
Adding Concurrency to a Sequential Refinement
Tower ?

Gerhard Schellhorn, Stefan Bodenmüller, Jörg Pfähler, and Wolfgang Reif

Institute for Software & Systems Engineering
University of Augsburg, Germany

{schellhorn,stefan.bodenmueller,reif}@informatik.uni-augsburg.de
joerg.pfaehler@gmx.de

Abstract. This paper defines a concept and a verification methodology
for adding concurrency to a sequential refinement tower of abstract state
machines, that is based on data refinement and a component structure.
We have developed such a refinement tower for the Flashix file system
earlier, from which we generate executable (C and Scala) Code.
The question we answer in this paper, is how to add concurrency based
on locks to such a refinement tower, without breaking the initial mod-
ular structure. We achieve this by just enhancing the relevant compo-
nents, and adding intermediate atomicity refinements that complement
the data refinements that are already there. We also give a verification
methodology for such atomicity refinements.

1 Introduction

Development of formally proved software systems using incremental refinement
has been successfully used in many case studies. Often the system developed is
a sequential system, e.g. a compiler. The standard technique used then is data
refinement [14,8,9] or closely related definitions [2].

Our group has developed a verified file system for flash memory [26,12,13,22]
using a strategy based on data types specified as abstract state machines (ASMs,
[4]), data refinement, and subcomponents. The resulting refinement tower is
shown in Fig. 1. It starts with an abstract state machine that specifies the POSIX
file system operations. This interface is then refined to an implementation VFS
(denoted by VFS v POSIX), which calls operations of a submachine AFS. This
machine acts as an abstract interface to the next implementation. This continues
until the MTD layer is reached, which is the generic interface for flash hardware
used in Linux.

Scala code for simulations as well as C code integrated into the Linux kernel
has been generated from the implementations (shown in grey). The file system so
far is strictly sequential, i.e., all operations are called in sequential order. Adding
concurrency is however relevant for practical usability and efficiency on at least
three levels: top-level operations, garbage collection and wear leveling.

? Supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von Flash-
Dateisystemen” (grants RE828/13-1 and RE828/13-2).

Since existing refinement strategies are typically designed to start with an
atomic specification that is refined to a concurrent system, this raises the ques-
tion how to add concurrency a posteriori to intermediate levels of such a refine-
ment tower without losing modularity and without having to start verification
from scratch. This paper gives a positive answer to the question, by “shifting”
parts of the refinement towers, i.e., by modifying individual specifications and
implementations, to make them concurrent.

POSIX

...

AFSVFS

BlocksWL

EBM

MTD

...

...

...

Fig. 1: Flashix
refinement tower

We will use erase block management (the EBM inter-
face) and the concurrent implementation of wear level-
ing (WL) based on the interface Blocks as an example to
demonstrate how concurrency is added. A specification of
the sequential specifications and refinements involved has
already been published in [23].

The next section will give a simplified version of the
relevant sequential specifications and implementation, to
demonstrate in Section 3 how concurrency using locks is
added and how restrictions are encoded as ownership con-
straints. Section 4 informally introduces the well-known
concept of linearizability as the relevant concept to ver-
ify correctness of concurrent implementations, and shows
how the proof of linearizability can be split into one of
data refinement (that reuses the original proof) and one of atomicity refine-
ment. Section 5 will give a proof strategy based on rely-guarantee proofs and
reduction. Both have been implemented in our KIV [11] theorem prover. The
specifications and proofs for the case study are available online [18]. Section 6
gives related work, and Section 7 concludes.

2 The Refinement for Wear Leveling

Flash hardware is partitioned into erase blocks. Blocks can be written sequen-
tially, and erased as a whole. Erasing wears out the block until it becomes un-
usable. Therefore, for efficient usage of a flash device, blocks must be worn out
evenly. In particular if a device is filled to a large part with static data, the blocks
with these data must sometimes be swapped with other (currently empty) blocks,
that have often been modified and erased. This is called wear leveling. Wear lev-
eling is hidden from the more abstract levels of the file system by the erase block
manager (EBM) interface. The interface offers access to logical blocks. The task
of the implementation (WL) is to map them to the physical blocks offered by the
hardware, and to change the mapping when this is advisable, using an internal
operation for wear leveling that has no effect (implements skip) for the interface
EBM.

An abstract specification of the erase block manager is given with the ASM
EBM. The state consists of a function that maps logical block numbers to actual
content and a set of currently used (“mapped”) block numbers.

state Contents : nat → content Mapped : set〈nat〉
initial state Contents = λ n. empty ∧ Mapped = ∅

For simplicity, we do not specify content , except for a default value empty. The
interface of EBM shown in Fig. 2 allows to read and to write the content of logical
blocks. The operations use a semicolon to separate input and output parameters.

ebm write(lnum, c)
Contents(lnum) B c
Mapped BMapped ∪ {lnum}

ebm read(lnum; c)
if ¬ lnum ∈ Mapped then
c B empty

else
c B Contents(pnum)

Fig. 2: Sequential
specification of the erase

block manager (EBM)

The implementation of EBM is given by the
ASM WL together with a specification Blocks

as a submachine. This refinement introduces the
distinction between logical and physical blocks.
Blocks allows reading and writing of physical
blocks while WL is responsible for the mapping of
logical to physical blocks. Furthermore, the wear
leveling algorithm is implemented in WL.

