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For continuous-time linear control systems invariance entropy of controlled invariant subspaces is introduced. It is shown
that it coincides with a variant of topological entropy for linear flows which we call subspace entropy. Using this charac-
terization, upper bounds in terms of eigenvalues of an induced flow are derived. Under additional assumptions (diagonal-
izability, single inputs) these bounds are improved

                                          

1 Introduction

Control of systems through digital communication channels and estimation of the required data rates have been considered
since more than twenty years. The main motivation for this circle of ideas comes from the increasing needs of controlling
systems with communication constraints, i.e. for systems where the state passes through a communication channel and may
thus be delayed, corrupted by noise or even lost, and thus in any case may not be fully available to the controller. Early
contributions to the field are, among others, due to Wong and Brockett [33, 34]. More recently, problems in networked
control system have been treated, see, e.g., Gupta et al. [15], or Carli and Bullo [5] for quantized coordination algorithms
for robots. In [23], Nair et al. introduced ideas from topological dynamics into this field (see Katok and Hasselblatt [16]
for an authoritative presentation of the mathematical theory of dynamical systems.) They introduced and studied the no-
tions of topological feedback entropy and symbolic controllers for the problem of stabilizing a discrete-time system with
communication constraints at an equilibrium.

The theoretical analysis of linear systems, controlled over communication channels, profits from the combination of
concepts from linear systems theory and information theory alike. In particular, the information theoretic notion of entropy
plays a central role here as it leads to effective quantitative bounds on data rates necessary for feedback stabilization. Up
to now, such information-based investigations have not been connected with the constructions and the insights provided
by classical geometric control theory which started with the early work of Basile and Marro [2] and Wonham [32]. We
also refer to the textbook Basile and Marro [3] and to Trentelman, Stoorvogel, and Hautus [27] as well as the recent
tutorial Marro et al. [21]. Controlled invariant subspaces form a cornerstone of geometric control theory and play a crucial
role in understanding controller design problems such as disturbance decoupling, filtering, robust observer design, and
high gain state feedback. We therefore expect a similar impact on the analysis of linear systems that are controlled over
communication channels.

In this paper we begin an investigation of how geometric control design via controlled invariant subspaces is affected
by entropy estimates and associated data rate constraints. As a starting point for such an investigation, we associate to any
(A, B)-invariant subspace V of a linear control system a state space similarity invariant, called the invariance entropy of
V , that measures how difficult it is, using open loop controls, to keep the system in V . It is defined by the exponential
growth rate of the number of controls necessary to keep the system in an arbitrarily small ε-neighborhood of V . We show
that the invariance entropy is finite for any (A, B)-invariant subspace and derive upper bounds in terms of the sum of the
eigenvalues of A with positive real part. Sharper upper bounds are derived for specific classes of linear systems. In turned
out that all constructions can be naturally extended for the larger class of almost (A, B)-invariant subspaces, hence the latter
are considered throughout this paper (cf. Remark 4.2.) Our approach follows and partially extends that by Colonius and
Kawan [8], where an entropy-like notion was proposed for controlled invariance of compact subsets with nonvoid interior
in the state space of general control systems. Further results are given in Kawan [17–19] and Colonius and Kawan [8]. This
entropy notion may be regarded as a lower bound for the minimum data rate (take the logarithm with base 2 instead of the
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natural logarithm used, for convenience, in the present paper.) More explicit relations to data rates and to the topological
feedback entropy introduced in [23] are also given in Kawan’s doctoral thesis [20], see also Colonius [6,7] for a discussion
of the required bit rates. We defer applications of the estimates given here to a later paper.

The contents of this paper are as follows: Sect. 2 recalls basic facts on (A, B)-invariant and on almost (A, B)-invariant
subspaces. Section 3 introduces a subspace entropy for homogeneous autonomous linear differential equations. Section 4
presents the main concept of the paper, invariance entropy of almost (A, B)-invariant subspaces, and shows that it coincides
with the subspace entropy of the uncontrolled system. Final Section 5 provides an upper bound for invariance entropy in
terms of eigenvalues. In special cases, sharper upper bounds can be shown.

Notation. The distance of a point x in a normed vector space to a closed subset M is defined by dist(x, M) :=
infy∈M ‖x − y‖.

2 Preliminaries on controlled-invariant subspaces

The purpose of this section is to summarize some well-known definitions and facts from geometric control theory, i.e.,
controlled and almost controlled invariant subspaces. The notion of controlled invariant or, equivalently, (A, B)-invariant
subspaces was introduced by Basile and Marro [2], and Wonham [32]. The concept of almost controlled invariant subspaces
was first introduced by Willems [30, 31]; we also refer to the doctoral theses by Trentelman [26] and Trumpf [28] for a
useful summary of basic definitions and facts.

Consider linear control systems in state space form

ẋ(t) = Ax(t) + Bu(t) (2.1)

with matrices A ∈ R
n×n and B ∈ R

n×m. The solutions ϕ(t, x, u), t ∈ R, of (2.1) with initial condition ϕ(0, x, u) = x are
given by the variations-of-constants formula:

ϕ(t, x, u) = eAtx +
∫ t

0

eA(t−s)Bu(s)ds.

Recall that a subspace V is called (A, B)-invariant, if for all x ∈ V there is u ∈ R
m with Ax + Bu ∈ V . Equivalently,

there is a matrix F ∈ R
m×n, a so-called friend of V , such that for AF := A + BF

AF V ⊂ V.

This can be seen by choosing for a basis x1, . . . , xk of V control values u1, . . . , uk ∈ R
m with Axi + Bui ∈ V . Then

extend this to a basis of R
n and define a linear map F by

Fxi = ui for i = 1, . . . , k , and F arbitrary outside V.

This also shows that V is (A, B)-invariant if and only if it is controlled invariant, i.e., for every x ∈ V there is an open loop
continuous control function u : [0,∞) → R

m with ϕ(t, x, u) ∈ V for all t ≥ 0. In fact, differentiating the solution one
finds

V � d

dt
ϕ(0, x, u) = Ax + Bu(0).

Conversely, define for x ∈ V a control by u(t) = F e(A+BF )tx, t ≥ 0.
More generally, a linear subspace V is called almost (A, B)-invariant, if for any x ∈ V and any ε > 0 there exists a

control function u(·) such that for all t ≥ 0

dist(ϕ(t, x, u), V ) = inf
y∈V

‖ϕ(t, x, u) − y‖ < ε.

