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Abstract. We present formulas for quasi-ergodic limits of finite absorbing

Markov chains. Since the irreducible case has been solved in 1965 by Darroch
and Seneta [6], we focus on the reducible case, and our results are based on a

very precise asymptotic analysis of the (exponential and polynomial) growth

behaviour along admissible paths.

1. Introduction

The long-term statistical behaviour of Markov chains is determined by their
ergodic stationary measures, in the sense that the time average of an observable
of the process converges to the space average of the observable with respect to the
ergodic stationary measure. In the context of absorbing Markov chains, the function
of a stationary measure is naturally replaced by a quasi-stationary measure, and a
quasi-stationary measure describes a statistical equilibrium distribution conditioned
on that the Markov chain is not absorbed. The field of quasi-stationary measures
has been very active recently, see the monograph Collet, Martinez and San Martin
[5], as well as Champagnat and Villemonais [3, 4], and the survey Méléard and
Villemonais [12], which, in particular, covers applications to ecology and population
dynamics.

It is well known that, when analysing the long-term statistical behaviour of
absorbed Markov chains, quasi-stationary measures do not have the same func-
tion as stationary measures for non-absorbed Markov chains, despite their natural
correspondence. In many settings, the time average of an observable of an ab-
sorbed Markov chain exists (when conditioned to non-absorption of the Markov
chain), but this quantity is in general not equal to the space average of the observ-
able with respect to the quasi-stationary measure. It turns out that, when taking
the space average, the quasi-stationary measure needs to be replaced by another
measure, often called quasi-ergodic measure. This has been first established for
irreducible finite Markov chains by Darroch and Seneta [6]. For more general irre-
ducible Markov processes, Breyer and Roberts [2] analysed this systematically, and
they showed that the quasi-ergodic measure is absolutely continuous with respect
to the quasi-stationary measure; they also coined the term quasi-ergodic limits [2,
Theorem 1] for these (conditioned) ergodic limits (cf. also Zhang, Li, and Song [16]
and He, Zhang, and Zhu [11]). Such quasi-ergodic limits have recently been used
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to define and analyse so-called conditioned Lyapunov exponents that describe the
dynamical behaviour of random dynamical systems in compact subsets of the phase
space, see Engel, Lamb and Rasmussen [7].

The literature on quasi-ergodic measures and limits has exclusively focussed on
irreducible stochastic processes so far, and in this article, we aim at contributing
to an understanding of the reducible case. It turns out that the analysis of quasi-
ergodic limits is much more complicated for reducible processes, and for this reason,
we focus here on the simplest possible case, given by finite state absorbing Markov
chains.

We consider a stochastic matrix P ∈ R(d+1)×(d+1) of the form

(1.1) P =

(
1 0
R Q

)
,

where 0 is a row vector of zeros, and R ∈ Rd×1, Q ∈ Rd×d with R,Q 6= 0 and d ≥ 2.
We denote by (Xi)i∈N0

the Markov chain associated to the substochastic matrix
Q starting in a probability vector π ∈ Rd. We suppose that all states {1, . . . , d} are
transient, i.e. the probability of return to some state when starting in that state is
less that 1, which is equivalent to saying that the eigenvalues of the matrix Q lie
inside the unit circle (and in particular 1 is not an eigenvalue of Q). Thus, this
stochastic process is absorbed almost surely with absorption time T , meaning that
the absorption state 0 is reached at time T .

We are interested in the quasi-ergodic limit

(1.2) lim
n→∞

Eπ
[ 1

n+ 1

n∑
i=0

f(Xi)
∣∣∣T > n

]
,

where f : {1, . . . , d} → R is a given observable. As we will show in Corollary 2.2
below, the expectation in (1.2) is determined by the average time the Markov chain
visits its states, and hence, we have to determine the quasi-ergodic measure

(1.3) lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = j

}∣∣T > n
]

for j ∈ {1, . . . , d} .

The main results, Theorem 3.14 and Theorem 3.20, provide formulas for this limit.
This paper is organised as follows. Section 2 provides useful representations of

the expectation in (1.3). These are based on results from Darroch and Seneta [6];
the proofs are postponed to the Appendix, and we note that the quasi-ergodic limits
for the the irreducible case follow easily from these representations. We consider the
theoretical analysis of the reducible case in Section 3. In Subsection 3.1, we assume
without loss of generality that the reducible matrix Q is given in Frobenius normal
form. This can be achieved by permutations of the rows and columns, and the
Frobenius normal form is unique up to certain permutations, see Gantmacher [9,
Chapter XIII, §4]). We use admissible paths to reformulate the formulas for the
quasi-ergodic limit, and in Subsection 3.2, the main results are stated and proved.
Here, we crucially have to assume that in the Frobenius normal form, the subma-
trices in the diagonal are scalar if their Perron–Frobenius eigenvalue is smaller than
the maximal Perron–Frobenius eigenvalue. Finally, we illustrate the theoretical
results by means of several examples in Section 4.

Notation. Probability vectors π are row vectors, while all other vectors in Rn
are column vectors. In all spaces Rn we abbreviate 1 = (1, . . . , 1)>. The set of
natural numbers is denoted by N and N0 = N ∪ {0}. The number of elements of a
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finite set A is denoted by #A. For k ∈ N and m ∈ Z

Γk(m) :=
{

(η1, . . . , ηk) ∈ Nk0 : η1 + · · ·+ ηk = m
}

and note that Γk(m) = ∅ for m < 0. Products with an empty index set are defined
as
∏
i∈∅ xi = 1.

2. Quasi-ergodic limits in the irreducible case

In this section, we consider the substochastic matrix Q from (1.1), and we present
results from Darroch and Seneta [6] for quasi-ergodic limits of the form (1.2) in the
special case when Q is irreducible.

Recall that if the matrix Q is irreducible, then it is either eventually positive or
cyclic. It follows from the Perron–Frobenius theorem that Q has a simple eigenvalue
ρ ∈ (0, 1), called the Perron–Frobenius eigenvalue, such that the absolute values
of all other eigenvalues of Q are equal to or less than ρ. The left eigenvector to
this eigenvalue, u ∈ Rd with u>Q = ρu>, has only positive entries and describes

a quasi-stationary measure when normalised via
∑d
i=1 ui = 1, which we assume

in the following. If Q is eventually positive, then the absolute values of all other
eigenvalues are smaller that ρ.

The following proposition is our starting point for deriving formulas for quasi-
ergodic limits. The proof is given in the Appendix. Denote

(2.1) πj(z) := πDj(z) and Qj(z) := QDj(z) for all z ∈ R ,

where Dj(z) is the d× d diagonal matrix whose j-th diagonal element is z and all
other diagonal elements are equal to 1.

Proposition 2.1. Consider a substochastic matrix Q ∈ Rd×d, and let (Xi)i∈N0
be

the associated Markov chain starting in π. Then the following statements hold.

(i) For all j ∈ {1, . . . , d} and n ∈ N, we have

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = j

}∣∣T > n
]

=

d
dzπj(z)Q

n
j (z)1

∣∣∣
z=1

(n+ 1)πQn1
.

(ii) Suppose that Q is eventually positive. Then for j ∈ {1, . . . , d}, we have

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = j

}∣∣T > n
]

= ujvj +O( 1
n ) as n→∞ ,

where v is the positive right eigenvector of Q for the Perron–Frobenius
eigenvalue ρ normalised by u>v = 1.

(iii) Suppose that Q is cyclic with period h ∈ N \ {1}. Then Qh is eventually
positive, and for all j ∈ {1, . . . , d}, we have for the left and right normalised
eigenvectors u> and v of Qh for the eigenvalue ρh that

Eπ
[

1
hn+1#

{
m ∈ {0, . . . , hn} : Xm = j

}∣∣T > hn
}

= ujvj +O( 1
hn ) as n→∞ .

The following corollary uses the above result for the average evaluation of an
observable. The formula provided in (i) below will be the basis of our further
analysis of the reducible case. It shows that, in particular, the probability of the
average evaluation of an observable f is determined by the average number of
times that Xi is in some state j. For the irreducible case, assertion (ii) below
concerns a formula for the quasi-ergodic limit involving the normalised right and
left eigenvectors for the Perron–Frobenius eigenvalue ρ of Q.
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Corollary 2.2. Consider a substochastic matrix Q ∈ Rd×d, and let (Xi)i∈N0
be the

associated Markov chain starting in π. Then the following statements hold.

(i) For all n ∈ N, we have

Eπ

[
1

n+1

n∑
i=0

f(Xi)
∣∣∣T > n

]
=

d∑
j=1

f(j)Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = j

}∣∣T > n
]

=

d∑
j=1

f(j)

d
dzπj(z)Q

n
j (z)1

∣∣∣
z=1

(n+ 1)πQn1
.

(ii) If Q is irreducible, then the quasi-ergodic limit is given by

lim
n→∞

Eπ
[ 1

n+ 1

n∑
i=0

f(Xi)
∣∣∣T > n

]
=

d∑
i=1

f(i)uivi,

where v and u> are the right and left eigenvectors for the eigenvalue ρ of
Q normalised as in Proposition 2.1 (ii).

Proof. (i) Using Proposition 2.1 (i), one computes for fixed n ∈ N

d∑
j=1

f(j)

d
dzπj(z)Q

n
j (z)1

∣∣∣
z=1

(n+ 1)πQn1

=

d∑
j=1

f(j)Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = j

}∣∣T > n
]

= 1
n+1

d∑
j=1

Eπ
[
f(j)#

{
m ∈ {0, . . . , n} : Xm = j

}∣∣T > n
]

= Eπ

[
1

n+ 1

n∑
i=0

f(Xi)
∣∣∣T > n

]
.

(ii) Proposition 2.1 (ii) and (iii) yield the assertion in the irreducible case (where
the matrix Q is either eventually positive or cyclic). �

Corollary 2.2 (ii) for irreducible Q and f(j) = j for j ∈ {1, . . . , d} is classical and
has been proved in Darroch and Seneta [6, p. 95]. Here, the left eigenvector u> is
the unique quasi-stationary measure, see van Doorn and Pollett [15, Theorem 2.1].
Thus, the quasi-ergodic limit is absolutely continuous with respect to the quasi-
stationary measure.

3. Quasi-ergodic limits in the reducible case

While in the previous section, we obtained an quasi-ergodic limit formula for
irreducible matrices Q, we concentrate now on the reducible case, and we suppose
without loss of generality that the matrices Q from (1.1) are given in Frobenius
normal form

(3.1) Q =


Q11 0 0
Q21 Q22 0

. . .

Qk1 Qk2 Qkk


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with matrices Qij ∈ Rdi×dj , where d1, . . . , dk ∈ N. We assume in addition that the
diagonal matrices Qii are eventually positive. The results for the general case, where
the diagonal matrices are irreducible (hence maybe periodic), are easy consequences,
see Remark 3.21 below.

We note that
∑k
i=1 di = d, and introduce index sets

Ij =
{

1 +
∑j−1
i=1 di, . . . ,

∑j
i=1 di

}
for all j ∈ {1, . . . , k} ,

corresponding to the diagonal blocks of the matrix Q.

3.1. Preparations and admissible paths. In this subsection, we reformulate
the quasi-ergodic problem using admissible paths of indices. We denote the ini-
tial distribution by π = (π1, . . . , πk) with πi ∈ Rdi and first obtain a version of
Proposition 2.1 for the above systems in Frobenius normal form.