To enable wear leveling each physical block
in Blocks contains a header. This header stores
which logical block is mapped to the physical
block or if the block is currently unmapped (⊥).

data header = mapped(blockno : nat) | ⊥
data block = mkb(header : header , content : content)

The state of Blocks is a function that maps physical block numbers to blocks.
Initially all blocks are unmapped and empty.

state Blocks : nat → block initial state Blocks = λ m. mkb(⊥, empty)

The interface of Blocks as shown in Fig. 3 provides additional functionality
to write and read the header of a physical block. Accessing the content of a
block requires it to be mapped, i.e., the header of the block must not be ⊥. For
wear leveling the interace also offers an interface operation blocks get wl that
returns two physical blocks from and to, that are suitable for wear leveling. The
actual decision is based on erase counts (also stored in block headers), but we
leave the concrete implementation open here. To signal that wear leveling is
currently unnecessary, the operation returns a block from with an unmapped
header.

The operations of WL are depicted in Fig. 4. To avoid scanning the headers of
all blocks, the state of WL maintains an in-memory mapping from logical block
numbers to headers, which contain the corresponding physical block numbers if
the logical block is mapped.

state LMap : nat → header initial state LMap = λ n. ⊥

Reading and writing of content delegates to the corresponding operations of
Blocks by following LMap. If a logical block is unmapped, the write operation

blocks write(pnum, c)
pre Blocks(pnum).header 6= ⊥
Blocks(pnum).content B c

blocks read(pnum; c)
pre Blocks(pnum).header 6= ⊥
c B Blocks(pnum).content

blocks write h(pnum, h)
h B Blocks(pnum).header

blocks read h(pnum; h)
Blocks(pnum).header B h

blocks map(; pnum)
choose m with
Blocks(m).header = ⊥

in
pnum B m

blocks get wl(; from, to)
choose m1 , m2 with
Blocks(m2).header = ⊥
/* ∧ m1 , m2 are suitable

for wear leveling */
in
from B m1 , to B m2

Fig. 3: Sequential specification of the physical block layer (Blocks)

first maps this block to an unused physical block by writing a header and updat-
ing LMap. Therefore Blocks provides an operation blocks map that returns a
fresh block that can be mapped.

The wear leveling operation wl wear leveling, that is not visible to the
clients, first requests a pair of blocks to be wear leveled by calling blocks get wl.
If the from Block is mapped, its header and content are copied to the to Block
and LMap is updated. We leave away many details here, that ensure, that crash-
ing in the middle of wear leveling will result in a consistent state, see [23].

To prove the refinement WL v EBM three invariants are established in WL.

injective(lmap) ↔
∀ n1 ,n2 . lmap(n1) 6= ⊥ ∧ lmap(n2) 6= ⊥ → lmap(n1) 6= lmap(n2)

lmapblocks(lmap, blocks) ↔
∀ n. lmap(n) 6= ⊥ → blocks(lmap(n).blockno).header = mapped(n)

blockslmap(blocks, lmap) ↔
∀ m. blocks(m).header 6= ⊥ → lmap(blocks(m).header.blockno) = mapped(m)

The three predicates guarantee a valid mapping between logical and physical
blocks. injective prohibits that two logical blocks are mapped to the same phys-
ical block, lmapblocks ensures that each mapped physical block in lmap points
to the correct logical block, and blockslmap ensures that each mapped physical
block also has a matching entry in lmap.

The abstraction relation between states of the specification and states of the
implementation ensures that mapped blocks in Mapped conform with mapped
logical blocks in LMap and that contents of Contents conform to the contents
of the mapped physical blocks in Blocks.

(∀ n. n ∈ Mapped ↔ LMap(n) 6= ⊥)

∧ (∀ n. n ∈ Mapped → Contents(n) = Blocks(LMap(n).blockno).content)

Together with the invariants this is sufficient to prove a data refinement using
forward simulation.

wl write(lnum, c)
let pnum = 0 in
if LMap(lnum) = ⊥ then
blocks map(; pnum);
blocks write h(pnum, mapped(lnum));
blocks write(pnum, empty);
LMap(lnum) B mapped(pnum);

else
pnum B LMap(lnum).blockno;

blocks write(pnum, c);

wl read(lnum; c)
if LMap(lnum) = ⊥ then
c B empty;

else
let pnum = LMap(lnum).blockno in
blocks read(pnum; c);

wl wear leveling()
internal
let h = ⊥, c = empty,

from = 0, to = 0
in
blocks get wl(; from, to);
blocks read h(from; h);
if h 6= ⊥ then
let lnum = h .blockno in
blocks read(from; c);
blocks write h(to, h);
blocks write(to, c);
LMap(lnum) B mapped(to);
blocks write h(from; ⊥) ;

Fig. 4: Sequential implementation of the wear leveling layer (WL)

3 Adding Concurrency and Ownership

The sequential code calls the wear leveling operation at the end of every other
operation. This causes small pauses in between operations. A better solution is
to call wear leveling in a separate thread concurrently. This exploits that even
the MTD hardware interface is capable of reading and writing different blocks
concurrently. This is not possible for individual blocks, since these do not provide
random access, but can be written sequentially only.

Adding concurrency implies that interface operations are now called concur-
rently by several threads, and it is natural to assume that they now have an
atomic semantics (which is the natural semantics of ASMs, but was not required
in a sequential context). We emphasize this, by writing EBMAt and BlocksAt for
EBM and Blocks with atomic semantics, although the machines are the same.
Assuming an atomic semantics for the implementation is however unrealistic.

A simple solution that enforces an atomic semantics for an implementation
is to use a single global mutex, that is set before each operation and released
afterwards. Doing so for the operations of WL would however prevent wear leveling
from running concurrent.