Almost (A, B)-invariant subspaces are of interest to study subspaces invariant under high gain state feedback. Thus, in
general, almost (A, B)-invariant subspaces cannot be made invariant under state feedback, so there is no friend, but they
can be made almost-invariant in the sense that for every x ∈ V and any ε > 0 there exists a feedback F such that for all
t ≥ 0

dist(eAF tx, V ) < ε,
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cf. [26]. The basic theory of almost (A, B)-invariant subspaces has been developed by Willems in [30, 31], including
a discussion of the differences to (A, B)-invariant subspaces and the feedback characterization given above. Since the
‘almost’ property is of no relevance in the present paper, we do not repeat these classical results here. A reader not familiar
with this theory may just restrict attention to (A, B)-invariant subspaces.

In order to derive explicit estimates for the entropy of controlled invariant subspaces it is useful to have explicit
parametrizations of the class of all controlled invariant subspaces. This is a difficult task and we refer to e.g. [13], [28]
for further information. Certain types of subspaces are of special interest here. A controlled invariant subspace V is called
coasting, if V ∩ ImB = {0}. Equivalently, {0} is the largest controllability subspace contained in V . Any controlled
invariant subspace of a controllable single-input system is coasting.

For an (A, B)-invariant subspace V and a friend F ∈ R
m×n, the subspace V is AF -invariant. The restriction (Ā, B̄)

is given by Ā := AF |V , the restriction of AF to V , and B̄ := B|B−1V : B−1V → V , the restriction of B to the linear
subspace B−1V := {u ∈ R

m |Bu ∈ V }. The co-restriction (Ã, B̃) is given by Ã : R
n/V → R

n/V , the map induced by
AF , and B̃ : R

m/B−1V → R
n/V is the map induced by B. Note, that the co-restriction (Ã, B̃) is controllable, whenever

(A, B) is controllable, while the restriction is controllable only for a controllability subspace. Note also, that B̄ and B̃
are both full column rank if B has full column rank. Of course, the co-restriction may well depend upon the choice of
a friend F , so there are in fact many possible co-restrictions and not just one. However, the controllability indices of the
co-restrictions are all the same. It is thus a remarkable but simple fact, that for any coasting subspace V , the co-restriction
is uniquely defined and independent of F .

Following the notation from Wonham’s book [32], we denote by 〈A |V 〉 the smallest A-invariant subspace containing
V . Furthermore, the largest A-invariant subspace that is contained in V , is denoted by I∗(A; V ). Generically, one expects
〈A |V 〉 = R

n and I∗(A; V ) = {0}, but one can be more specific. If V is an (A, B)-invariant subspace that is coasting,
then there is some a-priori information about the dimensions of the bounding subspaces. For simplicity, we focus on the
single input case, i.e. m = 1.

Lemma 2.1. Let (A, b) be controllable and let V be any (A, b)-invariant subspace that is not A-invariant. Then every
A-invariant subspace W ⊃ V satisfies W = R

n. Any generic (A, b)-invariant subspace satisfies I∗(A; V ) = {0} and
〈A |V 〉 = R

n.

P r o o f. Note, that in the single input case only, every (A, b)-invariant subspace is automatically coasting. By duality, it
suffices to show for single-output systems (c, A) that 〈A |V 〉 = R

n, for any tight (c, A)-invariant subspace V that is not A-
invariant. In order to show this we apply the theory of polynomial models; cf. Fuhrmann [11], Fuhrmann and Willems [12].
Let q(z) = det(zI − A) denote the characteristic polynomial and Xq denote the associated polynomial model. Thus, Xq

denotes the set of polynomials of degree < n with the module structure given by multiplication modulo q. The (tight)
conditioned invariant subspaces of codimension d then uniquely correspond to the intersection

V = Xq ∩ t(z)R[z], (2.2)

via a unique monic polynomial t of degree d; see Fuhrmann and Helmke [13]. Let V∗ (V ∗) denote the largest (smallest)
shift invariant subspace of Xd contained in V (containing V ). In this polynomial framework, the A-invariant subspaces
are of the form q1Xq2 ⊂ Xq , for any factorization q = q1q2. Thus q1Xq2 ⊂ Xq ∩ t(z)R[z] if and only if t divides q1. In
particular, t must then divide q, i.e. V must be an invariant subspace. Now assume that V is not an invariant subspace (for
the shift), i.e. t does not divide q. Then V does not contain any nontrivial invariant subspace. Applying duality, this implies
the lemma. But more can be said. Factor t = q1a with q1 a polynomial of degree r dividing q, q = q1q2, and a a polynomial
that is coprime to q. Then q1Xq2 is the smallest invariant subspace containing V . The codimension of this subspace is thus
deg gcd {q, t}. In particular, if q and t are coprime, then V∗ = {0} and V ∗ = Xq .

3 Subspace entropy of linear flows

In this section we define for a linear autonomous differential equation the entropy of a linear subspace V ⊂ R
n. It is a

suitable adaptation of the well-known topological entropy of the flow associated with an autonomous linear differential
equation, see e.g. Walters [29, §8.4]. Later we will use it for the uncontrolled system ẋ = Ax and relate it to the entropy
of controlled invariant subspaces (cf. Definition 4.3). We would like to emphasize that the open loop control system (2.1)
does not define a flow, since the control functions u(·) are time-dependent, and hence it is not covered by this definition.

Let V be a linear subspace of R
n. For a linear map A : R

n → R
n, let Φ : R × R

n → R
n, Φ(t, x) := eAtx, t ∈ R, x ∈

R
n be the induced flow (actually, throughout this paper, only the semiflow defined for t ≥ 0 will be relevant.). For any

compact subset K ⊂ V and for given T, ε > 0 we call R ⊂ K a (T, ε, K, V ; Φ)-spanning set, if for all x ∈ K there exists
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y ∈ R with

max
0≤t≤T

dist(etA(x − y), V ) < ε. (3.1)

Let r(T, ε, K, V ; Φ) denote the minimal cardinality of a (T, ε, K, V ; Φ)-spanning set. Observe that K is always a
(T, ε, K, V ; Φ)-spanning set. By compactness of K and continuous dependence on the initial value, this implies that a
finite (T, ε, K, V ; Φ)-spanning set exists. Similarly, we call S ⊂ K a (T, ε, K, V ; Φ)-separated set, if for all x = y in S

max
0≤t≤T

dist(etA(x − y), V ) ≥ ε.