Proposition 3.1. Consider a matrix Q of the form (3.1), and let (Xi)i∈N0
be the

Markov chain associated to the substochastic matrix Q starting in π. Then the
following statements hold.

(i) For j ∈ {1, . . . , d} and n ∈ N, the probability of the average number of
times that Xi is in some state j is

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = j

}∣∣T > n
]

=
π
(∑n

r=0Q
reje

>
j Q

n−r)1
(n+ 1)πQn1

.

(ii) For ` ∈ {1, . . . , k} and n ∈ N, the probability of the average number of
times that Xi is in some state in I` is

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm ∈ I`

}∣∣T > n
]

=
π
(∑n

r=0Q
r
∑
j∈I` eje

>
j Q

n−r
)
1

(n+ 1)πQn1
.

Proof. (i) Using (2.1), we compute

d

dz
πj(z)Q

n
j (z)1 =

d

dz
(πDj(z) (QDj(z))

n
1)

=πeje
>
j (QDj(z))

n
1 + πDj(z)

(
n∑
r=1

(QDj(z))
r−1

Qeje
>
j (QDj(z))

n−r

)
1 .

This implies that

d

dz
πj(z)Q

n
j (z)1

∣∣∣
z=1

= πeje
>
j Q

n1 + π

(
n∑
r=1

Qreje
>
j Q

n−r

)
1 .

Now the assertion follows from Proposition 2.1 (i).
(ii) This follows from (i) and

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm ∈ I`

}∣∣T > n
]

=
∑
j∈I`

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = j

}∣∣T > n
]
,

which finishes the proof of this proposition. �
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We now aim at understanding the terms in Proposition 3.1 better and first note
that for all n ∈ N0, we get

Qn =


Q

(n)
11 0 0

Q
(n)
21 Q

(n)
22 0

. . .

Q
(n)
k1 Q

(n)
k2 Q

(n)
kk

 ,

where for n ≥ 1

(3.2) Q
(n)
ij :=

∑
s1,...,sn−1=1,...,k

i=s0≥s1≥s2≥···≥sn−1≥sn=j

Qs0s1Qs1s2 · · ·Qsn−1sn ,

and for n = 0

Q
(0)
ij :=

{
Id : i = j ,
0 : i 6= j .

This follows by induction, since for i ≥ `, the entries Q
(n+1)
i` of Qn+1 = QnQ are

given by

Q
(n+1)
i` =

k∑
j=`

∑
s1,...,sn−1=1,...,k

i≥s1≥s2≥···≥sn−1≥j

Qis1Qs1s2 · · ·Qsn−1jQj`

=
∑

s1,...,sn=1,...,k
i≥s1≥s2≥···≥sn≥`

Qis1Qs1s2 · · ·Qsn−1snQsn` .

We first consider the numerator in the formula from Proposition 3.1 (ii), which can
be re-written as

π

 n∑
r=0

Qr
∑
j∈I`

eje
>
j Q

n−r

1

= π

n∑
r=0


Q

(r)
11 0 0

Q
(r)
21 Q

(r)
22 0

. . .

Q
(r)
k1 Q

(r)
k2 Q

(r)
kk




0 0
. . .

Q
(n−r)
`1 Q

(n−r)
`` 0

0 0

1

= π

n∑
r=0



0 0
. . .

Q
(r)
`` Q

(n−r)
`1 Q

(r)
`` Q

(n−r)
`` 0 0

. . .

Q
(r)
k` Q

(n−r)
`1 Q

(r)
k` Q

(n−r)
`` 0


1

= (π`, . . . , πk)

n∑
r=0


Q

(r)
`` Q

(n−r)
`1 Q

(r)
`` Q

(n−r)
``

. . .

Q
(r)
k` Q

(n−r)
`1 Q

(r)
k` Q

(n−r)
``

1



QUASI-ERGODIC LIMITS FOR FINITE ABSORBING MARKOV CHAINS 7

=

n∑
r=0

k∑
i=`

πiQ
(r)
i`

∑̀
j=1

Q
(n−r)
`j 1 =

k∑
i=`

∑̀
j=1

πi

n∑
r=0

Q
(r)
i` Q

(n−r)
`j 1.(3.3)

We now aim at re-writing this product of certain sub-matrices of the matrix Q in
a different way involving so-called admissible paths of indices.

Definition 3.2 (Admissible paths).

(i) An admissible path θ of length κ = κ(θ) is given by a finite and strictly
decreasing sequence θ = (θ1, θ2, . . . , θκ) such that θu ∈ {1, . . . , k} and
Qθuθu+1

6= 0 for all u ∈ {1, . . . , κ− 1}.
(ii) The set of admissible paths is denoted by P, and we denote the set of

admissible paths that go from i to j by

Pij :=
{

(θ1, θ2, . . . , θκ) ∈ P : θ1 = i and θκ = j
}
,

and define the set of admissible paths through ` ∈ {1, . . . , k} as

P(`) :=
{

(θ1, . . . , θκ) ∈ P : there exists a u ∈ {1, . . . , κ} with θu = `
}
.

We note that every finite sequence of natural numbers si occurring in non-zero

products in sums of the form Q
(r)
i` and Q

(n−r)
`j , as defined in (3.2), must follow an

admissible path. More precisely, concentrating on Q
(n)
i` , for some (s0, . . . , sn) such

that 0 6= Qs0s1Qs1s2 · · ·Qsn−1sn , there exist a θ = (i, θ2, . . . , θκ−1, `) ∈ Pi` and
exponents η1, . . . , ηκ ∈ N0 such that

∑κ
u=1 ηu = n+ 1− κ and

(3.4) Qs0s1Qs1s2 · · ·Qsn−1sn = Qη1θ1θ1Qθ1θ2Q
η2
θ2θ2

Qθ2θ3 · · ·Qθκ−1θκQ
ηκ
θκθκ

.

Every matrix which is subdiagonal in Q occurs at most once, and for this reason,
most entries in this large matrix product are diagonal blocks Qθuθu that are ordered
with respect to u and thus appear as powers of these matrices.

The number of elements in

Γκ(m) =
{

(η1, . . . , ηκ) ∈ Nκ0 : η1 + · · ·+ηκ = m
}

for all κ ∈ {1, . . . , k} and m ∈ N

is given by

(3.5) #Γκ(m) =

(
κ+m− 1

m

)
(this is modelled by drawing κ− 1 out of m+ 1 balls from an urn with replacement
and without order). For θ = (θ1, θ2, . . . , θκ) ∈ P and m ∈ N, let

(3.6) Q(θ,m) :=
∑

η∈Γκ(m+1−κ)

Qη1θ1θ1Qθ1θ2Q
η2
θ2θ2

Qθ2θ3 · · ·Qθκ−1θκQ
ηκ
θκθκ

and

Q(θ, 0) :=

{
Id : θ ∈ Pij , where i = j ,
0 : θ ∈ Pij , where i 6= j .

We use the following restrictions of θ = (θ1, . . . , θκ) ∈ P(`),

θ` := (θ1, . . . , θu = `) ∈ Pθ1,` and θ` := (θu = `, . . . , θκ) ∈ P`,θκ ,

and we write κ := κ(θ, `) := u and κ := κ(θ, `) := κ−u+ 1 for the length of θ` and

θ`, respectively. Hence, κ+ κ = κ+ 1.
We obtain the following corollary to Proposition 3.1.
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Corollary 3.3. Consider a matrix Q of the form (3.1), let (Xi)i∈N0
be the Markov

chain associated to the substochastic matrix Q starting in π, and let ` ∈ {1, . . . , k}.
Then the following two statements hold.

(i) We have

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm ∈ I`

}∣∣T > n
]

=

∑
θ∈P(`) πθ1

∑n
r=0Q(θ`, r)Q(θ`, n− r)1

(n+ 1)
∑
θ∈P πθ1Q(θ, n)1

.

(ii) For s ∈ I` we have with t(s) := s−
∑`−1
i=0 di and et(s) ∈ Rd` ,

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = s

}∣∣T > n
]

=

∑
θ∈P(`) πθ1

∑n
r=0Q(θ`, r)et(s)e

>
t(s)Q(θ`, n− r)1

(n+ 1)
∑
θ∈P πθ1Q(θ, n)1

.

Proof. (i) First consider the denominator in Proposition 3.1 (ii). With (3.2), we
get

(n+ 1)πQn1 = (n+ 1)

k∑
i=1

πi

i∑
j=1

Q
(n)
ij 1

= (n+ 1)

k∑
i=1

i∑
j=1

πi
∑

i=s0≥s1≥···≥sn−1≥sn=j

Qis1Qs1s2 · · ·Qsn−1j1

=

k∑
i=1

i∑
j=1

(n+ 1)πi
∑
θ∈Pij

Q(θ, n)1

= (n+ 1)
∑
θ∈P

πθ1Q(θ, n)1 .

Turning to the numerator we can write

(3.7)

n∑
r=0

Q
(r)
i` Q

(n−r)
`j =

n∑
r=0

( ∑
θ∈Pi`

Q(θ, r)

)( ∑
θ∈P`j

Q(θ, n− r)

)
.

Every admissible path θ ∈ P(`) ∩ Pij corresponds to two admissible paths θ` ∈ Pi`
and θ` ∈ P`j . Hence the numerator re-written in the form (3.3) is given by

k∑
i=`

∑̀
j=1

πi

n∑
r=0

( ∑
θ∈Pi`

Q(θ, r)

)( ∑
θ∈P`j

Q(θ, n− r)
)
1

=
∑
θ∈P(`)

πθ1

n∑
r=0

Q(θ`, r)Q(θ`, n− r)1 .

(ii) Using Proposition 3.1 (i) and an appropriate modification of formula (3.3), one
proves this analogously. �
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3.2. Formulas for quasi-ergodic limits. In this subsection, we determine for-
mulas for quasi-ergodic limits for matrices Q of the form (3.1).

Recall that we assume that the diagonal matrices Qii are eventually positive and
that the maximal eigenvalue of Qii (the Perron–Frobenius eigenvalue) is denoted
by ρi. For θ = (θ1, . . . , θκ) ∈ {1, . . . , k}κ, we define ρ(θ) := max{ρθ1 , . . . , ρθκ},

H+(θ) :=
{
u ∈ {1, . . . , κ} : ρθu = ρ(θ)

}
and

H−(θ) :=
{
u ∈ {1, . . . , κ} : ρθu < ρ(θ)

}
,

and we denote the number of elements in these sets by h+(θ) := #H+(θ) and
h−(θ) := #H−(θ). Note that h+(θ) + h−(θ) = κ = κ(θ). In addition, we define
ρmax := max{ρ1, . . . , ρk} and h+

max := max{h+(θ) : θ ∈ P and ρ(θ) = ρmax}.

Remark 3.4. In the terminology of Friedland and Schneider [8, p. 190], if ρi = ρmax,
then Qii determines a singular vertex of the graph associated with Q, and the
singular distance from i to j is given by h+

max − 1.

We aim at quasi-ergodic limits by taking the limit n → ∞ in Corollary 3.3.
In the following, we will derive a few results that help to ignore parts negligible
when taking this limit. For this purpose, we say that a real sequence (an)n∈N is
asymptotically equivalent to another real sequence (bn)n∈N in the limit n → ∞ if
limn→∞

an
bn

= 1.

