
Schedulability Analysis of Global Scheduling
for Multicore Systems With Shared Caches

Jun Xiao ,Member, IEEE, Sebastian Altmeyer,Member, IEEE,

and Andy D. Pimentel , Senior Member, IEEE

Abstract—Shared caches in multicore processors introduce serious difficulties in providing guarantees on the real-time properties of

embedded software due to the interaction and the resulting contention in the shared caches. To address this problem, we develop a

new schedulability analysis for real-time multicore systems with shared caches, globally scheduled by Earliest Deadline First (EDF) and

Fixed Priority (FP) algorithms. We construct an integer programming formulation, which can be transformed to an integer linear

programming formulation, to calculate an upper bound on cache interference exhibited by a task within a given execution window. Using

the integer programming formulation, an iterative algorithm is presented to obtain the upper bound on cache interference a task may

exhibit during one job execution. The upper bound on cache interference is subsequently integrated into the schedulability analysis to

derive a new schedulability condition. A range of experiments is performed to investigate how the schedulability is degraded by shared

cache interference. We also evaluate the schedulability performance of EDF against FP scheduling over randomly generated tasksets.

Our empirical evaluations show that EDF is better than FP scheduling in terms of the number of task sets deemed schedulable.

Index Terms—Real-time systems, multi-core systems, schedulability analysis, shared caches, global scheduling

1 INTRODUCTION

MULTICORE architectures are increasingly used in both
the desktop and the embedded markets. Modern mul-

ticore processors incorporate shared resources between
cores to improve performance and efficiency. Shared caches
are among the most critical shared resources on multicore
systems as they can efficiently bridge the performance gap
between memory and processor speeds by backing up small
private caches. However, this brings major difficulties in
providing guarantees on real-time properties of embedded
software due to the interaction and the resulting contention
in a shared cache.

In a multicore processor with shared caches, a real-time
task may suffer from two different kinds of cache interfer-
ences [1], which severely degrade the timing predictability
of multicore systems. The first is called intra-core cache
interference, which occurs within a core, when a task is pre-
empted and its data is evicted from the cache by other real-
time tasks. The second is inter-core cache interference,
which happens when tasks executing on different cores
access the shared cache simultaneously. Inter-core cache
interference may cause several types of cache misses includ-
ing capacity misses, conflict misses and so on [2]. In this
work, we consider non-preemptive task systems, which
implies that intra-core cache interference is avoided since

no preemption is possible during task execution. We there-
fore focus on inter-core cache interference.

It is challenging to design real-time applications executing
on multicore platforms with shared caches, which cannot
afford to miss deadlines and hence demand timing predict-
ability. Any schedulability analysis requires knowledge about
the Worst-Case Execution Time (WCET) of real-time tasks.
With a multicore system, the WCETs are strongly dependent
on the amount of inter-core interference on shared hardware
resources such as main memory, shared caches and intercon-
nects. In this paper, we shall only focus on the shared cache
interferences and study the schedulability analysis problem
for hard real-time tasks that exhibit shared cache interferences.

A major obstacle is to predict the cache behavior to accu-
rately obtain the WCET of a real-time task considering inter-
core cache interference since different cache behaviors
(cache hit or miss) will result in different execution times of
each instruction. In [3], it was even pointed out that “it will
be extremely difficult, if not impossible, to develop analysis
methods that can accurately capture the contention among
multiple cores in a shared cache”. In this paper, we assume
that a task’s WCET itself does not account for shared cache
interference but, instead, we determine this interference
explicitly (as will be explained later on). [4] presents such an
approach to derive a task’s WCET without considering
shared cache interference.

This paper proposes a novel schedulability analysis of
global real-time scheduling formulticore systemswith shared
caches. We construct an integer programming formulation,
which can be transformed to an integer linear programming
formulation, to calculate an upper bound on cache interfer-
ence exhibited by a task within a given execution window.
Using the integer programming formulation, an iterative

� The authors are with Informatics Institute, University of Amsterdam,
1098XH Amsterdam, The Netherlands. E-mail: {J.Xiao, S.J.Altmeyer,
A.D.Pimentel}@uva.nl.

 1487

https://orcid.org/0000-0001-9306-3876
https://orcid.org/0000-0001-9306-3876
https://orcid.org/0000-0001-9306-3876
https://orcid.org/0000-0001-9306-3876
https://orcid.org/0000-0001-9306-3876
https://orcid.org/0000-0002-2043-4469
https://orcid.org/0000-0002-2043-4469
https://orcid.org/0000-0002-2043-4469
https://orcid.org/0000-0002-2043-4469
https://orcid.org/0000-0002-2043-4469
mailto:J.Xiao@uva.nl
mailto:S.J.Altmeyer@uva.nl
mailto:The authors are with Informatics InstituteUniversity of Amsterdam12341098XHAmsterdamThe Netherlands

algorithm is presented to obtain the upper bound on cache
interference a task may exhibit during one job execution. The
upper bound on cache interference is subsequently integrated
into the schedulability analysis to derive a new schedulability
condition. A range of experiments is performed to investigate
how the schedulability is degraded by shared cache interfer-
ence for a range of different tasksets.

The original version of our schedulability analysis for real-
time multicore systems with shared caches was presented in
[5]. Significant extensions aremade in this paper, including:

� A more general framework for the schedulability
analysis of global scheduling, accounting for shared
cache interference. The original scheduling analysis
mainly focuses on FP scheduling, while the extended
scheduling analysis presented in this work applies
not only to FP scheduling but also to EDF scheduling;

� Evaluation of the schedulability performance of EDF
against FP scheduling over randomly generated
tasksets. Our empirical evaluations show that EDF is
slightly better than FP scheduling in terms of task
sets deemed schedulable.

The rest of the paper is organized as follows. Section 2
gives an overview of the related work. The system model is
described in Section 3. Section 4 describes the proposed
schedulability analysis, where we also detail the computa-
tion of processor-contention and inter-core cache interfer-
ences applied in the analysis. Section 5 presents an iterative
computation to obtain the upper bound of inter-core cache
interferences. Section 6 presents the experimental results,
after which Section 7 concludes the paper.

2 RELATED WORK

WCET Estimation. For hard real-time systems, it is essential to
obtain each real-time task’s WCET, which provides the basis
for the schedulability analysis. WCET analysis has been
actively investigated in the last two decades, ofwhich an excel-
lent overview can be found in [6]. There are well-developed
techniques to estimate real-time tasks’WCET for single proces-
sor systems. Unfortunately, the existing techniques for single
processor platforms are not applicable to multicores with
shared caches. Only a few methods have been developed to
estimate task WCETs for multicore systems with shared
caches [7], [8], [9]. In almost all thoseworks, due to the assump-
tion that cache interferences can occur at any program point,
WCET analysis will be extremely pessimistic, especially when
the system contains many cores and tasks. An overestimated
WCET is not useful as it degrades system schedulability.

Shared Cache Interference. Since shared caches considerably
complicate the task of accurately estimating the WCET, many
researchers in the real-time systems community have recog-
nized and studied the problem of cache interference in order
to use shared caches in a predictable manner. Cache partition-
ing, which isolates application workloads that interfere with
each other by assigning separate shared cache partitions
to individual tasks, is a successful and widely-used approach
to address contention for shared caches in (real-time) multi-
core applications. There are two cache partitioning methods:
software-based and hardware-based techniques [10]. The
most common software-based cache partitioning technique is
page coloring [11], [12], [13], [14]. By exploiting the virtual to

physical page address translations present in virtual memory
systems at OS-level, page addresses are mapped to pre-
defined cache regions to avoid the overlap of cache spaces.
While cache partitioning technique using page coloring has
the following drawbacks. First, it requires heavymodifications
to virtual memory subsystem in the operating system. Second,
the number of partitions is limited as a cache partition is
coarsely sized (multiples of page size � cache ways). Hard-
ware-based cache partitioning is achieved using a cache lock-
ing mechanism [3], [13], [15], which prevents cache lines from
being evicted during program execution. For example, [16]
presented vCAT, an approach for dynamic shared cache man-
agement onmulticore virtualization platforms based on Intel’s
Cache Allocation Technology(CAT). The drawback of cache
locking is that it requires specific hardware support that is not
available in many commercial processors. Cache way-parti-
tioning like CAT has also significant limitation due to a small
number of coarsely-sized partitions (inmultiples of way size).