The maximal cardinality of such a set is denoted by s(T, ε, K, V ; Φ). Note that the points y in R (and in S) will, in general,
not lead to solutions eAty which remain for all t ≥ 0 in the ε-neighborhood of V . In the following, we will omit some of
the arguments in the notions above and in similar ones defined below, if they are clear from the context.

Definition 3.1. Let A be a linear map on R
n with associated flow Φ and consider a subspace V of R

n. For a compact
subset K ⊂ V, we consider the exponential growth rate of r(T, ε, K, V ; Φ) and set

hspan(ε, K, V ; Φ) := lim sup
T→∞

1
T

ln r(T, ε, K, V ; Φ),

hspan(K, V ; Φ) := lim
ε↘0

hspan(ε, K, V ; Φ),

and define the entropy of Φ with respect to V by

h(V ; Φ) := sup
K

hspan(K, V ; Φ),

where the supremum is taken over all compact subsets K ⊂ V .
Analogously, an entropy of Φ with respect to V can be defined via maximal separated sets.

As usual in the context of topological entropy, one sees that, by monotonicity, the limit for ε ↘ 0 exists (it might be
infinite). Since all norms on a finite dimensional vector space are equivalent, the entropy does not depend on the norm used
in (3.1). One easily sees that the subspace entropy h(V ; Φ) is invariant under state space similarity, i.e., h(SV ; SΦS−1) =
h(V ; Φ) for S in the set GL(n, R) of invertible n × n-matrices; here SΦ(t, ·)S−1 = SeAtS−1 = eSAS−1t, t ≥ 0.

Remark 3.2. If we choose V = {0} condition (3.1) is trivial, since only K = {0} is allowed; furthermore, if we
choose V = R

n, the distance in (3.1) is always equal to zero. In particular, the subspace entropy does not recover the usual
definition of topological entropy for the linear flow Φ(t, x) = eAtx, where, for a compact subset K ⊂ R

n, spanning sets
are defined as minimal sets R such that for all x ∈ K there exists y ∈ R with

max
0≤t≤T

d(etAx, eAty) = max
0≤t≤T

∥∥∥etA(x − y)
∥∥∥ < ε.

Equivalently, one can use the number stop(T, ε, K; Φ) of elements in maximal separated sets. For the topological entropy
of linear flows, Bowen [4] could show

htop(Φ) := sup
K

htop(K; Φ) =
n∑

i=1

max(0, Reλi),

where λ1, . . . , λn denote the eigenvalues of A; see also Walters [29, Theorem 8.14] and Matveev and Savkin [22, Theorem
2.4.2] for proofs.

The definitions via separated and spanning sets coincide, which easily follows from the next proposition (cf. Robinson
[25, Lemma VIII.1.10] for similar arguments).

Proposition 3.3. Let K ⊂ V be compact and fix T, ε > 0. Then

s(T, 2ε, K, V ; Φ) ≤ r(T, ε, K, V ; Φ) ≤ s(T, ε, K, V ; Φ).

P r o o f. Let S ⊂ K be a maximal (T, ε)-separated set and let x ∈ K . By maximality of S, there is some y ∈ S such
that

max
0≤t≤T

dist(etA(x − y), V ) < ε.
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Therefore S is (T, ε)-spanning showing the second inequality. For the first one, consider a maximal (T, 2ε)-separated set S
and a minimal (T, ε)-spanning set R. We define a map H : S → R in the following way: For x ∈ S there is y := H(x) ∈ R
with dist(etA(x − y), V ) < ε for all t ∈ [0, T ]. If H(x1) = H(x2) = y, then

max
0≤t≤T

dist(etA(x1 − x2), V ) ≤ max
0≤t≤T

dist(etA(x1 − y), V ) + max
0≤t≤T

dist(etA(x2 − y), V ) < 2ε.

Thus x1 = x2 follows. This shows that H is injective, and hence r(T, ε, K, V ; Φ) ≥ s(T, 2ε, K, V ; Φ).

Although this will not be used in the sequel, we describe the behavior of this entropy notion under a semiconjugacy to
the induced flow on a quotient space R

n/W , where the norm is given by ‖x + W‖ := inf {‖x + w‖ , w ∈ W} , x ∈ R
n.

Proposition 3.4. Let W be an A-invariant subspace for a linear map A on R
n. Then, for a subspace V of R

n the
entropies of the induced flows Φ(t, x) = eAtx on R

n and Φ̄(t, x̄) on the quotient space R
n/W , respectively, satisfy

h(V ; Φ) ≥ h(V/W ; Φ̄).

P r o o f. Let K ⊂ V be compact and for T, ε > 0 consider a (T, ε, K, V ; Φ)-spanning set R ⊂ K . Denote the
projection of R

n to R
n/W by π, hence πV = V/W . Then the set πR is a (T, ε, πK, πV ; Φ̄)-spanning set. In fact, let

R = {x1, . . . , x�} and consider πx ∈ πK for some element x ∈ K . Then there exists xj ∈ R with

max
0≤t≤T

dist(etA(x − xj), V ) < ε.

Denoting the map induced by A on R
n/W by Ā one finds for all t ∈ [0, T ]

dist(etĀ(πx − πxj), πV ) = inf
z∈V

∥∥∥etĀ(πx − πxj) − πz
∥∥∥

= inf
z∈V,w∈W

∥∥∥etA(x − xj) − z − w
∥∥∥

≤ dist(etA(x − xj), V )

< ε.

It follows that the minimal cardinality of a (T, ε, K, V ; Φ)-spanning set is greater than or equal to the minimal cardinality
of a (T, ε, πK, πV ; Φ̄)-spanning set. Then take the limit superior for T → ∞ and let ε tend to 0. Finally, observe that for
every compact set K1 ⊂ V/W there is a compact set K ⊂ V with πK = K1. Hence taking the supremum over all compact
K1 ⊂ V/W one obtains the assertion.

4 Entropy for controlled invariant subspaces

We now introduce the central notion of this paper, invariance entropy for almost (A, B)-invariant subspaces of linear control
system (2.1) on R

n and relate it to the subspace entropy defined in the previous section.
In the following, we consider a fixed almost (A, B)-invariant subspace V of R

n with dim V = d. Furthermore, we
admit arbitrary controls in the space C([0,∞), Rm) of continuous functions u : [0,∞) → R

m.

Definition 4.1. For a compact subset K ⊂ V and for given T, ε > 0 we call a set R ⊂ C([0,∞), Rm) of control
functions (T, ε, K, V )-spanning if for all x0 ∈ K there is u ∈ R with

dist(ϕ(t, x0, u), V ) < ε for all t ∈ [0, T ].