An implementation of Blocks that uses such a simple locking strategy would
be correct to enforce atomicity, but too restrictive as it would prevent concurrent
access to different blocks. It would also not be sufficient for the correctness
of WL. To understand this, consider the implementation of wl write in Fig. 4
and a potential interleaving of two concurrent executions of this operation as
depicted in Fig. 5. Here two threads tid1 and tid2 write two contents to different
logical blocks lnum1 resp. lnum2 . Both logical blocks are unmapped so by calling
blocks map unmapped physical blocks are chosen to be mapped. Although the
operation is atomic it is possible that for tid2 the same physical block pnum is
returned as for tid1 since tid1 has not written the new header yet. Both threads
would then write to the same physical block, first different headers that point to
lnum1 resp. lnum2 , then different contents c2 resp. c1 . After both writes finish

tid1

blocks map blocks write h blocks write

tid2

blocks map blocks write h blocks write

wl write(lnum1 , c1)

wl write(lnum2 , c2)

Fig. 5: Critical interleaving of two wl write executions

an inconsistent state is reached to the effect that the written data of tid2 is lost
and the injectivity of the block mapping is violated.

A concept is needed that enforces on the level of Blocks that its implemen-
tation can assume that only one thread is writing each block at one time, and
that headers are written by a single thread only.

The concept we use is that of threads owning data structures.

data owner = readers(tids : set〈threadid〉) | writer(tid : threadid)

ghoststate OBlocks : nat → owner OHeaders : owner

An owner can either own a data structure non-exclusively (typically for read-
ing) or exclusively for writing. That a thread owns all headers or some block for
reading or writing is specified as two ghost variables OHeaders and OBlocks.
To ensure, that clients of the extended interface BlocksOwns shown in Fig. 7
respect the ownership, we add preconditions to the operations, that request
read-ownership for reading and write-ownership for writing blocks and head-
ers. A thread that wants to call an operation of BlocksOwns must now acquire
ownership before it and can release ownership afterwards. For this purpose the
interface is extended with two auxiliary acquire and release operations. These
acquire and release full ownership, which is sufficient for the concurrent imple-
mentation of wear leveling given below. It is possible to add operations that
acquire and release read-ownership too. Acquiring full ownership has the pre-
condition that there is no current owner. If two threads now try to write the
same block, one of them will violate the precondition of acquire (if it tries to
acquire) or it will violate the precondition of writing (if it does not). But this
is impossible, since submachine calls in implementations are checked to satisfy
their preconditions.

Calls to acquire and release in the augmented code of wear leveling will now
ensure, that ownership is properly acquired. They are used for verification, but
are “ghost code” that is eliminated when generating executable code.

To make sure, that calls to acquire never violate their precondition, we have
to use locks in the extended implementation of WL given in Fig. 8. The simple
implementation we give here just uses mutexes.

data mutex = free | locked(tid : threadid)

blocks acquire(pnum)
pre OBlocks(pnum) = readers(∅)
atomic ghost
OBlocks(pnum) B writer(tid)

blocks acquire h()
pre OHeaders = readers(∅)
atomic ghost
OHeaders B writer(tid)

blocks write(pnum, c)
pre Blocks(pnum).header 6= ⊥

∧ tid ∈ OBlocks(pnum).writers
atomic
Blocks(pnum).content B c

blocks write h(pnum, h)
pre tid ∈ OHeaders.writers

∧ tid ∈ OBlocks(pnum).writers
atomic
h B Blocks(pnum).header

blocks get wl(; from, to)
pre tid ∈ OHeaders.readers
atomic
choose m1 , m2 with
Blocks(m2).header = ⊥
/* ∧ m1 is good for WL */

in
from B m1 , to B m2

blocks release(pnum)
pre tid ∈ OBlocks(pnum).readers
atomic ghost
OBlocks(pnum) B release(tid,OBlocks(pnum))

blocks release h()
pre tid ∈ OHeaders.readers
atomic ghost
OHeaders B release(tid,OHeaders)

blocks read(pnum; c)
pre Blocks(pnum).header 6= ⊥

∧ tid ∈ OBlocks(pnum).readers
atomic
c B Blocks(pnum).content

blocks read h(pnum; h)
pre tid ∈ OHeaders.readers
atomic
Blocks(pnum).header B h

blocks map(; pnum)
pre tid ∈ OHeaders.readers
atomic
choose m with
Blocks(m).header = ⊥

in
pnum B m

Fig. 7: Atomic specification of the physical block layer with ownership
(BlocksOwns)

The locking and unlocking operations mutex lock and mutex unlock are
specified as the atomic program statements given in Fig. 6. The definition of
mutex lock uses the program construct atomic ϕ { α }. The atomic construct
blocks the current thread until its guard ϕ is satisfied. Immediately afterwards,
the program α is executed in a single, indivisible step.

mutex lock(mutex)
atomic (mutex = free) {
mutex B locked(tid)

}

mutex unlock(mutex)
pre mutex = locked(tid)
mutex B free

Fig. 6: Mutex locking
operations

Fig. 8 shows the result of applying sufficient lock-
ing and ownership acquisition to WL. Additionally,
each atomic step gets an individual label (W1-W18, R1-
R8, and WL1-WL21) to give assertions for this program
point when reasoning about atomicity (see Sec. 5). We
refer to this concurrent implementation as WLConc. The
state of WLConc is enhanced by a lock that protects the
headers of all blocks, and locks for each logical block
that protects its contents.

state ... Lock : mutex Locks : nat → mutex

We use mutexes for all locks, since they match our simplification of acquir-
ing write-ownership only. The actual Erase-Block-Manager in Flashix employs
reader-writer locks whenever parallel reading is unproblematic. The general lock-
ing concept of WLConc is to acquire Lock only if the mapping from logical to phys-
ical blocks needs to be updated. This is the case when writing to an unmapped

wl write(lnum, c)
let pnum = 0 in
mutex lock(Lock);
mutex lock(Locks(lnum));
if LMap(lnum) = ⊥ then
blocks acquire h();
blocks map(; pnum);
blocks acquire(pnum);
blocks write h(pnum, mapped(lnum));
blocks write(pnum, empty);
blocks release(pnum);
LMap(lnum) B mapped(pnum);
blocks release h();