Proposition 3.5. Let θ = (θ1, . . . , θκ) ∈ {1, . . . , k}κ. Consider the sequence

ξn :=
∑

η∈Γκ(n+κ−1)

ρη1θ1 · · · ρ
ηκ
θκ

for all n ∈ N .

Then the sequence

ρ(θ)n+1−κ nh
+(θ)−1

(h+(θ)− 1)!

∏
u∈H−(θ)

1

1− ρθu
ρ(θ)

is asymptotically equivalent to (ξn)n∈N for n→∞.

Proof. For `,m ∈ N and ζ1, . . . , ζ` > 0, we introduce the auxiliary function

Ξm` (ζ1, . . . , ζ`) :=
∑

η∈Γ`(m)

ζη11 · · · ζ
η`
` =

m∑
η1=0

m−η1∑
η2=0

· · ·
m−η1−···−η`−1∑

η`=0

ζη11 · · · ζ
η`
` ,

and for ζ` 6= 1, we can write

Ξm` (ζ1, . . . , ζ`) =

m∑
η1=0

m−η1∑
η2=0

· · ·
m−η1−···−η`−2∑

η`−1=0

ζη11 · · · ζ
η`−1

`−1

1− ζm+1−η1−···−η`−1

`

1− ζ`

=
1

1− ζ`
Ξm`−1(ζ1, . . . , ζ`−1)−

ζm+1
`

1− ζ`
Ξm`−1

(
ζ1
ζ`
, . . . ,

ζ`−1

ζ`

)
.(3.8)

We note that the function Ξm` is symmetric in the sense that Ξm` (ζ1, . . . , ζ`) =
Ξm` (ζs(1), . . . , ζs(`)) for all permutations s of 1, . . . , `. For this reason, the above
reformulation of Ξm` into two terms of the form Ξm`−1 can be made as long as not
all ζi, i ∈ {1, . . . , `}, are equal to 1.
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We assume without loss of generality that θκ = ρ(θ). Then

ξn =
∑

η∈Γκ(n+1−κ)

ρη1θ1 · · · ρ
ηκ
θκ

=

n+1−κ∑
η1=0

n+1−κ−η1∑
η2=0

· · ·
n+1−κ−η1−···−ηκ−2∑

ηκ−1=0

ρη1θ1 · · · ρ
ηκ−1

θκ−1
ρ(θ)n+1−κ−η1−···−ηκ−1

= ρ(θ)n+1−κ
n+1−κ∑
η1=0

n+1−κ−η1∑
η2=0

· · ·
n+1−κ−η1−···−ηκ−2∑

ηκ−1=0

(
ρθ1
ρ(θ)

)η1
· · ·
(
ρθκ−1

ρ(θ)

)ηκ−1

.

Thus we have

ρ(θ)ξn = ρ(θ)n+2−κΞn+1−κ
κ−1

(
ρθ1
ρ(θ)

, . . . ,
ρθκ−1

ρ(θ)

)
for all n ∈ N .

If H−(θ) = ∅, then

ρ(θ)ξn = ρ(θ)n+2−κΞn+1−κ
κ−1 (1, . . . , 1) .

Otherwise, we may assume that ρθκ−1 < ρ(θ), and formula (3.8) yields

ρ(θ)ξn = ρ(θ)n+2−κ 1

1− ρθκ−1

ρ(θ)

Ξn+1−κ
κ−2

(
ρθ1
ρ(θ)

, . . . ,
ρθκ−2

ρ(θ)

)
− ρn+2−κ

θκ−1

1

1− ρθκ−1

ρ(θ)

Ξn+1−κ
κ−2

(
ρθ1
ρθκ−1

, . . . ,
ρθκ−2

ρθκ−1

)
.

Using the properties of the function Ξm` , we can iteratively re-write ρ(θ)ξn into at
most 2κ−1 terms of the form

(3.9) ρn+2−κ
θγ(i)

K(i)Ξn+1−κ
β(i) (1, . . . , 1) , where i ∈ {1, . . . , 2κ−1} ,

with γ(i) ∈ {1, . . . , κ}, K(i) ∈ R, and β(i) ∈ {0, . . . , κ− 1}. In all variations of this
(non-unique) iterative procedure, one has a unique term of the form

(3.10) ρ(θ)n+2−κΞn+1−κ
h+(θ)−1(1, . . . , 1)

∏
u∈H−(θ)

1

1− ρθu
ρ(θ)

,

and we show that this sequence is asymptotically equivalent to (ρ(θ)ξn)n∈N.

Firstly, we note that mκ

κ! is asymptotically equivalent to Ξmκ (1, . . . , 1) for m→∞.
This follows from the fact that one can show that Ξmκ (1, . . . , 1) = #Γκ+1(m), and
we use (3.5).

In addition, on the way to get to terms of the form (3.9), the intermediate terms
are of the form

(3.11) ρn+2−κ
θγ

KΞn+1−κ
β

(
ρθs(1)
ρθγ

, . . . ,
ρθs(β)
ρθγ

)
,

where γ ∈ {1, . . . , κ}, K ∈ R, β ∈ {0, . . . , κ− 1} and s : {1, . . . , β} → {1, . . . , κ− 1}
is injective. This implies that if ρθγ(i) = ρ(θ) in a final sequence (3.9), then, in the

formulation of (3.11), we have ρs(j) = ρ(θ) for all j ∈ {1, . . . , β}. It can be seen

that in all such terms that do not coincide with (3.10), we have β < h+(θ) − 1.
Hence, the term (3.10) yields an asymptotically equivalent sequence, which finishes
the proof. �
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In order to analyse both the denominator and numerator from Corollary 3.3, we
need the following notation and elementary statements for the diagonal blocks.

Lemma 3.6 (Notation and statements for the diagonal blocks of Q). For i ∈
{1, . . . , k}, the normed right eigenvector of the Perron–Frobenius eigenvalue ρi of
Qii is denoted by vi. Since for any i ∈ {1, . . . , k}, the matrix Qii is eventually
positive, the absolute value of all other eigenvalues is less than some constant ρ−i ∈
(0, ρi), and we denote by V −i the sum of the corresponding generalised eigenspaces,
so that we have the decomposition Rdi = span(vi)⊕ V −i . In the trivial case di = 1,
we have vi = 1 and V −i = {0}.

(i) We define
K1 := max

{
1,max

{
‖Qij‖ : i > j

}}
.

(ii) Choose γ with

max
{
ρ−i
ρi

: i ∈ {1, . . . , k}
}
< γ < 1 .

Then there exists a constant K2 ≥ 1 such that for every i ∈ {1, . . . , k} and
x ∈ V −i , we have

‖Qniix‖ ≤ K2ρ
n
i γ

n‖x‖ for all n ∈ N .
(iii) There exists a constant K3 ≥ 1 such that for all i ∈ {1, . . . , k} and sequences

(xn)n∈N in Rd with

xn = zn + wn with zn ∈ span(vi) and wn ∈ V −i ,

the following holds: if for some ζ ∈ (0, 1) and K ≥ 1, one has ‖xn‖ ≤ Kζn
for all n ∈ N, then

‖zn‖ ≤ KK3ζ
n and ‖wn‖ ≤ KK3ζ

n for all n ∈ N .
(iv) Consider an admissible path θ ∈ P. We define αθ := αθκ · · ·αθ1 , where the

real numbers αθu for all u ∈ {1, . . . , κ} are defined by

1 = αθκvθκ + wθκ

with wθκ ∈ V −θκ , and inductively for u ∈ {κ− 1, κ− 2, . . . , 1} by

Qθuθu+1
vθu+1

= αθuvθu + wθu

with wθu ∈ V −θu . If all submatrices Qθuθu+1
are scalar, one has, writing

qθuθu+1
:= Qθuθu+1

, that the constants αθu are given by αθκ = 1 and αθu =
qθuθu+1

for u ∈ {κ− 1, κ− 2, . . . , 1}.
(v) There exists a K4 ≥ 1 such that for all i ∈ {1, . . . , k}, we have

‖Qnii‖ ≤ K4ρ
n
i for all n ∈ N .

Proof. (i) and (iv) concern notation and do not need to be proved. For the proof
of (ii) note that for every matrix Qii, Seneta [14, Theorem 1.2] implies that

Qnii = ρni viu
>
i +O

(
(ρ−i )n

)
,

where u>i is the positive left eigenvector of Qii for ρi with u>i vi = 1. Then it
follows for x ∈ V −i that viu

>
i x = 0, since otherwise Qniix would grow with ρni . This

implies assertion (ii). Assertion (v) is clear, since the eigenspace to the maximal
real eigenvalue ρi of Qii is one-dimensional (we assumed that the matrix Qii is
eventually positive). For assertion (iii), the observation below used for the spaces
X = span(vi)⊕V −i yields a constant K ′i ≥ 1 for every i ∈ {1, . . . , k}, the maximum
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of which we denote by K3 ≥ 1.
Observation. Consider in a finite-dimensional space X = Z ⊕W a sequence xn =
zn + wn with zn ∈ Z,wn ∈ W , and ‖xn‖ ≤ Kζn for some ζ ∈ (0, 1) and K ≥ 1.
Then there exists a constant K ′ ≥ 1 such that ‖zn‖ ≤ K ′Kζn and ‖wn‖ ≤ K ′Kζn
for all n ∈ N.
Proof of the observation. In fact, for a norm such that ‖x‖′ = ‖z‖′ + ‖w‖′ for
x ∈ X with z ∈ Z,w ∈ W , one has ‖zn‖′ ≤ ‖zn‖′+ ‖wn‖′ = ‖xn‖′ ≤ Kγn,
analogously for wn. This result remains true for every norm ‖·‖, since all norms
on finite-dimensional spaces are equivalent. In fact, c−1 ‖x‖′ ≤ ‖x‖ ≤ c ‖x‖′ for
some constant c > 0, hence ‖zn‖ ≤ c ‖zn‖′ ≤ c ‖xn‖′ ≤ c2 ‖xn‖ ≤ K ′Kζn with
K ′ := c2. �

In the following proposition, we aim at understanding the asymptotic growth of
sequences of the form πθ1Q(θ, n)1 which occur in the denominator in Corollary 3.3.

Proposition 3.7. Consider a matrix Q of the form (3.1) and an admissible path
θ = (θ1, . . . , θκ) ∈ P and suppose that for all u ∈ {1, . . . , κ} with ρθu < ρ(θ), the
diagonal term Qθuθu is scalar.

(i) If πθ1vθ1 6= 0 and αθ 6= 0, then the sequence πθ1Q(θ, n)1 is asymptotically
equivalent in the limit n→∞ to

(3.12) πθ1vθ1αθ
∑

η∈Γκ(n+1−κ)

ρηκθκ · · · ρ
η1
θ1
,

and hence, due to Proposition 3.5, also to the sequence

(3.13) αθπθ1vθ1ρ(θ)n+1−κ nh
+(θ)−1

(h+(θ)− 1)!

∏
u∈H−(θ)

1

1− ρθu
ρ(θ)

.

(ii) If πθ1vθ1 = 0 or αθ = 0, then the exponential growth of πθ1Q(θ, n)1 in the

limit n→∞ is equal to or less than ρ(θ)n+1−κnh
+(θ)−2.