By rinv(T, ε, K, V ) we denote the minimal cardinality of a (T, ε, K, V )-spanning set. If no finite (T, ε, K, V )-spanning set
exists, we set rinv(T, ε, K, V ) = ∞.

In other words: we require for a (T, ε, K, V )-spanning set R that, for every initial value in K , there is a control in R
such that up to time T the trajectory remains in the ε-neighborhood of V . Note that, in contrast to the definition of the
subspace entropy for flows, Definition 3.1, here a number of control functions is counted, not a number of initial values.
Hence this is a notion which is intrinsic to control systems. We also note that the definition above differs from earlier ones
used for invariance entropy (cf. [8, 9]) by the fact, that the set V whose invariance is studied here, is not compact and that
the controls are unrestricted.

The following observation shows that there are always finite (T, ε, K, V )-spanning sets of control functions.
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Remark 4.2. Let K ⊂ V be compact and ε, T > 0. By almost (A, B)-invariance of V there is for every x ∈ K ⊂ V
a control function u with dist(ϕ(t, x, u), V ) < ε for all t ≥ 0. Hence, using continuous dependence on initial val-
ues and compactness of K , one finds finitely many controls u1, . . . , ur such that for every x ∈ K there is uj with
dist(ϕ(t, x, uj), V ) < ε for all t ∈ [0, T ]. Hence rinv(T, ε, K, V ) < ∞. This is the reason why we consider in the
following almost (A, B)-invariant subspaces, not just (A, B)-invariant subspaces. It also seems, that the class of almost
(A, B)-invariant subspaces is the largest class of subspaces such that for every compact subset K and every T, ε > 0 this
number is finite.

Now we consider the exponential growth rate of rinv(T, ε, K, V ) for T → ∞ and let ε → 0. The resulting invariance
entropy is the main subject of the present paper.

Definition 4.3. Let V be an almost (A, B)-invariant subspace. Then, for a compact subset K ⊂ V , the invariance
entropy hinv(K, V ) is defined by

hinv(ε, K, V ) := lim sup
T→∞

1
T

ln rinv(T, ε, K, V ), hinv(K, V ) := lim
ε↘0

hinv(ε, K, V ).

Finally, the invariance entropy of V is defined by

hinv(V ; A, B) := supKhinv(K, V ),

where the supremum is taken over all compact subsets K ⊂ V .

In the sequel, we will always use for a given underlying system (A, B) the shorthand notation hinv(V ) for hinv(V ; A, B).
Note that hinv(ε1, K, V ) ≤ hinv(ε2, K, V ) for ε2 ≤ ε1. Hence the limit for ε → 0 exists (it might be infinite.) Since all
norms on finite dimensional vector spaces are equivalent, the invariance entropy of V is independent of the chosen norm.
We will show later that every almost (A, B)-invariant subspace has finite invariance entropy. It is clear by inspection,
that, as the subspace entropy h(V ; Φ), also the invariance entropy hinv(V ) is invariant under state space similarity; i.e.
hinv(SV ; SAS−1, SB) = hinv(V ; A, B) for S ∈ GL(n, R).

We are interested in the problem to keep the system in the subspace V for all t ≥ 0. Then the exponential growth rate of
the required number of control functions will give information on the difficulty of this task. Since, also on finite intervals, the
number of controls for achieving invariance need not be finite, an appropriate mathematical formulation requires a slightly
relaxed notion, which allows for arbitrarily small deviations from the subspace V . The motivation to consider open-loop
controls in this context comes, in particular, from model predictive control (see, e.g., the collection Allgöwer and Zheng [1]
and Grüne and Pannek [14]), where optimal open-loop controls are computed and applied on short time intervals.

The following theorem shows that the entropy of a controlled invariant subspace V can be characterized by the entropy
of V for the corresponding uncontrolled system ẋ = Ax. This result will be useful in order to compute entropy bounds.

Theorem 4.4. Let V be an almost (A, B)-invariant subspace for system (2.1) and consider the invariance entropy
hinv(V ) of control system (2.1) and the subspace entropy h(V ; Φ) of V of the uncontrolled system Φ(t, x) = eAtx. Then

hinv(V ) = h(V ; Φ).

P r o o f. (i) Let K ⊂ V be compact, and fix T, ε > 0. Consider a corresponding (T, ε)-spanning set R = {u1, . . . , u�}
of controls with minimal cardinality rinv(T, ε). This means that for every x ∈ K there is uj with dist(ϕ(t, x, uj), V ) < ε
for all t ∈ [0, T ]. By minimality, we can for every uj pick xj ∈ K with dist(ϕ(t, xj , uj), V ) < ε for all t ∈ [0, T ]. Then
by linearity one finds for all x ∈ K a control uj and a point xj ∈ K such that for all t ∈ [0, T ]

dist(eAtx − eAtxj , V ) = dist(ϕ(t, x, uj) − ϕ(t, xj , uj), V ) < 2ε.

This shows that the points xj form a (T, 2ε, K, V ; Φ)-spanning set and hence

rinv(T, ε, K, V ) ≥ r(T, 2ε, K, V ; Φ).

Letting T tend to infinity, then ε → 0 and, finally, taking the supremum over all compact subsets K ⊂ V one obtains
hinv(V ) ≥ h(V ; Φ).

(ii) For the converse inequality, let K be a compact subset of V and T, ε > 0. Let E ⊂ K be a maximal (T, ε)-separated
set with respect to the flow Φ, say E = {y1, . . . , ys} with s = s(T, ε, K; Φ). Then E is also (T, ε)-spanning which means
that for all x ∈ K there is j ∈ {1, . . . , s} with

max
t∈[0,T ]

dist(eAtx − eAtyj , V ) = max
t∈[0,T ]

inf
z∈V

∥∥∥eAtx − eAtyj − z
∥∥∥ < ε.
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Since V is almost (A, B)-invariant, we can assign to each yj , j ∈ {1, . . . , s}, a control function uj ∈ C([0,∞), Rm) such
that dist(ϕ(t, yj , uj), V ) < ε for all t ≥ 0. Let R := {u1, . . . , us} ⊂ C([0,∞), Rm). By linearity one has ϕ(t, x, u) −
ϕ(t, y, u) = eAtx − eAty for all t ≥ 0, x, y ∈ R

n and u ∈ C([0,∞), Rm). We obtain that for every x ∈ K there is j such
that

max
t∈[0,T ]

dist(ϕ(t, x, uj) − ϕ(t, yj , uj), V ) = max
t∈[0,T ]

dist(eAtx − eAtyj , V ) < ε.

