
P

RO BU STN ESS OF TIM E-VARYING SYSTEM S

FRITZ C OLONIUS 
Institut für Mathematik 

Universität Augsburg 
Augsburg, Germany

WOLFGANG KLIEMANN 
Department of Mathematics 

Iowa State University 
Ames, IA 500011

DDEETTCC9977--44002255DETC97-4025
Abstract.
The dynamics of many mechanical systems can be 

described, or approximated by smooth vector fields in 
d-dimensional space External and internal excita
tions as well as modeling uncertainties are incorporated 
in the vector fields as families of (time-varying) func
tions, possibly with their own dynamics. The problem 
then is to study the response behavior of the system 
under the given uncertainty structure. In this paper 
we analyze the stability of uncertain systems at an 
equilibrium point, using the concept of stability radii. 
Roughly, a stability radius is the smallest excitation 
range such that a (time-varying) perturbation within 
this range can render the system unstable. Since we 
consider time-varying perturbations, the precise stabil
ity radius of the system is determined by the maximal 
Lyapunov exponent of the linearization at the equilib
rium point. Several examples illustrate the theory and 
compare the precise stability radius to the one obtained 
via Lyapunov function techniques.

1. Introduction.
Robust stability describes the stability behavior of 

systems under (time varying or constant) perturba
tions -  this concept is also known in the literature as 
absolute stability. For a given system with given per
turbation structure the problem is to find the maximal 
uncertainty range such that any perturbation with a 
smaller range will yield a stable system. This maximal 
range is often called the stability radius of the system. 
For time invariant linear systems with time invariant 
uncertainties the problem basically boils down to the 
artially supported by DFG grant no. Co 124/12-1 and by ON
computation of the maximal real parts of the eigen
values for the perturbed system matrices. The precise 
characterization of the stability radius for time varying 
uncertainties requires the knowledge of the maximal 
Lyapunov exponent of the system. Therefore the the
ory developed in Colonius and Kliemann (1993) leads 
to results on stability radii for systems with parametric 
time varying uncertainties.

Section 2 presents basic facts about stability radii 
of linear systems. Results on the radius based on the 
maximal Lyapunov exponent are mostly consequences 
of the theory presented in Colonius and Kliemann (1993) 
For comparison purposes we also discuss a Lyapunov 
function approach to robust stability of systems with 
time varying uncertainties, and the eigenvalue based 
approach for time invariant perturbations. Several ex
amples illustrate the differences between these stability 
radii.

A stable manifold theorem from Colonius and Klie
mann (1997) allows us to generalize the concept of the 
Lyapunov exponent based stability radius to nonlinear 
systems. At a singular point the nonlinear stability 
radius can be expressed in terms of the radius of the 
linearized system, and equality of the two radii holds 
if the maximal Lyapunov exponent is a strictly mono
tone function of the uncertainty range, see Section 3 
for these results.
R grant no. N000 14-96-1- 0279
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The analysis of uncertain systems has been one of 
the focal points in systems theory for the last decade. 
Of main interest in this area are stability properties 
and performance design. Several approaches have been 
developed for the study of these problems, most no
tably H°° theory (see e.g. Francis (1990)) for op
erator theoretic formulations, concepts based on the 
gap metric (see e.g. Zames and El-Sakkray (1980) 
or Georgiou and Smith (1990)), Kharitonov type re
sults on the stability of sets of polynomials (see e.g. 
Kharitonov (1979)) as a transfer function approach, 
quadratic Lyapunov function criteria (see e.g. Rotea 
and Khargonekar (1989)), and the stability radius con
cept (see e.g. Hinrichsen and Pritchard (1990)) as state 
space approaches. Various connections between these 
approaches are discussed, e.g. in Doyle et al. (1989), 
Rotea and Khargonekar (1989) or Townley and Ryan 
(1991). We refer the reader to the proceedings volume 
Hinrichsen and Martensson (1990) for a discussion of 
various topics related to uncertain systems.

It is well-known that exponential stability of the 
linear, time invariant differential equation i  =  Ax is 
equivalent, on the one hand, to the negativity of the 
real parts of the eigenvalues of A  and, on the other 
hand, to the existence of a quadratic (time invariant) 
Lyapunov function. For the stability of time vary
ing equations x = A (t)x , as they arise for uncertain 
systems with time varying uncertainty, it is not suf
ficient that for each A (t) ,t  > 0 there exists a (qua
dratic, time invariant) Lyapunov function, compare in 
the context of robust stability e.g. Hinrichsen and 
Pritchard (1991). Therefore the Lyapunov function 
approach to stability of uncertain systems is based on 
the existence of a common quadratic Lyapunov func
tion for all uncertainties.