Proof. Due to (3.6), we have

(3.14) πθ1Q(θ, n)1 = πθ1
∑

η∈Γκ(n+1−κ)

Qη1θ1θ1Qθ1θ2Q
η2
θ2θ2

Qθ2θ3 · · ·Qθκ−1θκQ
ηκ
θκθκ

1 .

Since we assume that for ρi < ρ(θ), the diagonal term Qii is scalar, it follows that for
u ∈ H−(θ), the decomposition Qθuθu+1

vθu+1
= αθuvθu + wθu from Lemma 3.6 (iv)

is scalar, and hence using vθu = 1 and wθu = 0, it is of the form

(3.15) Qθuθu+1
vθu+1

= αθu .

Consider the first iterative step from Lemma 3.6 (iv)

(3.16) 1 = αθκvθκ + wθκ

with wθκ ∈ V −θκ . Using that ρθκ is an eigenvalue of Qθκθκ with eigenvector vθκ , we
get

(3.17) Qηκθκθκ1 = αθκρ
ηκ
θκ
vθκ +Qηκθκθκwθκ .

In the next step, we decompose

(3.18) Qθκ−1θκvθκ = αθκ−1
vθκ−1

+ wθκ−1
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with αθκ−1
∈ R and wθκ−1

∈ V −θκ−1
. Hence, Lemma 3.6 (ii) implies

(3.19)
∥∥Qηκ−1

θκ−1θκ−1
wθκ−1

∥∥ ≤ K2ρ
ηκ−1

θκ−1
γηκ−1‖wθκ−1

‖ ,

and we decompose

(3.20) Qθκ−1θκQ
ηκ
θκθκ

wθκ = β
(ηκ)
θκ−1

vθκ−1
+ w

(ηκ)
θκ−1

with β
(ηκ)
θκ−1

∈ R and w
(ηκ)
θκ−1

∈ V −θκ−1
. Due to Lemma 3.6 (i),(ii), the left hand side of

(3.20) satisfies∥∥Qθκ−1θκQ
ηκ
θκθκ

wθκ
∥∥ ≤ K1

∥∥Qηκθκθκwθκ∥∥ ≤ K1K2ρ
ηκ
θκ
γηκ ‖wθκ‖ .

This implies for the right hand side of (3.20) by Lemma 3.6 (iii) that

(3.21)
∥∥w(ηκ)

θκ−1

∥∥ ≤ K1K2K3ρ
ηκ
θκ
γηκ ‖wθκ‖

and

(3.22)
∣∣β(ηκ)
θκ−1

∣∣ =
∥∥β(ηκ)

θκ−1
v
θκ−1

∥∥ ≤ K1K2K3ρ
ηκ
θκ
γηκ ‖wθκ‖ .

Together this yields

Q
ηκ−1

θκ−1θκ−1
Qθκ−1θκQ

ηκ
θκθκ

1

(3.17)
= Q

ηκ−1

θκ−1θκ−1
Qθκ−1θκ

(
αθκρ

ηκ
θκ
v
θκ

+Qηκθκθκwθκ
)

= αθκρ
ηκ
θκ
Q
ηκ−1

θκ−1θκ−1
Qθκ−1θκvθκ +Q

ηκ−1

θκ−1θκ−1
Qθκ−1θκQ

ηκ
θκθκ

wθκ

(3.18),(3.20)
= αθκρ

ηκ
θκ
Q
ηκ−1

θκ−1θκ−1

(
αθκ−1

vθκ−1
+ wθκ−1

)
+Q

ηκ−1

θκ−1θκ−1

(
β

(ηκ)
θκ−1

v
θκ−1

+ w
(ηκ)
θκ−1

)
= αθκαθκ−1

ρηκθκQ
ηκ−1

θκ−1θκ−1
vθκ−1

+ αθκρ
ηκ
θκ
Q
ηκ−1

θκ−1θκ−1
wθκ−1

+Q
ηκ−1

θκ−1θκ−1
β

(ηκ)
θκ−1

vθκ−1
+Q

ηκ−1

θκ−1θκ−1
w

(ηκ)
θκ−1

= αθκαθκ−1
ρηκθκρ

ηκ−1

θκ−1
vθκ−1

+ αθκρ
ηκ
θκ
Q
ηκ−1

θκ−1θκ−1
wθκ−1

+β
(ηκ)
θκ−1

ρ
ηκ−1

θκ−1
vθκ−1

+Q
ηκ−1

θκ−1θκ−1
w

(ηκ)
θκ−1

.

The last three summands satisfy the estimates∥∥αθκρηκθκQηκ−1

θκ−1θκ−1
wθκ−1

∥∥ ≤ |αθκ | ρ
ηκ
θκ

∥∥Qηκ−1

θκ−1θκ−1
w
θκ−1

∥∥
(3.19)

≤ K2 |αθκ | ρ
ηκ
θκ
ρ
ηκ−1

θκ−1
γηκ−1‖wθκ−1‖

and∥∥β(ηκ)
θκ−1

ρ
ηκ−1

θκ−1
vθκ−1

∥∥ ≤ ∣∣β(ηκ)
θκ−1

∣∣ρηκ−1

θκ−1
‖vθκ−1

‖
(3.22)

≤ K1K2K3ρ
ηκ
θκ
ρ
ηκ−1

θκ−1
γηκ ‖wθκ‖

and∥∥Qηκ−1

θκ−1θκ−1
w

(ηκ)
θκ−1

∥∥ ≤
∥∥Qηκ−1

θκ−1θκ−1

∥∥∥∥w(ηκ)
θκ−1

∥∥ Lemma 3.6 (v)

≤ K4ρ
ηκ−1

θκ−1

∥∥w(ηκ)
θκ−1

∥∥
(3.21)

≤ K1K2K3K4ρ
ηκ
θκ
ρ
ηκ−1

θκ−1
γηκ ‖wθκ‖ .

If κ 6∈ H+(θ), then by (3.15), it follows that wθκ = 0, and hence, of the last three
summands above, only

αθκρ
ηκ
θκ
Q
ηκ−1

θκ−1θκ−1
wθκ−1
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can be different from 0. If κ−1 6∈ H+(θ), then by (3.15), it follows that wθκ−1
= 0,

and hence, this summand vanishes. Together with the estimates derived above, it
follows that each of the additional three summands vanishes, if both κ, κ − 1 6∈
H+(θ), and the norm of each of the additional summands can be estimated by a
constant multiplied with

ρηκθκρ
ηκ−1

θκ−1
γηκ if κ ∈ H+(θ) and κ− 1 6∈ H+(θ) ,

ρηκθκρ
ηκ−1

θκ−1
γηκ−1 if κ 6∈ H+(θ) and κ− 1 ∈ H+(θ) ,

ρηκθκρ
ηκ−1

θκ−1
γηκ or ρηκθκρ

ηκ−1

θκ−1
γηκ−1 if κ ∈ H+(θ) and κ− 1 ∈ H+(θ) .

After κ decomposition steps, we arrive at the following result: any term in the sum
in (3.14) (i.e. for a fixed η ∈ Γκ(n+ 1− κ)) is equal to the sum of

(3.23) πθ1αθρ
ηκ
θκ
· · · ρη1θ1vθ1 = αθπθ1vθ1ρ

ηκ
θκ
· · · ρη1θ1

and up to 2h
+(θ)−1 summands that contain in addition to the factor ρηκθκ · · · ρ

η1
θ1

some

factor γηu with u ∈ H+(θ), hence, γρθu < ρ(θ). It follows from Proposition 3.5
that these additional terms have in the limit n → ∞ exponential growth equal to

or less than ρ(θ)n+1−κnh
+(θ)−2. Hence for πθ1αθvθ1 6= 0, the sequences in (3.23)

and (3.14) are asymptotically equivalent, and assertion (i) holds. If πθ1αθvθ1 = 0
the terms in (3.23) vanish and the estimate for the exponential growth of the other
summands implies that (ii) holds. �

Remark 3.8. If for an admissible path θ ∈ P , all submatrices Qθuθu+1
are scalar,

the assumption αθ = αθκ · · ·αθ1 6= 0 in Proposition 3.7 holds. In the general case,
it is generically satisfied: for matrices Q of the form (3.1), recall that vi denotes the
Perron–Frobenius eigenvector of the diagonal block Qii for i ∈ {1, . . . , k}. Then
the set of matrices Q such that the decomposition 1 = αkvk +wk with αk ∈ R and
wk ∈ V −k satisfies αk 6= 0, is open and dense. Similarly, for all i, j ∈ {1, . . . , k} with
i > j, the set of matrices such that the decomposition

Qijvj = αijvi + wij with αij ∈ R and wij ∈ V −i ,

satisfies αij 6= 0, is open and dense. This implies (cf. Lemma 3.6 (iv)) that the set
of matrices Q such that for every admissible path θ ∈ P , all numbers αθκ , . . . , αθ1
are nonzero, is open and dense.

The following two examples further illustrate the assumptions of Proposition 3.7.

Example 3.9. We demonstrate now that the assumption αθ = αθκ · · ·αθ1 6= 0 in
Proposition 3.7 (i) is not satisfied in general. Consider the matrix

Q =

(
Q11 0
Q21 Q22

)
, where Q11, Q21, Q22 ∈ Rn×n.

Suppose that Q11 and Q22 are eventually positive with Perron–Frobenius eigenval-
ues ρ1 and ρ2 with normalised positive right eigenvectors v1 and v2, respectively.
Furthermore, let V −2 ⊂ Rn be the subspace spanned by the eigenvectors of Q22

corresponding to the eigenvalues with smaller magnitude than ρ2, as defined in
Lemma 3.6. Suppose that Q21 is a matrix and Q21v1 ∈ V −2 . For θ = (θ1, θ2) = (2, 1)
and κ = 2, one has vθκ = v1 and vθκ−1

= v2. Then it follows that αθκ−1
= α2 = 0,

since due to (3.18), we have

Q21v1 = 0 · v2 + w2 , with w2 ∈ V −2 .
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We now take a closer look at the assumption requiring certain diagonal terms to
be scalar.

Example 3.10. In Proposition 3.7, the assumption that the diagonal term Qθuθu
is scalar for all u ∈ {1, . . . , κ} with ρθu < ρ(θ), is necessary and cannot be omitted
in general. Let d = 3 and consider a matrix of the form

Q =

(
ρ1 0
Q21 Q22

)
,

where Q22 ∈ R2×2 is eventually positive with the simple eigenvalues ρ2 > ρ−2 >
0 and ρ1 > ρ2. Here ρ1 = ρ(θ) and Q11 = (ρ1), and we assume that Q21 =
(q21, q31)> has positive entries, and hence, the path θ = (θ1, θ2) = (2, 1) with κ = 2
is admissible. Then H+(θ) = {1}, H−(θ) = {2} and

θκ = θ2 = 1 and θκ−1 = θ1 = 2 .

The eigenvalue of Q11 is ρ1 = ρ(θ) with normed eigenvector 1 ∈ R. The decom-
position (3.16) reads as 1 = αθκvθκ + wθκ in R with θκ = θ2 = 1, and we get
αθκ = α1 = ρ1, vθκ = v1 = 1 and wθκ = w1 = 0. The matrix Q22 has normalised
eigenvectors v2 for ρ2 and v−2 for ρ−2 . Thus the subspace V −2 is spanned by the
eigenvector v−2 , and hence, the decomposition (3.18) in R2 has the form

Q211 =

(
q21

q31

)
= α2v2 + w2 = α2v2 + cv−2 with cv−2 ∈ V

−
2 for some c ∈ R.