Since dist(ϕ(t, yj , uj), V ) < ε for all t ∈ [0, T ], there is z1 = z1(t, j) ∈ V with
∥∥ϕ(t, yj , uj) − z1

∥∥ < ε and hence

dist(ϕ(t, x, uj), V ) = inf
z∈V

∥∥ϕ(t, x, uj) − z
∥∥

≤ inf
z∈V

∥∥ϕ(t, x, uj) − ϕ(t, yj , uj) + z1 − z
∥∥+

∥∥ϕ(t, yj , uj) − z1

∥∥
< inf

z∈V

∥∥ϕ(t, x, uj) − ϕ(t, yj , uj) − z
∥∥+ ε

< 2ε.

This implies that for all x ∈ K there is uj ∈ R such that

max
t∈[0,T ]

dist(ϕ(t, x, uj), V ) < 2ε.

Hence R is (T, 2ε)-spanning and it follows that

rinv(T, 2ε, K, V ) ≤ s(T, ε, K, V ; Φ) for all T, ε > 0,

and consequently hinv(K, V ) ≤ hsep(K, V ; Φ) ≤ h(V ; Φ).

5 Entropy bounds

This section provides a general upper bound for the entropy of almost (A, B)-invariant subspaces of control system (2.1).
Using the characterization via the subspace entropy of the associated autonomous flow, sharper upper bounds are obtained
in special cases.

Theorem 5.1. (i) Let V be an almost (A, B)-invariant subspace for system (2.1) and consider the smallest A-invariant
subspace 〈A |V 〉 containing V and the largest A-invariant subspace I∗(A; V ) contained in V . Then the subspace entropy
of V with respect to the flow Φ(t, x) = eAtx is finite and satisfies the inequality

h(V ; Φ) ≤
∑

max (0, Re λi) , (5.1)

where summation is over the eigenvalues λi of the map induced by A on the quotient space 〈A |V 〉 /I∗(A; V ).
(ii) The invariance entropy of any almost (A, B)-invariant subspace V for system (2.1) is finite and satisfies the bound

(5.1).

P r o o f. Assertion (ii) follows from (i) and Theorem 4.4. In order to prove (i) note first, that by A-invariance the
restriction A|〈A|V 〉 as well as the induced map on 〈A |V 〉 /I∗(A; V ) are well-defined. In order to show inequality (5.1), it
suffices to show that it is satisfied for hspan(K, V ; Φ), where K is an arbitrary compact subset of V . Our proof then depends
on Bowen’s formula for the topological entropy of linear flows, see Remark 3.2.

Consider the linear flow Φ(t, x) = eAtx, Φ : R
+
0 × R

n → R
n. By Bowen’s result

htop(Φ) =
n∑

i=1

max (0, Reλi) .

Analogously, the restriction of Φ to 〈A |V 〉 has topological entropy given by the sum of the positive real parts of eigenvalues
of Φ|〈A|V 〉 and the induced flow Φ̂ on 〈A |V 〉 /I∗(A; V ) has topological entropy given by the right hand side of (5.1). Hence

it suffices to prove that h(V ; Φ) ≤ htop(Φ̂).
Let K be a compact subset of V and π denote the projection of 〈A |V 〉 to the quotient space 〈A |V 〉 /I∗(A; V ). Thus,

the set πK is compact. Let T, ε > 0 be given and denote by E ⊂ πK a maximal (T, ε, πK)-separated set with respect to

                                                              



338 F. Colonius and U. Helmke: Entropy of controlled invariant subspaces

the flow Φ̂ on 〈A |V 〉 /I∗(A; V ), say E = {πy1, . . . , πy�} with yj ∈ K and � = stop(T, ε, πK; Φ̂). Recall that, as noted in
Remark 3.2, the topological entropy of the flow Φ̂ can be characterized by the exponential growth rate of stop(T, ε, πK; Φ̂).
Then E is also (T, ε, πK)-spanning which means that for all x ∈ K there is j ∈ {1, . . . , �} with

max
t∈[0,T ]

dist(eAtx − eAtyj , I
∗(A; V )) = max

t∈[0,T ]
inf

z∈I∗(A;V )

∥∥∥eAtx − eAtyj − z
∥∥∥ < ε.

Since V is almost (A, B)-invariant, we can assign to each yj , j ∈ {1, . . . , �}, a control function uj ∈ C([0,∞), Rm) such
that dist(ϕ(t, yj , uj), V ) < ε for all t ≥ 0. Let R := {u1, . . . , u�} ⊂ C([0,∞), Rm). By linearity one has ϕ(t, x, u) −
ϕ(t, y, u) = eAtx − eAty for all t ≥ 0, x, y ∈ R

n and u ∈ C([0,∞), Rm). We obtain that for every x ∈ K there is j such
that

max
t∈[0,T ]

dist(ϕ(t, x, uj) − ϕ(t, yj , uj), V )

≤ max
t∈[0,T ]

dist(ϕ(t, x, uj) − ϕ(t, yj , uj), I∗(A; V ))

= max
t∈[0,T ]

dist(eAtx − eAtyj, I
∗(A; V ))

< ε.

Since dist(ϕ(t, yj , uj), V ) < ε for t ∈ [0, T ], there is z1 ∈ V with
∥∥ϕ(t, yj , uj) − z1

∥∥ < ε and hence, using that V is a
linear subspace, one finds

dist(ϕ(t, x, uj), V ) = inf
z∈V

∥∥ϕ(t, x, uj) − z
∥∥

≤ inf
z∈V

∥∥ϕ(t, x, uj) − ϕ(t, yj , uj) + z1 − z
∥∥+

∥∥ϕ(t, yj , uj) − z1

∥∥
< inf

z∈V

∥∥ϕ(t, x, uj) − ϕ(t, yj , uj) − z
∥∥+ ε

< 2ε.

This shows that for all x ∈ K there is uj ∈ R such that dist(ϕ(t, x, uj), V ) < 2ε for all t ∈ [0, T ]. Hence R is
(T, 2ε, K, V )-spanning and it follows that

rinv(T, 2ε, K, V ) ≤ stop(T, ε, πK; Φ̂) for all T, ε > 0.

