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Abstract.

the state is studied as output least squares problem.

The estimation of the friction coefficient from observation of

Stability with respect

to the observation and the admissible parameter set is investigated using

sufficient conditions for optimality.
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INTRODUCTION

This paper is concerned with parameter identifica-
tion in a two point houndary value problem, We
attempt to estimate infinite dimensional parameters
in an outnut least squares (0LS-) formulation and
we study in particular continuous dependence of the
- not necessarily unique - optimal selutions of
this nonlinear minimization problem on the obser-
vation and the constraints. Our approach is hased
on perturbation theory of infinite dimensional
optimization problems and - partially - on a regu-
larization of the problem, similar to Tychonoff-
regularization.

The OLS-problem can be formulated as follows

,
Minimize 3 [8(c) - 2|7 over c€u_, (0LS)

d

where =

u
ad
is the observation gencrated by the parameter ¢
in the (supposedly known) mathematical model (e.g.
a differential equation).

is interpreted as the actual observation,
is the set of admissible parameters and ®(c)

In general, it will not he known if =z 1is in the

set
}

P = {u(c) : ¢ € u,

d
of attainable chservations.

The results in this paper are related to G. Chavent's
(5] notion of 'Output Least Squares Identifiability
(OLSI)': The parameter ¢ 1is called OLSI, if there
exists a neighborhood % of % such that for every
z € there exists a unique solution of (0OLS) de-
pending continuously on z. O0Observe that unique-
ness of a solution of (0SL) requires uniqueness of
the projection = & of =z on % as well as

uniqueness of the inverse of #¢.

Since the properties required in OLSI are difficult
to verify, a recent contribution by C. Kravaris
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Stability in inverse problems, Tychonoff regularization,

and J. H. Seinfeld [8] using Tychonoff regulariza-
tion is interesting. Here (OLS) is changed to

Minimize & [o(c) - 2]? o Blc]ip

0<g<<l, and |+f
o
space compactly embedded into the space of para-
meters. The assumption is made that z is
uniquely attainable. Then solutions of the regu-
larized problem depend continuously on =z, while
its solution can be related tothe sciution of (ULY).

where is the norm of a

The present paper drops the assumption that the
solution of (OLS) is unique and that =z € g and
concentrates on the question whether local solu-
tions depend continuously on the observation =z
and the constraints defining Uad' We call this

property Output-Least Squares Stability (OLS-sta-
bility), and we also investigate the advantages

of a regularization similar (but not equal) to the
one above.

The applicability of our approach, which is based
on a recent result by W. Alt [1] for perturbations
of optimization problems will be demonstrated hy
analyzing a class of two point boundary value
problems. Complete proofs of the results given
here appear in [6].

PROBLEM FORMULATION AND PRELIMINARIES

We consider the two-point boundary value problem

-(a(xju (x)), + c(x)u(x) = £(x), x € (0,1)
(2.1)

with boundary conditions

Riu = 0, i 7 i2vsss

where £ € H%: = #%(0,1) = L2(0,1), a € cl(o,1),
a(x) > a > 0, and
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Riu = :ilu(o) + aizux[o] + aisufl) + ziduxfl].

&, € Ry
1]
The unknown parameter ¢ is allowed to vary in the
set
Uy = fe €% cx) 20 ace., |e] <v) (2.3)

where o < y.
The Output-Least Squares (OLS-) problem consists
in minimizing

2 lute) - 2|?

where wu(c)

solves (2.1). (2:2}, ¢ £ Uad‘ and
:eu’

is a given observation.

Here and throughout the inner product and norm in
H® are denoted by (+,+) and |-

Let A(c) be the differential operator associated
with (2.1), (2.2), i.e.
D(A): = (¢ EH%: ¢ € H® and R;$ = 0, i=1,2),
Az = -{asx)x e,

Throughout we make the following assumptions on
the coefficients appearing in (2.1), (2.2).

(H1) There exists a constant k > o such that
(ACe)¢,9) 2 klol |
H
for all ¢ € D(A) and all ¢ € H® with

elx)> o B.eL.

{H2) The boundary cunditions in (2.2) are such
that A(c) 1is selfadjoint.

The hypotheses (H1), (H2) ensure in particular,

that for every e-neighborhood U of “ad there
are constants k., > 0, kz > 0 such that for all
€ D(A) and c €U

k| oon e ALYl s kofe] s 1= 042,

1 poi*2 ol 2 H~1+2
where H™' is the completion of C7(0,1) with re-
spect to the norm (cp. [11])
s 4 sy =
lu--i = SUPKL%%f}l;  VEQ(0,1).,
Hi
Riv = ig; 4= 1,2F, weE c”

(observe that H° = H).
Furthermore, it follows that the mapping ¢ - u(¢):

el
UeH? + H° is twice continuously Frechet-differen-
tiable with first derivative n(h): = uc(c}h and

second derivative £(h,k): = uccfc](h,k] given as

solutions of
A(e)n = -hu(e) and A(c)E = -ku () (h)-hu (<) (K),

. bl
resrectivelv. (2.4

OUTPUT LEAST SQUARES STABILITY

In this section, we analyze continuous dependence

of the (not necessarily unique) solutions of the
OLS-Problem on the observation =z, the (upper)
norm bound v, and the (lower) pointwise bound

a, which is considered as a constant function in
C = C(0,1). This continuity property is called
Output-lLeast-Square (OLS-) Stability and it will
be analyzed using perturbation theory of infinite
dimensional optimization problems.

