QUASI-ERGODIC LIMITS
FOR FINITE ABSORBING MARKOV CHAINS

FRITZ COLONIUS AND MARTIN RASMUSSEN

ABSTRACT. We present formulas for quasi-ergodic limits of finite absorbing
Markov chains. Since the irreducible case has been solved in 1965 by Darroch
and Seneta [6], we focus on the reducible case, and our results are based on a
very precise asymptotic analysis of the (exponential and polynomial) growth
behaviour along admissible paths.

1. INTRODUCTION

The long-term statistical behaviour of Markov chains is determined by their
ergodic stationary measures, in the sense that the time average of an observable
of the process converges to the space average of the observable with respect to the
ergodic stationary measure. In the context of absorbing Markov chains, the function
of a stationary measure is naturally replaced by a quasi-stationary measure, and a
quasi-stationary measure describes a statistical equilibrium distribution conditioned
on that the Markov chain is not absorbed. The field of quasi-stationary measures
has been very active recently, see the monograph Collet, Martinez and San Martin
[5], as well as Champagnat and Villemonais [3, 4], and the survey Méléard and
Villemonais [12], which, in particular, covers applications to ecology and population
dynamics.

It is well known that, when analysing the long-term statistical behaviour of
absorbed Markov chains, quasi-stationary measures do not have the same func-
tion as stationary measures for non-absorbed Markov chains, despite their natural
correspondence. In many settings, the time average of an observable of an ab-
sorbed Markov chain exists (when conditioned to non-absorption of the Markov
chain), but this quantity is in general not equal to the space average of the observ-
able with respect to the quasi-stationary measure. It turns out that, when taking
the space average, the quasi-stationary measure needs to be replaced by another
measure, often called quasi-ergodic measure. This has been first established for
irreducible finite Markov chains by Darroch and Seneta [6]. For more general irre-
ducible Markov processes, Breyer and Roberts [2] analysed this systematically, and
they showed that the quasi-ergodic measure is absolutely continuous with respect
to the quasi-stationary measure; they also coined the term quasi-ergodic limits |2,
Theorem 1] for these (conditioned) ergodic limits (cf. also Zhang, Li, and Song [16]
and He, Zhang, and Zhu [11]). Such quasi-ergodic limits have recently been used
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to define and analyse so-called conditioned Lyapunov exponents that describe the
dynamical behaviour of random dynamical systems in compact subsets of the phase
space, see Engel, Lamb and Rasmussen [7].

The literature on quasi-ergodic measures and limits has exclusively focussed on
irreducible stochastic processes so far, and in this article, we aim at contributing
to an understanding of the reducible case. It turns out that the analysis of quasi-
ergodic limits is much more complicated for reducible processes, and for this reason,
we focus here on the simplest possible case, given by finite state absorbing Markov
chains.

We consider a stochastic matrix P € R(¢+1D)x(d+1) of the form

(1.1) j - (11% g) ,

where 0 is a row vector of zeros, and R € R, Q € R4*? with R,Q # 0 and d > 2.

We denote by (X;)ien, the Markov chain associated to the substochastic matrix
Q starting in a probability vector 7 € R%. We suppose that all states {1,...,d} are
transient, i.e. the probability of return to some state when starting in that state is
less that 1, which is equivalent to saying that the eigenvalues of the matrix @ lie
inside the unit circle (and in particular 1 is not an eigenvalue of @). Thus, this
stochastic process is absorbed almost surely with absorption time 7', meaning that
the absorption state 0 is reached at time T'.

We are interested in the quasi-ergodic limit

1 n
1.2 li Eﬂ{ xX,)|T }
(1.2) lim n+1i§f( )T >n
where f: {1,...,d} — R is a given observable. As we will show in Corollary 2.2

below, the expectation in (1.2) is determined by the average time the Markov chain
visits its states, and hence, we have to determine the quasi-ergodic measure

(1.3) nler;oEw[%H#{me{07...,n}:Xm:j}|T>n] for j € {1,...,d}.

The main results, Theorem 3.14 and Theorem 3.20, provide formulas for this limit.

This paper is organised as follows. Section 2 provides useful representations of
the expectation in (1.3). These are based on results from Darroch and Seneta [6];
the proofs are postponed to the Appendix, and we note that the quasi-ergodic limits
for the the irreducible case follow easily from these representations. We consider the
theoretical analysis of the reducible case in Section 3. In Subsection 3.1, we assume
without loss of generality that the reducible matrix @ is given in Frobenius normal
form. This can be achieved by permutations of the rows and columns, and the
Frobenius normal form is unique up to certain permutations, see Gantmacher [9,
Chapter XIII, §4]). We use admissible paths to reformulate the formulas for the
quasi-ergodic limit, and in Subsection 3.2, the main results are stated and proved.
Here, we crucially have to assume that in the Frobenius normal form, the subma-
trices in the diagonal are scalar if their Perron—Frobenius eigenvalue is smaller than
the maximal Perron—Frobenius eigenvalue. Finally, we illustrate the theoretical
results by means of several examples in Section 4.

Notation. Probability vectors 7 are row vectors, while all other vectors in R"
are column vectors. In all spaces R we abbreviate 1 = (1,...,1)". The set of
natural numbers is denoted by N and Ny = NU {0}. The number of elements of a
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finite set A is denoted by #A. For ke Nand m € Z
Ty(m) == {(n, ... nk) ENG:m A+ +m =m}

and note that I'y(m) = ) for m < 0. Products with an empty index set are defined
as [[;ep i = 1.

2. QUASI—ERGODIC LIMITS IN THE IRREDUCIBLE CASE

In this section, we consider the substochastic matrix @ from (1.1), and we present
results from Darroch and Seneta [6] for quasi-ergodic limits of the form (1.2) in the
special case when () is irreducible.

Recall that if the matrix @ is irreducible, then it is either eventually positive or
cyclic. It follows from the Perron—Frobenius theorem that @ has a simple eigenvalue
p € (0,1), called the Perron-Frobenius eigenvalue, such that the absolute values
of all other eigenvalues of @ are equal to or less than p. The left eigenvector to
this eigenvalue, u € R? with u'@Q = pu', has only positive entries and describes
a quasi-stationary measure when normalised via Zle u; = 1, which we assume
in the following. If @ is eventually positive, then the absolute values of all other
eigenvalues are smaller that p.

The following proposition is our starting point for deriving formulas for quasi-
ergodic limits. The proof is given in the Appendix. Denote

(2.1) mi(z) :=mD;(z) and Q;(z):=QD;(z) forall z€eR,

where D;(z) is the d x d diagonal matrix whose j-th diagonal element is z and all
other diagonal elements are equal to 1.

Proposition 2.1. Consider a substochastic matrix @ € R™9, and let (X;);en, be
the associated Markov chain starting in . Then the following statements hold.

(i) For all j € {1,...,d} and n € N, we have

%m(z)@?(z)ﬂ .
(n+ D7 1

(ii) Suppose that @Q is eventually positive. Then for j € {1,...,d}, we have

Eﬂ[n%_l#{m €{0,...,n}: X, :j}}T> n] =ujv; +O(L) asn— oo,

Er[ig#{m e {0,...,n}: Xpu = j}[T > n] =

where v is the positive right eigenvector of @) for the Perron—Frobenius
eigenvalue p normalised by v v = 1.

(iii) Suppose that @ is cyclic with period h € N\ {1}. Then Q" is eventually
positive, and for all j € {1,...,d}, we have for the left and right normalised
eigenvectors u' and v of Q" for the eigenvalue p” that

Er g #{m €{0,...,hn} : Xpy = j}|T > hn} = uju; + O(;%) asn — oco.

The following corollary uses the above result for the average evaluation of an
observable. The formula provided in (i) below will be the basis of our further
analysis of the reducible case. It shows that, in particular, the probability of the
average evaluation of an observable f is determined by the average number of
times that X; is in some state j. For the irreducible case, assertion (ii) below
concerns a formula for the quasi-ergodic limit involving the normalised right and
left eigenvectors for the Perron—Frobenius eigenvalue p of Q.
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Corollary 2.2. Consider a substochastic matriz Q € R4*?, and let (X;);en, be the
associated Markov chain starting in w. Then the following statements hold.