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

else
pnum B LMap(lnum).blockno;

mutex unlock(Lock);
blocks acquire(pnum);
blocks write(pnum, c);
blocks release(pnum);
mutex unlock(Locks(lnum));

W13

W14

W15

W16

W17

W18

wl read(lnum; c)
mutex lock(Locks(lnum));
if LMap(lnum) = ⊥ then
c B empty

R1

R2

R3

else
let pnum = LMap(lnum).blockno in
blocks acquire(pnum);
blocks read(pnum; c);
blocks release(pnum);

mutex unlock(Locks(lnum));

R4

R5

R6

R7

R8

wl wear leveling()
internal
let h = ⊥, c = empty,WL1

from = 0, to = 0
in
mutex lock(Lock);
blocks acquire h();
blocks get wl(; from, to);
blocks read h(from; h);
if h 6= ⊥ then
let lnum = h .blockno in
mutex lock(Locks(lnum));
blocks acquire(from);
blocks read(from; c);
blocks acquire(to);
blocks write h(to, h);
blocks write(to, c);
LMap(lnum) B mapped(to);
blocks write h(from; ⊥);
blocks release(to);
blocks release(from);
mutex unlock(Locks(lnum));

blocks release h();
mutex unlock(Lock);

WL2

WL3

WL4

WL5

WL6

WL7

WL8

WL9

WL10

WL11

WL12

WL13

WL14

WL15

WL16

WL17

WL18

WL19

WL20

Fig. 8: Concurrent implementation of the wear leveling layer (WLConc)

block or when wear leveling is active. Otherwise, locking only one individual
Locks(lnum) of a specific logical block lnum is sufficient. This lock protects the
corresponding entry LMap(lnum) of the block mapping as well as the content of
the physical block LMap(lnum).blockno. With this strategy multiple reads and
writes to different, mapped logical blocks are possible, even in parallel to wear
leveling.

EBM

WLConc BlocksOwns

At

WL + Locks AtBlocks

Linearizability

+ Ownership

Fig. 9: Concurrency
Refinement of the

Erase-Block-Manager

One exception is that the Lock has to be ac-
quired in every wl write execution (W2-W14 in
Fig. 8), at least for a short amount of time.
This is due to the locking hierarchy that is
employed to avoid deadlocks. When running in
parallel, it is possible that a wl write and
wl wear leveling may both need to acquire Lock
and the same Locks(lnum), so it must be en-
sured that those operations request the locks in
the same order. Because wl wear leveling needs
to be owner of OHeaders to get suitable physical blocks at WL4 before a logi-
cal block can be locked, wl write must request Lock (W2) ahead of requesting
Locks(lnum) (W3).

Fig. 9 shows the resulting refinement of EBMAt. Proving WLConc v EBMAt

using linearizability is discussed in detail in the next sections. It remains to

integrate the new “shifted” refinement into the refinement tower. The layers
above EBMAt can remain untouched since EBMAt is identical to EBM, and sequential
use of EBMAt is not problematic. Below BlocksOwns an adjustment is necessary:
a simple one is to use a global lock around the operations of its implementation.
Since the level is already close to the MTD hardware interface, the real solution
propagates ownership down to ownerships at the hardware level (where blocks
store a sequence of bytes instead of a header and content).

4 Linearizabilty and Atomicity Refinement

The standard correctness criterion we use to prove correctness of the refinement
of EBMAt to WLConc from Fig. 9 is linearizability. A formal definition can be found
in [15], we only give an informal description here.

A concurrent implementation CASM with nonatomic programs COPi is lin-
earizable to an atomic specification AASM with atomic operations AOPi, if the
input/output behaviors of each concurrent run can be explained by mapping
them to the sequential input/output behavior of some sequential run of AASM.

EBM

Blocksat(WL

WL

Conc

Conc

Owns

BlocksOwns

At

BlocksWLAt At

Atomicity Refinement

Data Refinement

Abstraction

)

Fig. 10: Splitting the
refinement

The mapping between a concurrent and a se-
quential run is as follows: for each concurrent call
of an operation COPi that is started at time ti
and returns at time t′i find some point in time li
with ti ≤ li ≤ t′i, such that all li are different. The
point is called the linearization point of the oper-
ation call. Then construct some sequential run of
AASM that executes each corresponding abstract
operation AOPi atomically at time li. Note that
even for fixed linearization points this may give
several sequential runs if the abstract operations
are nondeterministic.

A refinement from AASM to CASM then is lin-
earizable, if for every concurrent run linearization points and an abstract se-
quential run can be found, such that all operation calls have the same inputs
and outputs.

The clients of the interface then cannot distinguish the concurrent run from
one, where each operation call is delayed until time li, executes AOPi atomically
and then is delayed again until time t′i.

Our proof technique will use an intermediate machine at(WLConc) that is the
same as WLConc, but executes the code of each operation as one atomic step.
This splits the refinement problem into three parts as shown in Fig. 10. The
data refinement WLAt v EBMAt, that we have already proved (since the ASMs
are the same as WL and EBM). Second, a trivial refinement at(WLConc) v WLAt

that abstracts from the locking/unlocking (and acquire/release) instructions in
at(WLConc), since the overall effect of locking/unlocking in one atomic step is
empty. Finally, the atomicity refinement WLConc v at(WLConc), where both ma-
chines have the same data and operations, but different atomicity. Splitting the

refinement from an atomic AASM to a concurrent CASM by using an intermediate
at(CASM), which executes the operations of CASM atomically, has the advantage
that data refinement is completely decoupled from atomicity refinement.