Consider the following parametrized family of OLS-
problems:

e Ly 12 W
Minimize £(c,z) = 5julc) - z| (OLS)

for c € Uad: = {c € H% ol(x) » & aze,

le| < v}
where the perturbation parameter

an element of K: = H® » C x R
Uad depends on  w).

w = (z,2,Y) is

(observe that

These problems are considered as perturbations of
]
(oLs)* = (oLs)

the reference problem where

o (= 3 <« S
W= (2 ey ).

The following definition specifies the property
that we are interested in. It is a streamlined
version of the notion introduced in [6]. By
B{x,r) we denote an open ball with center x and
radius T .

is called

ad at the

Definition: The unknown parameter <
Output-Least-Square (OLS-) stable in U
o

(oLs)"™  if there exist a

and constants d > 0,
w € V' there is a local

(oLs}¥

: o
local selution ¢ of

neighborhood V of W’

r > 0 such that for all

2 o !
solution €, € B[cD ,T) of and every
W

o
% o 0 e
local solution -5 € B(c O.r} satisfies
W
o o

¢ - c | <d|[w - MO[
” £

1142
w

Remark. Before we analvoe OLS-stability we note
that the boundedness assumption in Uad itself

implies some weak continuous dependence of the so-

(OLS)w on o ow. n R

lution cﬁ of For let: w' = [z,
= [z°,3°.T°] € W.

n
CULE T Then a subsequence

i F o
of corresponding solutions ¢ . converges weakly
W

to some solution ¢ of (0LS)%®. However OLS-
stability of a parameter requires more. Weak con-
tinuous dependence is replaced by strong continuous
dependence and if ¢ is OLS-stable at the local

solution ¢” then the perturbed problems must have

local solutions in a neighborhood of £
We can obtain QLS-stability either by admitting
only a finite dimensional parameter space or by
exploiting the consequence of the norm bound de-
fining the set Uad' Alternatively, one can also

use a regularication approach, as will be shown in
the next section.

First we consider the OLS-problem over the set

ot N L N
e = Uad A H', where H

subspace of L7. We prepare the following lemma,
where £ = Z(h,h) and n = n(h).

\
c € Uad' If ufe) > o on

is a finite dimensional

Lemma 3.1: Let [o51],

then for all h € H* and n,c defined by (2.4),
the following inequality holds:
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|nl+u(e)-2,8) > [n] (3'min u(e) (0 [nl ,
H

_ Ekiliu(c)-z\ [h] -
L

(See [6])

Proof:

Theorem 3.1: Let « be chosen such that |h| _

. L
< x|h|. , for all he WY, If for a local solu-
i

tion ¢® of (OLS) in u:

d
(i) u(co) >0 or u[co) <0 on [0,1] and

G [Py - 5] < daack?

5 kiky m%nlu(co)(x)|

holds, then ¢ at the local

. e}
solution ¢

is OLS-stable in ”2
of (oLs)" .

d

Proof: Using a result by W. Alt [1] we have to
check regularity of the constraint set and second
order sufficient optimality conditions. Since reg-
ularity follows by straightforward arguments [6],

we only deal with the latter property. Second

order sufficient ontimality conditions for infinite-
dimensional problems with constraints require that
the second derivative of the Lagrangiam F is
strictly positive [10]. We obtain for (OLS) using
the chain rule and the preceeding lemma

F () = [n]? v ee®-2,8) - 2,lnl

> ] lnl oG e minue® o0 |
L x
-1y o (82
v Zk] !u(c )-Zl)
> &[n|?
for some & > 0 which is independent of h (here
%, <0 is the Lagrange multiplier corresponding

to the nom comstraint). Then the assertion follows.
Instead of restrictineg the admissible parameters c
to a finite dimensional subspace as above, we can
consider a different fit-to-data criterion in order
to establish OLS-stability. 1In [6, Theorem 5.3]

the output-least-square criterion with respect to

W -norm is minimized. The practical relevance of
this criterion is given by interpolation of point
ohservations. Then conditions which ensure that
the multiplier A2 (cp. 3.1) does not vanish imply

continuous dependence on (z,a,y) by similar ar-
guments as above. Instead of discussing this re-
sult in detail we turn in the next section to the
regularization approach.