(i) For allm € N, we have

d
wlnHZf => fOE [ #{m e {0,....n}: Xy = j}|T > n]
Jj=1
d dzﬂ-J( )Qn ]l‘
=2 /0

(ii) If Q is irreducible, then the quasi-ergodic limit is given by

Zf | = zd:f(i)uivi,
i=1

where v and u' are the right and left eigenvectors for the eigenvalue p of
Q normalised as in Proposition 2.1 (ii).

lim E, {

n—oo

Proof. (i) Using Proposition 2.1 (i), one computes for fixed n € N

d dzTr]( )Qn 11‘
> FG) CESET

d
=Y F)Ex ;25 #{m € {0,...,n} : X = j}|T > n]

d
= ﬁZEﬂ[f(j)#{m €{0,...,n}: X, :j}|T > n]

(ii) Proposition 2.1 (ii) and (111) yield the assertion in the irreducible case (where
the matrix @ is either eventually positive or cyclic). ([l

Corollary 2.2 (ii) for irreducible @ and f(j) = j for j € {1,...,d} is classical and
has been proved in Darroch and Seneta [6, p. 95]. Here, the left eigenvector u' is
the unique quasi-stationary measure, see van Doorn and Pollett [15, Theorem 2.1].
Thus, the quasi-ergodic limit is absolutely continuous with respect to the quasi-
stationary measure.

3. QUASI—ERGODIC LIMITS IN THE REDUCIBLE CASE

While in the previous section, we obtained an quasi-ergodic limit formula for
irreducible matrices (), we concentrate now on the reducible case, and we suppose
without loss of generality that the matrices @ from (1.1) are given in Frobenius
normal form

Quu 0 0

Qa1 Q2 0
(31) o=

Qi1 Q2 | Qrk
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with matrices Q;; € R%*%  where dy,...,d; € N. We assume in addition that the
diagonal matrices Q);; are eventually positive. The results for the general case, where
the diagonal matrices are irreducible (hence maybe periodic), are easy consequences,
see Remark 3.21 below.

We note that Zle d; = d, and introduce index sets

L={1+Y1di,...., 30 d;} forall je{1,... .k},

corresponding to the diagonal blocks of the matrix Q.

3.1. Preparations and admissible paths. In this subsection, we reformulate
the quasi-ergodic problem using admissible paths of indices. We denote the ini-
tial distribution by © = (7y,...,m) with m; € R% and first obtain a version of
Proposition 2.1 for the above systems in Frobenius normal form.

Proposition 3.1. Consider a matrix @ of the form (3.1), and let (X;);en, be the
Markov chain associated to the substochastic matrix @ starting in w. Then the
following statements hold.

(i) For j € {1,...,d} and n € N, the probability of the average number of
times that X; is in some state j is
(i Qejej @)1
(n+ 1H)m@Q"1 '

Er [ #{me{0,...,n}: X, = j}|T >n] =

(ii) For ¢ € {1,...,k} and n € N, the probability of the average number of
times that X; is in some state in I, is

T (0 QY e 6] Q) 1

Er[#{m € {0,....n}: X € L}|T > n] =

(n+1)mQ"1
Proof. (i) Using (2.1), we compute
L@@ = L (D) @D ()" 1)

=meje] (QD;(2))" 1 +D;() (Z (QD;()) " Qeje] <QDj<z>>“> .

r=1

This implies that

d n . n i o
gﬂ'j(z)Qj (2)11’221 = wejejTQ 1+ (ZQ ejejT ) 1.
r=1

Now the assertion follows from Proposition 2.1 (i).
(ii) This follows from (i) and

Ew[ﬁ#{me {0,...,n}: X, 6]5}|T>n]

=Y Ex[Z#{me{0,....n}: X, = j}T >n],
Jj€l,

which finishes the proof of this proposition. O
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We now aim at understanding the terms in Proposition 3.1 better and first note
that for all n € Ny, we get

noo ’
n n 0
n 21 22
Q"= . :
n) n) (n)
o QL

where for n > 1

(3'2) QE;) = Z QS()Sl Qslsz e QS,Lflsn bl

S1,..0,8n—1=1,...,k
1=8502512822>2Sn—125n=]

and forn =0

o JId : i=j7,
@ '{0 1A,

This follows by induction, since for i > ¢, the entries QE?H) of Q" = Q"Q are
given by

o

(”Jrl Z Z Qisl QS182 t an,lej@

j=€ S1,...,8n—1=1,...,k
12812822 28n—-12]

Z Qisl Q5132 e an_lansn[ .

81,.,8n=1,....k
1281 2>89> 285,24

We first consider the numerator in the formula from Proposition 3.1 (ii), which can
be re-written as

ZQTZGJ ;—Qn 11

JEL,
Q" o 0 0 0
nl el Q) 0
7(2 . (n—r) (n—r) 1
om0 om Qe 0
Qur Qo Qi 0 0
0 0
WZ Qg Q(n r) QN (n—7r) 0 0 1
r=0 .

Q(”)Q(n 7") le ” 7’) 0
Q" Q™"

n
7'(5, Z 1

r=0 r
QI&Z)QM ) Q(T)Q(n )
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k

n 4 k¢ n

(33 =33 w2 Q=3 m Y Qe

r=0 i=( j=1 i=0 j=1 r=0

We now aim at re-writing this product of certain sub-matrices of the matrix @ in

a different way involving so-called admissible paths of indices.

Definition 3.2 (Admissible paths).

(i) An admissible path 0 of length k = k(0) is given by a finite and strictly
decreasing sequence 6 = (61,60,,...,0,) such that 6, € {1,...,k} and
Q0,0,., #0forallue {1,...,k—1}.

(ii) The set of admissible paths is denoted by P, and we denote the set of
admissible paths that go from i to j by

Pij = {(01792»'“;0&) €P:0;=1and b, :j}7
and define the set of admissible paths through ¢ € {1,...,k} as
PO = {(6),...,0,) € P: thereexists a u € {1,...,x} with 6, = l}.

We note that every finite sequence of natural numbers s; occurring in non-zero
n—r)
J

admissible path. More precisely, concentrating on QEZ), for some (sg,...,s,) such
that 0 # QspsyQsysy - @s,,_ys,, there exist a § = (i,60a,...,0,_1,¢) € P;y and

exponents 71, ..., 7, € No such that >©'_ n, =n+1—x and
(3'4) QS()S] Q3182 e an,lsn = Qg;el Q0102Qg§02Q9293 e Q9~—19~Qg:9,€ .

Every matrix which is subdiagonal in @) occurs at most once, and for this reason,
most entries in this large matrix product are diagonal blocks Qg,s, that are ordered
with respect to v and thus appear as powers of these matrices.

The number of elements in

products in sums of the form QEZ) and Q((g , as defined in (3.2), must follow an

Le(m)={(n,...,nx) EN§ i +---+n.=m} forallke{l,... k} andmeN
is given by
K+m—1
3.5 'y =
(35) #rm = (1)
(this is modelled by drawing x — 1 out of m + 1 balls from an urn with replacement
and without order). For 8 = (01,6s,...,60,) € P and m € N, let
(3.6) Q(0,m) = Z Q4lg, Q0,0,Q429, Q0,05 - Qo,_,0,. Q4"
nel,(m+1—k)

and
__J Id : 0€P;y, wherei=7j,
Q(8,0) ~_{ 0 : 6€P;y, wherei #j.

We use the following restrictions of # = (01, ...,60,) € P,
0" = (01,...,0,=10)€Py,, and 00 :=(0,=1,...,0,) € Pro,,

and we write x := £(0,¢) == u and & := ®(0,{) := k —u+ 1 for the length of 0° and
¢, respectively. Hence, k + % = x + 1.
We obtain the following corollary to Proposition 3.1.
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Corollary 3.3. Consider a matriz Q of the form (3.1), let (X;)ien, be the Markov
chain associated to the substochastic matriz Q starting in 7, and let £ € {1,... k}.
Then the following two statements hold.

(i) We have

Ex [shi#{m e {0,...,n}: Xon € L}|T > n]

_ Zee’})(f) e, Z:}:O Q(iea T)Q(ﬁa n— 7”)]1
(n+1)> pep m0,Q(0, 1)1 '

(ii) For s € I, we have with t(s) :== s — Zf;é di and ey € R%,

Ee[ti#t{m e 0,0 0} s X = s}[T > ]
= 2 0ep® To, PN Q(e", T)et(S)etT(S)Q(ﬁ’ n-nl
(n+1) 3 gep 70, Q(0, )1 |

Proof. (i) First consider the denominator in Proposition 3.1 (ii). With (3.2), we
get

(n+1)mQ"l=(n+1 ZWZZQ(MIL

TL—|—1 ZZWl Z Q181Q3132'“Q3n—1j]1

i=1j=1 1=80>812""">8p—1>8n=]

koo
= ZZ(’I’L—I— 1)m; Z Qf,n)1

i=1j=1 0eP;;

=(n+1)Y 7, Q0,n)1

oeP

Turning to the numerator we can write

(3.7) ZQ(” (n=r) — Z( > Q(Q,r))( > Q(é),nr)).
r=0

0EPi¢ 0€Py;

Every admissible path § € P N Pi; corresponds to two admissible paths 0t € Py
and 6¢ € Py;. Hence the numerator re-written in the form (3.3) is given by

éiﬂi< > Qer)< > Q(G,n—r))]l

i j=1 r=0 0P,y 0EPe;
n
o, Z Q0% n —r)1.
9eP® r—0

(ii) Using Proposition 3.1 (i) and an appropriate modification of formula (3.3), one
proves this analogously. [
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3.2. Formulas for quasi-ergodic limits. In this subsection, we determine for-
mulas for quasi-ergodic limits for matrices @ of the form (3.1).