Real-Time Scheduling. The schedulability analysis of global
multiprocessor scheduling has been intensively studied [17],
[18], [19], [20], [21], [22], [23], of which comprehensive sur-
veys can be found in [24], [25]. Most multi-core scheduling
approaches assume that the WCETs are estimated in an off-
line and isolatedmanner and thatWCET values are fixed.

A fewworks address schedulability analysis for multi-core
systems with shared caches [26], [27], [28], but these works
deployed cache partitioning techniques. Real-time scheduling
for multi-core systems using cache partitioning techniques is
done via two steps: it first captures the relationship between
the task’s WCET and cache allocation by analysis or measure-
ment as the WCET of a task depends on the number of cache
partitions assigned to that task, and then develops a strategy
that determines the number of cache partitions assigned to
each task in the system, so that the task system is schedulable.
Existing approaches typically adopt Mixed Integer Program-
ming to find the optimal cache assignment. However, these
methods incur a very high execution time complexity, and are
therefore too inefficient to be practical [28].

Different from the above work, we developed a new
schedulability analysis of global scheduling for multicore
systems in which cache space isolation techniques are not
deployed. Instead of using cache partitioning to eliminate
shared cache interference, we focus on the analysis of
shared cache interference that a task may exhibited during
its execution. Our approach neither requires operating sys-
tem modifications for page coloring nor hardware features
for cache locking.

Our work also differs from other approaches to the tim-
ing verification of multicore systems [29] in that all other
sources of interferences are assumed to be included within
the WCET. We analyze the effect of shared cache interfer-
ence on the schedulability. To the best of our knowledge,
this is among the first works that integrates inter-core cache
interference into schedulability analysis.

3 SYSTEM MODEL

3.1 Task Model

We consider a set t of n periodic or sporadic real-time tasks
{t1, t2; . . . tn} to be scheduled on a multicore processor. Each
task tk ¼ ðCk; Dk; TkÞ 2 t is characterized by a worst-case

1488

computation time Ck, a period or minimum inter-arrival
time Tk, and a relative deadline Dk. All tasks are considered
to be deadline constrained, i.e., the task relative deadline is
less or equal to the task period:Dk � Tk.

We further assume that all those tasks are independent, i.e.,
they have no shared variables, no precedence constraints, and
so on. Moreover, jobs of any task cannot be executed at the
same time on more than one core. A task tk is a sequence of
jobs Jj

k, where j is the job index. We denote the arrival time,
starting time, finishing time and absolute deadline of a job j as
rjk, s

j
k, f

j
k and djk, respectively. Note that the goal of a real-time

scheduling algorithm is to guarantee that each job will com-
plete before its absolute deadline: fj

k � djk ¼ rjk þDk.
As explained, it is difficult to accurately estimate Ck con-

sidering cache interference of other tasks executing concur-
rently. It should be pointed out that Ck in this paper refers
to the WCET of task k, assuming task k is the only task exe-
cuting on the multicore processor platform, i.e., any cache
interference delays are not included in Ck.

Since time measurement cannot be more precise than one
tick of the system clock, all timing parameters and variables
in this paper are assumed to be non-negative integer values.

3.2 Architecture Model

Our system architecture consists of a multicore processor
with m identical cores onto which the individual tasks are
scheduled. Most multicore processors have instruction and
data caches. Caches are organized as a hierarchy of multiple
cache levels to address the tradeoff between cache latency
and hit rate. The low level caches (L1) in our considered
multicore processor are assumed to be private, while the
last level caches (LLC, for example L2) are shared between
all cores. Furthermore, we assume that the LLC cache is non-
inclusive with respect to the private caches (L1), and that
LLC caches are direct-mapped caches.

Data caches, in general, are hard to analyze statically. In
this work, we focus on instruction caches and we adopt the
approach in [4] to derive task WCET. The analysis would
require further extension in order to be applied to data caches.

3.3 Global Schedulers

In this paper, we focus on non-preemptive global schedul-
ing. Once a task instance starts execution, any preemption
during the execution is not allowed, so it must run to com-
pletion. So we do not have to consider intra-core cache inter-
ference. If not explicitly stated, cache interference will
therefore refer to inter-core cache interference in the follow-
ing discussion. We consider two well-known global sched-
uling algorithms: Non-Preemptive Earliest Deadline First
(EDFnp) and Non-Preemptive Fixed Priority (FPnp).

EDFnp assigns a priority to a job according to the abso-
lute deadline of that job. A job with an earlier absolute dead-
line has higher priority than others with a later absolute
deadline. Since each job’s absolute deadline changes over
time, the priority of a task changes dynamically.

For FPnp scheduling, a fixed priority Pk is assigned to each
task tk (k ¼ 1; 2; . . .n). As each task has a unique priority, we
use hpðkÞ to denote the set of tasks with higher priorities
than tk, and hepðkÞ ¼ hpðkÞ [ftkg the set of tasks whose pri-
orities are not lower than tk. Similarly, lpðkÞ is the set of tasks

with lower priorities than tk and lepðkÞ ¼ lpðkÞ [ftkg the set
of taskswhose priorities are not higher than tk.

The EDFnp and FPnp scheduling algorithms are work-
conserving, according to the following definition.

Definition 1. A scheduling algorithm is work-conserving if
there are no idle cores when a ready task is waiting for execution.

4 SCHEDULABILITY ANALYSIS

In this section, we give an overview of the new schedulabil-
ity analysis that accounts for cache interference. We also
present the approaches to derive the upper bound on the
parameters used in the schedulability condition.

4.1 Overview

We first analyze the execution of one job Jj
k of a task tk. Let o

j
k

denote the latest time-instant no later than rjk (ojk � rjk) at

which at least one processor is idle and let Ak ¼ rjk � ojk. As
all processors are idle when the system starts, there always
exists such a ojk. The time interval ½ojk; djk� can be divided into

two parts ½ojk; sjk� and ½sjk; djk�.
As shown in Fig. 1, a job Jj

k of task tk exhibits two kinds
of interferences during ½ojk; djk�. The first interference is called
processor-contention interference, denoted by Iprek . It is the

cumulative length of all intervals over ½ojk; sjk� in which all
the processing cores are busy executing jobs other than Jj

k.
We define the interference Iprei;k of a task ti on a task tk over
the interval ½ojk; sjkÞ as the cumulative length of all intervals
in which ti is executing. The second type of interference is
the cumulative length of all extra execution delays caused
by shared cache interference from all other tasks running
concurrently on other cores, denoted as Isck . We also define
the interference Isci;k as the cumulative length of all extra exe-
cution delays of tk caused by shared cache accesses between
task ti and task tk.

Furthermore, we define the upper bound on processor-
contention interference as �Iprek and similarly the upper
bound on shared cache interference as �Isck .

Note that the processor-contention interference Iprek

occurs during ½ojk; sjk�, so Iprek depends onAk and the length of
½rjk; sjk�. While the shared cached interference Isck occurs only
during tk’s execution.Wewill present the derivation of �Isck in
the next section and it can be shown that �Isck does not depend

Fig. 1. Overview of the schedulability analysis that accounts for cache
interference.

 1489

on Ak and the length of ½rjk; sjk�. Let us now assume �Isck is
known.

We can compute the latest start time of job Jj
k from task

tk: l
j
k ¼ djk � Ck � �Isck i.e., if Jj

k starts its execution before ljk, it
will be able to finish execution before deadline djk. The
length of ½rjk; ljk� is Sk ¼ Dk � Ck � �Isck . Since we consider
non-preemptive scheduling, in order for Jj

k to miss its dead-
line, all m cores must be continuously busy executing tasks
other than tk in the time interval [ojk; l

j
k]. In other words, if

Sk < 0, Jj
k will miss its deadline. Therefore, we name the

time interval ½ojk; ljk� as a problem window. We assume
Sk � 0 in the following description.

As the processor-contention interference only occurs
before the start of the tk’s execution, we restrict Iprek , Iprei;k

and �Iprek to the time interval ½ojk; ljk�.
By construction, we have the first schedulability test for t.

Theorem 1. A task set t is schedulable with a EDFnp or FPnp

scheduling policy on a multicore processor composed ofm iden-
tical cores with shared caches if for each task tk 2 t and all
Ak � 0

�Iprek þ Ck þ �Isck < Dk þAk:

4.2 Computation of �Iprek

The workload Wi;k of a task ti is the time task ti executes
during time interval ½ojk; ljkÞ of length Ak þ Sk, according to a
given scheduling policy.

Lemma 1. The processor-contention interference that a task ti
causes on a task tk in ½ojk; ljkÞ is never greater than the workload
of ti in ½ojk; ljkÞ

8i; k; j Iprei;k �Wi;k:

Lemma 1 is obvious, since Wi;k is an upper bound on the
execution of ti in ½ojk; ljkÞ.