Finally, taking the logarithm, dividing by T and letting T tend to infinity, one obtains hspan(K, V ; Φ̂) ≤ htop(πK; Φ̂) ≤
htop(Φ̂).

The above bound is rather conservative and can be improved in several cases. We therefore turn to the computation of
sharper bounds for h(V ; Φ) under suitable genericity conditions on the almost controlled invariant subspace V . Here one
may expect that starting in a neighborhood of the origin in V , only d := dimV eigenvalues determine the behavior. This
will be made precise below.

We begin with a few lemmas. In the sequel, e1, · · · , en denotes the standard basis vectors of R
n. For a real diagonalizable

matrix A, order the eigenvalues of A such that

λ1 ≥ λ2 ≥ . . . ≥ λn. (5.2)

Lemma 5.2. Let A ∈ R
n×n be diagonalizable and consider a d-dimensional subspace V ⊂ R

n which satisfies V ∩W =
{0} for any (n − d)-dimensional A-invariant subspace W ⊂ R

n. We can write the Jordan representation J of A as

J = diag(λ1, . . . , λn),

and we abbreviate

Λ1 := diag(λ1, . . . , λd) and Λ2 := diag(λd+1, . . . , λn). (5.3)

Then there exist S ∈ GLn(R) and G ∈ R
(n−d)×d with V = {Se1, · · · , Sed}, and

S−1AS =

[
Λ1 0
G Λ2

]
. (5.4)
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P r o o f. Let w1, . . . , wn be a corresponding basis of eigenvectors and denote

V1 := 〈w1, . . . , wd〉 and W = 〈wd+1, . . . , wn〉 .

By assumption on V , we have V ∩ W = {0} and therefore the canonical projection map π : R
n → V1 along W maps V

isomorphically onto V1. Choose any basis v1, · · · , vd of V and extend it to a basis S1 = (v1, · · · , vd, wd+1, · · · , wn). Then

S−1
1 AS1 =

[
Γ1 0
A2 Λ2

]
,

and therefore Γ1 has the same eigenvalues as Λ1. Finally, we can transform Γ1 to Jordan normal form by a matrix S2. Then
conjugation with the matrix

S1 ·
[

S2 0
0 I

]

leads to (5.4).

In the situation as above, by invariance of the problem under similarity, we can assume without loss of generality that

A =

[
Λ1 0
G Λ2

]
, V = R

d × {0}. (5.5)

Note that for any vector z =

[
x

y

]
∈ R

n = V × R
n−d we have dist(z, V ) = ‖y‖. For x =

[
x1

0

]
, y =

[
y1

0

]
∈ V

we compute

etA(x − y) =

[
etΛ1 0
M(t) etΛ2

][
x1 − y1

0

]
=

[
etΛ1(x1 − y1)
M(t)(x1 − y1)

]
(5.6)

and

dist(etA(x − y), V ) = ‖M(t)(x1 − y1)‖ .

Differentiating Eq. (5.6), one finds that the (n−d)×d-matrix function M(t) is the unique solution to the linear differential
equation Ṁ = Λ2M + GetΛ1 with initial condition M(0) = 0 and therefore

M(t) = etΛ2

∫ t

0

e−sΛ2GesΛ1ds.

The formula for M(t) shows that for diagonal Λ2 and Λ1 one finds, with ej = jth standard basis vector and gj = Gej ∈
R

n−d, j = 1, . . . , d, for the jth column of M(t)

M(t)ej = etΛ2

∫ t

0

e−sΛ2GesΛ1ds ej = etΛ2

∫ t

0

e−sΛ2Gesλj ejds

= etΛ2

∫ t

0

es(λjIn−d−Λ2)ds gj.

In addition to (5.2), assume that λd > λd+1 and let for k = 1, . . . , n − d, j = 1, . . . , d

αkj(t) :=
1

λj − λd+k

[
1 − et(λd+k−λj)

]
, t ≥ 0.

They satisfy for t > 0 the inequalities

0 < αkj(t) ≤ (λj − λd+k)−1 ≤ (λj − λd+1)−1.

One computes that for j = 1, . . . , d

M(t)ej = etΛ2diag[α1j(t), . . . , αn−d,j(t)] gj . (5.7)
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Proposition 5.3. Let A ∈ R
n×n be diagonalizable and consider a d-dimensional subspace V ⊂ R

n which satisfies
V ∩ W = {0} for any (n − d)-dimensional A-invariant subspace W ⊂ R

n. Assume that the eigenvalues of A satisfy

λ1 ≥ . . . ≥ λd > λd+1 ≥ . . . ≥ λn.

Then the entropy h(V ; Φ) of V with respect to the linear flow Φ(t, x) = eAtx is bounded above by the topological entropy
of the flow Φ1(t, x) = eΛ1tx where Λ1 = diag[λ1, . . . , λd]. Thus it satisfies the upper bound

h(V ; Φ) ≤
d∑

i=1

max (0, λi) . (5.8)

P r o o f. Let K ⊂ V be compact. We show that for T, ε > 0 any (T, ε, K; Φ1)-spanning set R for the topological
entropy of the flow Φ1 is (T, cε, K, V ; Φ)-spanning for Φ, with

c := (λd − λd+1)−1 max
j=1,...,d

∥∥gj

∥∥ .

Recall that the entropies do not depend on the norm, hence here and in the following we may use the 1-norm. For every
x ∈ K there is y ∈ R such that, by formula (5.7),

‖M(t)(x − y)‖1 =

∥∥∥∥∥∥
d∑

j=1

M(t)ej(xj − yj)

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
d∑

j=1

etΛ2diag[α1j(t), . . . , αn−d,j(t)] gj(xj − yj)

∥∥∥∥∥∥
1

≤
d∑

j=1

∣∣xj − yj

∣∣ ∥∥∥diag[etλd+1α1j(t), . . . , etλnαn−d,j(t)] gj

∥∥∥
1

≤
d∑

j=1

∣∣xj − yj

∣∣ etλd+1(λj − λd+1)−1
∥∥gj

∥∥
1

≤
∥∥∥etΛ1(x − y)

∥∥∥
1
(λd − λd+1)−1 max

j=1,...,d

∥∥gj

∥∥
1

≤ c max
t∈[0,T ]

∥∥∥etΛ1(x − y)
∥∥∥

1

< c ε.

This implies inequality (5.8).

Proposition 5.3 yields the following estimate for the invariance entropy of almost (A, B)-invariant subspaces. This
estimate is sharper than the one provided in Theorem 5.1 (in particular, for low dimensional spaces V ).

