/s

V/Å2
. (G2)

The value of Fe-diluted Li2(Li1−xFex )N is −2.572(2) mm/s,
which shows a comparable electric quadrupole hyperfine in-
teraction with respect to the amount of Vzz.

APPENDIX H: DETERMINATION OF THE
DEBYE-TEMPERATURE �D

Figure 18 shows the center shift as a function of tempera-
ture obtained in ZF of SC 1. The center shift is here δ + δSOD

without α-iron correction and therefore relative to the 57Co
source. The temperature dependence of SC 1 yielded a Debye
temperature of 
D = 315(8) K which is a measure of the
collective motion of the surrounding atoms of the Mössbauer
nucleus. One should keep in mind the special geometry with
the γ beam parallel to the crystallographic c axis and therefore
the phonic excitations in c-direction are considered according
to the Debye-Waller factor. In Table VI, we compare this
value with the aforementioned linear C-Fe-C compounds.
The values for [Fe(C(SiMe3)3)2]1− and Li2(Li1−xFex )N are
similar. This fact further supports the conclusion of a sim-
ilar electronic configuration of the Fe ion drawn from the
values of the quadrupole splitting �EQ and the magnetic
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hyperfine field BA in Li2(Li1−xFex )N compared to those of
[Fe(C(SiMe3)3)2]1−.

APPENDIX I: 57Fe-MÖSSBAUER MEASUREMENT AT 80 K
IN 2 T LF of Li2(Li1−xFex)N

Figure 19 shows a comparison of the 57Fe Mössbauer mea-
surements at 80 K in ZF and in an applied longitudinal field of
2 T of SC 1. The analysis is done in the same way as discussed
in the main text. The intermediate relaxation line splits at

80 K in a magnetic field of 2 T LF. The doublet is weakly
adumbrated because of the scattering of the data (lower mag-
nitude of absorption) and not so well pronounced like in the
presented 100 K measurement at 2 T. However, a splitting
is confirmed. The grey fit is the result of free convergence
of the mentioned two-frequency spin reversal model. The re-
laxation frequencies are log10 νup = 2.63(8) log10[MHz] and
log10 νdown = 2.36(6) log10[MHz], therefore νup ≈ 427 MHz
and νdown ≈ 229 MHz.
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