Similarly, if for all t > 0 the eigenvalues of A(t) 
are in the left half plane, then x = A (t)x  need not be 
(exponentially) stable, compare the example in Hahn 
(1967). It is then natural to use Lyapunov exponents 
to define stability radii for systems with time varying 
uncertainties. A priori, it is not clear what the relation 
between these two approaches is.

The response of a dynamical system to time vary
ing perturbations shows a different structure, depend
ing on the way in which the perturbation affects the 
system dynamics. If a limit set of the nominal (unper
turbed) system changes under the excitation, then we 
talk about a regular system, and its robustness behav
ior can be described in terms of the control sets of an 
associated control system, see Colonius and Kliemann 
(1997). If, however, the limit set is common to all ex
citations, then we talk about a singular system (at this 
set), and its robustness behavior is studied via stabil
ity radii as described above. In Section 2 we present 
our results on linear systems with time varying exci
tations. Section 3 extends these results with the help 
of linearization techniques to nonlinear systems with 
singular equilibrium point.

2. R ob u stness o f  L inear T im e-V arying System s.

The models of uncertain systems used in this section 
are of the form

(1) x = A x + v(t)x, i  
v € Vp  ={n : R  —»■ V p , locally integrable}

V  C ^¿(d,R) is a linear subspace, V1 C V
a compact, convex subset with 0 G int V1 , 

V p = p - V \ p >  0.

Typical examples for the uncertainty range V include 
the following:

(a) V =  {B  G <7*(d,R),||B||p  < 1}
Here ||B ||P denotes the p-operator norm of the 
d x d matrix B, and p =  2 is the standard 
situation. Stability radii based on this range V 
are often called ‘unstructured’.

(b) Let D and E  be real matrices of size d x p and 
q x d, respectively. Define
V = {B  is real pxq  matrix with ||Z?BE'||P < 1}. 
Here j| • ||p  is again the p-operator norm in 
gt(d, R). Stability radii of this type are often 
called ‘structured’.

(c) Let Bf G gi(d, R) for i =  1 ...  m  and let W C 
Rm  be compact and convex with 0 G W. Define m
V = {B  = £  W i B i M i ^ . m  e

>=1
This model includes (i) and (ii) as special cases 
and corresponds to the set up in Colonius and 
Kliemann (1993).

We will investigate the stability behavior off (1) us
ing the idea of stability radii, which were first defined 
explicitly in Hinrichsen and Pritchard (1986a). Besides 
the two concepts arising from common Lyapunov func
tions and from Lyapunov exponents we also introduce 
a radius based on time invariant uncertainties, i.e. on 
the spectrum of the matrices in A + V p . This allows 
for a comparison of our results with several examples
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in the literature. We use the following notation

spec(A) is the spectrum of a d x d matrix A, 
ip(t,x,v) denotes the solution of (1) with

<p(0, x, v) — x G

(2) A(v,z) =  limsup y log z, f)|

is its Lyapunov exponent,
x(p) =  sup sup A(z, v)

is the maximal spectral value of (1).

With these notations we define:

Definition 1. Consider the linear, uncertain system 
(1).

(i) The stability radius with respect to time invari
ant perturbations in V p is defined as

rg =  inf{p > 0, sup max Rep > 0).
vg V «  spec ( 4 + v )

(ii) The stability radius with respect to quadratic 
Lyapunov functions is

=  sup{p > 0, there exist a positive definite matrix 
P  6 g£(d, R) and a > 0

such that for all (v, x) G V p x IR.̂
it holds that

X T (P(A + v) + (A + v)T P)x  <  - o |z |2 }.

The superscript T  denotes transposition.
(iii) The stability radius based on asymptotic sta

bility is given by r  =  inf{p > 0, there exists 
v G Vp such that x = {A +  v(i))z is not expo
nentially stable}.

If the dependence on the matrix A  or on its 
parameters is of importance, we will use the 
notation rg(A), etc.