Note that ti may execute more than Ci due to the shared
cache interference. That is, the actual execution time of ti’s
job is bounded by C�i ¼ Ci þ �Isci . In the following discussion,
we use C�i as the upper bound on the workload contribution
from a single job of ti.

As the number of ti’s jobs released in ½ojk; ljkÞ is at most
AkþSk

Ti

l m
, Wi;k can be roughly bounded by AkþSk

Ti

l m
� C�i .

However, a tighter upper bound on the worst-case work-
load can be calculated by categorizing each job of ti in
½ojk; ljk� into one of the three types [30]:

carry-in job: a job with its release time earlier than ojk but
with its deadline earlier than ljk;

body job: a job with both its release time and its deadline
in ½ojk; ljk�;

carry-out job: a job with its release time in ½ojk; ljk�, but with
its deadline later than ljk.

As shown in Fig. 2, the worst-case workload of ti occurs
when a carry-in job (if ti has a carry-in job) finishes execu-
tion as late as possible and a carry-out job starts its execu-
tion as early as possible. We use Wn

i;k to denote an upper
bound of ti’s workload in ½ojk; ljk� if ti has no carry-in job,
and useW c

i;k to denote an upper bound of ti’s workload if ti
has a carry-in job.

Following the approach in [19], we derive a tighter upper
bound onWn

i andW c
i for theEDFnp andFPnp scheduling pol-

icies, separately. We omit the proof due to space limitations.
Interested readers can refer to [19] for a detailed explanation.

4.2.1 Upper Bound onWn
i;k for EDFnp

EDFnp assigns a priority of a job by the absolute deadline of
that job. We have the following lemma.

Lemma 2. For EDFnp, if Di > Dk, the necessary condition for
Jj
i to cause interference to J

j
k is r

j
i < rjk, i.e.,J

j
i must be released

earlier than Jj
k; if Di � Dk, the necessary condition for Jj

i to
cause interference to Jj

k is di � dk, i.e., Ji’s absolute deadline
must be no later than that of Jk.

Proof. Lemma 2 is from [19]. See the proof of Lemma 2
in [19]. tu
Since ti has no carry-in jobs in this case, the worst case of

Wn
i;k occurs when the first job of ti is released at time ojk. The

next jobs of ti are then released periodically every Ti time
units. Thus, Wn

i;k is computed by three cases: (1) i ¼ k, (2)
Di � Dk, (3)Di > Dk.

1) i ¼ k. As shown in Fig. 3, only body jobs in ½ojk; rjk�
contribute to processor-contention interference and

the number of ti’s body instances is Ak
Tk

j k
. So we have

W
n1
i;k ¼

Ak

Tk

� �
C�k : (1)

2) Di � Dk. Fig. 4 shows the worst case of Wn
i;k for

Di � Dk. The number of body jobs of ti is
AkþSk

Ti

j k
.

Fig. 2. Three types of contribution jobs and problem window.

Fig. 3. The densest possible packing of jobs of ti without carry-in job, if
i ¼ k.

Fig. 4. The densest possible packing of jobs of ti without carry-in job and
Di � Dk. Case (a): a � Ak þDk, Case (b): a > Ak þDk.

1490

We use a to denote the distance between ojk and the

deadline of ti’s carry-out job, a ¼ AkþSk
Ti

j k
Ti þDi. The

deadline of ti’s carry-out job is o
j
k þ a.

(2.A) If a � Ak þDk, as shown in case (a) in Fig. 4,
the contribution of the carry-out job is boun-
ded by minðC�i ; ðAk þ SkÞmodT iÞ. In this case,
we have

W
n2
i;k ¼

Ak þ Sk

Ti

� �
C�i þminðC�i ; ðAk þ SkÞmodT iÞ: (2)

(2.B) If a > Ak þDk, shown as case (b) in Fig. 4, the
contribution of the carry-out job is 0, we have

W
n3
i;k ¼

Ak þ Sk

Ti

� �
C�i : (3)

3) Di > Dk. Fig. 5 shows the worst case of Wn
i;k for

Di > Dk. The number of body jobs of ti is
AkþSk

Ti

j k
.

By Lemma 2, a job of ti can interfere with Jj
k only if

its release time is earlier than rjk. We use b to denote
the distance between ojk and the release time of ti’s

carry-out job, b ¼ AkþSk
Ti

j k
Ti.

(3.A) IfAk ¼ 0, then ojk ¼ rjk. SinceDi > Dk, any task
instance released no earlier than ojk has a dead-
line later than djk, so,W

n
i;k ¼ 0.

(3.B) If b < Ak, shown as case (a) in Fig. 5. The con-
tribution of ti’s carry-out job is bounded by
minðC�i ; ðAk þ SkÞmodT iÞ. Wn

i;k is computed by
Equation (2).

(3.C) If b � Ak > 0, as shown in Fig. 5 case (b), the
contribution of ti’s carry-out job is 0, and Wn

i;k

is computed by Equation (3).
By the discussions above, we can compute Wn

i;k for
EDFnp by

Wn
i;k ¼

0 Di > Dk ^Ak ¼ 0
W

n1
i;k i ¼ k

W
n2
i;k ði 6¼ k ^Di � Dk ^ a � Ak þDkÞ
_ðDi > Dk ^ b < AkÞ

W
n3
i;k otherwise

8>>>><
>>>>:

; (4)

where W
n1
i;k , W

n2
i;k , W

n3
i;k are defined in Equations (1), (2)

and (3) respectively.

4.2.2 Upper Bound onW c
i;k for EDFnp

We now compute the upper bound onW c
i;k by four cases: (1)

i ¼ k, (2) Di � Dk and Si > C�k (3) Di > Dk and Si � C�k (4)
the remaining cases.

1) i ¼ k, shown in Fig. 6. The number of body jobs of tk is
Ak
Tk

j k
. The contribution of the carry-in job is bounded

by minðC�k ;maxð0; ðAk modT kÞ � Tk þDkÞÞ. So in this
case, we have

W
c1
i;k ¼

Ak

Tk

� �
C�k þminðC�k ;maxð0; ðAk modT kÞ � Tk þDkÞÞ:

(5)

2) Di � Dk ^ Si > C�k . Shown as case (a) in Fig. 7, the
worst case of W c

i;k occurs when ti’s last released
instance has its deadline at djk. The number of ti’s body

jobs is AkþDk
Ti

j k
. The contribution of the carry-in job is

bounded byminðC�i ; ðAk þDkÞmodT iÞ. So, we have

W
c2
i;k ¼

Ak þDk

Ti

� �
C�i þminðC�i ; ðAk þDkÞmod TiÞ: (6)

3) Di > Dk ^ Si � C�k . Case (b) in Fig. 7 shows theworst
case ofW c

i;k. By Lemma 2, ti’s job can interfere with Jj
k

only if its release time is earlier than rjk. So, the worst
case of W c

i;k occurs when one of ti’s instances is

released at rjk � 1.
(3.A) If Ak > 0, the number of ti’s body instances is

Ak�1
Ti

j k
, the carry-out is C�i , the carry-in is

bounded by m ¼ minðC�i ;maxð0; ðAk � 1ÞmodT i �
ðTi �DiÞÞÞ.

(3.B) If Ak ¼ 0, only the carry-out job contributes at
most C�i � 1. So, we have

W
c3
i;k ¼

C�i � 1 Ak ¼ 0
Ak�1
Ti

j k
þ 1

� �
C�i þ m Ak > 0

(
: (7)

4) For the remaining cases, i.e., ðDi � Dk ^ Si � C�kÞ _
ðDi > Dk ^ Si < C�kÞ, the worst case of W c

i;k occurs

Fig. 5. The densest possible packing of jobs of ti without carry-in job and
Di > Dk. Case (a): b < Ak, Case (b): b � Ak.

Fig. 6. The densest possible packing of jobs of ti with carry-in job, if
i ¼ k.

Fig. 7. The densest possible packing of jobs of ti with carry-in job. Case
(a):Di � Dk ^ Si > C�k , Case (b):Di > Dk ^ Si � C�k .