We further assume that w2 6= 0, and hence c 6= 0. The decomposition (3.20) is

trivial, since wθκ = w1 = 0, showing that β
(ηκ)
θκ−1

= 0 and w
(ηκ)
θκ−1

= 0. Together, this

yields the formula

Qη222Q21Q
η1
111 = ρ1α2ρ

η2
1 ρ

η1
2 v2 + ρ1ρ

η2
1 Q

η1
22w2 = ρ1α2ρ

η2
1 ρ

η1
2 v2 + ρ1ρ

η2
1 c
(
ρ−2
)η1

v−2 .

Now we sum the right hand side over all η = (η1, η2) ∈ N2
0 with η1 +η2 = n+1−κ =

n− 1. This gives for the first summand of the right hand side

∑
η∈Γ2(n−1)

ρ(θ)α2ρ
η2ρη12 v2 = ρ(θ)α2

n−1∑
η1=0

ρ(θ)n−1−η1ρη12 v2

= ρ(θ)α2ρ(θ)n−1
n−1∑
η1=0

(
ρ2

ρ(θ)

)η1
v2 = α2ρ(θ)n

1−
(
ρ2
ρ(θ)

)n
1− ρ2

ρ(θ)

v2 .

Similarly, the second summand yields

∑
η∈Γ2(n−1)

ρ(θ)η2+1c
(
ρ−2
)η1

v−2 = cρ(θ)n
n−1∑
η1=0

(
ρ−2
ρ(θ)

)η1
v−2 = cρ(θ)n

1−
(
ρ−2
ρ(θ)

)n
1− ρ−2

ρ(θ)

v−2 .
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Thus, we get with π1 = πθ2 and (π2,1, π2,2) = π2 = πθ1 that

(n+ 1)πθ1Q(θ, n)1 = (n+ 1)(π2,1, π2,2)
∑

η∈Γ2(n−1)

Qη222Q21Q
η1
111

= (n+ 1)(π2,1, π2,2)v2α2ρ(θ)n
1−

(
ρ2
ρ(θ)

)n
1− ρ−2

ρ(θ)

+ (n+ 1)(π2,1, π2,2)v−2 cρ(θ)n
1−

(
ρ−2
ρ(θ)

)n
1− ρ−2

ρ(θ)

.

Since
(
ρ−2
ρ(θ)

)n
→ 0 for n → ∞, one concludes that for (π2,1, π2,2)v−2 6= 0, the first

summand is asymptotically equivalent to (3.13), and the second summand is not
asymptotically equivalent to 0, so the assertion of Proposition 3.7 does not hold in
this case.

Remark 3.11. Proposition 3.7 sharpens Theorem 9.4 in the survey Schneider [13]

which asserts that for any matrix of the form (3.1), the submatrix Q
(n)
ij has expo-

nential growth rate s(i, j)nnd(i,j), where s(i, j) is the maximum of ρk which lie on
an admissible path from i to j and d(i, j) + 1 is the number of k with ρk = s(i, j).
In our terminology, d(i, j) + 1 = h+(θ), hence this theorem implies that the ex-

ponential growth rate is given by ρnmaxn
maxθ h

+(θ)−1, where the maximum is taken
over all admissible paths θ from i to j.

Proposition 3.7 can be immediately applied to the summands in the denomina-
tors of Corollary 3.3. In the following, we show that also the asymptotic behaviour
of the terms in the numerator of Corollary 3.3 can be understood via Proposi-
tion 3.7, but for this purpose, we need to replace the matrix Q by the following
matrix. For ` ∈ {1, . . . , k}, consider

Q̂(`) :=



Q11 0
...

. . .

Q`1 . . . Q``
Idd` Q``

...
. . .

0 Qk` . . . Qkk


.

We note that any sub-matrix Qij with i > ` and j < ` does not appear in

this matrix. The matrix Q̂(`) is also of the form (3.1) with k + 1 blocks, one
more block than the matrix Q. Denote the elements of Γκ+1(n + 1 − κ) by
η̂ = (η1, . . . , η`, η̂`, η`+1, . . . , ηκ), and define for θ = (θ1, . . . , θκ) ∈ P(`),

Q̂(`)(θ, n) =
∑

η̂∈Γκ+1(n+1−κ)

Qη1θ1θ1Qθ1θ2 · · ·Qθu−1`Q
η`
``Q

η̂`
``Q`θu+1

· · ·Qθκ−1θκQ
ηκ
θκθκ

.

We now aim at understanding the asymptotic growth of sequences of the form

πθ1Q̂
(`)(θ, n)1 = πθ1

∑n
r=0Q(θ`, r)Q(θ`, n− r)1, which occur in the numerators in

Corollary 3.3. The main idea is to apply Proposition 3.7, where Q(θ, n) is replaced

by Q̂(`)(θ, n).
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Proposition 3.12. Consider a matrix Q of the form (3.1), a number ` ∈ {1, . . . , k}
and an admissible path θ = (θ1, . . . , θκ) ∈ P(`). Furthermore, suppose that for all
u ∈ {1, . . . , κ} with ρθu < ρ(θ), the diagonal term Qθuθu is scalar. Then for every
θ ∈ P(`), we have

(3.24) Q̂(`)(θ, n) =

n∑
r=0

Q(θ`, r)Q(θ`, n− r) ,

and the following two statements hold.

(i) If αθπθ1vθ1 6= 0, then for the sequence πθ1Q̂
(`)(θ, n)1, an asymptotically

equivalent sequence in the limit n→∞ is given by

(3.25) αθπθ1vθ1ρ(θ)n+1−κ n
h+(θ)

h+(θ)!

∏
u∈H−(θ)

1

1− ρθu
ρ(θ)

if ρ` = ρ(θ)

and

(3.26) αθπθ1vθ1ρ(θ)n+1−κ nh
+(θ)−1

(h+(θ)− 1)!

1

1− ρ`
ρ(θ)

∏
u∈H−(θ)

1

1− ρθu
ρ(θ)

if ρ` < ρ(θ) .

(ii) If αθπθ1vθ1 = 0, then the exponential growth of the sequence πθ1Q̂
(`)(θ, n)1

is for ρ` = ρ(θ) equal to or less than ρ(θ)n+1−κnh
+(θ)−1 and for ρ` < ρ(θ)

equal to or less than ρ(θ)n+1−κnh
+(θ)−2.

Proof. In a first step, we show that (3.24) holds for every θ ∈ P(`), i.e.∑
η̂∈Γκ+1(n+1−κ)

Qη1θ1θ1Qθ1θ2 · · ·Qθu−1`Q
η`
``Q

η̂`
``Q`θu+1

· · ·Qθκ−1θκQ
ηκ
θκθκ

=

n∑
r=0

∑
η∈Γκ(r+1−κ) ,
ζ∈Γκ(n−r+1−κ)

Qη1θ1θ1 · · ·Q
ηκ
`` Q

ζ1
`` · · ·Q

ζκ
θκθκ

.

We order the summands on the left hand side by putting together the summands
with equal sum of the first κ exponents, say ψ1 + · · · + ψκ = r + 1 − κ for some
r ∈ {κ − 1, . . . , n + 1 − κ} where κ = κ + 1 − κ. Hence, the sum of the last κ
exponents equals n+ 1− κ− (r + 1− κ) = n− r + 1− κ. Then the left hand side
equals

n+1−κ∑
r=κ−1

∑
η∈Γκ(r+1−κ) ,
ζ∈Γκ(n−r+1−κ)

Qη1θ1θ1 · · ·Q
ηκ
`` Q

ζ1
`` · · ·Q

ζκ
θκθκ

.

Since by definition Γκ(r + 1− κ) = ∅ for r + 1− κ < 0 and Γκ(n− r + 1− κ) = ∅
for n− r + 1− κ < 0, equality (3.24) follows.

We apply Proposition 3.7 to the matrix Q̂(`) instead of the matrix Q. For this
extended matrix, we consider the admissible path of length κ+ 1

(3.27) θ̂(`) := (θ1 + 1, . . . , θu−1 + 1, `+ 1, `, θu+1, . . . , θκ),

where θu = `. The matrix Q̂(`)(θ, n) corresponds to the admissible sequence θ̂(`)

for Q̂(`), more precisely, one sees that

(3.28) Q̂(`)(θ, n) = (Q̂(`))(θ̂(`), n+ 1),
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since Γκ+1(n+ 1− κ) = Γκ+1((n+ 1) + 1− (κ+ 1)), where the right hand side of

(3.28) is defined as (3.6) with Q replaced by Q̂(`).
Proposition 3.7 yields the following two statements.

(i) If πθ1vθ1 6= 0 and αθ 6= 0, then the sequence πθ1Q̂
(`)(θ, n)1 is asymptotically

equivalent in the limit n→∞ to

πθ1vθ1αθ
∑

η∈Γκ+1(n+1−κ)

ρηκ+1
θκ

· · · ρηu+2

θu+1
ρ
ηu+1

` ρηu` ρ
ηu−1

θu−1
· · · ρη1θ1 ,

where αθ is equal to the corresponding quantity for the matrices Q and
Q̂(`), since for Q̂(`) the block in row ` + 1 and column ` is the identity

matrix. If ρ` = ρ(θ), then h+(θ̂(`)) = h+(θ) + 1, and if ρ` < q(θ), then

h+(θ̂(`)) = h+(θ). Hence, Proposition 3.7 shows that the sequence above is
asymptotically equivalent to

αθπθ1vθ1ρ(θ)n+1−κ (n+ 1)h
+(θ)

h+(θ)!

∏
u∈H−(θ)

1

1− ρθu
ρ(θ)

if ρ` = ρ(θ)

and

αθπθ1vθ1ρ(θ)n+1−κ (n+ 1)h
+(θ)−1

(h+(θ)− 1)!

1

1− ρ`
ρ(θ)

∏
u∈H−(θ)

1

1− ρθu
ρ(θ)

if ρ` < ρ(θ) .

This proves assertion (i), since (n+ 1)h
+(θ) is asymptotically equivalent to

nh
+(θ)

.
(ii) If πθ1vθ1 = 0 or αθ = 0, then the exponential growth of the sequence

πθ1Q̂
(`)(θ, n)1 is for ρ` = ρ(θ) equal to or less than ρ(θ)n+1−κnh

+(θ)−1 and

for ρ` < ρ(θ) equal to or less than ρ(θ)n+1−κnh
+(θ)−2.

This finishes the proof of the proposition. �

So far, we have fixed a particular admissible path θ ∈ P , and in both Proposi-
tion 3.7 and Proposition 3.12, we made certain assumptions relating to this partic-
ular θ. In the following assumption for our main results, we consider all relevant
admissible paths. Recall that ρmax = max{ρ1, . . . , ρk} and h+

max := max{h+(θ) :
θ ∈ P and ρ(θ) = ρmax}, and define the set of maximal admissible paths Pmax by

Pmax :=
{
θ ∈ P : h+(θ) = h+

max and ρ(θ) = ρmax

}
,

and let P(`)
max := P(`) ∩ Pmax.