Remark 2.
(i) For the definition of rg, also called the real 

stability radius, compare e.g., Hinrichsen and 
Pritchard (1986a, 1990). The radius is im
plicit in much of the quadratic robust stabiliza
tion literature, see e.g. Rotea and Khargone- 
kar (1989). For a large class of uncertainties 
the radius coincides with the complex sta
bility radius of Hinrichsen and Prichard, see 
e.g. Hinrichsen and Pritchard (1990), Peterson 
(1987), or Proposition 3 in Townley and Ryan
(1991) . The radius r was first introduced in 
Colonius and Kliemann (1990).

(ii) Definition 2(iii) is based on asymptotic stabil
ity of all trajectories of (1). An alternative to 
this concept would be the use of uniform ex
ponential stability, i.e. the use of the supremal 
Bohl exponent of the system. For the model (1) 
the two concepts agree by Corollary 4 below. 
For classes of complex-valued uncertainties it 
is shown in Hinrichsen and Pritchard (1986b) 
that the complex stability radius is the same as 
the one obtained via Bohl exponents, compare 
also Hinrichsen et al. (1989).

(iii) Explicit characterizations of rg and r^f are 
available for certain classes of uncertainties, e.g. 
for V  as described in (a) and (b) above w ithp =  
2. These characterizations use parametrized 
Riccati equations, see e.g. Hinrichsen an Prichard 
(1986b). One cannot expect an explicit formula 
for the radius r. Even for two dimensional sys
tems an exphcit expression is only available if 
there exists p > 0 with x(p) > 0 and the pro
jected system on P1 has two control sets. But 
this is the case where r =  rg. However, for 
the computation of the radius r we only need 
to know the sign of the largest spectral value 
n(p), see Corollary 3 below. For two dimen
sional systems Joseph (1993) provides an al
gorithm to compare this sign. The examples 
below were computed using this algorithm.

(iv) The case of stochastic uncertainties has been 
discussed e.g., in Willems and Willems (1983), 
and in Colonius and Kliemann (1990) based 
on large deviations theory for Lyapunov expo
nents in Arnold and Kliemann (1987).

The following results are based on Colonius and 
Kliemann (1993). To exclude degeneracies, we assume 
the Lie algebra rank condition for the projected system 
on the projective space P 1 :

dim£>t{/i(v, ■), v G Vp }(p) =  d — 1
(3) for all p >  0, all p G P**- 1

h(v,p) =  (A +  v — pT (A  +  v)p • Id)p.

T heorem  3. Consider the uncertain linear system (1) 
under assumption (3). Then the function K(P) defined 
in (2) satisfies:

K(P) is increasing and continuous for p G [0,oo).

Proof. Monotonicity is obvious from the definition of 
V p . Continuity was shown in Colonius and Kiemann 
(1990). □
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min{p, /c(p) =  0} 
0

co

Theorem 3 is the key to the analysis of the stabil
ity radius r. We refer the reader to Hinrichsen and 
Pritchard (1991) for a discussion of the continuity of 
perturbations of eigenvalues in the context of robust 
stability.

Corollary 4. Under the conditions o f Theorem 3 we 
have

if  this set is not empty 
iff K(0) > 0 i.e.

m ax Rep >  0 spec A
otherwise.

Proof. All we need to show is that r > 0 iff A  is sta
ble, the rest follows from Theorem 3. If A is stable, 
then K(0) =  m ax{R cp,p  G spec(A)} < 0. Hence by 
continuity of «(p) it holds that r  > 0. Vice versa, if 
r > 0, then there exists p > 0 with K(P) < 0. But 
0 G V  implies A  G A + V p for all p > 0. □

The next result characterizes the systems that have 
infinite stability radius, i.e. that are stable for all 
bounded uncertainties in (J Vp .

p>0
Corollary 5. Under the conditions o f Theorem 3 it 
holds

r — oo iff A  is stable and there exists a transformation 
matrix T  G gf(d, R)such that

T (A  — j tr A ) T ~ 1 and T o T " 1 are skew 

symmetric matrices for all v G V.

Proof. If r =  co holds, then all matrices A + v, v G 
V p ,p >  0 a r e  stable. Furthermore, trv  =  0 for all 
v G V: Since v G V  implies — v G V  by (1), trv  
constant yields the existence of two positive constants 
Ci and C2 such that

K (P) > j  max + V ) — CAP ~  c 2)-

Therefore lim K(JA = oo which contradicts r  < oo. p—*oo
Hence trv  is constant and 0 G V  implies trv = 0 for 
all v G V.