The next section will describe a proof strategy for proving the atomicity
refinement between at(WLConc) and WLConc, which is the new problem we get
from adding concurrency to the refinement tower.

5 Proof Strategy for Atomicity Refinement

The proof strategy we use to prove atomicity refinement consists of two steps.
First we prove that the concurrent runs of WLConc satisfy some assertions at all
program points. These proofs use thread-local reasoning with the rely-guarantee
calculus. They additionally ensure termination and deadlock-freedom, which are
not implied by linearizability alone. Second we prove that based on the assertions,
atomic program steps can be reduced to larger and larger atomic steps, until we
arrive at at(WLConc). We sketch the basic strategy in the first subsection, and
give results for the case study in Section 5.2.

5.1 Rely-Guarantee Proofs and Reduction

The variant of the rely-guarantee calculus used here is similar to the one given
in [30], Section 5. The basic correctness statement1 is of the form

pre ∧ I → 〈R,G, I , run, α〉 post

where program α is assumed to be the sequential program of some thread, that
executes atomic steps. These alternate with environment steps, where one envi-
ronment step is an arbitrary sequence of steps of other threads.

The program is assumed to use the state variables x. Precondition pre, post-
condition post , predicate run, and global invariant I are predicates over this
state. The rely R and the guarantee G restrict environment and program steps.
They are predicates over x and x′ We write arguments in predicates if they differ
from the standard ones only.

The formula asserts, that program α, when started in a state that satisfies
precondition pre and global invariant I , will execute steps that satisfy G and
preserve the invariant I , as long as all previous environment steps satisfy R and
preserve I too. No program step will block, when at that time run holds. In
addition, when all environment steps satisfy R and preserve I , then the program
will either terminate and the final state will satisfy post , or it will stop in a
blocked state where run is false.

The calculus to prove such formulas in KIV is based on symbolic execution.
The basic rule to execute one atomic step at label L, that is annotated with an

1 The notation in [30] is: α sat (pre,R ∧ (I → I (x′)), run,G ∧ (I → I (x′)), post)

assertion ϕL is

pre ∧ I → ϕL ∧ (run → ϕ)

pre ∧ I ∧ 〈α〉 x = x′ → G(x, x′) ∧ I (x′)

pre(x0) ∧ 〈α(x0)〉 x0 = x1 ∧ R(x1, x) ∧ I (x) → 〈R,G, I , run, β〉 post

pre ∧ I → 〈R,G, I , run, L : / ∗ ϕL ∗ / atomic ϕ {α};β〉 post

The rule reduces the conclusion at the bottom to premises. The first premise
states that before executing α the assertion at the initial label holds, and that
the first step does not block (ϕ holds) whenever the run predicate is true.

The second premise uses the Dynamic Logic formula 〈α〉 x = x′ which asserts
that the sequential program α has a terminating run that yields a state x′. The
premise ensures that the first atomic step of the program, which executes α is a
step that satisfies G and preserves the invariant I .

The third premise continues symbolic execution with the rest of the program.
Its precondition uses two sets x0 and x1 of fresh variables, to represent the
two old states before and after the first atomic program step. The subsequent
environment step from x1 to the current state x is assumed to satisfy R. Since
rely steps preserve the invariant, it can be assumed for the current state again.

One common instance of the rule is a parallel assignment y := t, which can
be viewed as an abbreviation for atomic true {y := t}. In this case the formula
〈α〉 x = x′ reduces to y′ = t ∧ z′ = z, where z are the remaining variables from
x that are not assigned.

The rules for other constructs like conditionals resemble the usual rules for
symbolic execution of programs, except that similar to the rule above they have
rely steps in between program steps and side conditions for assertions and guar-
antee. For loops, a loop invariant (that holds at the start of each iteration) and a
variant, that decreases with a wellfounded order are needed. Proofs for recursive
routines need wellfounded induction.

Individual rely-guarantee proofs for single threads can be combined to a
rely-guarantee property of a concurrent system. The crucial property that needs
to hold for this to work, is that the relies and guarantees must be compatible:
the guarantee of each thread Gtid must imply the relies Rtid′ of other threads
tid ′ 6= tid . For our state machines where all threads are known to execute the
same operations, the guarantee can be chosen to be Gtid :=

∧
tid′ 6=tid Rtid′ , the

weakest guarantee possible that is trivially compatible. The system is deadlock-
free, if the disjunction of all

∨
tid runtid holds. When a mutex is used, runtid

is chosen to be lock = locked(tid) ∨ lock = Free which implies this condition.
This easily generalizes to the hierarchy of locks used in the case study.

In summary, to verify assertions for a specification of a concurrent state ma-
chine with operations OPi, the user has to provide an invariant I , a rely Rtid and
a predicate idletid . The latter describes states, where a thread is not currently
executing an operation. From these predicate logic proof obligations (e.g. the R
must be reflexive, initial states satisfy the invariant etc.) are generated, together
with the following rely guarantee proof obligation for each operation.

tid 6= tid ′, I , idletid , pretid ` 〈Rtid ,Rtid′ , I , runtid , OPi〉 idletid

Successful verification guarantees that each of the assertions ϕL holds every time
a thread reaches label L, that the operations terminate and that the implemen-
tation is deadlock-free.