Recall that we assume that the diagonal matrices @Q);; are eventually positive and
that the maximal eigenvalue of @Q;; (the Perron—Frobenius eigenvalue) is denoted
by p;. For 6 = (61,...,0,) € {1,...,k}", we define p(#) := max{pq,, ..., po. },

HY(0):={ue{l,....k} 1 ps, =p(#)} and
H=(0) :={ue{l,....5} : pg, <p(0)},

and we denote the number of elements in these sets by ht(0) := #H™(0) and
h=(0) := #H (). Note that h*(0) + h~(0) = k = k(). In addition, we define
Pmax = max{p1,...,px} and Al = max{hT(0): 0 € P and p(0) = pmax}-

Remark 3.4. In the terminology of Friedland and Schneider [8, p. 190], if p; = pmax,
then @;; determines a singular vertex of the graph associated with @, and the
singular distance from i to j is given by hf _— 1.

max

We aim at quasi-ergodic limits by taking the limit n — oo in Corollary 3.3.
In the following, we will derive a few results that help to ignore parts negligible
when taking this limit. For this purpose, we say that a real sequence (a,)nen is
asymptotically equivalent to another real sequence (by,)pen in the limit n — oo if
lim,, 00 Z—Z =1.

Proposition 3.5. Let 0 = (61,...,0,) € {1,...,k}"*. Consider the sequence
& = Z pgr---pg- forallmeN.
n€lx (ntr—1)
Then the sequence
nh+(9)—1

n+l—k 1
O e M

" ueH—(0) p(0)

is asymptotically equivalent to (&, )nen for n — co.

Proof. For {;m € N and (1,...,(; > 0, we introduce the auxiliary function
m m—mn m—n1—--—Ne—1
B¢, ..., C) = Z C{n...gezz Z Z .
ne€l,(m) n1=0 n2=0 n¢=0

and for (y # 1, we can write

m.om—mn m=n1——"Ne-2 1 mA1—m——1np_1

E?(Clw--y(@)zz Z Z 171;7f—11 Y/ 17<

n1=0 12=0 Ne—1=0 Vi

1 i G Co—1

3.8 = ——F" 1 (Clyeey Gomn) — 2L =" <7 > .

( ) 1— CZ 4 l( ’ ) 1— CZ —1 C[ ’ C@
We note that the function =" is symmetric in the sense that =} (¢1,...,{) =
EV (G, - >Cs(z)) for all permutations s of 1,...,¢. For this reason, the above

reformulation of =} into two terms of the form Z}” ; can be made as long as not
all ¢;, 1 € {1,...,¢}, are equal to 1.
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We assume without loss of generality that 8, = p(6). Then

En = Z Pg:ﬂg:

nel, (n+1—k)

n+l—kn+l—rk—m ntl—k—m1——Nx_2
= Z Z Z pgi . pg; ip(e)n+1fn77717...777ﬁ71
m=0 n2=0 Nk—1=0
n+l—rkn+l—rx—m n+l—k—m1——Nkx_2 p - o ——
S Lasat ) S S T ( 01) ( ) .
n1=0 12=0 Me—1=0 p(@) p(@)
Thus we have
-k — Po, PO,
p(0)&n = p(0)" > E0H] ”( ) for allm € N.
" "t \p(6) 7 p(6)

If H=(0) =0, then

D06 = p(B)FEREIHIR(L, L 1),
Otherwise, we may assume that pg._, < p(), and formula (3.8) yields

n+2—kK 1 =n+1— Po, PO
p(0)& = p(6)"*? ﬁizfz " ( R
1 Zes p(0) p(6)
_ nt2—k 1 =—n+l—k < P6, pan—2>
R N V.

Using the properties of the function Z}*, we can iteratively re-write p(6)&, into at
most 2%~ ! terms of the form

(3.9) p;;*f) CK()ERH T (L., 1), wheredi€ {1,...,2°71},

with v(2) € {1,...,k}, K(i) € R, and B(i) € {0,...,x—1}. In all variations of this
(non-unique) iterative procedure, one has a unique term of the form

(310) p(e)n+2_ﬁazjrr(1(;)il(la ey 1) H 17)0% )
u€H = (6) p(0)

and we show that this sequence is asymptotically equivalent to (p(6)&,),,cn-

Firstly, we note that m is asymptotically equivalent to = ( 1,...,1) form — co.
This follows from the fact that one can show that Z*(1,...,1) = #I',+1(m), and
we use (3.5).

In addition, on the way to get to terms of the form (3.9), the intermediate terms
are of the form

(3.11) p(,+2 FKERTIR <p95“’, o p(’“‘”) ,
po, po.,

where y € {1,...,k}, K €R, € {0,...,s—1}and s: {1,..., 8} = {1,..., ks =1}
is injective. This implies that if pg, ,; = p(f) in a final sequence (3.9), then, in the
formulation of (3.11), we have py;) = p() for all j € {1,...,8}. It can be seen
that in all such terms that do not coincide with (3.10), we have 8 < h™(0) — 1.
Hence, the term (3.10) yields an asymptotically equivalent sequence, which finishes
the proof. O
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In order to analyse both the denominator and numerator from Corollary 3.3, we
need the following notation and elementary statements for the diagonal blocks.

Lemma 3.6 (Notation and statements for the diagonal blocks of Q). For i €
{1,...,k}, the normed right eigenvector of the Perron—Frobenius eigenvalue p; of
Qi is denoted by v;. Since for any i € {1,...,k}, the matriz Q; is eventually
positive, the absolute value of all other eigenvalues is less than some constant p; €
(0, pi), and we denote by V,~ the sum of the corresponding generalised eigenspaces,
s0 that we have the decomposition R% = span(v;) @ V.=. In the trivial case d; =1,
we have v; =1 and V;” = {0}.

(i) We define

Ky :=max {1, max {[|Qy]| : i > j}}.
(ii) Choose v with

max{%:ie{l,...,k}}<’y<l.

Then there exists a constant Ko > 1 such that for every i € {1,...,k} and
x €V, we have
1Quall < Kaplyllall for all n € N.
(iii) There exists a constant K3 > 1 such that for alli € {1,...,k} and sequences
(Tp)nen in R with
Ty, = 2n + Wy With z, € span(v;) and w, € V;",
the following holds: if for some ¢ € (0,1) and K > 1, one has ||z, | < K¢"
for all n € N, then
llznl] < KK3(™ and |wy| < KKs3¢™ for alln € N.

(iv) Consider an admissible path @ € P. We define ap :== v, - - - v, , where the
real numbers ag, for all uw € {1,...,k} are defined by

1 = g, v, + we,
with wy,, € Vi, and inductively for u € {k =1,k —=2,...,1} by
Q6,6,.1v0,., = Qg, Vo, + Wa,
with wy, € V. If all submatrices Qg,0,,, are scalar, one has, writing
40,601 = Q0,6,.., that the constants ag, are given by ag, =1 and oy, =
90,0,., forue{n—1,k—2,...,1}.
(v) There exists a K4 > 1 such that for alli € {1,...,k}, we have
|QRIl < Kup}  for alln € N.

Proof. (i) and (iv) concern notation and do not need to be proved. For the proof
of (ii) note that for every matrix Q;;, Seneta [14, Theorem 1.2] implies that

%= plviu] +0 ((07)")

where u; is the positive left eigenvector of Q;; for p; with u/v; = 1. Then it
follows for x € V™ that v;u,) # = 0, since otherwise Q7.z would grow with p?. This
implies assertion (ii). Assertion (v) is clear, since the eigenspace to the maximal
real eigenvalue p; of @Q;; is one-dimensional (we assumed that the matrix @;; is
eventually positive). For assertion (iii), the observation below used for the spaces
X = span(v;) @V, yields a constant K| > 1 for every i € {1,...,k}, the maximum
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of which we denote by K3 > 1.

Observation. Consider in a finite-dimensional space X = Z & W a sequence x,, =
Zn + Wy With 2, € Z,w, € W, and ||z,| < K({™ for some ¢ € (0,1) and K > 1.
Then there exists a constant K’ > 1 such that ||z, | < K'K¢™ and ||w,| < K'K{"
for all n € N.