Recall the notation from Colonius and Kliemann 
(1993). If r  =  oo then the systems group 8°  is com
pact. 0° is generated by exponentials of matrices of 
the form N ° = {A -  ^ trA  + v, v G V}. Compactness 
of 0° means that there exists a transformation matrix 
T  G jff(d,R) such that T N ° T ~ r C so(d,R), the skew 
symmetric matrices. Choosing again v =  0, we ob
tain T(A  — '^trA )T~ l  G so(d, R) and hence T V T " 1 C 
so(d, R).

To show the converse, we may assume, without loss 
of generality that N ° =  {A — jirA  +  v,v  G V} C 
so(d, R), and hence the group 0° , defined as above is 
compact. Furthermore, we have ^ i r (A  +  v) =  ^trA , 
and hence it holds that K(P) = ^¡trA for all p > 0. 
Now A  stable implies ^ trA  = Pi < 0, and

HiG spec A 
therefore r =  oo. □

The following example shows that it is not sufficient 
to assume that A  is stable and V  consists of skew sym
metric matrices to obtain r =  oo.

Example 6. Consider the system (1) with

^ = ( ■ 4  - 2 )  “ d v = { ( - 2  J p e [-1.11}-

Thenspec(A+v) is —|± ^ /v ( 4  — v) +  | ,  and the max
imal eigenvalue for v =  1 is positive. Note that for 
v —► ±co the spectrum is — |  < 0.

Our last result in this section concerns the relation 
of the radius r to the other stability radii presented in 
Definition 1.

CoroUary 7. Under the conditions o f Theorem 3 we 
have for stable matrices A

(i) 0 < r^ j < r <  ra, all inequalities can be strict. 
In particular, r^ =  00 i f  r =  00 i f  r^ j =  00.

(ii) ri,j =  00 iff A  is stable and there exist a pos
itive definite matrix P  and a  > 0 such that 
xT  P A x  <  —a | i | 2 and P V  C so(d,R).

Proof.
(i) The inequalities follow directly from the def

initions. The examples below show that the 
inequalities can be strict.

(ii) If r^j =  00, then A is stable, i.e. there exist a 
positive definite matrix P  and a  > 0 such that 
xT  P A x = ¿xT (P A  -|- A T P)x  < —a |x |2 for all 
x G R d . Furthermore, we have by Definition 1 
for all p >  0 and all v G V p

XT {P{A +  v) +  (A +  v ^ P ^ x  = 
2XT P A x  + 2xT P vx  < —a |x |2 .

If there exists x G R d and v G V  such that 
xT P vx  =  /? |i2 | for some ¡3 0, then we can
find p >  0 and VQ =  v or — v such that x T PpvQi >
44
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a |z |2 , which is a contradiction. Hence xT  Pvx = 
0 for all v € V, all x £  Rd , and thus Pv is skew 
symmetric.

Vice versa, if P V  C so(d,R), then x7  Pvx = 
0 for all v 6 (J V p and all x G R d . Hence 

p>0
x7  P A x  < — a |z |2 implies that > p for all 
p >  0. □

Remark 8. Note that TLJ = oo implies r  =  oo and 
hence by Corollary 5 that V  C so(d,R). If P  is sym
metric and v skew symmetric, then Pv = -{ v P ) 7 . 
Furthermore, Pv 6 so(d,R) means Pv = — (Pv)7 , and 
hence P  and V  commute. This is therefore a necessary 
condition for r^ j =  oo.

The following examples illustrate the concept of sta
bility radius and show the differences between the radii 
introduced in Definition 1.

E x a m p le  9. The linear oscillator with uncertain restor
ing force. Consider the linear oscillator
(4)
• /  0 1A , (  o oA .. .* = ^ - 1  +  Q ) *  = A(v)x

Vp =  {v : R —► V p , measurable}, V p = [—p,p] for p > 0.

Since all stability radii are zero iff max Rep > 
spec A(0)

0, we concentrate on the case b > 0. The maximal 
eigenvalue of (4), determining the radius r®, is —b 4- 
V&2 — 1 — u, which is > 0 iff p > 1. Hence we obtain

(5) ^ (b )  =  1 for all b > 0.