 1491

when one of ti’s instances is released at ljk � C�i , as
shown in Fig. 8.
(4.A) If Ak þ Sk � C�i , thenW c

i;k ¼ Ak þ Sk.
(4.B) If Ak þ Sk > C�i , the number of ti’s body job is

AkþSk�C�i
Ti

j k
, the contribution of the carry-out job

is C�i ; carry-in is bounded by n ¼ minðC�i ;maxð0;
ðAk þ Sk � C�i ÞmodT i � ðTi �DiÞÞÞ

W
c4
i;k ¼

Ak þ Sk Ak þ Sk � C�i
AkþSk�C�i

Ti

j k
þ 1

� �
C�i þ n Ak þ Sk > C�i

(
:

(8)
By the discussion above,we can computeW c

i;k forEDFnp by

W c
i;k ¼

W
c1
i;k i ¼ k

W
c2
i;k i 6¼ k ^Di � Dk ^ Si > C�k

W
c3
i;k Di > Dk ^ Sk � C�i

W
c4
i;k otherwise

8>>><
>>>:

; (9)

where W
c1
i;k, W

c2
i;k, W

c3
i;k and W

c4
i;k are defined in Equations (5),

(6), (7) and (8) respectively.

4.2.3 Upper Bound onWn
i;k for FPnp

The following lemma describes the condition of processor-
contention interference on tk caused by lower-priority tasks
in lpðkÞ for FPnp.

Lemma 3. For FPnp, a task instance J
j
i of ti 2 lpðkÞ can interfere

with Jj
k only if J

j
i is released before r

j
k.

We compute the upper bound on Wn
i;j by three cases: (1)

i ¼ k, (2) ti 2 hpðkÞ, (3) ti 2 lpðkÞ.
1) i ¼ k. The worst-case workload is the same as in the

case of EDFnp, thus Wn
i;j can be computed by

Equation (1).
2) ti 2 hpðkÞ. The worst-case workload of task ti occurs

when a job of ti arrives at o
j
k, as shown in case ðaÞ in

Fig. 4.Wn
i;j can be computed using Equation (2).

3) ti 2 lpðkÞ. The worse case of Wn
i;k occurs when one of

ti’s instances is released at ojk. The number of body jobs

of ti is
AkþSk

Ti

j k
. Let g be the distance between ojk and

the release time of ti’s last instance. So g ¼ AkþSk
Ti

j k
.

(3.A) If Ak ¼ 0, then ojk ¼ rjk, according to Lemma 3,
Wn

i;k ¼ 0.
(3.B) If g < Ak, ti’s last job is released earlier than rjk,

as shown in Fig. 9 case (a), its contribution is
bounded by minðAk þ Sk modT i; C

�
i Þ. In this

case,Wn
i;k is computed by Equation (2).

(3.C) If g � Ak > 0, as shown in case (b) of Fig. 9, the
contribution of the last released job of ti is 0. In
this case,Wn

i;k can be computed by Equation (3).
By the above discussion, we can computeWn

i;k by

Wn
i;k ¼

0 ti 2 lpðkÞ ^Ak ¼ 0
W

n1
i;k i ¼ k

W
n2
i;k ti 2 hpðkÞ _ ðti 2 lpðkÞ ^ g < AkÞ

W
n3
i;k otherwise

8>><
>>: ; (10)

where W
n1
i;k , W

n2
i;k , W

n3
i;k are defined in Equations (1), (2)

and (3) respectively.

4.2.4 Upper Bound onW c
i;k for FPnp

We compute the upper bound on W c
i;k by three cases: (1)

i ¼ k, (2) ti 2 lpðkÞ ^ Sk � C�i , (3) the remaining cases.

1) i ¼ k. The worst case of W c
i;k occurs as it does for

EDFnp, and thereforeW c
i;k is computed by Equation (5).

2) ti 2 lpðkÞ ^ Sk � C�i . The worst case of W c
i;j occurs

when one of ti’s job is released at rjk � 1, as shown in
case (b) of Fig. 7.We can computeW c

i;j by Equation (7).
3) The remaining cases, i.e., ti 2 hpðkÞ or ti 2 lpðkÞ^

C�i > Sk. The worst-case workload of ti is generated
when one of ti’s instances is released at time instance
sjk � C�i . Such a situation is depicted in Fig. 8. In this
case, we can computeW c

i;j by Equation (8).
By the above discussion, we computeW c

i;j by

W c
i;k ¼

W
c1
i;k i ¼ k

W
c3
i;k ti 2 lpðkÞ ^ Sk � C�i

W
c4
i;k otherwise

8><
>: ; (11)

where W
c1
i;k, W

c3
i;k and W

c4
i;k are defined in Equations (5), (7)

and (8) respectively.

4.2.5 Upper Bound on Iprek

By the definition of ojk, at least one core is idle at o
j
k, therefore

at most m� 1 tasks have carry-in jobs. The task set t can be
partitioned into two subsets tc and tn that include tasks
with carry-in jobs and tasks without carry-in jobs, respec-
tively. Now we define Vk as the maximal value of the sum
of all tasks’ workloads in ½ojk; ljk� among all possible cases

Vk ¼ max
X
ti2t

Wi;k

¼ maxðtn;tcÞ2t
X
ti2tn

Wn
i;k þ

X
ti2tc

W c
i;k

!
;

(12)

Fig. 8. The densest possible packing of jobs of ti with carry-in job. Case
(a):Di � Dk ^ Si � C�k , case (b):Di > Dk ^ Si < C�k .

Fig. 9. The densest possible packing of jobs of ti with carry-in job. Case
(a): g < Ak, Case (b):g � Ak > 0.

1492

where tn and tc satisfy tn [tc ¼ t, tn \ tc ¼ ? and
jtcj � m� 1.

By taking the maximum over the task set,Vk describes an
upper bound on the total worst-case workload in ½ojk; ljk�. The
complexity to compute Vk is OðnÞ, as explained in [18].

Since both EDFnp and FPnp are work-conserving, the
processor-contention interference exhibited by tk can be
bounded by Vk

m . So, we have the following Lemma.

Lemma 4. If tasks are scheduled with an EDFnp or FPnp sched-
uling policy on a multicore processor composed of m identical
cores with shared cache

Iprek � Vk

m
:

The pessimism of the analysis of upper bound on the
processor-contention interference mainly comes from the
assumption that every tasks take the their worst-case execu-
tion time and the computational loads are equally distrib-
uted tom cores.

4.3 Computation of �Isck
We first identify the maximum cache interference between
two tasks and thenwe construct an integer programming for-
mulation to calculate the upper bound on the shared cache
interference exhibited by a taskwithin an executionwindow.

4.3.1 Cache Interference Between Two Tasks

We first analyze the cache interference during one job exe-
cution between tk and ti. Let tk be the interfered and ti be
the interfering task.

Following the approach in [4], we can obtain the WCET
of a task by performing a Cache Access Classification (CAC)
and Cache Hit/Miss Classification (CHMC) analysis for
each instruction memory access at the private caches and
the shared LLC cache separately.

CAC and CHMC. The CAC determines the possibility that
an instruction being fetched from memory will access a cer-
tain cache level, and the access to a certain cache level can
be Always (A), Uncertain (U) or Never (N). A reference r at a
cache level L is considered as A if the access to r is always
performed at cache level L and r is considered as N if the
access to r is never performed at cache level L, while the
access is classified as U if it is not A nor N . CHMC assigns a
cache lookup result to each memory reference according to
the cache states. As a result, a reference to a memory block
of instructions can be classified as Always Hit (AH), Always
Miss (AM) or Uncertain (U).

The CAC for a reference r at a cache level L depends on
the results of CAC and CHMC of the reference r at the level
L-1. Since we consider noninclusive caches, accesses to the
private caches cannot be affected by tasks executing on
other cores. Accesses classified as AM or U at the shared
LLC cache will also not be affected by shared cache interfer-
ences, since they are already counted as misses in the WCET
analysis.

We start the cache interference analysis by defining two
concepts for cache blocks.

Definition 2. AHit Block (HB) is a memory block whose access
is classified as AH at the shared LLC cache.

Definition 3. A Conflicting Block (CB) is a memory block
whose access is classified as A or U at the shared LLC cache.

HB and CB can be identified by the approach proposed
in [4].

We use HBk ¼ fmk;1;mk;2; . . . ;mk;pg to represent the set
of HB for task tk and use nk;x (x ¼ 1; 2; . . . ; p) to denote the
number of mk;x’s accesses that are classified as a AH at the
LLC cache. Similarly, we define CBi ¼ fmi;1;mi;2; . . . ;mi;qg
as the set of CB for task ti and denote ni;x as the number of
mi;x’s accesses that are classified as an A or U at the LLC
cache. Note that HBk and CBi include the memory blocks
that meet the requirement in every program path that may
be taken by the task.