The verified assertions are then used to combine atomic statements to larger
ones following Lipton’s [19] strategy of reduction. The idea is that a thread
executing two atomic steps AtL1 and AtL2 (at labels L1 and L2) with an envi-
ronment step in between is often equivalent to first executing the environment
step, then AtL1 and AtL2 with no intermediate environment step. In this case
the two steps can be merged together to form one atomic step.

s0 s1 s2 s3 s4

s′1 s′2

AtL1 AtM AtN AtL2

AtM

AtN

AtL1

atomic {AtL1;AtL2}

Fig. 11: AtL1 commutes to the right
of environment step AtM ;AtN

Reverting the order of first executing
AtL1 and then an environment step is pos-
sible, if all steps of other threads, that
could be a part of the environment step,
commute to the right with AtL1, in the
sense that executing them in both orders
gives the same final state. In this case
AtL1 is called a right mover. Analogous
to this, a step that commutes to left with all steps is called a left mover. Fig. 11
shows an example, where the environment step consists of two steps AtM and
AtN of other threads. The original run is shown at the bottom, the alternative
run which allows executing AtL1 and AtL2 as one atomic step at the top. The
intermediate states of the runs are different, but they reach the same final state.

The atomic steps of the programs can all be written in the form

AtL ≡ L : / ∗ ϕL ∗ / atomic εL {αL}

where L is the label, and ϕL the assertion established. The guard εL is true for
all statements, except locking instructions, cf. Figure 6. Program αL is either an
assignment, or the call of a submachine operation. For a conditional or a while
loop with test δ, αL is defined to be b := δ using a fresh variable b, while binding
a local variable let y = t in . . . gives αL ≡ {y := t}. The formal condition for
AtL1 to commute to the right with AtL2 executed by another thread is

ϕL ∧ ϕ′
M ∧ εL ∧ ε′M ∧ tid 6= tid ′ ∧ 〈αL;α′

M 〉 x = x0 → 〈α
′
M ;αL〉 x = x0 (1)

In the formula, ϕ′
M , ε

′
M , α

′
M are variants, that rename thread local variables used

in AtM to new, primed variables disjoint from the shared state and the local
variables of AtL. The criterion critically uses the assertions at both labels, since
they often show that the preconditions of the implication contradict each other,
trivializing the proof. If, for example the two steps are both in a region where a
common lock is needed, they commute trivially: ϕL implies lock = locked(tid),
while ϕ′

M implies lock = locked(tid ′), so the proof obligation trivially holds. A
general result is that locking is always a right mover, while unlocking is always
a left mover.

Combining steps to larger steps can be translated into rules for making state-
ments like sequential composition, conditionals and loops atomic, when their
parts are atomic already. We use rules similar to the reduction rules given in

[10]. Iterated application gives larger and larger atomic blocks. Ideally, the final
result is that the whole concurrent program of one operation has been combined
into a single atomic step. If this is possible, then a linearizability proof becomes
trivial, as the linearizability point then simply is the single atomic step.

5.2 Proving the Case Study

The main task for proving the atomicity refinement of the case study is to find
assertions, rely conditions and a global invariant that are strong enough to allow
atomicity refinement.

The rely conditions are derived from the crucial ideas what data structures
are protected from being changed, when thread tid has a certain lock or owner-
ship. This results in the following clauses.

tid ∈ OHeaders.readers → ∀ m. Blocks(m).header = Blocks′(m).header

tid ∈ OBlocks(m).readers → Blocks(m) = Blocks′(m)

Lock = locked(tid) → LMap′ = LMap

Locks(n) = locked(tid) → LMap′(n) = LMap(n)

Locks(n) = locked(tid)

→ ∀ m. Blocks(m).header = mapped(n) ↔ Blocks′(m).header = mapped(n)

The only rely that is somewhat difficult to find is the last one: if a thread locks
logical block n, then other threads are not allowed to change the block header
to point to or to point away from n.

The global invariant and the assertions are derived from several sources.
First, ownership as used in the interface BlocksOwns has to be compatible with
the use of locks.

OHeaders ⊆ Lock .owner (2)

∀ m. Blocks(m).header 6= ⊥
→ OBlocks(m) ⊆ Locks(Blocks(m).header.blockno).owner (3)

∀ m. Blocks(m).header = ⊥ → OBlocks(m) ⊆ Lock .owner (4)

The invariant (2) states that headers are owned only if the lock has been taken.
Invariant (3) states that a mapped physical block m can be owned (and therefore
changed) only if the corresponding logical block that is stored in its header is
locked. For unmapped blocks property (4) states that they can be owned only if
WLConc has taken the header lock.

Second, the three global invariants of the sequential code are relevant. Drop-
ping them completely would result in illegal states where e.g. the block mapping
is no longer injective. However, the invariants of the sequential verification are
only guaranteed to hold in idle states, where no thread is running. So it is nec-
essary to give weaker assertions for intermediate states, that are still sufficient
to avoid illegal ones.

For the given case study, it turns out that lmapblocks and injective are pre-
served by all steps, but that blockslmap does not hold while the headers are

locked. As a result the global invariant can include blockslmap(Blocks,LMap)
only when the headers are currently not owned (Oheaders = readers(∅)). To
establish this assertion, after a step that releases OHeaders, assertions have to
be given for all labels, where OHeaders is taken. For writing the predicate is
violated between line W9 after the header of block pnum has been set to lnum
and line W11, where LMap(lnum) is set to pnum. For all lines in this range
blockslmap(Blocks,LMap(lnum; pnum)) holds: if LMap were already updated,
then blockslmap would hold. The wear leveling algorithm gives similar assertions
for the range WL13-WL15.