Proof of the observation. In fact, for a norm such that ||z||" = ||z + ||w]|" for
r € X with 2 € Z,w € W, one has ||z,]" < ||zull’ + |wal = lzal < K™,
analogously for w,. This result remains true for every norm ||-||, since all norms

on finite-dimensional spaces are equivalent. In fact, ¢~ [jz|" < ||z| < ¢|z|" for
some constant ¢ > 0, hence ||z,|| < c|lznll’ < cllan] < ¢ |lzn| < K'K(" with
K':=c2. O

In the following proposition, we aim at understanding the asymptotic growth of
sequences of the form 7y, Q(6,n)1 which occur in the denominator in Corollary 3.3.

Proposition 3.7. Consider a matrix @ of the form (3.1) and an admissible path
0 = (61,...,0,) € P and suppose that for all uw € {1,...,x} with pg, < p(#), the
diagonal term @y, is scalar.
(i) If mp,vp, # 0 and vy # 0, then the sequence mp, Q(#, n)1 is asymptotically

equivalent in the limit n — oo to

(3.12) T, Vo, (g Z o Poy s
nel,(n+1—k)
and hence, due to Proposition 3.5, also to the sequence
ht(0)—1 1
n+l—k n

(313) a977911}91p(0) (h+(0) _ 1)| H 1 — POy "

ueH—(0) p(0)
(i) If mp,vp, = 0 or ag = 0, then the exponential growth of 7y, Q(6,n)1 in the
limit n — 0o is equal to or less than p(g)"+1=rph" (©)=2,
Proof. Due to (3.6), we have
(3.14) m, QO )L =ms, > QP Qo0 Q0,Q0m0, - Qo0 Q0 1.
NET e (nt1—r)

Since we assume that for p; < p(6), the diagonal term Q);; is scalar, it follows that for
u € H™(0), the decomposition Qg,¢,.,ve,., = ®a,vs, + we, from Lemma 3.6 (iv)
is scalar, and hence using vy, = 1 and wg, = 0, it is of the form

(3'15) Qe’ue'u+l/l}9u+l = g, -
Consider the first iterative step from Lemma 3.6 (iv)
(3.16) 1 = ap, vy, +wy,

with wp, € Vi . Using that py, is an eigenvalue of @y, 0, with eigenvector v, , we
get

(3.17) o0, 1 =g, pgrve, +Q4g W,
In the next step, we decompose

(3.18) Qb,._,0,V0, = g, _ Vo, _, + Wy, _,
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with ap, , € R and wy, , €V, . Hence, Lemma 3.6 (ii) implies
(319) ||an 16— 1 Or—1 || < K pg::I’yn“_1||IU9N71H ’
and we decompose

(3.20) Qo,._10,Qp" g wo 5(% V9,1 +wém)

with B("” € R and w(n'i)l €V, .. Due to Lemma 3.6 (i),(ii), the left hand side of
(3.20) satisfies

Q0. 10, Q5, wo. || < K
This implies for the right hand side of (3.20) by Lemma 3.6 (iii) that

Kopyry™ |lwg, || -

(3.21) [ws™ || < Ky Ko ks pen™ |wo, |
and
(3.22) 185 | = (185" v, || < KiKaKsplyy™ |lwe, |-

Together this yields

Nk —1 Ne
gn—lenfl Qe"/—le"" Qemem ]l

(3.17) Nr—1 Nr Ne
= 6 10,1 Q0.10, (0,057 Vs, +Qfrg, wo,)

a9, Py Qyto,  Qo._0.v0, + Q5 1y Qo _,0,Q4 g, W,

0r—-10k—1
(3.18),(3.20) e
= a9, pp Qo Lo, (ao,_,vo,_, +wo,_,)
-1 (nn) (nn)
+Qa- 10, (50 _, twy

Nrk—1 Nrk—1
ap, 0,1 Pgr Qoo V0.1 + 0, P4 Qg Lo We,_,

Nk—1 77:1 Nk—1 (nm)
+Qo. 10, 1/89 V01 T Qp g, Wp,",

Mk—1 MNk—1
= ap.Qp. Py P Ve, T, 00 Qp g W,

MNre—1 MNk—1 (nw)
+ﬁ9m PO V1 + 010,190, _1"

The last three summands satisfy the estimates

.5 @520, wo | < o 1@,
(3.19) n
< Kalag,| o5 o5 1y lws, |
and
3.22)
1857 v, | < 1B e o, S B KKty e, |
and
B Lemma 3.6 (v) . 3
1@t sl < 1@ Ml S K |
(3.21)

< K\ Ko KsKapg pg =iy |lws, || -

If kK ¢ H' (), then by (3.15), it follows that wy, = 0, and hence, of the last three

summands above, only

"7~ 1
@0, p9 Or—10n—1 WOs—1
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can be different from 0. If K —1 & H*(6), then by (3.15), it follows that ws, , = 0,
and hence, this summand vanishes. Together with the estimates derived above, it
follows that each of the additional three summands vanishes, if both k,x — 1 &
H*(0), and the norm of each of the additional summands can be estimated by a
constant multiplied with

pZ:pZ::M’*’" if ke H (@) and k — 1 ¢ H(0),
[ if K ¢ H (@) and K — 1 € HT(0),
pg:pg’::i’y"” or pg:pg::’y”"'*l ifke H"(0) and k — 1 € HT(0).

After k decomposition steps, we arrive at the following result: any term in the sum
in (3.14) (i.e. for a fixed n € Tx(n + 1 — k)) is equal to the sum of

Nr 71 _ U 71
(3.23) To, QP * Py, Vo, = 9T,V Py * " Py,

and up to 2h"(6) _1 summands that contain in addition to the factor Py pgi some
factor 4" with u € H*(0), hence, yps, < p(). It follows from Proposition 3.5
that these additional terms have in the limit n — oo exponential growth equal to
or less than p(@)"“*“nww)’z. Hence for mg, aigvg, # 0, the sequences in (3.23)
and (3.14) are asymptotically equivalent, and assertion (i) holds. If mg, agvg, = 0
the terms in (3.23) vanish and the estimate for the exponential growth of the other
summands implies that (ii) holds. d

Remark 3.8. If for an admissible path @ € P, all submatrices Qg, ¢, , are scalar,
the assumption ap = ayg, - - - ag, 7# 0 in Proposition 3.7 holds. In the general case,
it is generically satisfied: for matrices @ of the form (3.1), recall that v; denotes the
Perron—Frobenius eigenvector of the diagonal block @;; for ¢ € {1,...,k}. Then
the set of matrices @ such that the decomposition 1 = ajvg + wg with o € R and
wy, € V), satisfies ay, # 0, is open and dense. Similarly, for all 4,5 € {1,...,k} with
i > j, the set of matrices such that the decomposition

QijUj = Q;jV; + Wy with a;; €R and wi; € V7,

satisfies a;; # 0, is open and dense. This implies (cf. Lemma 3.6 (iv)) that the set
of matrices ) such that for every admissible path 6 € P, all numbers g, , ..., as,
are nonzero, is open and dense.

The following two examples further illustrate the assumptions of Proposition 3.7.

Example 3.9. We demonstrate now that the assumption oy = a,, --- g, # 0 in
Proposition 3.7 (i) is not satisfied in general. Consider the matrix

@= (g; QZQ) ,  where Q11,Q21, Q22 € RX71

Suppose that Q17 and Q22 are eventually positive with Perron—Frobenius eigenval-
ues p; and po with normalised positive right eigenvectors v; and wve, respectively.
Furthermore, let V,- C R™ be the subspace spanned by the eigenvectors of Qa2
corresponding to the eigenvalues with smaller magnitude than ps, as defined in
Lemma 3.6. Suppose that Q23 is a matrix and Q21v1 € V5 . For 6 = (61,02) = (2,1)
and x = 2, one has vy, = vy and vy,_, = va. Then it follows that ay,_, = as =0,
since due to (3.18), we have

le’l)l =0- Vg + w2, with Wy € VQ_ .
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We now take a closer look at the assumption requiring certain diagonal terms to
be scalar.

Example 3.10. In Proposition 3.7, the assumption that the diagonal term Qg,0,
is scalar for all u € {1,...,x} with py, < p(6), is necessary and cannot be omitted
in general. Let d = 3 and consider a matrix of the form

_ (P 0
@= <Q21 sz) ’

where Q22 € R**? is eventually positive with the simple eigenvalues py > p; >
0 and p; > pa. Here p1 = p(#) and Q11 = (p1), and we assume that Q1 =
(g21,g31) " has positive entries, and hence, the path § = (01, 60) = (2,1) with x = 2
is admissible. Then H*(0) = {1}, H=(0) = {2} and

9,{:92:1 and 9n71:91:2~

The eigenvalue of Q11 is p1 = p(#) with normed eigenvector 1 € R. The decom-
position (3.16) reads as 1 = ag, vy, + we, in R with 6, = 0 = 1, and we get
ag, = a1 = p1, vy, = v1 = 1 and wy, = w1 = 0. The matrix Q22 has normalised
eigenvectors vy for py and v, for p,. Thus the subspace V,  is spanned by the
eigenvector v, , and hence, the decomposition (3.18) in R? has the form

Q11 = (321> = Uy + Wy = Ve + cv,  with cv; €V, for some ¢ € R.
31

We further assume that ws # 0, and hence ¢ # 0. The decomposition (3.20) is

trivial, since wg, = w; = 0, showing that BéZi)l =0 and wéZi)l = 0. Together, this

yields the formula

QFQ Q111 = prasplpgtvs + p1pT* QEbws = praspi® pgtvs + p1pPe (p3 )" vy .