In our system architecture, cache interference occurs only
at the shared LLC cache when a cache line used by tk is
evicted by ti and consequently causing reload overhead for
tk. A cache line that may cause cache interference for tk
needs to satisfy at least two conditions:

(i) access to that cache line will result in a cache hit at
the LLC cache in WCET analysis of tk,

(ii) the cache line may be used by ti.
From the above two conditions, we can analyze memory

block accessing that may cause interference. The first condi-
tion implies that only accessing to HBk may cause cache
interference for tk, while the second condition indicates that
accessing to CBi by ti may interfere with tk. Furthermore,
cache interference occurs only if tk accesses memory blocks
in HBk and ti accesses memory blocks in CBi concurrently,
and those memory blocks have the same cache index.

We use Isci;k to represent the upper bound on the shared
cache interference imposed on tk by only one job execution
of ti.

Suppose the indexes of the LLC cache range from 0 to
N � 1, we can derive N subsets of HBk according to the
mapping function idx that maps a memory address to the
cache line index at the LLC cache as follows:

m̂k;u ¼ mk;x 2 HBkjidxðmk;xÞ ¼ u
� �

; ð0 � u < N; u 2 NÞ:

We define the characteristic function of a set A which
indicates membership of an element x in A as

xAðxÞ ¼ 1 x 2 A
0 otherwise

�
:

Let Nk;u represent the number of hit accesses to the uth
cache line by tk without cache interference. Nk;u equals to
the total number of access to the HBs mapping to the kth
cache line

Nk;u ¼
Xp
x¼1

nk;xxm̂k;u
ðmk;xÞ:

Similarly, we divide CBi intoN subsets by

êi;u ¼ mi;x 2 CBijidxðmi;xÞ ¼ u
� �

; ð0 � u < N; u 2 NÞ:
The number of accesses to the kth cache line by ti is

bounded by

Ni;u ¼
Xq
x¼1

ni;xxêi;u
ðmi;xÞ;

 1493

Cache interference can only happen among memory
blocks that are in the same subset that maps to the same
cache line. For the uth cache line, tk can be interfered at
most Nk;u times and ti can interfere at most Ni;u times. The
following formula gives an upper bound on the number of
cache misses by accessing theHBs for task tk

Sðti; tkÞ ¼
XN�1
u¼0

minðNi;u; Nk;uÞ:

Suppose the penalty for an LLC cache miss is a constant,
Cmiss, then Isci;k can by calculated by

Isci;k ¼ Sðti; tkÞCmiss:

Lemma 5. The shared cache interference imposed on tk by only
one job execution of ti can be bounded and Isci;k = Sðti; tkÞCmiss.

Proof. The lemma holds as discussed above. tu
The computation of Isci;k only takes the memory accesses of

tk and ti as input, so Isci;k only depends on memory accesses
of tk and ti. Given a taskset, Isci;k can be computed. In the fol-
lowing discussion, we assume Isci;k is known.

Lemma 5 gives an upper bound on cache interference for
tk imposed by only one job of ti. It is possible that more
than one job of ti interfere with tk. We denote the number
of jobs of ti that interfere with tk asNi;k.

Lemma 6. The total cache interference tk exhibited fromNi;k jobs
of ti is bounded byNi;kI

sc
i;k.

Proof. ForNi;k jobs of ti, the total number of accesses to each
memory blockmi;x is bounded byNi;kni;x. Thus, the execu-
tion ofNi;k jobs of ti accesses the kth cache line also at most
Ni;kNi;u times. From the proof of Lemma 5, the upper
bound of the total cache interference exhibited by tk from
Ni;k jobs of ti is

PN�1
u¼0 minðNi;kNi;u; Nk;uÞCmiss

Ni;kI
sc
i;k ¼ Ni;k

XN�1
u¼0

minðNi;u; Nk;uÞCmiss

¼
XN�1
u¼0

minðNi;kNi;u; Ni;kNk;uÞCmiss

�
XN�1
u¼0

minðNi;kNi;u; Nk;uÞCmiss:

tu

4.3.2 IP Formulation

We can compute an upper bound of the maximum cache
interference a task may exhibit during an execution window
by introducing an Integer Programming (IP) formulation,
which can be transformed to an integer linear programming
formulation.

It is necessary to check the schedulability of the task-set
without considering cache interference. If the task-set does not
pass the initial schedulability test, there is no need to calculate
the cache interference. Only if all tasks (including ti) pass the
schedulability test (without considering cache interference),
the IP is solved to compute theupper bound on cache interfer-
ence. Therefore, the IP formulation is based on the assump-
tion that ti is schedulablewithout cache interference.

If Ni;k jobs of ti are executing concurrently with tk, the
cache interference that ti causes on tk is bounded by Ni;kI

sc
i;k

according to Lemma 6. As a task may exhibit cache interfer-
ence from more than one task during a job execution, the
total cache interference for one job execution of tk is
bounded by the sum of the contributions of all other tasks
tiði 6¼ kÞ in the task set t. Thus, the objective function of the
IP formulation is

max
X
i6¼k

Ni;kI
sc
i;k: (13)

The IP formulation will have an unbounded solution
without further constraints to the variable Ni;k. To get a
bounded solution, we analyze the constraints on Ni;k. First,
we define the concept of the execution window of a job.

Definition 4. The Execution Window (EW) of the jth job of tk
(Jj

k) is time interval ½sjk; fj
k� from the staring time to the finish-

ing time of Jj
k.

Note that the length of an execution window may be
larger than Ck, since the EW includes the cache interference.
We use C0k as the length of the EW because of the iterative
computation which will be described later on.

Ni;k reaches its minimal value when a job of ti starts to
execute as soon as it is released and the execution finishes
just before the start of the EW , as shown the case (a) in
Fig. 10. Denoting Cmin

i as the smallest execution time of ti,
often called Best-Case Execution Time (BCET), we have the
following constraint:

8i 6¼ k;
maxð0; C0k � Ti þ Cmin

i Þ
Ti

� �
þ �i � Ni;k; (14)

where �i ¼ 1 ððC0k þ Cmin
i ÞmodT iÞ �Di þ Cmin

i > 0
0 otherwise

�
:

The term �i indicates whether the last job of ti released
within the EW will interfere with tk, since the last released
job should start its execution Cmin

i before its relative dead-
line if the task is schedulable.

The maximum value of Ni;k is taken when the first inter-
fering job of ti finishes just after the start of the EW and the
last interfering job of ti starts to execute at the time when it
is released. Such a situation is depicted as case (b) in Fig. 10.
Thus, we have the second constraint onNi;k

8i 6¼ k; Ni;k � 1þ maxð0; C0k � Ti þDiÞ
Ti

	

: (15)

If Ni;k > 2, the first and last interfering jobs of ti may
occupy almost 0 computation capacity in the EW . Let Jj

i be

Fig. 10. Situations where ti interferes tk with the most and least number
of jobs.

1494

such a job among the remaining Ni;k � 2 interfering jobs of
ti between the first and the last ones. Both release time rji
and deadline dji of J

j
i are within the EW of tk.

Lemma 7. If ti is schedulable without considering cache interfer-
ence, Ci computation capacity of the processing core is reserved
for the execution of Jj

i during ½rji ; dji �. If Jj
i executes for

Cact
i < Ci, the processing core will be accumulatively idle (exe-

cuting nothing, simply wasting the processing capacity for ti)
for at least Ci � Cact

i during ½rji ; dji �.
Proof. If ti satisfies the schedulability condition without con-

sidering cache interference: ViðCÞ
m þ Ci < Di, the core on

which Jj
i is executed spends at mostDi � Ci in total for the

execution of other interfering tasks during ½rji ; dji �. Jj
i is

guaranteed to haveCi computation capacityduring ½rji ; dji �.tu
The remaining computation capacity of a multicore pro-

cessor with m cores is ðm� 1ÞC0k since one core is dedicated
to the execution of tk. Due to the limited computation capac-
ity of the processor, the total execution of the tasks that may
interfere with tk within the EW can not exceed ðm� 1ÞC0k.
Hence, we have the third constraintX

i6¼k
maxð0; Ni;k � 2ÞCi � ðm� 1Þ C0k: (16)

The objective function (13) together with three constraints
onNi;k, i.e., inequalities (14), (15) and (16), form our IP prob-
lem. Since Cmin

i is a relatively small number, we take the
extreme case: Cmin

i ¼ 0. As task parameters such as Ci,Di, Ti

are known, the optimal solution of the IP only depends on
the length ofEW . Thus, we use IscðC0kÞ to denote the optimal
value of the IP problem if C0k is used as the length of the EW
in the IP .