In order to determine the radius r^ j  based on common 
Lyapunov functions we need to find a positive definite 

matrix P = such that Q = PA(v) + A(v)7  P

is negative definite for all v G [~P,p]- Computing 
Sylvester’s equations (compare, e.g. Hahn (1967), p. 
100) for P  and Q yields for p <  1

(a) a  >  0
(b) 07 — /?2 > 0
(c) 2(1 +  v )^  >  0, i.e. /? >  0 for p < 1,
(d) —(a -  (1 +  v))2 +  46/?(a 4- (1 4- v)y) -  4/?2 ((l +  

v) +  62 ) > 0.
Setting, without loss of generality, ¡3 =  1 (d) reads 

(d’) 5(0,7) =  —a 2 +  2o(26 + (1 +  v)7) — 4((1 + v ) +  
b2 ) +  46(1 4-11)7 — (1 +  V)27 2 > 0.

We solve for the zeros in o of 5(0 ,7) and obtain
(e) OJ 2 =  26 +  (1 +  0)7 ±  2-/1 +  v>/2by — 1.

Note that 267 — 1 > 0 iff 67 >  and for 67 =  |  we 
have 012 =  26 +  ^j~. For each (v, 6) E (—1,1) x R+  
equation (e) describes a parabola in the 0 — 7 plane, 
and (d’) is satisfied in the interior of this parabola. 
Note that for each 6 > 0 the parabolas are monotone 
in v. In order to obtain a common Lyapunov function 
for all v G [—p,p], we need that the parabolas cor
responding to wi =  1 +  p and W2 =  1 — p intersect. 
Denote by d(wi,W2) the difference between the lower 
branch (corresponding to 02) for wi and the upper 
branch (corresponding to a i)  for W2, as a function of 
7:

d(wi, w2 ) =  2p7 — 25/267 — 1 ( i / l  4- p 4- i / l  — p) .

The minimum of d(wx,W2) is attained at 7 =  4-
(5/I 4- p 4- - /I  — p )2 and has the value m(p, 6) =

j -  G + v^^2) •
We now have to find for each 6 > 0 the largest p(6) G 

[0,1] such that m(p, 6) <  0. This value is given by

p(6) =  26\/2  -  62 for 0 < 6 < ~2=.

Thus we obtain for the stability radius

(6) r Lf(b) -
^ b V T ^ b 2

1

The exact stability radius for time varying uncertain
ties r based on Lyapunov exponents is given by r(6) =  
min{p > 0, /c(p) =  0}, according to Corollary 4. A 
standard perturbation argument for 6 > 0 small shows 
analytically that r^(6) > r(6) for small positive 6. In 
fact, the explicit computations in Colonius and Rie
mann (1993) show that r(6) ~  ir6 around 0, and (5) 
implies rLf(b) ~  26 <  TT6 for 6 around 0. Figure 1. 
shows the three stability radii depending on the damp
ing 6.

Figure 1. Stability radii of the system (4).
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We see that

1 =  ra ^ )  > r(i)  > ’’£/(&)

1 =  r*(b) = r(b) > rL J (b)

1 =  r^b )  = r(b) = rL / (b) 

for 0 < b < bo ~  0.405 
for bo < b < bi = -^=, 

for b > bi.

Therefore, if b > bo, we have r(6) =  1 and the desta
bilizing uncertainty for p = r(b) can be chosen to be 
a constant, real function. For 0 < b < bo a desta
bilizing function for p = r(b) can be found which is 
piecewise constant with two switches. This destabi
lizing uncertainty is adapted to the system dynamics. 
Faster switchings may even stabilize a system, compare 
e.g. Bellman et al. (1986). □

The next example shows that the stability radius r 
need not depend on the system parameters in a mono
tone way, and may actually be positive only on bounded 
parameter sets.

E xam ple 10. Consider the system

(7)

1 \
—26 +  a J x + v 0

0 ) X

a ) ) *

Vp =  {v : IR —»■ V p , measurable}, V p = [—p,p]
for p > 0,

which is equation (4) with an added diagonal term 
(  oc 0 \_ x. For the following computations we use y 0 a y
« =  Î

Eigenvalue computations result in the stability ra
dius r® as

ri(6) =
0 for 0 <  6 < I , < 6

Computations for the radius are similar to the ones 
shown in the previous example. r£y(6) has a unique 
maximum at (0.77,0.67) and decreases along the line 
l ( £ - 6 ) a s 6 T £ .