Now we sum the right hand side over all n = (11,72) € NZ with 1 +m2 =n+1—k =
n — 1. This gives for the first summand of the right hand side

n—1

ST pO)asp™pl vr = p(B)az S p(0)" " pl

nelz(n—1) 1n1=0

1 =, \" 1- (ﬁy
= p(@)agp(e)" Z (/)(9)) Vg = Oé2p(9) 177@02 .
71=0 p(0)

Similarly, the second summand yields

S0y (55) " 5 = a0 S (p) vy = cp<9>"1_(”‘2”)v;.

nelfz(n—1) 7n1=0
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Thus, we get with m = mg, and (7,1, m2,2) = T2 = 7, that

(n+1)mp, QO )l = (n+1)(ma1,m2) > QBEE2QNL

n€ls(n—1)

oy N0 ().

N

= (n+1)(ma,1, m2,2)v20x2p

(e)nl - (pp(%))n '

+ (n + 1)(72,1, m2,2)v5 cp

r(6)
summand is asymptotically equivalent to (3.13), and the second summand is not
asymptotically equivalent to 0, so the assertion of Proposition 3.7 does not hold in
this case.

—_\n
Since ( Ps ) — 0 for n — oo, one concludes that for (731, m2,2)vy # 0, the first

Remark 3.11. Proposition 3.7 sharpens Theorem 9.4 in the survey Schneider [13]
which asserts that for any matrix of the form (3.1), the submatrix QE;) has expo-

nential growth rate s(i, j)"n%%7), where s(i, j) is the maximum of pj which lie on
an admissible path from 4 to j and d(i,j) + 1 is the number of k with pp = s(i, ).
In our terminology, d(i,5) +1 = h*(6), hence this theorem implies that the ex-

maxg ht(0)—1

ponential growth rate is given by pl . .n , where the maximum is taken

over all admissible paths 6 from ¢ to j.

Proposition 3.7 can be immediately applied to the summands in the denomina-
tors of Corollary 3.3. In the following, we show that also the asymptotic behaviour
of the terms in the numerator of Corollary 3.3 can be understood via Proposi-
tion 3.7, but for this purpose, we need to replace the matrix @ by the following
matrix. For £ € {1,...,k}, consider

Q11 0
O = Qn . Qu
' Idg, Qe
0 Qre .. Qrk

We note that any sub-matrix @;; with ¢ > ¢ and j < /¢ does not appear in
this matrix. The matrix QU is also of the form (3.1) with & + 1 blocks, one
more block than the matrix . Denote the elements of I'v11(n + 1 — k) by
A= (15 060y es1s - - -, ), and define for 6 = (61,...,0,) € P,

~ Z n -
QWOn) = D Q) Qoo Qo QU QLQuo,y - Qo _10,Q0rp. -
AET w1 (n+1—K)

We now aim at understanding the asymptotic growth of sequences of the form
79, QY (0, n)1 = 7y, S, Q8% m)Q(6Y, n — 1)1, which occur in the numerators in
Corollary 3.3. The main idea is to apply Proposition 3.7, where Q(8,n) is replaced

by Q) (60, n).
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Proposition 3.12. Consider a matrix @ of the form (3.1), a number ¢ € {1,... &k}
and an admissible path § = (0y,...,60,) € P¥). Furthermore, suppose that for all
u € {1,...,k} with py, < p(0), the diagonal term Qg o, is scalar. Then for every
0 € PY), we have

(3.24) QY (0,n) Z QO QO n—r),

and the following two statements hold.

(i) If cgmg,ve, # 0, then for the sequence s, Q) (A, n)1, an asymptotically
equivalent sequence in the limit n — oo is given by

ht(0) 1
ntl—r :
(3.25) agmo,vo,p(0)" o I e e =p(0)
(0) 1
weH—(6) p(6)
and
nh*(e)—l 1

(3.26)  agmp, v, p(B)"TEF

1
———  ifppe < p().
F(O)— 1)1 — L H _pe,  HPLSP
(H(0) = D' = 5 om0 L~ o)
(ii) If apm, vg, = 0, then the exponential growth of the sequence 7791@(5) (0,n)1
is for py = p(6) equal to or less thfun p(@)""’l_"“n’“ﬁ(‘9)_1 and for p; < p(0)
equal to or less than p(f)"+1—rph" (0)=2,

Proof. In a first step, we show that (3.24) holds for every # € P ie
> Qplo, Qoros - Qo1 QY QY Quosy - Qo6 Q.

AET w1 (n+1—K)

n
N =
:Z Z oo, Qui gé"'ngeﬁ

r=0 nely(r+1-k),

(eTmg(n—r+1—R)
We order the summands on the left hand side by putting together the summands
with equal sum of the first x exponents, say ¢ + --- + 1, = r + 1 — k for some
re{k—1,...,n+1—F&} where E = k + 1 — k. Hence, the sum of the last §
exponents equals n+1—k — (r+1—k) =n —r+ 1 —RK. Then the left hand side

equals
n+l—«k

Qn Me N1 . 5w
010, " oo Wi 0.0, -

r=£—1 nely(r+l-k),
¢elg(n—r+1—RK)

Since by definition ', (r+1— k) =0 forr+1—r<O0and I'g(n —r+1—-&) =0
for n —r+1— k <0, equality (3.24) follows.

We apply Proposition 3.7 to the matrix Q“) instead of the matrix ). For this
extended matrix, we consider the admissible path of length s + 1

(3.27) 00 = (0, 4+1,... 0414+ 1,0+1,0,0,41,...,6,),

where 6, = £. The matrix Q(e)(ﬁ,n) corresponds to the admissible sequence 6
for Q). more precisely, one sees that

(3.28) QU (0,n) = (Q)(0),n + 1),
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since I'yy1(n+1—k)=T,p1((n+1)+1— (k4 1)), where the right hand side of
(3.28) is defined as (3.6) with @ replaced by Q).
Proposition 3.7 yields the following two statements.
(i) If g, ve, # 0 and ay # 0, then the sequence 75, Q) (6, n)1 is asymptotically
equivalent in the limit n — oo to

Tove a0 Y, oy e gt
NElr 41 (n+1—k)
where ay is equal to the corresponding quantity for the matrices @) and
QW since for Q¥ the block in row ¢ 4+ 1 and column ¢ is the identity
matrix. If p, = p(0), then ht(®) = ht(#) + 1, and if p, < ¢(6), then
ht(0)) = b (). Hence, Proposition 3.7 shows that the sequence above is
asymptotically equivalent to

N
ni1—r (m+1)" ©)

a97791/U01p<9) h+(0)|

1 .
H T Pon if po = p(0)

weH—(6) 1 p(0)

and

1 .
1_ Pou if pe < p(0).
p(8)

S n+1 h+(0)71 1
agmg, ve, p(0)" ! (n+ 1 11
u€H—(0)

GOEDNEr™

This proves assertion (i), since (n + 1)h+(‘9) is asymptotically equivalent to
h+(9)
n .

(ii) If mp,v9, = 0 or ap = 0, then the exponential growth of the sequence
79,00 (6, n)1 is for py = p(6) equal to or less than p(6)"+1=Fnph" ©)=1 anqd
for pg < p(8) equal to or less than p(#)+1—rph’ (=2,

This finishes the proof of the proposition. U

So far, we have fixed a particular admissible path 8 € P, and in both Proposi-
tion 3.7 and Proposition 3.12, we made certain assumptions relating to this partic-
ular 0. In the following assumption for our main results, we consider all relevant
admissible paths. Recall that pmax = max{p1,...,pr} and hl,, := max{h* () :

6 € P and p(6) = pmax}, and define the set of maximal admissible paths Ppax by
Prnax := {0 € P : hT(0) = b, and p(8) = pmax}
and let ,PI(IQX = P(Z) N Pmax-

Assumption 3.13. Consider a matrix @ of the Frobenius normal form (3.1), and
let (X;)ien, be the Markov chain associated to the substochastic matrix ) starting
in m. We assume that

(i) for all i € {0,...,k} with p; < pmax, the diagonal term @;; is scalar, and

(ii) there exists a maximal admissible path 8 = (61,...,0,) € Pupax such that
the constant ap # 0 and the initial distribution 7 satisfies mg, vg, # O,
where oy and the Perron-Frobenius eigenvector vy, of Qg,9, are defined as
in Lemma 3.6.