Theorem 5.4. Consider an almost (A, B)-invariant subspace V ⊂ R
n with dimension d and denote the largest A-

invariant subspace contained in V by I∗(A; V ) and its dimension by �. Suppose that the map A induced by A on the
quotient space R

n/I∗(A; V ) is diagonalizable and that the eigenvalues satisfy

λ1 ≥ . . . ≥ λd−� > λd+1−� ≥ . . . ≥ λn−�.

Assume further that V/I∗(A; V ) intersects trivially any A-invariant subspace W ⊂ R
n/I∗(A; V ) of codimension d − �.

Then the invariance entropy of V satisfies the inequality

hinv(V ) ≤
d−�∑
i=1

max (0, λi) . (5.9)

P r o o f. We argue similarly as in the proof of Theorem 5.1, using now the subspace entropy with respect to V instead
of the topological entropy.
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Let K be a compact subset of V . Then, for the projection π of R
n to the quotient space R

n/I∗(A; V ), the set πK is
compact. Let T, ε > 0 be given and denote by E ⊂ πK a maximal (T, ε, πK, πV ; Φ̂)-separated set with respect to the flow
Φ̂ on R

n/I∗(A; V ), say E = {πy1, . . . , πys} with yj ∈ K and s = s(T, ε, πK, πV ; Φ̂). Then E is also (T, ε, πK, πV ; Φ̂)-
spanning which means that for all x ∈ K there is j ∈ {1, . . . , s} with

max
t∈[0,T ]

dist(eAtx − eAtyj , V + I∗(A; V )) = max
t∈[0,T ]

inf
z∈V

∥∥∥eAtx − eAtyj − z
∥∥∥ < ε.

Since V is almost (A, B)-invariant, we can assign to each yj , j ∈ {1, . . . , s}, a control function uj ∈ C([0,∞), Rm) such
that dist(ϕ(t, yj , uj), V ) < ε for all t ≥ 0. Let R := {u1, . . . , us} ⊂ C([0,∞), Rm). By linearity one has ϕ(t, x, u) −
ϕ(t, y, u) = eAtx − eAty for all t ≥ 0, x, y ∈ R

n and u ∈ C([0,∞), Rm). We obtain that for every x ∈ K there is j such
that

max
t∈[0,T ]

dist(ϕ(t, x, uj) − ϕ(t, yj , uj), V ) = max
t∈[0,T ]

dist(eAtx − eAtyj , V ) < ε.

Since dist(ϕ(t, yj , uj), V ) < ε for t ∈ [0, T ], there is z1 ∈ V with
∥∥ϕ(t, yj , uj) − z1

∥∥ < ε

and hence, using that V is a linear subspace, one finds

dist(ϕ(t, x, uj), V ) = inf
z∈V

∥∥ϕ(t, x, uj) − z
∥∥

≤ inf
z∈V

∥∥ϕ(t, x, uj) − ϕ(t, yj , uj) + z1 − z
∥∥+

∥∥ϕ(t, yj , uj) − z1

∥∥
< inf

z∈V

∥∥ϕ(t, x, uj) − ϕ(t, yj , uj) − z
∥∥+ ε

< 2ε.

This implies that for all x ∈ K there is uj ∈ R such that

max
t∈[0,T ]

dist(ϕ(t, x, uj), V ) < 2ε.

Hence R is (T, 2ε, K, V )-spanning and it follows that

rinv(T, 2ε, K, V ) ≤ s(T, ε, πK, πV ; Φ̂) for all T, ε > 0,

and consequently

hinv(K, V ) ≤ hsep(πK, πV ; Φ̂) = h(πK, πV ; Φ̂) ≤ h(πV ; Φ̂).

Since, by assumption, πV = V/I∗(A; V ) intersects trivially any A-invariant subspace W ⊂ R
n/I∗(A; V ) of codimension

d − �, it does not contain any nontrivial Ā-invariant subspace, and we can apply Proposition 5.3 in order to prove the
assertion.

We list a few explicit cases in the single-input case in which the hypotheses of Theorem 5.4 are satisfied.

Corollary 5.5. Assume that (A, b) ∈ R
n×n×R

n is controllable and A is diagonalizable with n distinct real eigenvalues

λ1 > . . . > λd > λd+1 > . . . > λn.

Let α1, · · · , αd denote any distinct real numbers that are disjoint from λ1, · · · , λn. Then

V = span
(
(A − α1I)−1b, · · · , (A − αdI)−1b)

)
(5.10)

is an (A, b)-invariant subspace with ker(A; V ) = {0} and < A|V >= R
n. The entropy of V satisfies the inequality

hinv(V ) ≤
d∑

i=1

max (0, λi) , (5.11)
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P r o o f. Without loss of generality we can assume that (A, b) is in Jordan canonical form, i.e. A = diag(λ1, · · · , λn)
and b = (1, · · · , 1)
. Thus V coincides with the column span of the n × d matrix

⎡
⎢⎢⎣

(λ1 − α1)−1 · · · (λ1 − αd)−1

...
...

(λn − α1)−1 · · · (λn − αd)−1

⎤
⎥⎥⎦ .

For any column v of this matrix, the pair (A, v) is controllable, which implies < A|V >= R
n. Let W denote an arbitrary

A-invariant eigenspace of codimension d and assume W ∩V = {0}. Then there exists nonzero real numbers c1, · · · cd such
that the rational function

p(λ)
q(λ)

:=
d∑

i=1

ci

λ − αi

vanishes at d eigenvalues λ ∈ {λi1 , · · · , λid
}. But then p = 0, as degp < d and therefore c1 = · · · = cd = 0, which is a

contradiction. Hence W ∩ V = {0} for any A-invariant subspace of codimension d. This implies also ker(A; V ) = {0},
as any A-invariant subspace V0 ⊂ V can be extended to an (n − d)-dimensional A-invariant subspace W . This shows that
V satisfies the assumptions of Theorem 5.4.

We note that the (A, b)-invariant subspaces constructed in Corollary 5.5 are not of the most general form; however for
d = 1 they parameterize all one-dimensional controlled invariant subspaces. In the scalar case, it can be shown that the
estimate above is sharp.

Example 5.6. Let d = 1, n = 2. We can suppose that A has the form (5.5) and we use small letters instead of capital
letters. Let K ⊂ V = R × {0} be compact. Choose a (T, ε, K, V ; Φ)-spanning set R ⊂ K . Thus for all x ∈ K there is
y ∈ R such that for all t ∈ [0, T ]

dist

(
etA

([
x

0

]
−
[

y

0

])
, V

)
= ‖m(t)(x − y)‖ < ε.