To compute the Lyapunov exponents note that the 
(Q  0 \  

„ commutes with all matrices. U a J
Denote by 5 a (r) =  S a (r, So ,A a  +  A(v)) the solution
66
of the projected system, then we obtain

A(v, x; a) =  limsup — ) 
t—*oo t J

0

=  limsup -  I 
t—ca t J

0

limsup — 1 
t—»00 t J 

0

where A(v, x) are the Lyapunov exponents of (4). Hence 
K(P ; a) =  a  +  K(P) and r(6; a )  =  min{p > 0, K(P, 6) >

For the value a  =  |  the three stability radii are 
shown in Figure 2.

Figure 2. Stability radii of the system (7).
Note that the maxima (in b) of the radii are differ

ent, and they are attained at different 6-values. □
The next two examples show that the stability radii 

need not be continuous in parameters of the system. 
In particular, a jump from 0 to oo is possible.
E xam ple 11.
(8)

(  1 +  a
x ~  I  0

Consider the system

x + v 0 2 \- 2  0 ) 2

v G Vp =  {v : IR —<• V p , measurable}, V p = [—p,p].

This system satisfies the conditions of Corollary 5, and 
hence

I" 0 for a > — 1 
r(a )  =  <

( oo for a < —1.
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The system also satisfies the conditions of Corollary 
7 (ii) and hence all three radii have the same behav
ior. □

E xam ple 12. The linear oscillator with uncertain damp
ing. Consider the oscillator ÿ-|-2(&+t;(t))y-|-(l+c)y =  0 
with v(t) G [— p,p], and c £ ® . In equivalent first order 
form the system reads

-i 0 2  A ( °(9) -2 6  J  - 2 / x '

Note that the Lie algebra rank condition (3) is satisfied 
for this system, except at the value c =  — 1. Clearly, 
the system is not exponentially stable for c < — 1 with 
p =  0, and for c > —1 with p > b. It remains to 
consider the case c > — 1 and p G (0, b). This leads to 
the optimal strategy v = — b, which is a constant. The 
stabilization radius therefore is given by

f 0
Hr(c) =  r(c) =  <

for c < — 1
for c > — 1.

□

3. R ob u stness o f N on lin ear T im e-V arying S ys
tem s.

In this section we extend the discussion of stability 
radii to nonlinear systems with time varying paramet
ric uncertainties. We restrict our attention to systems 
with singular point, i.e. to a common fixed point of the 
dynamics and the perturbation vector fields. A stabil
ity like concept can also be defined for regular systems 
using the global theory developed Colonius and Klie
mann (1997).

Specifically, we consider the following kind of sys
tems in
(10)

m

y(t) =  /o(y(O) +  = f(y ( t) ,v ( t)) ,
i=l

v G Vp =  {v : R —* V p , locally integrable) 
V  C Rm , compact and convex, 0 G int V, 

V p = p -V ,p > 0 .

We assume that the maps fi  : R d —► R d are differ
entiable with Lipschitz continuous first derivative for 
i =  0 . . .  m. Let y° 6  be a common fixed point, 
i.e. — 0 for » =  0 . . .  m, which is asymptotically 
stable for the nominal system, i.e. for the differential 
equation with v(t) =  0. Then it is of interest to de
termine the maximal number p > 0 such that ya is a 
locally asymptotically stable equilibrium for all para
metric time varying uncertainties v €  Vp .
For constant uncertainties the theory of stable and 
unstable manifolds implies that the local stability be
havior of the nonlinear system around a fixed point y° 
can be analyzed using the linearized system at y°: If 
y° is a hyperbolic point then the nonlinear system is 
stable iff all eigenvalues of the linearized system lie in 
the left half plane C - . The computation of a nonlin
ear stability radius for (10) with v 6 V p hence reduces 
to the analysis of the linear radius r® (as defined in 
Definition 1) of the linearized system.

For differential equations with time varying pertur
bations a classical result due to Lyapunov states that 
only in the case of Lyapunov regularity negative Lya
punov exponents imply local stability of the nonlinear 
system, see e.g. Hahn (1967). However, in the the
ory of stability radii stability is required for all dis
turbances within a given range. The regularity results 
from Section 2 and the uniform stable manifold theo
rem from Colonius and Kliemann (1997) are the key 
to overcome this difficulty.