Assumption 3.13. Consider a matrix Q of the Frobenius normal form (3.1), and
let (Xi)i∈N0

be the Markov chain associated to the substochastic matrix Q starting
in π. We assume that

(i) for all i ∈ {0, . . . , k} with ρi < ρmax, the diagonal term Qii is scalar, and
(ii) there exists a maximal admissible path θ = (θ1, . . . , θκ) ∈ Pmax such that

the constant αθ 6= 0 and the initial distribution π satisfies πθ1vθ1 6= 0,
where αθ and the Perron–Frobenius eigenvector vθ1 of Qθ1θ1 are defined as
in Lemma 3.6.

By combining Proposition 3.7 and Proposition 3.12, we arrive at the following
formulas for the quasi-ergodic limits.
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Theorem 3.14 (Quasi-ergodic limits for finite absorbing Markov chains). Suppose
that Assumption 3.13 holds, and let ` ∈ {1, . . . , k}. Then the following statements
hold:

(i) If ρ` < ρmax or P(`)
max = ∅, then

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm ∈ I`

}∣∣T > n
]

= 0 .

(ii) If ρ` = ρmax and P(`)
max 6= ∅, then

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm ∈ I`

}∣∣T > n
]

=

∑
θ∈P(`)

max
αθπθ1vθ1

∏
u∈H−(θ)

1
ρmax−ρθu

h+
max

∑
θ∈Pmax

αθπθ1vθ1
∏
u∈H−(θ)

1
ρmax−ρθu

.

Proof. We first assume ρ` = ρmax and show that in this case, we have

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm ∈ I`

}∣∣T > n
]

= lim
n→∞

∑
θ∈P(`) πθ1Q̂

(`)(θ, n)1∑
θ∈P(n+ 1)πθ1Q(θ, n)1

= lim
n→∞

∑
θ∈P(`)

max
πθ1Q̂

(`)(θ, n)1∑
θ∈Pmax

(n+ 1)πθ1Q(θ, n)1
.(3.29)

The first equality follows from Corollary 3.3 (i) and Proposition 3.12 applied to the
numerator in Corollary 3.3 (i).

For the second equality, we identify summands in both denominator and numer-
ator that dominate for n → ∞. By Assumption 3.13 (ii) there exists a maximal
admissible path θ ∈ Pmax with αθπθ1vθ1 6= 0, hence Proposition 3.7 shows that
for the sequence πθ1Q(θ, n)1 an asymptotically equivalent sequence for n → ∞
is given by (3.13). Thus (n + 1)πθ1Q(θ, n) has exponential growth rate equal

to ρ(θ)nnh
+(θ) = ρnmaxn

h+
max . For any θ ∈ P \ Pmax, one has h+(θ) < h+

max,
and the summand (n + 1)πθ1Q(θ, n)1 grows at most with the smaller exponential

growth rate ρ(θ)nnh
+(θ), again by Proposition 3.7. This justifies replacing P by

Pmax in the denominator. For any θ ∈ P(`) in the numerator, Proposition 3.12
shows that the summand πθ1Q̂

(`)(θ, n)1 grows at most with exponential growth

rate ρ(θ)nnh
+(θ) = ρnmaxn

h+(θ), see (3.25) (the exponential growth can be smaller
than that by Proposition 3.12 (ii), when αθπθ1vθ1 = 0). This justifies replacing

P(`) by P(`)
max in the numerator using again h+(θ) < h+

max for θ ∈ P(`) \ P(`)
max (note

that for P(`)
max = ∅ the limits for n→∞ equal 0).

Now for the denominator in (3.29), Proposition 3.7 (i) yields the following: Let
θ ∈ Pmax with αθπθ1vθ1 6= 0 (recall that the existence is clear due to Assump-
tion 3.13 (ii)). Then for the corresponding summand, given by (n+ 1)πθ1Q(θ, n)1,
an asymptotically equivalent sequence is

Ψn(θ) = αθπθ1vθ1ρ
n+1−κ(θ)
max

nh
+
max

(h+
max − 1)!

∏
u∈H−(θ)

1

1− ρθu
ρmax

.

Note that for θ ∈ Pmax with αθπθ1vθ1 = 0, the corresponding summand given by
(n + 1)πθ1Q(θ, n)1 has weaker exponential growth for n → ∞, equal to or less

than ρnmaxn
h+
max−1. Since Ψn(θ) = 0 for those θ, this implies that an asymptotically
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equivalent term for the denominator is given by
∑
θ∈Pmax

Ψn(θ) with exponential

growth ρnmaxn
h+
max .

For the numerator, suppose first that there exists θ ∈ P(`)
max with αθπθ1vθ1 6=

0. Then by Proposition 3.12, for the corresponding summand πθ1Q̂
(`)(θ, n)1, an

asymptotically equivalent sequence is

Ξn(θ) := αθπθ1vθ1ρ
n+1−κ(θ)
max

nh
+
max

h+
max!

∏
u∈H−(θ)

1

1− ρθu
ρmax

.

By Proposition 3.12 (ii), for θ ∈ P(`)
max with αθπθ1vθ1 = 0 the corresponding sum-

mand given by πθ1Q̂
(`)(θ, n)1 has weaker exponential growth for n→∞, equal to

or less than ρnmaxn
h+
max−1. Since Ξn(θ) = 0 for those θ, this implies that an asymp-

totically equivalent term for the numerator is given by
∑
θ∈P(`)

max
Ξn(θ). Hence, the

formula given in (ii) holds in this case. Otherwise, P(`)
max = ∅ or for all θ ∈ P(`)

max we
have αθπθ1vθ1 = 0. Then the limits for n→∞ are equal to 0, hence assertion (ii)
and also the second statement in (i) follow.

It remains to show (i) under the assumption ρ` < ρmax. In this case, exactly
like above, an asymptotically equivalent term for the denominator is given by∑
θ∈Pmax

Ψn(θ). Consider a summand in the numerator, so let θ ∈ P(`). Then
Proposition 3.12 shows that the exponential growth for n → ∞ of the numera-

tor is bounded above by either ρ(θ)nnh
+(θ) if ρ(θ) < ρmax, or by ρnmaxn

h+
max−1 if

ρ(θ) = ρmax. In both cases, the exponential growth is weaker than for the denom-

inator, determined by
∑
θ∈Pmax

Ψn(θ) with exponential growth ρnmaxn
h+
max . This

finishes the proof of the theorem. �

Remark 3.15. We note that due to Remark 3.8, the condition αθ 6= 0 in Assump-
tion 3.13 (ii) is generically satisfied, and the condition πθ1vθ1 6= 0 in this assumption
is not restrictive. In fact, suppose that for a given initial distribution π, there is no
θ ∈ Pmax with πθ1vθ1 6= 0. Then define

h+,π
max := max

{
h+(θ) : θ ∈ P and ρ(θ) = ρmax, πθ1vθ1 6= 0

}
,

Pπmax :=
{
θ ∈ P : ρ(θ) = ρmax and h+(θ) = h+,π

max

}
.

Then Theorem 3.14 remains valid with Pmax and P(`) replaced by Pπmax and

P(`),π
max := P(`) ∩ Pπmax, respectively.

The formula for the quasi-ergodic limit in the above theorem can be simplified
in certain special cases.

Corollary 3.16. Assume that in the setting of Theorem 3.14, there is only one
maximal path, i.e. Pmax = {θ = (θ1, . . . , θκ)}. If ` = θu with ρ` = ρmax for some
u ∈ {1, . . . , κ}, then

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm ∈ I`

}∣∣T > n
]

=
1

h+
max

,

and this limit vanishes whenever ρ` < ρmax.

Proof. The assertion is an immediate consequence of Theorem 3.14. �

In the scalar case, one obtains the following formulas which are directly given in
terms of the matrix Q.
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Corollary 3.17. Consider a matrix Q of the Frobenius normal form (3.1), and let
(Xi)i∈N0 be the Markov chain associated to the substochastic matrix Q starting in
π. We assume that all submatrices qij := Qij are scalar and the initial distribution
π satisfies πθ1 6= 0 for some maximal admissible path θ = (θ1, . . . , θκ) ∈ Pmax.
Then for all ` ∈ {1, . . . , k}, the following holds.

(i) If ρ` < ρmax or P(`)
max = ∅, then

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm ∈ I`

}∣∣T > n
]

= 0.

(ii) If ρ` = ρmax and P(`)
max 6= ∅, then

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm ∈ I`

}∣∣T > n
]

=
1

h+
max

∑
θ∈P(`)

max
πθ1qθ1θ2 · · · qθκ−1θκ

∏
u∈H−(θ)

1
ρmax−ρθu∑

θ∈Pmax
πθ1qθ1θ2 · · · qθκ−1θκ

∏
u∈H−(θ)

1
ρmax−ρθu

.

Proof. In the scalar case considered here, one finds, for an admissible path θ =
(θ1, . . . , θκ), that the constants αθu defined in Lemma 3.6 (iv) are given by αθκ = 1
and αθu = qθuθu+1

for u ∈ {κ− 1, κ− 2, . . . , 1}. Hence, we get

αθπθ1vθ1 = πθ1qθ1θ2 · · · qθκ−1θκ 6= 0 ,

and thus, the assertion follows from Theorem 3.14. �

Remark 3.18. In the scalar case, suppose that all maximal admissible paths begin
in the same element, i.e. θ1 = θ′1 for all θ, θ′ ∈ Pmax. Then the quasi-ergodic limits
are independent of the initial distribution π. In fact, here all scalars πθ1 and πθ′1
coincide and Corollary 3.17 yields for ρ` = ρmax and P(`)

max 6= ∅
lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm ∈ I`

}∣∣T > n
]

=
1

h+
max

∑
θ∈P(`)

max
qθ1θ2 · · · qθκ−1θκ

∏
u∈H−(θ)

1
ρmax−ρθu∑

θ∈Pmax
qθ1θ2 · · · qθκ−1θκ

∏
u∈H−(θ)

1
ρmax−ρθu

.

Next we discuss the behaviour within the blocks. In order to deal with the
numerator in Corollary 3.3 (ii), we consider for ` ∈ {1, . . . , k} instead of the matrix

Q̂(`) the following matrix for any t ∈ {1, . . . , d`} and et ∈ Rd` ,

Q̂(`,t) :=



Q11 0
...

. . .

Q`1 . . . Q``
ete
>
t Q``

...
. . .

0 Qk` . . . Qkk


.

This matrix is also of the form (3.1) with one more block, i.e. k+ 1 blocks. Denote
the elements of Γκ+1(n+ 1− κ) by η̂ = (η1, . . . , η`, η̂`, . . . , ηκ) and define,

Q̂(`,t)(θ, n) =
∑

η̂∈Γκ+1(n+1−κ)

Qη1θ1θ1Qθ1θ2 · · ·Qθu−1`Q
η`
`` ete

>
t Q

η̂`
``Q`θu+1

· · ·Qθκ−1θκQ
ηκ
θκθκ

.

The following proposition applies to the terms in the numerator of Corollary 3.3 (ii).
It is convenient to change the notation slightly by writing u(i) and v(i) instead of
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ui and vi for the left and right eigenvectors, respectively, of the Perron–Frobenius
eigenvalue of Qii.