By combining Proposition 3.7 and Proposition 3.12, we arrive at the following
formulas for the quasi-ergodic limits.
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Theorem 3.14 (Quasi-ergodic limits for finite absorbing Markov chains). Suppose
that Assumption 3.18 holds, and let £ € {1,...,k}. Then the following statements
hold:

() prf < Pmax OT Pmax = @, then
lim Er [y #{m € {0,...,n} : X € L}|T > n] = 0.

( ) If Pe¢ = Pmax and Pmax 7é @ then
hmE [ +1#{m€{0 n}: Xy € I} T > n]

1
ZGGPS&)X A9T6, V6, HUGH*(@ Proax—Poy

+ 1 :
hiax 2 gep,.. @070,V [Lucn- (o) p—r
Proof. We first assume py; = ppax and show that in this case, we have

Jim B[ {m €{0,...,n}: Xn € L }|T > n]

= lim Zeepu) 770162(@(9’”)]1
n—o0o Z@E’P(n —+ 1)7r91Q(0,n)]l
M 1Q( )(6,n)1
(3.29) _ i 2oepi, 0 @7 (0)
n=% Y gep, (n+1)me, Q(0,n)1

The first equality follows from Corollary 3.3 (i) and Proposition 3.12 applied to the
numerator in Corollary 3.3 (i).

For the second equality, we identify summands in both denominator and numer-
ator that dominate for n — oo. By Assumption 3.13 (ii) there exists a maximal
admissible path 6 € Ppax with agmg,vg, # 0, hence Proposition 3.7 shows that
for the sequence my, Q(0,n)1 an asymptotically equivalent sequence for n — oo
is given by (3.13). Thus (n + 1)m, Q(A,n) has exponential growth rate equal
to p()"nh" ) = pn_ phua. For any 6 € P\ Pmax, one has ht(6) < hi,.,
and the summand (n + 1)mg, Q(A,n)1 grows at most with the smaller exponential
nnh+(9)

growth rate p(6) , again by Proposition 3.7. This justifies replacing P by
Pmax in the denominator. For any 6 € PO in the numerator, Proposition 3.12
shows that the summand 7791@(@)(9,71)]1 grows at most with exponential growth
rate p(0)"n (@) = pn. phT(0) see (3.25) (the exponential growth can be smaller
than that by Proposition 3.12 (ii), when agmg,vg, = 0). This justifies replacing
PO by P, in the numerator using again h*(0) < i, for € PO \ Py (note
that for PI(TQLX = @ the limits for n — co equal 0).

Now for the denominator in (3.29), Proposition 3.7 (i) yields the following: Let
0 € Pmax with apmg,vg, # 0 (recall that the existence is clear due to Assump-
tion 3.13 (ii)). Then for the corresponding summand, given by (n+ 1)ms, Q(0,n)1,
an asymptotically equivalent sequence is

ht

o ntmax 1
U,(0) = agmo, vo, prsis (hEm = 1) H T e, -
max ‘uweH— (9) Pmax

Note that for § € Ppax with agmg, vg, = 0, the corresponding summand given by

(n + 1)mp, Q(6,n)1 has weaker exponential growth for n — oo, equal to or less

than p?naxnhiwx*l. Since ¥, (#) = 0 for those ¢, this implies that an asymptotically
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equivalent term for the denominator is given by » . W, (0) with exponential

h

max

+
max

growth pp . .n
For the numerator, suppose first that there exists 6 € PI(TQLX with apmg,ve, #
0. Then by Proposition 3.12, for the corresponding summand ﬂng(Z)(O,n)]l, an

asymptotically equivalent sequence is
+

- n+1—r(0) nfimax 1
E,(0) == apme, vo, Pt — H .
hax! - }

u€EH~(0) Pmax

By Proposition 3.12 (ii), for 6 € PI(TQLX with aymg, v, = 0 the corresponding sum-
mand given by 7791@(5)(9, n)1 has weaker exponential growth for n — oo, equal to
or less than pﬁlaxnhrtaxfl. Since E,,(0) = 0 for those 6, this implies that an asymp-
totically equivalent term for the numerator is given by > 9ePth). =.(0). Hence, the

formula given in (ii) holds in this case. Otherwise, PI(TQLX =0Qorforalldc PI(IQX we
have g, vg, = 0. Then the limits for n — oo are equal to 0, hence assertion (ii)
and also the second statement in (i) follow.

It remains to show (i) under the assumption py < pmax. In this case, exactly
like above, an asymptotically equivalent term for the denominator is given by
> 0ep,... Yn(#). Consider a summand in the numerator, so let 0 € PO, Then
Proposition 3.12 shows that the exponential growth for n — oo of the numera-
tor is bounded above by either p(8)"n"" @ if p(0) < pmax, or by ph, nlmex—L if
p(0) = pmax. In both cases, the exponential growth is weaker than for the denom-
inator, determined by >, p W, (f) with exponential growth Pl nlmax. This
finishes the proof of the theorem. O

Remark 3.15. We note that due to Remark 3.8, the condition ay # 0 in Assump-
tion 3.13 (ii) is generically satisfied, and the condition g, vg, # 0 in this assumption

is not restrictive. In fact, suppose that for a given initial distribution 7, there is no
0 € Pmax With mg,vg, # 0. Then define

hir :=max {h*(0) : 6 € P and p(0) = pmax, 79,09, # 0},

max

Prax = {0 € P : p(0) = pmax and h*(0) = hiT

Then Theorem 3.14 remains valid with Ppa, and P® replaced by PZT.. and
Pt = PO NPE

T axs Tespectively.

The formula for the quasi-ergodic limit in the above theorem can be simplified
in certain special cases.

Corollary 3.16. Assume that in the setting of Theorem 3.14, there is only one
mazimal path, i.e. Pypax = {0 = (01,...,04)}. If £ = 0, with py = pmax for some
ue€{l,...,k}, then

1
3 1 . —
lim e [t {m € {0, 0} s Xy € LYT > n] = ——,

max

and this limit vanishes whenever py < pmax-
Proof. The assertion is an immediate consequence of Theorem 3.14. O

In the scalar case, one obtains the following formulas which are directly given in
terms of the matrix Q.
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Corollary 3.17. Consider a matriz Q of the Frobenius normal form (3.1), and let
(Xi)ien, be the Markov chain associated to the substochastic matriz Q starting in
m. We assume that all submatrices q;; := Qy; are scalar and the initial distribution
7 satisfies mp, # 0 for some mazimal admissible path 8 = (01,...,0,) € Pmax-
Then for all ¢ € {1,...,k}, the following holds.

(1) If Pt < Pmax OT Pr(rfe)lx = @, then
Jim E, [,%H#{me {0,...,n}: X,, € Ie}]T>n] =0.

(11) If Pt = Pmax and Pl(fg.x # @, then
lim E, [%ﬂ#{me (0,...,n}: X € Ie}yT>n}

n—oo
1
1 ZGEP[(]'IZ;X 7T91 q0192 T q0n719~ HUEH_(G) Pmax PO,

+ 1 .
himasx ZGGPmax 76190102 * " " 405 —10x HuGH*((’) Prmax— Py

Proof. In the scalar case considered here, one finds, for an admissible path 8 =
(01,...,0,), that the constants ay, defined in Lemma 3.6 (iv) are given by oy, =1
and ag, = qo,0,., for ue {k — 1,k —2,...,1}. Hence, we get

Q9To, V0, = 70196102 "~ 46,10, 7é 0,

and thus, the assertion follows from Theorem 3.14. ]

Remark 3.18. In the scalar case, suppose that all maximal admissible paths begin
in the same element, i.e. §; = ] for all 6,6’ € Pyax. Then the quasi-ergodic limits
are independent of the initial distribution 7. In fact, here all scalars g, and g,

coincide and Corollary 3.17 yields for py = pmax and Pr(fix #0
nILrI;OEW[%H#{m €{0,...,n}: X, € Ig}|T > n]

1
1 defp“) 46,105 """ 46,10, HueH*(O) Prmax—Poy

max
1

T .
hmax depmax 46105 " 40,,_10, HuEH*(@) Prmax—Poy,

Next we discuss the behaviour within the blocks. In order to deal with the

numerator in Corollary 3.3 (ii), we consider for ¢ € {1,...,k} instead of the matrix
QW the following matrix for any t € {1,...,d¢} and e; € R,
Q11 0
At | Qe o Que
A eref  Qu
0 Qre - Qi

This matrix is also of the form (3.1) with one more block, i.e. k+ 1 blocks. Denote
the elements of I'x11(n+ 1 — k) by 7= (m1,...,7¢,7¢, ..., M) and define,

(Lt T A0
QUIMB.n) = > QP Qe Qo Qliere] QU Quo,., - Qo._10,Q0. -
HEL wy1(n+1—k)

The following proposition applies to the terms in the numerator of Corollary 3.3 (ii).
It is convenient to change the notation slightly by writing u(* and v instead of
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u; and v; for the left and right eigenvectors, respectively, of the Perron—Frobenius
eigenvalue of Q);;.