If V is not invariant, one has g = 0. For t ≥ 1

ε > ‖m(t)(x − y)‖ =

∥∥∥∥∥etλ2

∫ t

0

e−sλ2gesλ1ds (x − y)

∥∥∥∥∥

=

{
g

λ1−λ2
etλ1 [1 − et(λ2−λ1)] ‖x − y‖ for λ1 > λ2

etλ1t |g| ‖x − y‖ for λ1 = λ2

≥ cetλ1 ‖x − y‖ ,

with a constant c > 0 given by

c :=

{ |g|
λ1−λ2

[1 − eλ2−λ1 ] for λ1 > λ2

|g| for λ1 = λ2

(recall that λ1 ≥ λ2.) Hence

etλ1 ‖x − y‖ ≤ c−1ε for t ∈ [1, T ].

It is an easy observation that one also may define topological entropy by requiring the spanning property for all times
t ∈ [1, T ] only. Then the set R is a spanning set for the topological entropy of the flow etλ1 , t ≥ 0, x ∈ V . It follows that

r(T, c−1ε, K, V ) ≥ r(T, ε, K, eΛ1·).

Hence hinv(V ) ≥ htop(eΛ1·) follows showing that equality holds in (5.11).
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Example 5.7. Here we treat the n-dimensional generalization of the above example, i.e. d = 1 and n ≥ 2. Assume
further that λ1 > λ2 ≥ · · · ≥ λn and G = (gj) ∈ R

(n−1)×1 is nonzero. Then

‖M(t)(x − y)‖ = etλ1 ‖x − y‖ ‖v(t)‖
with (we take the 1-norm)

‖v(t)‖ =
n∑

j=2

|gj | 1 − et(λj−λ1)

λ1 − λj

upper bounded on [0,∞) by c :=
∑n

j=2 |gj | 1
λ1−λj

and lower bounded on [1,∞) by c =
∑n

j=2 |gj| 1−eλj−λ1

λ1−λj
. Proceeding

as in the above example, we conclude that the entropy is given by max(0, λ1).

6 Conclusions

This paper introduces a notion of invariance entropy for controlled invariant subspaces. It essentially measures how fast the
number of open-loop control functions has to grow over time, if the system is to be kept in such a subspace (more precisely,
within an arbitrarily small neighborhood). If the present state of the system is completely available for the controller and
hence a state feedback law can be implemented, this question is, clearly, obsolete. However, if this information is not
available for the controller, the controls have to be adjusted over time and the invariance entropy gives an indication about
the average number of readjustments. Thus the entropy shows the information about the state needed for a feedback; cf.
also Colonius, Kawan, Nair [10] for a discussion of topological feedback entropy in a similar situation. Since the notion of
controlled invariance is of fundamental importance in many feedback design problems, we hope that this will shed light on
the amount of information in these problems. In particular, combining the invariance entropy discussed in the present paper
with the entropy for exponential stabilization considered in Colonius [7] appears promising.
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[14] L. Grüne and J. Pannek, Nonlinear Model Predictive Control (Springer, London, 2011).
[15] V. Gupta, A. Dana, J. Hespanha, R. Murray, and B. Hassibi, Data transmission over networks for estimation and control, IEEE

Trans. Autom. Control 54, 1807–1819 (2009).
[16] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge,

1995).
[17] C. Kawan, Invariance entropy of control sets, SIAM J. Control Optim. 49 732–751 (2011).
[18] C. Kawan, Lower bounds for the strict invariance entropy, Nonlinearity 24, 1909–1935 (2011).

                                                              



344 F. Colonius and U. Helmke: Entropy of controlled invariant subspaces

[19] C. Kawan, Upper and lower estimates for invariance entropy, Discrete Contin. Dyn. Syst. A 30, 169–186 (2011).
[20] C. Kawan, Invariance Entropy of Control Systems, Doctoral Thesis, (Institut für Mathematik, Universität Augsburg, Augsburg,

2009).
[21] G. Marro, F. Morbidi, L. Ntogramatzidis, and D. Prattichizzo, Geometric Control Theory for Linear Systems: A Tutorial, Proc.

of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS), 5–9 July, 2010, Budapest,
Hungary (University of Budapest, Budapest, 2010).

[22] A. S. Matveev and A. V. Savkin, Estimation and Control Over Communication Networks (Birkhäuser, Basel, 2009).
[23] G. N. Nair, R. J. Evans, I. M. Y. Mareels, and W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Trans.

Autom. Control, 49(9), 1585–1597 (2004).
[24] M. Pollicott and M. Yuri, Dynamical Systems and Ergodic Theory (Cambridge University Press, Cambridge, 1998).
[25] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, Second edition. (CRC Press, Boca Raton, 1999).
[26] H. L. Trentelman, Almost Invariant Subspaces and High Gain Feedback, PhD Thesis (Rijksuniversiteit Groningen, Groningen,

1985).
[27] H. L. Trentelman, A. A. Stoorvogel, and M. Hautus, Control Theory for Linear Systems (Springer, Berlin, Heidelberg, New York,

2001).
[28] J. Trumpf, On the Geometry and Parametrization of Almost Invariant Subspaces and Observer Theory, Doctoral Thesis (Institut

für Mathematik, Universität Würzburg, Würzburg, 2002).
[29] P. Walters, An Introduction to Ergodic Theory (Springer, Berlin, Heidleberg, New York, 1982).
[30] J. C. Willems, Almost A(modB)-invariant subspaces, Asterisque 75–76, (1980), pp. 239-248.
[31] J. C. Willems, Almost invariant subspaces: An approach to high gain feedback design – Part I: Almost controlled invariant sub-

spaces, IEEE Trans. Autom. Control 26(1), 235–252 (1981).
[32] M. W. Wonham, Linear Multivariable Control: A Geometric Approach (Springer, Berlin, Heidelberg, New York, 1979).
[33] W. Wong and R. Brockett, Systems with finite communication bandwidth constraints. I. State estimation problems, IEEE Trans.

Autom. Control 42, 1294–1299 (1997).
[34] W. Wong and R. Brockett, Systems with finite communication bandwidth constraints. II. Stabilization with limited information

feedback, IEEE Trans. Autom. Control 44, 1049–1053 (1999).

                                                              