Proposition 3.19. Consider a matrix Q of the form (3.1), numbers ` ∈ {1, . . . , k}
and t ∈ {1, . . . , d`}, and an admissible path θ = (θ1, . . . , θκ) ∈ P(`). Furthermore,
suppose that ρ` = ρ(θ) and that for all u ∈ {1, . . . , κ} with ρθu < ρ(θ), the diagonal
term Qθuθu is scalar. Then

(3.30) Q̂(`,t)(θ, n) =

n∑
r=0

Q(θ`, r)ete
>
t Q(θ`, n− r),

and the following two statements hold:

(i) If αθπθ1v
(θ1) 6= 0, then for the sequence πθ1Q̂

(`,t)(θ, n)1, an asymptotically
equivalent sequence in the limit n→∞ is given by

u
(`)
t v

(`)
t αθπθ1v

(θ1)ρ(θ)n−κ
nh

+(θ)

h+(θ)!

∏
u∈H−(θ)

1

1− ρθu
ρ(θ)

,

where u(`)> = (u
(`)
1 , . . . , u

(`)
d`

) and v(`) = (v
(`)
1 , . . . , v

(`)
d`

)> are the positive
left and right eigenvector of Q`` for ρ`, respectively, normalised in the sense

of
∑d`
i=1 v

(`)
i = 1 and u(`)>v(`) = 1.

(ii) If αθπθ1v
(θ1) = 0, then the exponential growth of the sequence πθ1Q̂

(`,t)(θ, n)1

is equal to or less than ρ(θ)n+1−κnh
+(θ)−1.

Proof. We proceed as in Proposition 3.12, where we have used Proposition 3.7 with
the matrix Q̂(`) instead of the matrix Q. Here we can argue analogously using the
matrix Q̂(`,t) instead of Q.

In a first step we verify equality (3.30), i.e.∑
η̂∈Γκ+1(n+1−κ)

Qη1θ1θ1Qθ1θ2 · · ·Qθu−1`Q
η`
`` ete

>
t Q

η̂`
``Q`θu+1

· · ·Qθκ−1θκQ
ηκ
θκθκ

=

n∑
r=0

∑
η∈Γκ(r+1−κ) ,
ζ∈Γκ(n−r+1−κ)

Qη1θ1θ1 · · ·Q
ηκ
`` ete

>
t Q

ζ1
`` · · ·Q

ζκ
θκθκ

.

This follows as in the proof of equality (3.24) in Proposition 3.12.

Now, we will apply Proposition 3.7 to the matrix Q̂(`,t)(θ, n) using the admissible

sequence θ̂(`) defined in (3.27). The only difference to the proof of Proposition 3.12
occurs when we determine the factor αθ from Proposition 3.7. In the earlier proof,
the block in row `+ 1 and column ` of the matrix Q̂(`) is the identity matrix, hence
this did not lead to a change in this factor in Proposition 3.12. Here, however, the
identity matrix is replaced by ete

>
t , and we will show that we get the additional

factor α̃ = u
(`)
t v

(`)
t .

To determine this additional factor α̃, we have to uniquely decompose

ete
>
t v

(`) = α̃v(`) + w̃ ,

where α̃ ∈ R and w̃ ∈ V −` as in Lemma 3.6 (iv). We show now that with α̃ =

u
(`)
t v

(`)
t , we have

w̃ = ete
>
t v

(`) − u(`)
t v

(`)
t v(`) ∈ V −` .
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To see this, we determine the exponential growth of Qn``w̃ in the limit n → ∞.

Using that ete
>
t v

(`) = (0, . . . , 0, v
(`)
t , 0, . . . , 0)>, we have

Qn``w̃ = Qn``(0, . . . , 0, v
(`)
t , 0, . . . , 0)> − u(`)

t v
(`)
t Qn``v

(`)︸ ︷︷ ︸
=ρn` v

(`)

.

We multiply with the left eigenvector u(`)> and get

u(`)>Qn``w̃ = u(`)>Qn``(0, . . . , 0, v
(`)
t , 0, . . . , 0)> − u(`)

t v
(`)
t ρn` u

(`)>v(`)

= ρn` u
(`)>(0, . . . , 0, v

(`)
t , 0, . . . , 0)> − u(`)

t v
(`)
t ρn` = 0 .

This shows that Qn``w̃ is in the orthogonal complement of the one-dimensional

space span(u(`)). Since span(v(`)) is not orthogonal to span(u(`)), it follows that
w̃ ∈ V −` , because otherwise, the component relating to span(v(`)) would become
dominant. �

This observation can be used to determine the quasi-ergodic behaviour within
the blocks.

Theorem 3.20. Assume the setting of Theorem 3.14, and let ` ∈ {1, . . . , k} such

that ρ` = ρmax and P(`)
max 6= ∅. Then for all s ∈ I`, we have

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = s

}∣∣T > n
]

= u
(`)
t(s)v

(`)
t(s)

1

h+
max

∑
θ∈P(`)

max
αθπθ1vθ1

∏
u∈H−(θ)

1
ρmax−ρθu∑

θ∈Pmax
αθπθ1vθ1

∏
u∈H−(θ)

1
ρmax−ρθu

,

where t(s) := s−
∑`−1
i=1 di. Here u(`)> = (u

(`)
1 , . . . , u

(`)
d`

) and v(`) = (v
(`)
1 , . . . , v

(`)
d`

)>

are the positive left and right eigenvector of Q`` for ρ`, respectively, normalised in

the sense of
∑d`
i=1 v

(`)
i = 1 and u(`)>v(`) = 1.

Proof. The proof is the same as the proof of Theorem 3.14, with the difference that
instead of Proposition 3.12, we need to use Proposition 3.19 here. �

Finally, we consider the case that some of the blocks Qii are not eventually
positive.

Remark 3.21 (The irreducible case). Consider a matrix Q in Frobenius normal form
(3.1) with diagonal matrices Qii which are irreducible and possibly periodic. Then
there exists an N ∈ N such that the diagonal blocks of QN are eventually positive.
Denote by X̃ the Markov chain induced by QN and the corresponding stopping
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time by T̃ . We get for any j ∈ {1, . . . , k},

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = j

}∣∣T ≥ n}]
= lim
n→∞

N−1∑
i=0

Eπ
[

1
n+1#

{
m ∈ NZ + i : m ≤ n and Xm = j

}∣∣T ≥ n}]
= lim
n→∞

N−1∑
i=0

EπQi
[

1
n+1#

{
m ∈ NZ + i : m ≤ n and X̃m−i

N
= j
}∣∣T ≥ n}]

= lim
n→∞

N−1∑
i=0

EπQi
[

1
Nn+1#

{
m ∈ {0, . . . , n} : X̃m = j

}∣∣T ≥ Nn}]
=

1

N

N−1∑
i=0

lim
n→∞

EπQi
[

1
n+1#

{
m ∈ {0, . . . , n} : X̃m = j

}∣∣T̃ ≥ n}] .
Hence corresponding formulas for the case of not eventually positive matrices follow
from the formulas for the eventually positive case.

4. Examples

We present a number of examples illustrating the previous results and we start
with the following simple example from Benäım, Cloez, Panloup [1, Example 3.5],
slightly modified in order to get a lower diagonal matrix Q.

Example 4.1. Consider the transition matrix given by

Q =

(
ρ1 0

1− ρ2 ρ2

)
, where 0 < ρ1 < ρ2 < 1 .

This example is reducible with scalar blocks and k = 2. The maximal admissible
paths are θ = (2) with κ(θ) = 1 and θ′ = (2, 1) with κ(θ′) = 2, hence Pmax =

{(2), (2, 1)} = P(2)
max and P(1)

max = (2, 1). Furthermore, H+(θ) = {2} = H+(θ′) and
H−(θ′) = {1} and hence h+

max = 1. Applying Corollary 3.17 to this example, one
finds that for π2 > 0, the quasi-ergodic limit for ` = 1 is given by

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = 1

}∣∣T > n
]

= 0 ,

since ρ1 < ρmax, and for ` = 2, we have

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = 2

}∣∣T > n
]

= 1 ,

since these two probabilities sum up to 1. The classification of the quasi-stationary
distributions in van Doorn and Pollett [15], in particular [15, Theorem 4.3], shows
that for this example there is a unique quasi-stationary distribution given by the
normalised left eigenvector u> =

(
1−ρ2
1−ρ1 ,

ρ2−ρ1
1−ρ1

)
to the eigenvalue ρ2 of the matrix Q.

Next we consider a class of three-dimensional matrices.

Example 4.2. Let ρ ∈ (0, 1), and consider

Q =

 ρ 0 0
q21 ρ 0
q31 q32 ρ

 .
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In this scalar case, one finds that under the condition q21, q32 6= 0, one has

Pmax = {θ = (3, 2, 1)} with h+
max = h+(θ) = 3 .

Corollary 3.16 yields that for ` ∈ {1, 2, 3}, the quasi-ergodic limits are independent
of the initial distribution π, and we have

lim
n→∞

Eπ
[

1

n+ 1
#{m ∈ {0, . . . , n} : Xm = `} |T ≥ n}

]
=

1

h+
max

=
1

3
.

The situation is different if instead we assume that q21, q31 6= 0 and q32 = 0. Then

Pmax = {θ = (3, 1), θ′ = (2, 1)} = P(1)
max ,

h+
max = h+(θ) = h+(θ′) = 2 and κ(θ) = κ(θ′) = 2 .

Here P(2)
max = {θ′} and P(3)

max = {θ}. Corollary 3.17 yields that for π1 < 1,

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = 1

}∣∣T > n
]

=
1

2
,

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = 2

}∣∣T > n
]

=
1

2

π2q21

π2q21 + π3q31
,

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = 3

}∣∣T > n
]

=
1

2

π3q31

π2q21 + π3q31
.

Thus, the quasi-ergodic measure is(
1

2
,

1

2

π2q21

π2q21 + π3q31
,

1

2

π3q31

π2q21 + π3q31

)
.

This case illustrates in particular that the lower diagonal entries Qij for i > j
are relevant for the quasi-ergodic limits, which also may depend on the initial
distribution π.

In the next example, a Perron–Frobenius eigenvalue ρi < ρmax is present, and
the two maximal admissible paths start in the same element and have different
lengths.

Example 4.3. Consider

Q =


ρ 0 0 0
0 ρ 0 0
0 q32 ρ3 0
q41 0 q43 ρ


with 0 < ρ3 < ρ < 1 and q32, q41, q43 6= 0. We have

Pmax = {θ = (4, 3, 2), θ′ = (4, 1)} = P(4)
max,

h+
max = h+(θ) = h+(θ′) = 2 and κ(θ) = 3, κ(θ′) = 2,

and

P(1)
max = {θ′ = (4, 1)},P(2)

max = P(3)
max = {θ = (4, 3, 2)}.

Since both maximal paths start in the same element, Remark 3.18 yields that the
quasi-ergodic limits do not depend on π provided π4 6= 0. Corollary 3.17 yields that
in this case, the quasi-ergodic measure is given by(

1

2

q41

q41 + q43q32
1

ρ−ρ3
,

1

2

q43q32
1

ρ−ρ3
q41 + q43q32

1
ρ−ρ3

, 0,
1

2

)
.
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In the next example, three maximal paths are present, they have different
lengths, and start in different elements.