Note that inequalities (14) and (16) are based on the
assumption that ti is schedulable. Thus, before solving the
IP , we have to check the schedulability of the taskset
assuming no cache interference between tasks, i.e., �Isci ¼ 0.

Computation Complexity of the IP . The original IP can be
easily transformed to an Integer Linear Programming (ILP)
problem by introducing a new integer variable yi;j for each
Ni;j with two additional constraints: yi;j � 0 and yi;j �
Ni;k � 2. Inequality (16) can be replaced by

P
i6¼k yi;kCi �

ðm� 1Þ C0k. In the transformed ILP problem, we have totally
2ðn� 1Þ variables and 4ðn� 1Þ þ 1 constraints. The complex-
ity of the IP is the same as the complexity of solving the trans-
formed ILP problem, which isOðn64n ln 4nÞ [31]. Despite the
exponential complexity, current LP solver implementations
are very efficient and capable of solving realistic LP problem
formulations.Wewill demonstrate this in Section 6.

5 ITERATIVE COMPUTATION

Due to the presence of cache interference, a job may execute
longer than Ck on a multicore platform with shared caches.
However, a larger execution time may introduce more cache
interference, as illustrated in Fig. 11.

In Fig. 11a, if the job of tk executes for C
0
k, only one job of

ti interferes with tk. In Fig. 11b, if the job of tk executes for a
larger execution time, say C0k þ IscðC0kÞ, two jobs of ti could
possibly interfere with tk, which potentially may increase
the cache interference exhibited by tk. This example sug-
gests an iterative method is needed to find an upper bound
on the cache interference.

Lemma 8. IscðC0kÞ is non-decreasing with respect to C0k.
Lemma 8 is explained by the above example.
We give a sufficient condition for a certain value that can

be used as an upper bound on cache interference.

Lemma 9. if 9 C�k � Ck such that C�k ¼ Ck þ IscðC�kÞ, then
�Isck ¼ IscðC�kÞ.

Proof. If C�k ¼ Ck þ IscðC�kÞ, then IscðC�kÞ ¼ IscðCk þ IscðC�kÞÞ.
According to Lemma 8, given an execution window of tk
that is no more than Ck þ IscðC�kÞ, the cache interference
exhibited by tk is not larger than IscðC�kÞ. Therefore,
IscðC�kÞ is the upper bound on cache interference for tk.
By definition, �Isck ¼ IscðC�kÞ. tu
We now derive the iterative algorithm, called CacheInter

ferenceðt;mÞ to compute an upper bound on cache interfer-
ence for each task tk 2 t:

� Since the constraints of our IP formulation assume
the taskset is schedulable, we first assess the schedul-
ability of the taskset assuming no cache interference
between each task. Only if all tasks pass schedulabil-
ity test, the following steps will be taken.

� C0k is initialized with Ck and an upper bound value
on the cache interference IscðC0kÞ is created which is
initially set to zero

� By solving the IP , we compute a new upper bound
of the cache interference IscðC0kÞ.

� If the new upper bound of cache interference is the
same as the old upper bound, the IscðC0kÞ is the final
upper bound of tk. Otherwise, another round of com-
puting the upper bound on cache interference is per-
formed using the upper boundderived at the previous
iteration. The iteration for tk stops either if no update
on IscðC0kÞ is possible anymore or if the computed
IscðC0kÞ is large enough tomake tk unschedulable.

� The previous steps are repeated for every task in t.
A more formal version of the CacheInterferenceðt;mÞ

algorithm is given by Pseudocode 1. The algorithm returns
I� which includes the upper bounds on cache interference
IscðC�kÞ for each task tk and C� which includes the upper
bounds on the execution length C�k for each tk. If I

� and C�

are empty, the taskset is not schedulable.
Since the solution of the IP is non-decreasing with

respect to C0k according to Lemma 8 and one termination
condition is C0k � Dk, the termination of the iterative algo-
rithm is guaranteed.

Before presenting the final theorem to check the schedul-
ability of the task set, we define the following notations.

Fig. 11. More cache interference if tk executes for a longer time.

 1495

Pseudocode 1. CacheInterference(t,m)

1: Input: Task parameters, number of cores:m
2: I� empty list, used to store IscðC�kÞ for each task
3: C� empty list, used to store C�k for each task
4: for all tk 2 t do
5: update true, Ioldk 0, Inewk 0
6: C0k Ck

7: while update do
8: Ioldk Inewk

9: Inewk Solution of IP with C0k as the EW
10: C0k ¼ Ck þ Inewk

11: if Inewk ¼¼ Ioldk or C0k � Dk then
12: update false
13: end if
14: end while
15: Add Inewk to I�

16: Add C0k to C�

17: end for
18: return I�, C�

We denote UðtiÞ as task ti’s utilization taking shared
cache interference into account, UðtiÞ is defined by

Ui ¼ C�i
Ti

:

The utilization of taskset t, denoted byUðtÞ, is defined by

UðtÞ ¼
X
ti2t

Ui ¼
X
ti2t

C�i
Ti

:

We sort all C�i in a non-increasing order, and use Dm�1
C�
i

to
denote the sum of the first ðm� 1Þ elements in this list, so

Dm�1
C�
i
¼

X
the ðm�1Þ largest

C�i :

For task tk, we also define a constant Lk by

Lk ¼
P

ti2t C
�
i þ Dm�1

C�
i

m� UðtÞ � Sk: (17)

We propose the following Theorem to check the schedul-
ability of the task set.

Theorem 2. A task set t is schedulable with the EDFnp or FPnp

scheduling policy on a multicore platform composed ofm identical
cores with shared caches if for each task tk 2 t and 0 � Ak � Lk,

(1) 9 C�k � Ck such that C
�
k ¼ Ck þ IscðC�kÞ,

(2) Vk
m þ C�k < Dk þAk.

Proof. From (1), �Isck is bounded and �Isck ¼ IscðC�kÞ according
to Lemma 9.

From Lemma 4, �Iprek ¼ VkðC�Þ
m .

8Ak � 0, if Vk
m þ C�k ¼ Vk

m þ Ck þ IscðC�kÞ < Ak þDk

then �Iprek þ Ck þ �Isck < Ak þDk. Theorem 2 follows from
Theorem 1.

We further prove that if condition (2) is to be violated
for anyAk, then it must also be violated for someAk � Lk.

Wn
i;k can be bounded by considering the number of

body jobs to be AkþSk
Ti

j k
and the contribution of the carry-

out to be C�i , so

Wn
i;k �

Ak þ Sk

Ti

� �
C�i þ C�i �

Ak þ Sk

Ti
C�i þ C�i

¼ ðAk þ SkÞUi þ C�i :

Similarly, W c
i;k can be bounded by considering the contri-

bution of both the carry-in and the carry-out are C�i

W c
i;k �

Ak þ Sk

Ti

� �
C�i þ 2C�i � ðAk þ SkÞUi þ 2C�i :

From Equation (12)

Vk ¼ maxðtn;tcÞ2t
X
ti2tn

Wn
i;k þ

X
ti2tc

W c
i;k

!

� ðAk þ SkÞ
X
ti2t

Ui þ
X
ti2t

C�i þ Dm�1
C�
i

¼ ðAk þ SkÞUðtÞ þ
X
ti2t

C�i þ Dm�1
C�
i

:

If condition (2) is to be violated for any Ak, then
9Ak;

Vk
m þ C�k � Dk þAk

¼)Vk � mðDk þAk � C�kÞ
¼)ðAk þ SkÞUðtÞ þ

X
ti2t

C�i þ Dm�1
C�
i
� mðSk þAkÞ:

Solve the above inequality for Ak, we have

Ak �
P

ti2t C
�
i þ Dm�1

C�
i

m� UðtÞ � Sk ¼ Lk:

This tells us the range of Ak that should be tested. tu
Finally, we give the procedureCheckSchedulabilityðt;mÞ to

perform the schedulability test, as illustrated by Pseudocode 2.