The linearization of (10) at the singular point y° has 
the form
(11)

A  X m  \
¿CO =  i A o + V i^ A i]  x(t)

in Rd v G Vp , 

where Ai =  Dy / i (y)|!Z=J,o for i =  0 . . .m  denotes the 
Jacobian at y°. Note that this system lives in the tan
gent space at y°, which is here identified with Rd . We 
assume that the projection of (11) onto the projective 
space P*- 1  satisfies the Lie algebra rank condition (3).

D efinition  13. The nonlinear stability radius rn / of 
the system (10) at the singular point y° G Rd  is defined 
as

r nz(y°) = inf{p >  0, there exists v G Vp such that 
y° is not locally asymptotically stable for 

y = f (y ,v )} .

The following theorem shows that this stability ra
dius is determined by the Lyapunov exponents of the 
linearized system.

T heorem  14. Consider the system (10) with singu
lar point y° and the linearized system (11). Assume 
that y° is locally asymptotically stable for the nominal 
system y(t) = f(y ( t) , 0 ),t >  0. Then

sup{p > 0, x(p) < 0} <  rn l (y°) <  inf{p > 0, /c(p) > 0),
77
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where K(P) is defined as in (2). In particular we obtain 

r < rn i (y°) and
r =  rn Z (j/°) i f  x(p) is strictly increasing at p = r.

Here r is the stability radius o f the linearized system 
(11) as introduced in Definition 1.
Proof. If K(P) > 0, then there exists a pair (v, x) E 
Vp xIR^XiO} with Lyapunov exponent X(v,x) > 0 and 
v is periodic. Hence by the theorem on stability in 
the first approximation (compare Hahn (1967), The
orem 65.4) the equilibrium y° is unstable, i.e. there 
exist a number s > 0, a sequence yn  —► y° and a se
quence tn  j  oo such that for all n E N it holds that 
|y?(tn , yn , v) — <p(tn , y°, v)| > e. (Here ^(-,j/,v) de
notes the solution of (10) with ip(d,y,v) = y.) In 
particular, for 8 >  0 sufficiently small the set {y € 
IR4 , |^>(i, y,v) — yQ\< 8  for all t > 0} is not a neighbor
hood of the equilibrium y Q, and y° is not locally asymp
totically stable. Therefore, rn t < inf{p > 0, >t(p) > 0}.

Recall the local stable manifold from Colonius and 
Kliemann (1997): For the singular point y° E 8 > 
0 and v E we set

Wj'* ={y E |y>(t, y,v) — y° \ < 6 for all i > 0 and 
lim \<p(t, y, v) -  y°| =  0}. t—oo

If K(P) < 0, then for 8 >  0 sufficiently small we have 
y° E int C for all v E Vp . Hence y° is lo
cally asymptotically stable for all v £ Vp , and therefore 
sup{p > 0,«(p) < 0} < rn i (y°).

The other statements follow from the definitions and 
continuity of /c(p). □

The following examples apply Theorem 14 to some 
two dimensional uncertain systems.
E xam ple 15. Consider the van-der-Pol oscillator 

y -  2b(y2 -  l)y  4- (1 +  v)y =  0 
v E Vp , V p = [ -p,p], p > 0.

The nominal system (with v =  0) admits a Hopf bi
furcation at b =  0. In the coordinates (y,y) =  (j/i, 2/2) 
the system reads

( - i / i +  26(yi -  i)y2 ) ) + u ( - y i ) ‘

The origin is a fixed point for all v E V, and lineariza
tion at 0 yields

• (  0 O  , (  0 0 \
’ = ( - 1  _ 2 i ) *  +  v ( _ l  o ) ’ -

This is the linear oscillator, which was analyzed in Ex
ample 9. The stability radius rn t  of (12) is, therefore, 
given by the linear radius r, as shown in Figure 1.
88
E xam ple 16. A model for the roll motion of a ship 
is given by the uncertain system

. _  /  y2 \  /  0 \
(13) y  ~  \ - y i  +  a y l -  8^2  -  82y2I2/21 /  V y j  

v E Vp , V p = [-p,p], p > 0.

Here we consider the robust the robust stability of the 
singular point y° =  (0,0). Linearization around this 
point yields

Again, one obtains the linear oscillator as the linearized 
system, here with damping 2b =  ¿1. The stability ra
dius rn t  of (13) is given again by the linear radius r in 
Figure 1., with proper scaling of the 6-axis. □

The last example in this section explores a connec
tion between nonlinear stability radii and the global 
behavior of systems.