Proposition 3.19. Consider a matrix @ of the form (3.1), numbers ¢ € {1,...,k}
and t € {1,...,d,}, and an admissible path 6§ = (01, ...,60,) € PY). Furthermore,
suppose that p; = p(#) and that for all uw € {1,..., s} with pg, < p(6), the diagonal
term g, 0, is scalar. Then

(3.30) QY (0,n) ZQ (0%, r)ere[ Q0% n — 1),

and the following two statements hold:

(i) If cgmg, v'®) #£ 0, then for the sequence 7'('91@([”")(9, n)1, an asymptotically
equivalent sequence in the limit n — oo is given by

ht(0) 1
0. (¢t D yn—r T
UE )’Ui )04971'011}(9 )p(e) h+(9)' 1_7'09“,
ueH—(0) p(0)
where u(O0T = (uge), e ,u&i)) and v = (vy) ”[(1/)) are the positive

left and right eigenvector of Qg for py, 1"espectively7 normalised in the sense
of Ez 1 Z =1and u®Ty® =1,

(ii) If agmg, v®) = 0, then the exponential growth of the sequence 7y, Q1) (6, n)1
is equal to or less than p(f)"H1—rph™(@O)-1,

Proof. We proceed as in Proposition 3.12, where we have used Proposition 3.7 with
the matrix Q(Z) instead of the matrix ). Here we can argue analogously using the
matrix Q) instead of Q.

In a first step we verify equality (3.30), i.e

Z Q4. Qor0, - Qo 1Q ere] L QEQuo, .. - Qo _s0. Qlr,.

AHEL k41 (n+1—k)

n
_ C1 . =
= E : E , Q9191 M etet w Yoo,

r=0 nely(r+l1-x),
CeTm(n—r+1—F)
This follows as in the proof of equality (3.24) in Proposition 3.12.

Now, we will apply Proposition 3.7 to the matrix Q(e’t) (0, n) using the admissible
sequence 8 defined in (3.27). The only difference to the proof of Proposition 3.12
occurs when we determine the factor ay from Proposition 3.7. In the earlier proof,
the block in row £+ 1 and column ¢ of the matrix Q) is the identity matrix, hence
this did not lead to a change in this factor in Proposition 3.12. Here, however, the
identity matrix is replaced by ese/ , and we will show that we get the additional
factor & = u(e) (e).

To determine this additional factor &, we have to uniquely decompose

eteTv(e) av'® + w,
where @ € R and @w € V, as in Lemma 3.6 (iv). We show now that with & =

uy) vy) , we have

W = ee] v — ug‘%t(“v“) eV, .
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To see this, we determine the exponential growth of Q7,% in the limit n — oo.
Using that ese v® = (0,...,0, v,ge), 0,...,0)T, we have

Quyio = Q1 (0,...,0,02,0,...,0)T — u{P0{ Qpo® .
——

=ppo®
We multiply with the left eigenvector v(9T and get

u(z)TQ?ﬂD = u(é)TQ?Z(O, ...,0, vy), 0,..., 0)T — uy)v,gé)p?u(eﬁv(e)

= p?u(Z)T(O, ...,0, vy), 0,..., O)T - uy)vt(e)p? =0.

This shows that @}, is in the orthogonal complement of the one-dimensional
space span(u'?)). Since span(v(¥)) is not orthogonal to span(u(?)), it follows that
w € V, , because otherwise, the component relating to span(v“)) would become
dominant. (]

This observation can be used to determine the quasi-ergodic behaviour within
the blocks.

Theorem 3.20. Assume the setting of Theorem 3.14, and let ¢ € {1,...,k} such
that py = pmax and Pr(fgx # (. Then for all s € Iy, we have

nan;oEﬂ [ﬁ#{m e{0,...,n}: X, = s}|T > n}
1
0o 1 2eep, 00V uen-0) pum ey

= v
t(s) "t(s + 1 ?
()7 )hmax Zeepmax Qoo Vo, HuGH*(Q) Pmax — PO

where t(s) := s — Zf;ll d;. Here u®T = (ugé), e ,u;i)) and v©) = (ui“, e ,v((f;))T
are the positive left and right eigenvector of Qg for pg, respectively, normalised in
the sense of Z?ﬁ_‘l vl@ =1 and u®DTv® =1,

Proof. The proof is the same as the proof of Theorem 3.14, with the difference that
instead of Proposition 3.12, we need to use Proposition 3.19 here. (I

Finally, we consider the case that some of the blocks @Q;; are not eventually
positive.

Remark 3.21 (The irreducible case). Consider a matrix @ in Frobenius normal form
(3.1) with diagonal matrices @;; which are irreducible and possibly periodic. Then
there exists an N € N such that the diagonal blocks of @V are eventually positive.
Denote by X the Markov chain induced by QV and the corresponding stopping
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time by T'. We get for any j € {1,...,k},

Tim B [ by #{m € {0, n} 1 Xon = j}|T = n}]
N-1

:nILH;o ZEﬁ {ﬁ#{m € NZ+1i:m<nandX,, :j}|TZn}}
i=0

N—1

:nli—>Holo ZEin [%ﬂ#{mENZ—i—i:mgnand X'mT_ :j}’TZn}}
i=0
N—1

= lim. ZO Erg: [waza#{m € {0,....n} : X = j}|T = Nn}|

1 N—-1 ) i
= > Jim B [ #{me {0, 0} X = 7HT 2 n}]
=0

Hence corresponding formulas for the case of not eventually positive matrices follow
from the formulas for the eventually positive case.

4. EXAMPLES

We present a number of examples illustrating the previous results and we start
with the following simple example from Benaim, Cloez, Panloup [1, Example 3.5],
slightly modified in order to get a lower diagonal matrix Q.

Example 4.1. Consider the transition matrix given by

p1 0
= , here 0 < p1 < pa < 1.
Q (1 = p2> w p1 < p2

This example is reducible with scalar blocks and & = 2. The maximal admissible
paths are 0 = (2) with x(0) = 1 and ¢ = (2,1) with x(6") = 2, hence Ppax =
{(2),(2,1)} = Py and Py = (2,1). Furthermore, H*(0) = {2} = H+(#') and
H~(¢") = {1} and hence hj,, = 1. Applying Corollary 3.17 to this example, one

finds that for mo > 0, the quasi-ergodic limit for ¢ =1 is given by
Tim E, [%H#{m €{0,...,n}: X, = 1}|T > n} —0,
since p1 < Pmax, and for £ = 2, we have
Tim B [ch#{m € {0,...,n} : Xon = 2}[T > 0] =1,

since these two probabilities sum up to 1. The classification of the quasi-stationary
distributions in van Doorn and Pollett [15], in particular [15, Theorem 4.3], shows
that for this example there is a unique quasi-stationary distribution given by the

normalised left eigenvector u' = (1:5 2, pf_;ppll) to the eigenvalue ps of the matrix Q.

Next we consider a class of three-dimensional matrices.
Example 4.2. Let p € (0,1), and consider

p 0 O
Q=1¢1 p O
431 432 p
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In this scalar case, one finds that under the condition ¢21, 32 # 0, one has

Pumax = {0 =(3,2,1)} with Al =h"(0)=3.
Corollary 3.16 yields that for £ € {1,2,3}, the quasi-ergodic limits are independent
of the initial distribution 7, and we have

. 1 1 1
nli)IroloEW m#{me{O,,n}XmZEHTZn} :@:g
The situation is different if instead we assume that ¢o1, ¢31 7# 0 and g3z = 0. Then

Puax = {0 = (3,1),0' = (2,1)} = P

mnax ?

ht..=ht(0)=h"(0)=2and k() = k(') =2.
Here ’PI(nQa)x = {6’} and Pr(rf’gx = {6}. Corollary 3.17 yields that for m; < 1,

lim E, {ﬁ_l#{me{O,...,n}:Xm:1}|T>n} _ !

)

2
. 1 2421
hmEﬂ[L me{0,...,n}: X, =2 T>n}2777
n—00 ”H#{ { } }| 2 maga1 + m3q31
. 1 T3¢31
hmEﬂ[L me{0,...,n}: X, =3 T>n}277.
n—00 n+1#{ { } }| 271'2(]21 +7T3Q31

Thus, the quasi-ergodic measure is

(1 1 T2q21 1 3931 >
27 2 maqa1 4 m3q31’ 2 Maqo1 + T3q31
This case illustrates in particular that the lower diagonal entries Q;; for ¢ > j

are relevant for the quasi-ergodic limits, which also may depend on the initial
distribution 7.