Pseudocode 2. CheckSchedulability(t,m)

1: Input: Task parameters, number of cores:m
2: I�, C� CacheInterferenceðt;mÞ
3: for all tk 2 t do
4: calculate Lk by Equation (17)
5: for all Ak 2 ½0; LK � do
6: Vk calculation of Equation (12) using C�; Ak

7: if Vk
m þ C�k � Dk þAk then

8: return Unschedulable
9: end if
10: end for
11: end for
12: return Schedulable

Computational Complexity. Let n represent the number of
tasks in the task-set. For tk, let I

min
k be the smallest differ-

ence between cache interference caused by one job of ti and
tj, i.e., I

min
k ¼ min

i;j
ðIsci;k � Iscj;kÞ, the iterative algorithm takes at

most h ¼ max
k

ðDk � CkÞ
Imin
k

iterations to terminate since C0k
either stays the same or increases at least with Imin

k in each
iteration. Thus, the complexity of the iterative algorithm
to compute the upper bound on cache interference is
Oðhn264nln4nÞ. The complexity of computing Lk;Vk is poly-
nomial. Therefore, the complexity to perform the schedul-
ability test isOðhn264nln4nÞ.

1496

6 EXPERIMENTS

In this section, we systematically generate synthetic work-
loads to evaluate the performance of the proposed schedul-
ability test for EDFnp and FPnp in terms of acceptance ratio.
More specifically, we will quantify the effects of cache inter-
ference on the schedulability of the generated tasksets. We
will also compare the schedulability performance of EDFnp

against FPnp over randomly generated tasksets.
The experiments have been performed varying i) the prob-

ability of two tasks having cache interference on each other:P
(P ¼ 0:1; 0:2; 0:3 or 0.4), ii) the cache interference factor IF
(IF ¼ 0; 0:3; 0:6 or 0.9), iii) the number of coresm (m ¼ 2; 4
or 8), iv) total task utilization Utot (Utot from 0.1 to m� 0:1
with steps of 0.2). Given those three parameters,we have gen-
erated 20000 tasksets in each experiment. The number of
tasks n in each tasksets is 10, i.e., n ¼ 10. As the task genera-
tion policies may significantly affect experimental results, we
give the policies used in the experiments as follows.

Task Utilization Generation Policy. We use Randfixed-
sum [32] to generate vectors that consist of n elements and
whose components sum to the Utot. Each element in the vec-
tor is assigned an individual task utilizationUk in the taskset.

Task Period and WCET Generation Policy. For each task tk,
Tk is uniformly distributed over the interval ½100; 200�. The
WCET of tk is derived by Ck ¼ Tk � Uk. We consider an
implicit deadline task system,which implies thatDi ¼ Ti.

Cache Interference Generation Policy. The probability of two
task having cache interference is P . If two tasks tk and ti
interfere with each other, Isci;k is generated as Isci;k ¼ IF �
minð0:5Ci; 0:5CkÞ.

In each experiment, we measure the number of schedu-
lable tasksets that pass the proposed schedulability test. The

acceptance ratios, which is the number of schedulable task-
sets divided by the total number of tasksets (20000), are
shown in Figs. 12 and 13 for EDFnp and FPnp, respectively.

Fixingm ¼ 4; n ¼ 10; IF ¼ 0:3, Figs. 12a and 13a illustrate
the acceptance ratio with different P for EDFnp and FPnp,
respectively. With the same Utot, the acceptance ratio for both
EDFnp and FPnp decreases as P increases because a larger P
indicates more tasks in the taskset could interfere with each
other, which may potentially increase the upper bound on
cache interference for each task. Fixing P , it can be observed
that the acceptance ratio of EDFnp is higher than FPnp when
Utot 2 ½1:1; 2:5�. For example, when P ¼ 0:2; IF ¼ 0:3 and
Utot ¼ 1:7, 60.1 percent of tasksets are schedulable by EDFnp,
while FPnp schedules 50.45 percent of the generated tasksets.

Figs. 12b and 13b show the acceptance ratio achieved by
EDFnp and FPnp, respectively, for the cases IF ¼ 0; 0:3;
0:6; 0:9, fixing m ¼ 4; n ¼ 10; P ¼ 0:4. The red line with
IF ¼ 0 represents the acceptance ratio when tasks have no
cache interference. Evidently, the acceptance ratios with a
lower IF are better than those with a larger IF . As we
increase IF with the same amount, the average acceptance
ratio decreases in a slower fashion. However, it does not
indicate that a lower bound on the average acceptance ratio
is possible since the cache interference gets larger as IF
increases, eventually making the interfered tasks unschedu-
lable. Fixing IF , it is also clear that the acceptance ratio
achieved by EDFnp is better than FPnp when Utot 2 ½0:7; 2:5�.
For example, whenP ¼ 0:4; IF ¼ 0:6 andUtot ¼ 1:1, 66.9 per-
cent of tasksets are schedulable by EDFnp, while FPnp sched-
ules 59.3 percent of the generated tasksets.

Figs. 12c and 13c illustrate the acceptance ratiowith respect
to the number of cores for EDFnp and FPnp, respectively. In

Fig. 12. Acceptance ratio of EDFnp when varying cache interference factor: IF , probability: P and number of cores:m.

Fig. 13. Acceptance ratio of FPnp when varying cache interference factor: IF , probability: P and number of cores:m.

 1497

the two figures, the acceptance ratio for tasks having no cache
interference are also plotted. Instead of using Utot as horizon-
tal axis, we scale the horizontal axis with Utot�8

m form ¼ 2; 4. It
is worth noting that an execution platformwith fewer cores is
more efficient in terms of acceptance ratio than those with
more cores. This is due to the fact that the pessimism of the
analysis of processor-contention interference and shared
cache interference becomes worse when the number of cores
increases. However, for processors with different numbers of
cores scheduled by EDFnp (or FPnp), the difference in the
acceptance ratio of scheduling between the baseline (tasks
having no cache interference, P ¼ 0) and tasks having cache
interference is almost similar.

Average Execution Time. We measured the execution time
of running the proposed schedulability test with different
task-set scales. The executions are conducted on an Intel
Xeon processor using only one core running at 2.4 GHz. On
average, it takes 0.13 seconds to check the schedulability of
tasksets consisting of 10 tasks, 0.27 seconds for tasksets with
20 tasks, and 0.56 seconds for tasksets with 30 tasks.

7 CONCLUSION

In this paper, we developed a new schedulability analysis of
global scheduling (EDFnp and FPnp) for real-time multicore
systems with shared caches. We constructed an integer pro-
gramming formulation that can be transformed to an integer
linear programming formulation to calculate the upper
bound on cache interference exhibited by a task during a
given execution window. Using this integer formulation, we
subsequently proposed an iterative algorithm to obtain an
upper bound on the shared cache interference a task may
exhibit during one job execution. We derived a new schedul-
ability condition by integrating the upper bound on the
cache interference into the schedulability analysis. A set of
experiments has been performed using our proposed sched-
ulability analysis to demonstrate the effects of cache interfer-
ence for a range of different tasksets. We also compared the
schedulability performance of EDFnp against FPnp in the
presence of cache interference. Our empirical evaluations
showed that EDFnp is better than FPnp in terms of tasksets
deemed schedulable. As for future work, we plan to extend
our schedulability analysis to real-time multicore systems
with shared caches that use preemptive task scheduling.

ACKNOWLEDGMENTS

The research of this article was supported by Netherlands
Organisation for Scientific Research under Project No. 12696
and the University of Amsterdam.

REFERENCES

[1] H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach
for practical OS-level cachemanagement inmulti-core real-time sys-
tems,” in Proc. 25th Euromicro Conf. Real-Time Syst., 2013, pp. 80–89.

[2] E. Berg, H. Zeffer, and E. Hagersten, “A statistical multiprocessor
cache model,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
2006, pp. 89–99.

[3] V. Suhendra and T. Mitra, “Exploring locking & partitioning for
predictable shared caches on multi-cores,” in Proc. 45th ACM/
IEEE Des. Autom. Conf., 2008, pp. 300–303.

[4] D. Hardy and I. Puaut, “WCET analysis of multi-level non-
inclusive set-associative instruction caches,” in Proc. Real-Time
Syst. Symp., 2008, pp. 456–466.

[5] J. Xiao, S. Altmeyer, andA. Pimentel, “Schedulability analysis of non-
preemptive real-time scheduling for multicore processors with
shared caches,” inProc. IEEEReal-Time Syst. Symp., 2017, pp. 199–208.

[6] R. Wilhelm et al., “The worst-case execution-time problem—
Overview of methods and survey of tools,” ACM Trans. Embedded
Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, May 2008. [Online].
Available: http://doi.acm.org/10.1145/1347375.1347389

[7] W. Zhang and J. Yan, “Accurately estimating worst-case execution
time for multi-core processors with shared direct-mapped instruc-
tion caches,” in Proc. 15th IEEE Int. Conf. Embedded Real-Time
Comput. Syst. Appl., 2009, pp. 455–463.