E xam ple 17. Consider the model

(14) y i  =  "  ^ y iy 2

¿2 =  - fiy iy z  + ?(£  -  y2 )

with positive constants K, L ,a  and uncertainty /?(i) E 
[0o~P,0o+p], i.e. v(t) E [~p,p] an d ^ (t)  =  /?0 +  v(i). 
Furthermore, we have L-|- L =  1 with ¡3 > 1 and 7 > 1.

We first analyze the global behavior of this system 
with the methods described in Colonius and Kliem- 
anan (1997). Note that the set M  =  [0, A] x [0, L] is 
a compact, forward invariant set of (14), and the Lie 
algebra rank condition holds in the interior of M . For 
the following figures we use the parameter values 
(15)
K  =  0.5, L =  1, a  =  4, 80 > 1, v(t) E [—p, p] for p > 0.

8n =4.15, p =  0.05
The nominal system (with p =  0) has two fixed 

points in int M  for /30 >  4. Figure 3. shows the corre
sponding control sets, with C  being invariant (around 
the stable fixed point), and D  being variant. Figure 
4. depicts also the domain of attraction -4(D), which 
is the ‘bistability’ region for C  and the singular point 
y° = (0,L), i.e.

Aid) ={y E M , there exist tq ,v i E V p

such that <p(t, y, vi) —* C  and ip(t, y, v?) —► y° 
for t —► 00}.
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Here y, v) denotes the solution of (14) with 99(0, y, v) 
0. Note that the left boundary of A (D )  is the stable 
manifold of the point

(16) . L (  P)  _  4^ + 1 ( 3 ____0 ° ~  p
'  } / 2 \ 0 o - p - l  )  4 V /?0 - p - l J

4 ( l - 2 y i ( -p ) )  
P o -  P J

(where yi(—p) is the first component of y(—p)) for the 
system (14) with 0  = 0o — p.

0n = 4.0, a = 1.0
In this case the system has only one (invariant) con

trol set C in int M , shown in Figure 5. This set 
is globally attractive from intAf. The singular point 
y° =  (0 ,i )  is in the boundary of C, and hence C  is 
not closed.

Figure 3. Control sets of (14) with 0o =  4.15, p =  0.05

0.00 0.04 0.0B 0.12 0.16 0.20

Figure 4. Control sets and bistability region of (14)
= 

Figure 5. Control sets of (14) with 0o =  4.0, p =  1.0

with 0o =  4.15, p =  0.05
We analyze the transition between these two cases us
ing the nonlinear stability radius at the singular point 
y° =  (0,L). Linearization of (14) at y° yields

(17) ( a - 0 ( t ) L
I - 0 ( ^

0
- T(0

X

0(t) = 00 + v(t), V € Vp , V p =  [ - p, p], p >  0.

The Lyapunov exponents of (17) can be computed di
rectly from the explicit solution, which for the initial 
value x Q = (x°, r°) is  given by

This yields the Lyapunov exponents

t

Ai(v) =  a  — limsup — / L(0Q + v(s))ds 
t—00 t J

0 
t

A2 (v) =  —limsup — / y(s)ds.
t—00 t J

0
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rn i ^  =

Using 7(f) =  > 0, w e  obtain

*(p) = a ~ L (0o ~  P)

and therefore

0 if 0o < I

i f / ? o > f -

Note that the projection onto IP1 of the linearized sys
tem does not satisfy the Lie algebra rank condition 
(3). However, the Lyapunov exponents of (17) are com
puted explicitly and zc(p) is attained at a constant un
certainty v(t) = — p. Thus Theorem 14 remains valid.

For the parameter settings (15) we obtain

0 if 0o < 4
0o — 4 if 0o > 4.

Comparing the nonlinear stability radius with (16) we 
make the following observation if y° =  (0, L) is symp- 
totically stable: The radius rn /(y°) coincides with the 
p-value for which y(—p) = y ° , and the stable manifold 
of y(—p) becomes the center manifold of y°. In other 
words, the left boundary of the ‘bistability’ region col
lides at p =  r n /(y°) with the singular point y°. For 
0o =  4.0, p =  1.0 the maximal spectral interval of (14) 
at y° hence contains zero in its interior.
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