Finally, assertions are sometimes necessary for the code after a test or after as-
signments to a variable. In a purely sequential setting, the test for LMap(lnum) 6=
⊥ at R2 ensures that this formula holds, until the subsequent let binding pnum =
LMap(n).blockno at line R4, which will ensure pnum = LMap(lnum).blockno
when the variable pnum is used later on. However, in the concurrent setting
LMap may be assigned by other threads, destroying each of these properties. In
the given case, the rely conditions are strong enough to propagate the formu-
las, so we assert that at line R4 the first formula holds, while for lines R5-R7 the
second holds. A number of similar assertions are needed for other local variables.

Proving the rely-guarantee proof obligations for the individual programs re-
quires the main effort in proving the concurrent setting correct. This is in line
with case studies we have done for lock-free algorithms [28,25,29,27], where prov-
ing rely-guarantee assertions caused the main effort too.

After establishing assertions for all program points, the program can then be
reduced, combining atomic steps to larger ones. This requires to find out, which
steps are left or right movers (or both). The current strategy implemented in
KIV does simple syntactic checks to check whether the resulting commutativ-
ity requirement (1) is trivial: either the accessed variables are disjoint, or the
preconditions of the proof obligation trivially reduce to false. Otherwise it is
possible to generate proof obligations, by manually asserting that certain steps
(identified by their label) are left or right movers (or both).

For the case study, manual specifications of mover types are currently nec-
essary for the atomic calls blocks acquire (right mover) and blocks release
(left mover) of BlocksAt. The reader may check, that this trivially implies that
the other operations of BlocksAt are left and right movers. After the mover
types have been determined, the reduction rules are then applied automatically,
to form maximally large atomic blocks.

This immediately results in a single atomic block for wl write and wl read.
Reducing wl wear leveling creates three atomic blocks. The first ends at the
conditional at line WL6 and is a right mover. The second is for the let-block
WL7-WL19. The third is for the last two lines WL20-WL21, and is a left mover. The
conditional cannot be reduced, since its then-branch requires the lock for block
lnum to be free, while the empty else-branch does not have this guard. With
the atomic blocks now being much larger than before, it becomes possible to
prove much stronger invariants that just hold in between blocks, but did not
hold for the original programs. In particular, since all locking and unlocking of

blocks is now within atomic regions, the simple invariant that all Locks(lnum) are
always free can be established using another simple rely-guarantee proof. With
the new invariant established, another reduction step finds, that the conditional
at line WL6 can now be reduced to an atomic block. Together with the initial
and the final block being right resp. left movers already, the wear leveling code
is combined by another reduction step into a single step. This implies that the
concurrent implementation of wear leveling is indeed linearizable and a correct
refinement.

6 Related Work

Related work on wear leveling and the flash file system we have developed has
already been given in [23], where the full version of the sequential wear leveling
algorithm has been specified.

This paper is based on the PhD of Jörg Pfähler [21], where concurrency was
added to the full wear leveling algorithm. The full version needs to add ownership
annotations and locks to several refinements. This version is now used in our
actual flash file system implementation. The PhD also contains extensions that
allow verifying crash-safety, which we could not address in this paper.

The flash file system by Damchoom et al. [7] has concurrent wear leveling.
The synchronization between threads is implicitly performed by the semantics of
Event-B models, i.e., an event in an Event-B model is always executed atomically,
and not explicitly via locks or other synchronization primitives. This makes the
step to actual running code more difficult and less straightforward. The full erase
block management used in our flash file system is also more general, because it
does not use additional bits of out-of-band data of an erase block.

Verification of concurrent, lock-based systems is of course a very broad topic
with lots of important contributions, and the proof techniques we use are from
this field. We are not aware of other formal methods that specifically address the
question of this paper: how to add concurrency a posteriori to an existing modu-
lar, sequential system, without having to prove the system from scratch. Adding
concurrency to components of an existing software system to increase efficiency
is however a recurring software engineering task that should be supported by
formal methods.

Refinement and abstraction of atomicity is quite common for concurrent
systems, and many refinement definitions for concurrent systems like [1] or [20]
address refinements of atomicity. The refinement calculus of Back [3] uses the
opposite direction. It starts out with an atomic program and splits it into smaller
actions in refinement steps.

The calculus of atomic actions due to Elmas et al. [10] is an extension of
Lipton’s [19] original approach for highly concurrent, linearizable programs. It
provides a more incremental verification methodology than the calculus given
here for highly concurrent systems and its implementation is better automated.
The assertions and invariants are incrementally validated in [10], whereas here
a rely/guarantee proof is used to validate them before applying any reductions.

The rules of the calculus in [10] address partial correctness, so termination would
have to be proven differently. Nevertheless, many of the reduction rules given in
this paper are directly used in our approach too.

Ownership annotations are used in the C verifier VCC [6] and Spec# [16]
in order to ensure data-race freedom of the code. They are typically coupled to
objects of the programming language, while we decouple the use of ownership
from objects. Fractional permissions [5] in concurrent versions of separation log-
ics [24] serve a similar purpose as ownership. These are for example supported
by the C code verifier VeriFast [17].

7 Conclusion

We have presented an approach for adding concurrency to an existing refinement
tower. The given approach allows to add concurrency by enhancing some of the
components of the refinement tower. Abstract interfaces are extended with ac-
quire and release operations, that specify allowed concurrency. In our case study
concurrent writes on different blocks are possible, while concurrent writes on the
same block are disallowed. Concurrent code using these interfaces is then possi-
ble, that enhances the existing sequential code with suitable locking strategies.
We have evaluated this strategy of “shifting parts of the refinement” tower by
making wear-leveling concurrent in the Flashix file system. Specifications using
the same concept have been defined for concurrent garbage collection, with exe-
cutable code already running. Verification is work in progress. We also work on
a allowing concurrent calls for POSIX file system operations.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 2:253–284, May 1991. Also appeared as SRC Research Report
29.

2. Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

3. R.J. Back. A Method for Refining Atomicity in Parallel Algorithms. In Interna-
tional Conference on Parallel Architectures and Languages Europe, pages 199–216.
Springer, 1989.

4. E. Börger and R. F. Stärk. Abstract State Machines — A Method for High-Level
System Design and Analysis. Springer, 2003.

5. J. Boyland. Checking Interference with Fractional Permissions. In International
Static Analysis Symposium, pages 55–72. Springer, 2003.

6. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A Practical System for Verifying Concurrent C.
In International Conference on Theorem Proving in Higher Order Logics, pages
23–42. Springer, 2009.

7. K. Damchoom and M. Butler. Applying Event and Machine Decomposition to a
Flash-Based Filestore in Event-B. In Proc. of the Brazilian Symposium on Formal
Methods (SBMF), volume 5902 of LNCS, pages 134–152. Springer, 2009.

8. W. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods
and their Comparison, volume 47 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1998.

9. J. Derrick and E. Boiten. Refinement in Z and in Object-Z : Foundations and
Advanced Applications. FACIT. Springer, 2001. second, revised edition 2014.

10. T. Elmas, S. Qadeer, and S. Tasiran. A Calculus of Atomic Actions. In Proceeding
POPL 2009, pages 2–15. ACM, ACM, 2009.

11. G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and W. Reif. KIV - Overview
and VerifyThis Competition. Software Tools for Techn. Transfer, 17(6):677–694,
2015.

12. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Inside a Verified Flash File Sys-
tem: Transactions & Garbage Collection. In Proc. of Verified Software: Theories,
Tools, Experiments (VSTTE), volume 9593 of LNCS, pages 73–93. Springer, 2015.

13. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Modular, Crash-Safe Refinement
for ASMs with Submachines. Science of Computer Programming (SCP), 2016.

14. J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In Proc. of
the European symposium on programming on ESOP 86, pages 187–196. Springer-
Verlag New York, Inc., 1986.

15. M.P. Herlihy and J.M. Wing. Linearizability: A Correctness Condition for Con-
current Objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

16. B. Jacobs, K.R.M. Leino, F. Piessens, and W. Schulte. Safe Concurrency for
Aggregate Objects with Invariants. In Software Engineering and Formal Methods
(SEFM) 2005, pages 137–146. IEEE, 2005.

17. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.
VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. NASA
Formal Methods, 6617:41–55, 2011.

18. KIV proofs for wear leveling, 2020. URL: https://kiv.isse.de/projects/

WearLeveling.html.
19. R. J. Lipton. Reduction: A Method of Proving Properties of Parallel Programs.

Communications of the ACM, 18(12):717–721, 1975.
20. N. Lynch and F. Vaandrager. Forward and Backward Simulations – Part I: Untimed

systems. Information and Computation, 121(2):214–233, September 1995. also:
Technical Memo MIT/LCS/TM-486.b, Laboratory for Computer Science, MIT.

21. J. Pfähler. A Modular Verification Methodology for Caching and Lock-Based
Concurrency in File Systems. PhD thesis, Universität Augsburg, Fakultät für
Informatik, 2018. URL: https://opus.bibliothek.uni-augsburg.de/opus4/

frontdoor/index/index/docId/41890.
22. J. Pfähler, G. Ernst, S. Bodenmüller, G. Schellhorn, and W. Reif. Modular Veri-

fication of Order-Preserving Write-Back Caches. In IFM: 13th International Con-
ference, 2017, Proceedings, pages 375–390. Springer, 2017.

23. J. Pfähler, G. Ernst, G. Schellhorn, D. Haneberg, and W. Reif. Formal specification
of an Erase Block Management Layer for Flash Memory. In Haifa Verification
Conference (HVC), volume 8244 of LNCS, pages 214–229. Springer, 2013.

24. J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on,
pages 55–74. IEEE, 2002.

25. G. Schellhorn, J. Derrick, and H. Wehrheim. A sound and complete proof tech-
nique for linearizability of concurrent data structures. ACM Trans. Comput. Logic,
15(4):31:1–31:37, 2014.

https://kiv.isse.de/projects/WearLeveling.html
https://kiv.isse.de/projects/WearLeveling.html
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/41890
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/41890

26. G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg, and W. Reif. Development of a
Verified Flash File System. In Proc. of Alloy, ASM, B, TLA, VDM, and Z (ABZ),
volume 8477 of LNCS, pages 9–24. Springer, 2014. Invited Paper.

27. G. Schellhorn, O. Travkin, and H. Wehrheim. Towards a thread-local proof tech-
nique for starvation freedom. In Integrated Formal Methods IFM 2016, volume
9681 of LNCS, pages 193–209. Springer, 2016.

28. B. Tofan, G. Schellhorn, and W. Reif. Formal verification of a lock-free stack with
hazard pointers. In Proc. of ICTAC, pages 239–255. Springer LNCS 6916, 2011.

29. B. Tofan, O. Travkin, G. Schellhorn, and H. Wehrheim. Two approaches for proving
linearizability of multiset. Sci. Comput. Program., 96(P3):297–314, December 2014.

30. Q. Xu, W.-P. de Roever, and J. He. The Rely-Guarantee Method for Verifying
Shared Variable Concurrent Programs. Formal Aspects of Computing, 9(2):149–
174, Mar 1997.

	Adding Concurrency to a Sequential Refinement Tower
	Introduction
	The Refinement for Wear Leveling
	Adding Concurrency and Ownership
	Linearizabilty and Atomicity Refinement
	Proof Strategy for Atomicity Refinement
	Rely-Guarantee Proofs and Reduction
	Proving the Case Study

	Related Work
	Conclusion