[8] D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten WCET
estimates formulti-core processorswith shared instruction caches,”
in Proc. 30th IEEEReal-Time Syst. Symp., 2009, pp. 68–77.

[9] Y. Liang, H. Ding, T. Mitra, A. Roychoudhury, Y. Li, and
V. Suhendra, “Timing analysis of concurrent programs running
on shared cache multi-cores,” Real-Time Syst., vol. 48, no. 6,
pp. 638–680, 2012. [Online]. Available: http://dx.doi.org/
10.1007/s11241-012-9160-2

[10] G. Gracioli and A. A. Fr€ohlich, “An experimental evaluation of the
cache partitioning impact on multicore real-time schedulers,” in
Proc. IEEE 19th Int. Conf. Embedded Real-Time Comput. Syst. Appl.,
2013, pp. 72–81.

[11] J. Liedtke, H. Hartig, and M. Hohmuth, “OS-controlled cache
predictability for real-time systems,” in Proc. 3rd IEEE Real-Time
Technol. Appl. Symp., 1997, pp. 213–224.

[12] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson,
“Making shared caches more predictable on multicore platforms,”
in Proc. 25th Euromicro Conf. Real-Time Syst., 2013, pp. 157–167.

[13] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni, “Real-time cache management framework for multi-
core architectures,” in Proc. IEEE 19th Real-Time Embedded Technol.
Appl. Symp., 2013, pp. 45–54.

[14] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna, “Deterministic memory hierarchy and virtualization
for modern multi-core embedded systems,” in Proc. IEEE Real-
Time Embedded Technol. Appl. Symp., 2019, pp. 1–14.

[15] M. Shekhar, A. Sarkar, H. Ramaprasad, and F. Mueller, “Semi-
partitioned hard-real-time scheduling under locked cache migra-
tion in multicore systems,” in Proc. 24th Euromicro Conf. Real-Time
Syst., 2012, pp. 331–340.

[16] M. Xu, L. Thi, X. Phan, H. Choi, and I. Lee, “vCAT: Dynamic cache
management using cat virtualization,” in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp., 2017, pp. 211–222.

[17] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time
scheduling algorithm for multiprocessors,” in Proc. 27th IEEE Int.
Real-Time Syst. Symp., 2006, pp. 101–110.

[18] S. Baruah, “Techniques formultiprocessor global schedulability ana-
lysis,” in Proc. 28th IEEE Int. Real-Time Syst. Symp., 2007, pp. 119–128.
[Online]. Available: http://dx.doi.org/10.1109/RTSS.2007.48

[19] N. Guan, G. Yu, W. Yi, Q. Deng, and Z. Gu, “New schedulability
test conditions for non-preemptive scheduling on multiprocessor
platforms,” in Proc. Real-Time Syst. Symp., 2008, pp. 137–146. [Online].
Available: doi.ieeecomputersociety.org/10.1109/RTSS.2008.17

[20] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis
of global scheduling algorithms on multiprocessor platforms,”
IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 4, pp. 553–566,
Apr. 2009.

[21] F. Zhang and A. Burns, “Schedulability analysis for real-time sys-
tems with EDF scheduling,” IEEE Trans. Comput., vol. 58, no. 9,
pp. 1250–1258, Sep. 2009.

[22] J. Lee, K. G. Shin, I. Shin, and A. Easwaran, “Composition of
schedulability analyses for real-time multiprocessor systems,”
IEEE Trans. Comput., vol. 64, no. 4, pp. 941–954, Apr. 2015.

[23] D. Liu et al., “Scheduling analysis of imprecise mixed-criticality
real-time tasks,” IEEE Trans. Comput., vol. 67, no. 7, pp. 975–991,
Jul. 2018.

[24] L. Sha et al., “Real time scheduling theory: A historical perspec-
tive,” Real-Time Syst., vol. 28, no. 2/3, pp. 101–155, Nov. 2004.
[Online]. Available: https://doi.org/10.1023/B:TIME.0000045315.
61234.1e

[25] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4,
pp. 35:1–35:44, Oct. 2011. [Online]. Available: http://doi.acm.
org/10.1145/1978802.1978814

[26] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling
and analysis for multicores,” in Proc. 7th ACM Int. Conf. Embedded
Softw., 2009, pp. 245–254.

1498

http://doi.acm.org/10.1145/1347375.1347389
http://dx.doi.org/10.1007/s11241-012-9160-2
http://dx.doi.org/10.1007/s11241-012-9160-2
http://dx.doi.org/10.1109/RTSS.2007.48
doi.ieeecomputersociety.org/10.1109/RTSS.2008.17
https://doi.org/10.1023/B:TIME.0000045315.61234.1e
https://doi.org/10.1023/B:TIME.0000045315.61234.1e
http://doi.acm.org/10.1145/1978802.1978814
http://doi.acm.org/10.1145/1978802.1978814

[27] M. Xu, L. T. X. Phan, H. Y. Choi, and I. Lee, “Analysis and imple-
mentation of global preemptive fixed-priority scheduling with
dynamic cache allocation,” in Proc. IEEE Real-Time Embedded Tech-
nol. Appl. Symp., 2016, pp. 1–12.

[28] M. Xu et al., “Holistic resource allocation for multicore real-time
systems,” in Proc. IEEE Real-Time Embedded Technol. Appl. Symp.,
2019, pp. 345–356.

[29] S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and
J. Reineke, “A generic and compositional framework for multicore
response time analysis,” in Proc. 23rd Int. Conf. Real Time Netw.
Syst., 2015, pp. 129–138.

[30] T. P. Baker, “Multiprocessor EDF and deadline monotonic sched-
ulability analysis,” in Proc. 24th IEEE Real-Time Syst. Symp., 2003,
pp. 120–129.

[31] K. L. Clarkson, “Las Vegas algorithms for linear and integer
programming when the dimension is small,” J. ACM, vol. 42,
pp. 488–499, 1995.

[32] R. Stafford, “Random vectors with fixed sum,” 2006. [Online]. Avail-
able: http://www.mathworks.com/matlabcentral/fileexchange/9700

Jun Xiao (Member, IEEE) received the BE degree
in automation and control engineering from Nan-
chang University, Nanchang, China, in 2012, the
MS degree from the University of Trento and
Scuola Superiore Sant’Anna, Pisa, Italy, in 2014,
and the PhD degree in computer science from the
University of Amsterdam, Amsterdam, The Neth-
erlands, in October, 2019. He is a postdoc
researcher with the University of Amsterdam. His
research interests include the fields of embedded
and real-time systems, schedulability analysis,
and computer architecture.

Sebastian Altmeyer (Member, IEEE) received
the PhD degree in computer science from
Saarland University, Saarbr€ucken, Germany, in
2012 with a thesis on the analysis of preemptively
scheduled hard real-time systems. He is currently
an assistant professor (Universitair Docent) with
the University of Amsterdam. From 2013 to 2015,
he has been a postdoctoral researcher with the
University of Amsterdam, and from 2015 to 2016
with the University of Luxembourg. In 2015, he
has received an NWO Veni Grant on the timing

verification of real-time multicore systems. He has been a program chair
of ECRTS 2018 and has served on many conferences on real-time
embedded systems, including RTSS, RTAS, RTNS, DATE, and DAC. His
research focuses various aspects of the design, analysis and verification
of hard real-time systems, with a particular interest in timing verification
and multicore architectures.

AndyD. Pimentel (Senior Member, IEEE) received
the MSc and PhD degrees in computer science
from the University of Amsterdam, Amsterdam, The
Netherlands. He is currently an associate professor
with the System and Network Engineering Lab, Uni-
versity of Amsterdam.His research interests include
system-level modeling, simulation, and exploration
of (embedded) multicore and manycore computer
systems with the purpose of efficiently and effec-
tively designing and programming these systems.
He is a co-founder of the International Conference

on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS). He has (co)authored more than 100 scientific publications and
is an associate editor of the Elseviers Simulation Modelling Practice and
Theory as well as the Springers Journal of Signal Processing Systems. He
served as the general chair of HIPEAC’15, as Local Organization co-chair
of ESWeek’15, and as program (vice-)chair of CODES+ISSS in 2016 and
2017. Furthermore, he has served on the TPC ofmany leading (embedded)
computer systems design conferences, such as DAC, DATE, CODES
+ISSS, ICCD, ICCAD, FPL, SAMOS, andESTIMedia.

 1499

http://www.mathworks.com/matlabcentral/fileexchange/9700

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