In the next example, a Perron—Frobenius eigenvalue p; < pmax is present, and
the two maximal admissible paths start in the same element and have different
lengths.

Example 4.3. Consider

) 0 0 0
(o » 0 0
@= 0 g2 p3 O
g1 0 q3 p

with 0 < p3 < p <1 and g32, q41,q43 # 0. We have
7Dmax = {0 = (47 3a 2)3 9 = (4a 1)} = 7)(4)

max?
hi..=hT(0)=hT(0) =2 and k(0) = 3,k(¢') = 2,
and
Phix =10 = (4D} PR =Pl = {0 = (4,3,2)}.
Since both maximal paths start in the same element, Remark 3.18 yields that the
quasi-ergodic limits do not depend on 7 provided 74 # 0. Corollary 3.17 yields that
in this case, the quasi-ergodic measure is given by

1 q41 1 q43932 p,lp3 0 1
2 qa1 + qa3q32 p_1p3 "2 qa + 13932 p_1p3 T2
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In the next example, three maximal paths are present, they have different
lengths, and start in different elements.

Example 4.4. Consider

;m 0 0 00
0O p 0 00
Q=1g1 0 p 00
0 0 q3 p O
0 g2 0 0 p

with 0 < p; < p <1 and ¢31, q43, g52 # 0. We have
Prax = {(5,2), (4,3), (4,3, )}, hif o = 2,5(5,2) = K(4,3) = 2,k(4,3,1) = 3,
and
Pl = {(4,3, 1)}, PRl = Pk = {(5,2)}, Pl = Pliax = {(4,3), (4,3, 1)}
Suppose that m4 # 0 or 75 # 0. Corollary 3.17 yields that
lim E, {%ﬂ#{m €{0,....n}: X, = 1}|T > n}] —0,
and for ¢ = 2,5, we get
lim B [ #{m € {0,...,n} : Xpn = ¢}|T 2 n}]
1 T5(52
 2myqas + 7746143%1,),71;)1 + T5q52

and for ¢ = 3,4, we get
lim B |4 {m € {0,...,n}: X, = 3}|T > n}]

n—oo
1 T4q43 + T4qa3q31,—
2 Maquy + T4qa3q31 5= + M55z

Suppose, for instance, that the diagonal terms are given by p; = 0.5, p = 0.75 and
q31 = qu3 = ¢52 = 0.1, and the initial distribution is of the form 7 = (%, *,*,0.5,0.3).
Then an evaluation of the formulas above yields the quasi-ergodic measure

(0,0.15,0.35,0.35,0.15) .

Finally, we present an example with a non-scalar diagonal matrix Qg € R%*d,
where dy > 1.

Example 4.5. Consider the matrix
Qu 0 3x3
= € R*%
@ (Q21 P2

with an eventually positive matrix Q1; € R?*2,0 # Qo1 € R'¥2, and py > 0. Let
the eigenvalues pi, p; of Q11 satisfy p := p1 > |p1_| and p; > p2. Here the index
sets are I} = {1,2} and Iy = {3}, and we have

Pmax = ,Pr(nlzzx = (1)7 (2’ 1)}7731(112@3)( = {(2? 1)} and h$ax = 1

Suppose that ap # 0 for § = (1) or (2,1) and the initial distribution 7 = (7(}), 7(2))
satisfies 7(?) # 0. Then Theorem 3.20 yields

Tim By |k #{m € {0, n} : X = 3}[T > n| = 0.
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Furthermore, let u(® and v be the left and right eigenvectors, respectively, for
the eigenvalue p of ()11, normalised by vgl) + vél) =1 and «MToM = 1. Using
Prnax = Pliax one obtains for s € {1,2} (with t(s) = s) that

(4.1) lim E, [ﬁ#{m €{0,...,n}: Xp = s}T > n} NG
As a specific example, consider the eventually positive matrix
(02 01 . > (0.05 0.02
@n = <0.1 0) with (Qu)” = (0.02 0.01)
and eigenvalues p = p; = 0.1(1 +v/2) and p; = 0.1(1 — +/2). The left and right
normalised eigenvectors of p are

1 1
uWT = -(1+ V2, 1) and oM =
2 2+

.
ﬁ(1+\f2,1) :

For 6§ = (1), one finds that the constant ag = a1y # 0, it is determined by the
decomposition

1 1 1++2
1= = apvV + wy = « ( )—l—w,

with wy in the eigenspace for the eigenvalue p~ of Q11. Thus, for an initial distri-
bution with 7(2) # 0, one obtains from (4.1) that

. 3+2v2
nl;rréoEﬂ [%ﬂ#{me {0,...,n}: X = 1}|T>n} =

4422
1
lim Eﬂ{# me{0,...,n}: X,, =2 T>n]:7.

APPENDIX A. PROOF OF PROPOSITION 2.1

The proof of Proposition 2.1 provided in this appendix is based on methods from
Darroch and Seneta [6].
The following preparations are necessary.

Lemma A.l. For any j € {1,...,d} and n € Ny, we have

n

ZEPW[#{m €{0,....n}: X;y=j}=Land T=n+1] = i71']4(2')6;)?(2)R

dz =1
£=0 z

Proof. For a given finite sequence (zg,z1,...,7,) € {1,...,d}"*!, the probability
Pr[X; =; for all i € {0,...,n} and T = n] is given by
Taodzo,x19e1,@2 + +  Dop 1,20 T2n »

where ¢;; denote the entries of the matrix (), and

d d d
n
TQ"R = E E T E TxoQwo,a19er,@2 - - Qen_1,20Tan -

zo=1z1=1 Tp=1
Define for j € {0,...,d}

o me{0,...,nt:xm=7
o (2) = ZA#mEL0onfim J}Wzoqro,rl%l,zz sl @ T,
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Then it follows that

d d d
T (2)Q} (2)R = Z Z Z Vao,z1,erestn (2)
zo=1xz1=1

Tp=1

Hence, z — 7;(2)Q7 ()R is the probability generating function for £ € {0,1,...,n}
having the probability P [#{m € {0,...,n} : X,, = j} ={land T = n + 1}.
This means that its expectation is given by (f—zﬂ'j(z)TQ?(z)RL:l, which finishes
the proof of this lemma. O

We actually do not need this lemma, but the following lemma, which can be
proved analogously.

Lemma A.2. For any j € {1,...,d} and n € Ny, we have

ZEIP’W[#{m €{0,...,n}: X, :j} =/{and T > n] = %ﬂ'j(z) "(2)1

z=1
We now start the proof of Proposition 2.1.

Proof of Proposition 2.1. (i) Note first that P, (T > n) = 7Q"1. We get

E. [n%_l#{me{() con} i Xy =jHT >n]

<[#{me{0,...,n}: X;=j} =CLand T > n]
= Zé P, (T > n)

Lemma A2 dz

iz Q7 (= ]l’
(n+ 1)7m@"1
(i) The product rule implies

Lo ZQ’” (fow) e e,

and hence
L) Z Qe QI
where g; is the jth column of @, and e; is the jth unit vector. If @ is eventually
positive, Seneta [14, Theorem 1.2] implies that
(A1) Q™ = pmouT + O(m ||
This yields

n—1

d - m n—1l—m —
LU =2 (o g vl + 00" 0= = m)

- m=0
(4.2) +O(p" o[ 4+ O ™) O((n = 1 = m)?| /|1

= np"ujvjou’ +O0(n?p"),
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i Tag, = ) To=uv.
since u ' ¢; = pu; and e; v = v;. Thus,

d n
= (2)QF (2)1 =1 (A1),A2) (0,...,7,...,0)Q" T + m(np"ujvjou’ + O(p™))1

RSz I (n+ D(prouT + O(nt—pr 7)1
B w(p"ujvjvuT)]l iy 1
- W(anUT)]l +O(n) _u]vﬂ +O(n)

(iii) If @ is cyclic with period h, then by Seneta [14, Theorem 1.4] the matrix Q"
is eventually positive. Hence by assertion (ii)

Ex [n%_l#{m €{0,1,...,n}: Xpup = j }HT > nh} = u;v; + O(3)

for the right and left normalised eigenvectors v and u' of @ for the eigenvalue p,

which are also eigenvectors for Q" for the eigenvalue p". Naturally, O(#) =0(3)

for n — oo. !
One also finds for every ¢ € {1,...,h — 1}

By [d#{m € (0,1, on =1} Xpgr = JHT > nh 4] = ujo; + O(2)

Summing for £ =0,...,h — 1 one finds

E, L}h#{{me {0,...,nh}:Xm:j}|T>nh}}
h—1
=E, nlh; [#{m e {0,1,...,(n = 1)} : Xpppye = j}|T > nh]

E. E [#{me{0,1,....(n = 1)} : Xpppye =j}|T > nhﬂ

This concludes the proof of Proposition 2.1. (]
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