OUTPUT LEAST SNUARES STABILITY
BY REGULARIZATION

In the last section we imposed further assumptions
on the problem data in order to establish OLS-
stability. An alternative is to add a regulariza-
tion term to the fit-to-data criterion (see e.g.
[8]). Then this regularized nroblem is analyzed
with Tespect to continuous dependence on the obser-
vation z and the constraint defining the set of
admissible parameters. For B > 0 we define the
identification problem by regularized output least
squares minimization as:

(ROLS)

minimize %]u{c] - 2'2 + B]cl2

over ¢ € ﬁad;

here ﬁad = {c €H% c(x) >a a.e.}. Of course,

a is chosen so that (H1) holds. It is simple to
see that for each & > 0 there exists a solution

eP of (ROLS) in ﬁsd'
(ROLS}B to specify the value of the regulariza-

At times we shall write

tion parameter in (ROLS).

Having omitted the norm constraint in Uad we in-

stead make the following assumption:

(H3) There exists a solution ® of

o mpeeee 2
mininize lu(c) - z| over ¢ € U_,.
We assume that (H1) - (H3) hold throughout this
section andwe again refer to the optimization
problem in (H3) as (OLS) and define & = {ulc);:

cE uad}‘ The set of perturbation parameters
w = (z,a) is now given by
w=0"xc,

and, when appropriate, we denote dependence on W
by (OLS)W. First we study the relations between
(OLS) and (ROLS).
- En
Propositien 4.1: For Sn +0 let ¢ be a
sequence of (global) solutions for (ROLS]B in
n

U4+ ,Then there exists a convergent subsequence

of ¢ " and every such subsequence converges to a

minimum norm solution of (OLS).

This result shows that for small B, solutions of
[ROLS)B are close to solutions of [OLS). However,

also a partial converse holds, indicating that in
some sense every minimal norm solution of (OLS) can
be recovered from [ROLS)B. More precisely, we have
the following result:

Proposition 4.2: Decompose the set C of all

minimum norm solutions of (OLS) into its connected
components M in the weak H®-topology. Then for

sequence B = 0" there exist
local solutions ¢ ™ of (ROLS),  in U
n

every M and eve

con-
i on

verging in the H%norm to an element of M.

The next definition specifies the property we are
interested in:

Definition: The unknown parameter ¢ in (OLS) is
called Ouput-Least-Square stable by Regularization
(ROLS-stable) in “Bd at wOPEW for ge€J
c (0,=), if for every global solution cso of

W
[ROLS)S with g € J there exist a neighborhood

v of wo
for all

cB (3 B(cso,r) of (RDLS}: and every local solution

W
w

and constants d > 0, r > 0, such that
w E V there exists a local solution

Ffe B(cB ,r) satisfies
W o

W

8 8 0,,1/2

B - e8] < alw - W%
W

Loosely speaking, ROLS-stability means OLS-stabili.
ty of all global solutions of the regularized prob-
lems.

Results in the spirit of section 2, but under
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weaker assumptions, can be proved for ROLS-stabili-
ty [6]. Here we turn to some results which are
specific for the regularization approach. Note
that |c®| converges to |c®| from below, as
8+ 0", where ¢® is a minimum norm solution of
o o
(nLs)*"  and A s any solution of {RGLS); "
Theorem 4.1: Choose B such that for a minimal

F o wo
norm solution ¢ of (OLS)

kf - 2|cD|2 + 2 sup|c5[2 >0

and define 8 > 0 by

g: = dist (:°99° 5

-2l s 2 suplef)7Y;

here the supremum is taken over all solutions c3
WO . *
of (ROL&)E in uad'

If B < B then the parameter c¢ is ROLS-stable

at w° in U_, for all B € (8,8).

ad

In particular, if z° €%, then ¢ is (ROLS)-
stable in U, at wEW for B8 € (0,B).

Proof: (see [6])

The condition § < B of Theorem 4.1 constitutes

a certain relationship between the convergence
Tate of cB to co. the bound kl and dist(zo,
@7 : fast convergence rates of |CB|, large bounds

k, and small distances dist(2°g) are favorable.

If the condition B < B is violated, a natural
idea is to try to get a better observation zo,

i.e. to lower dist[zo.h). Next we show that this
is a reasonable strategy which - at least theoret-
ically - leads to success.

Theorem 4.2: Let zg - zg in HD. with zg €7,
o

and assume that solutions c° of (OLS]: , with

W= (22,69, exist with sup{|c®|: n = 0,1,2,...}

n n n

€ @,

Then there exists # > 0 with the following pro-
B' € (D,E) there exists a natu-
ral number N(B‘} and a neighborhood J(B') of
E* such that for all n > N(B*) and all 8 €
J(S‘} the parameter c¢ is ROLS-stable in U
at W= (22,0% for e D).

perty: For all

ad

Proof: (see [6])

Although we have only treated continuous dependence
of the inverse problem on the coefficient ¢ in
this paper, we expect that our methods are suited
to study output least squares stability of other
parematers in (2.1), (2.2) as well as in more
complex equations.
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