Example 4.4. Consider

Q =


ρ1 0 0 0 0
0 ρ 0 0 0
q31 0 ρ 0 0
0 0 q43 ρ 0
0 q52 0 0 ρ


with 0 < ρ1 < ρ < 1 and q31, q43, q52 6= 0. We have

Pmax = {(5, 2), (4, 3), (4, 3, 1)}, h+
max = 2, κ(5, 2) = κ(4, 3) = 2, κ(4, 3, 1) = 3,

and

P(1)
max = {(4, 3, 1)},P(2)

max = P(5)
max = {(5, 2)},P(3)

max = P(4)
max = {(4, 3), (4, 3, 1)}.

Suppose that π4 6= 0 or π5 6= 0. Corollary 3.17 yields that

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = 1

}∣∣T ≥ n}] = 0,

and for ` = 2, 5, we get

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = `

}∣∣T ≥ n}]
=

1

2

π5q52

π4q43 + π4q43q31
1

ρ−ρ1 + π5q52

,

and for ` = 3, 4, we get

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = 3

}∣∣T ≥ n}]
=

1

2

π4q43 + π4q43q31
1

ρ−ρ1
π4q43 + π4q43q31

1
ρ−ρ1 + π5q52

.

Suppose, for instance, that the diagonal terms are given by ρ1 = 0.5, ρ = 0.75 and
q31 = q43 = q52 = 0.1, and the initial distribution is of the form π = (∗, ∗, ∗, 0.5, 0.3).
Then an evaluation of the formulas above yields the quasi-ergodic measure

(0, 0.15, 0.35, 0.35, 0.15) .

Finally, we present an example with a non-scalar diagonal matrix Q`` ∈ Rd`×d` ,
where d` > 1.

Example 4.5. Consider the matrix

Q =

(
Q11 0
Q21 ρ2

)
∈ R3×3 ,

with an eventually positive matrix Q11 ∈ R2×2, 0 6= Q21 ∈ R1×2, and ρ2 > 0. Let
the eigenvalues ρ1, ρ

−
1 of Q11 satisfy ρ := ρ1 >

∣∣ρ−1 ∣∣ and ρ1 > ρ2. Here the index
sets are I1 = {1, 2} and I2 = {3}, and we have

Pmax = P(1)
max = {(1), (2, 1)},P(2)

max = {(2, 1)} and h+
max = 1 .

Suppose that αθ 6= 0 for θ = (1) or (2, 1) and the initial distribution π = (π(1), π(2))
satisfies π(2) 6= 0. Then Theorem 3.20 yields

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = 3

}∣∣T > n
]

= 0 .
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Furthermore, let u(1) and v(1) be the left and right eigenvectors, respectively, for

the eigenvalue ρ of Q11, normalised by v
(1)
1 + v

(1)
2 = 1 and u(1)>v(1) = 1. Using

Pmax = P(1)
max one obtains for s ∈ {1, 2} (with t(s) = s) that

(4.1) lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = s

}∣∣T > n
]

= u(1)
s v(1)

s .

As a specific example, consider the eventually positive matrix

Q11 =

(
0.2 0.1
0.1 0

)
with (Q11)

2
=

(
0.05 0.02
0.02 0.01

)
and eigenvalues ρ = ρ1 = 0.1(1 +

√
2) and ρ−1 = 0.1(1 −

√
2). The left and right

normalised eigenvectors of ρ are

u(1)> =
1

2

(
1 +
√

2, 1
)

and v(1) =
1

2 +
√

2

(
1 +
√

2, 1
)>
.

For θ = (1), one finds that the constant αθ = α(1) 6= 0, it is determined by the
decomposition

1 =

(
1
1

)
= αθv

(1) + wθ = α(1)
1

2 +
√

2

(
1 +
√

2
1

)
+ wθ ,

with wθ in the eigenspace for the eigenvalue ρ− of Q11. Thus, for an initial distri-
bution with π(2) 6= 0, one obtains from (4.1) that

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = 1

}∣∣T > n
]

=
3 + 2

√
2

4 + 2
√

2
,

lim
n→∞

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = 2

}∣∣T > n
]

=
1

4 + 2
√

2
.

Appendix A. Proof of Proposition 2.1

The proof of Proposition 2.1 provided in this appendix is based on methods from
Darroch and Seneta [6].

The following preparations are necessary.

Lemma A.1. For any j ∈ {1, . . . , d} and n ∈ N0, we have

n∑
`=0

`Pπ
[
#
{
m ∈ {0, . . . , n} : Xm = j

}
= ` and T = n+ 1

]
=

d

dz
πj(z)Q

n
j (z)R

∣∣∣
z=1

.

Proof. For a given finite sequence (x0, x1, . . . , xn) ∈ {1, . . . , d}n+1, the probability
Pπ[Xi = xi for all i ∈ {0, . . . , n} and T = n

]
is given by

πx0qx0,x1qx1,x2 . . . qxn−1,xnrxn ,

where qij denote the entries of the matrix Q, and

πQnR =

d∑
x0=1

d∑
x1=1

· · ·
d∑

xn=1

πx0
qx0,x1

qx1,x2
. . . qxn−1,xnrxn .

Define for j ∈ {0, . . . , d}

γx0,x1,...,xn(z) := z#{m∈{0,...,n}:xm=j}πx0
qx0,x1

qx1,x2
. . . qxn−1,xnrxn .
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Then it follows that

πj(z)Q
n
j (z)R =

d∑
x0=1

d∑
x1=1

· · ·
d∑

xn=1

γx0,x1,...,xn(z) .

Hence, z 7→ πj(z)Q
n
j (z)R is the probability generating function for ` ∈ {0, 1, . . . , n}

having the probability Pπ
[
#
{
m ∈ {0, . . . , n} : Xm = j

}
= ` and T = n + 1

]
.

This means that its expectation is given by d
dzπj(z)

>Qnj (z)R
∣∣
z=1

, which finishes
the proof of this lemma. �

We actually do not need this lemma, but the following lemma, which can be
proved analogously.

Lemma A.2. For any j ∈ {1, . . . , d} and n ∈ N0, we have

n∑
`=0

`Pπ
[
#
{
m ∈ {0, . . . , n} : Xm = j

}
= ` and T > n

]
=

d

dz
πj(z)Q

n
j (z)1

∣∣∣
z=1

.

We now start the proof of Proposition 2.1.

Proof of Proposition 2.1. (i) Note first that Pπ(T > n) = πQn1. We get

Eπ
[

1
n+1#

{
m ∈ {0, . . . , n} : Xm = j

}∣∣T > n
]

= 1
n+1

n∑
`=0

`
Pπ
[
#
{
m ∈ {0, . . . , n} : Xm = j

}
= ` and T > n

]
Pπ(T > n)

Lemma A.2
=

d
dzπj(z)Q

n
j (z)1

∣∣∣
z=1

(n+ 1)πQn1
.

(ii) The product rule implies

d

dz
Qnj (z) =

n−1∑
m=0

Qmj (z)

(
d

dz
Qj(z)

)
Qn−1−m
j (z),

and hence

d

dz
Qnj (z)

∣∣∣
z=1

=

n−1∑
m=0

Qmqje
>
j Q

n−1−m,

where qj is the jth column of Q, and ej is the jth unit vector. If Q is eventually
positive, Seneta [14, Theorem 1.2] implies that

(A.1) Qm = ρmvu> +O(md−1|ρ′|m) .

This yields

d

dz
Qnj (z)

∣∣∣
z=1

=

n−1∑
m=0

(
ρn−1vu>qje

>
j vu

> +O(ρm|ρ′|n−1−m(n− 1−m)d−1)

+O(ρn−1−m|ρ′|mmd−1) +O(md−1|ρ′|m)O((n− 1−m)d|ρ′|n−1−m
)

(A.2)

= nρnujvjvu
> +O(n2ρn),
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since u>qj = ρuj and e>j v = vj . Thus,

d
dzπj(z)Q

n
j (z)1

∣∣∣
z=1

(n+ 1)πQn1

(A.1),(A.2)
=

(0, . . . , πj , . . . , 0)Qn1 + π(nρnujvjvu
> +O(ρn))1

(n+ 1)π(ρnvu> +O(nd−1|ρ1|n))1

=
π(ρnujvjvu

>)1

π(ρnvu>)1
+O( 1

n ) = ujvj +O( 1
n ) .

(iii) If Q is cyclic with period h, then by Seneta [14, Theorem 1.4] the matrix Qh

is eventually positive. Hence by assertion (ii)

Eπ
[

1
n+1#

{
m ∈ {0, 1, . . . , n} : Xmh = j

}∣∣T > nh
]

= ujvj +O( 1
n )

for the right and left normalised eigenvectors v and u> of Q for the eigenvalue ρ,
which are also eigenvectors for Qh for the eigenvalue ρh. Naturally, O( 1

nh ) = O( 1
n )

for n→∞.
One also finds for every ` ∈ {1, . . . , h− 1}

Eπ
[

1
n+1#

{
m ∈ {0, 1, . . . , n− 1} : Xmh+` = j

}∣∣T > nh+ i
]

= ujvj +O( 1
n )

Summing for ` = 0, . . . , h− 1 one finds

Eπ
[

1

nh
#
{{

m ∈ {0, . . . , nh} : Xm = j
}∣∣T > nh

}]
= Eπ

[
1

nh

h−1∑
`=0

[
#
{
m ∈ {0, 1, . . . , (n− 1)} : Xmh+` = j

}∣∣T > nh
]]

=
1

h

h−1∑
`=0

Eπ
[

1

n

[
#
{
m ∈ {0, 1, . . . , (n− 1)} : Xmh+` = j

}∣∣T > nh
]]

=
1

h

h−1∑
`=0

(
ujvj +O( 1

n )
)

= ujvj +O( 1
n ).

This concludes the proof of Proposition 2.1. �
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[12] S. Méléard and D. Villemonais, Quasi-stationary distributions and population processes,
Probability Surveys 9 (2012), 340–410.

[13] H. Schneider, The influence of the marked reduced graph of a nonnegative matrix on the

Jordan form and on related properties: a survey, Linear Algebra and its Applications 84
(1986), 161–189.

[14] E. Seneta, Non-negative Matrices and Markov Chains, revised printing, Springer 2006.

[15] E.A. van Doorn and P.K. Pollett, Quasi-stationary distributions for reducible absorbing
Markov chains in discrete time, Markov Processes and Related Fields 15 (2009), 191–204.

[16] J. Zhang, S. Li, and R. Song, Quasi-stationarity and quasi-ergodicity of general Markov
processes, Science China Mathematics 57(10) (2014), 2013–2024.

(Fritz Colonius) Institut für Mathematik, Universität Augsburg, 86159 Augsburg, Ger-

many

Email address, Fritz Colonius: fritz.colonius@math.uni-augsburg.de

(Martin Rasmussen) Department of Mathematics, Imperial College London, 180 Queen’s

Gate, London SW7 2AZ, United Kingdom
Email address, Martin Rasmussen: m.rasmussen@imperial.ac.uk


	1. Introduction
	2. Quasi-ergodic limits in the irreducible case
	3. Quasi-ergodic limits in the reducible case
	3.1. Preparations and admissible paths
	3.2. Formulas for quasi-ergodic limits

	4. Examples
	Appendix A. Proof of Proposition 2.1
	References

