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INTRODUCTION

High-resolution ultrasound (US) and color Doppler US

are crucial in the differentiation of unclear mass lesions

of the neck, especially in patients with head and neck

cancer (Bozzato 2015a, 2015b). Previous studies have

described criteria for the evaluation of the entity of cervi-

cal lymph nodes (LNs) as follows: tumor margins, shape,

lymph node (LN) diameter including the Solbiati index,

presence of a hilar sign, perfusion pattern and homoge-

neity (Rubaltelli et al. 1990; Steinkamp et al. 1995; Boz-

zato 2015a, 2015b; Turgut et al. 2017).

Sonographic features of benign LNs include an oval

shape, well-defined margins, homogeneity and hilar per-

fusion. Furthermore, a benign LN is characterized by a

diameter <10 mm in the short axis and a fatty hilum. On

the other hand, up to 50% of metastatic lymph nodes

(MLNs) also have a hyper-echoic hilar structure. LNs

with ill-defined tumor margins raise the suspicion of

extranodal metastatic spread (Lenghel et al. 2012;
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Holger Rüger and Georgios Psychogios contributed equally to

icle.

2677
McQueen and Bhatia 2018). A considerable advantage

of head and neck sonography, particularly in the case of

tumor diseases, is the possibility of close monitoring and

documentation of the changing dynamics of LN size and

sonomorphology of suspicious LNs without any side

effects, as well as the pre-operative examination (Zhao

et al. 2017; Psychogios et al. 2019). The use of contrast-

enhanced US to differentiate benign from malignant

LNs may be helpful in addition to 2-D US and color

Doppler but has currently not been validated as an estab-

lished tool in the clinical setting (Zenk et al. 2005; Azizi

et al. 2015, 2016; Desmots et al. 2016). Despite all these

criteria, sonographic entity differentiation remains a

challenge and is not sufficiently specific (Benzel et al.

1996; Lenghel et al. 2012; McQueen and Bhatia 2018).

The development of elastography and Virtual

Touch imaging quantification (VTIQ) has made it possi-

ble to measure the elasticity and stiffness of tissue quali-

tatively and quantitatively using shear waves. VTIQ is a

2-D shear wave technology generated by acoustic radia-

tion force impulses (ARFIs) (Rosen et al. 2008; Tozaki

et al. 2013; Azizi et al. 2016; Zhang et al. 2016). Elastog-

raphy and VTIQ use shear waves to measure the

mechanical properties of tissue in terms of stiffness and

translate them into a color-coded image (Fig. 1). In the
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Fig. 1. Left: Oval-shaped cervical lymph node with multiple quantitative measurements of shear wave velocity made
using Virtual Touch tissue imaging quantitation with a maximum shear wave velocity of 5.14 m/s inside the node. Right:

Photograph of the lymph node after surgical excision.
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case of soft tissue, it is easy to deflect or shift the shear

waves so that lower velocities can be measured. These

shear wave velocities (SWVs) can be displayed indepen-

dently of the surface pressure at the transducer by the

examiner (Fig. 1). As shear waves do not propagate in

fluid, no signal can be measured in cystic lesions (Matsu-

zuka et al. 2015; Azizi et al. 2016; Desmots et al. 2016;

Zhao et al. 2017).

Elastography and VTIQ have been validated in pre-

vious studies on breast diseases, parotid glands and thy-

roid carcinomas and have revealed an association

between malignancy and higher SWVs (Klotz et al.

2014; Azizi et al. 2015; He et al. 2017; Mansour et al.

2017, 2019; Pu et al. 2017; Heine et al. 2018; Guruf

et al. 2019). Depending on the cutoff of the maximum

SWV within an LN, the positive and negative predictive

values can reach 52.44% and 94.15%, respectively

(Azizi et al. 2016). In a meta-analysis of eight studies,

malignant LNs were stiffer than benign nodes, and the

SWV for diagnosing malignant cervical LNs had a sensi-

tivity of 81% and a specificity of 85% (Suh et al. 2017).

The diagnostic accuracy of SWV using Toshiba shear

wave elastography for differentiating metastasis from

lymphoma was between 80.7% and 83.9% (Chae et al.

2019). He et al. (2017) suggested that VTIQ using ARFIs

and Toshiba shear wave elastography are comparable

and reproducible for diagnosing thyroid nodules.

The feasibility of using elastography in the head and

neck area has not yet been determined (Mantsopoulos et al.

2015; Desmots et al. 2016). One reason is the complicated

anatomy, which leads to artifacts near the lower jaw, thy-

roid cartilage and large neck vessels (Klintworth et al.

2012). Moreover, the few prospective studies in this area

have methodological problems, as they usually do not com-

pare the histopathological results of the neoplasms but the

results of fine-needle aspiration biopsy, which are known

to have disadvantages such as sampling errors and analytic

uncertainty (Tan et al. 2010; Cheng et al. 2016). The aim
of this study was to determine a combined target

value of area and SWV that can be used to predict or

exclude a malignancy. Our hypothesis is that the

additional use of VTIQ can improve the entity deter-

mination of cervical LNs.
METHODS

This prospective study was conducted between June

2017 and June 2019 at the Department of Otorhinolaryn-

gology, Augsburg University Hospital, Augsburg, Ger-

many. The study was approved by the local ethics

committee (2017/19), and informed consent was

obtained from all patients.

This study included 108 patients who presented

with a cervical mass with and without head and neck

squamous cell carcinoma. All patients with unclear cer-

vical lymphadenopathy who underwent pre-operative

US screening by one of the clinical investigators were

included in the study. Detailed US documentation of the

LNs using 2-D sonography, color Doppler US and elas-

tography with VTIQ was performed. Furthermore, video

documentation of the suspected LN was conducted.

The exclusion criteria were as follows: age <18, no

known histology, condition after radiotherapy of the

neck region, malignant lymphoma, lack of patient’s abil-

ity to consent and impossibility to locate and remove the

suspected LN intra-operatively.

VTIQ is based on the principle of ARFI technology.

Tissue is compressed using multiple high-intensity,

acoustic push beams from a US transducer. By measure-

ment of the local displacement of tissue via the acoustic

pulse, the propagation of transverse shear waves can be

tracked. The stiffer the tissue is, the higher is the SWV

(Zhang et al. 2012). SWV in human tissue is in the range

1�10 m/s. By creation of a color-coded shear wave

image at the same time in VTIQ, it is possible to quantify

SWV in a precise anatomic region of interest, with a pre-



Table 1. Bivariate analysis of general ultrasound
characteristics

Variable Benign Malignant p Value

No. of lesions 57 51
Sex (male) 64.9% 70.6% 0.545
Age 51.3 § 21.1 68.2 § 11.9 <0.001
Axis ratio >0.5 (round) 24.6% 43.1% 0.065
Margins (well-defined) 89.5% 43.1% <0.001
Perfusion pattern <0.001
None 12.2% 7.8%
Hilar 61.4% 5.9%
Peripheral 19.3% 64.7%
Diffuse 7.0% 21.6%

Data are expressed as the mean § standard deviation or percentage.
Boldface indicates significant differences.
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defined size of 1.5 mm. Moreover, we used the quality

map to verify sufficient magnitude and to distinguish

between soft and stiff areas (Tozaki et al. 2013).

Pre-operatively, all patients were examined accord-

ing to the same protocol with an Acuson S2000 US sys-

tem (Siemens Medical Solution, Erlangen, Germany).

The measurements were performed using a 9-MHz linear

array transducer, color Doppler examination and shear

wave elastography using VTIQ. Patients were asked to

avoid swallowing and to hold their breath for a few sec-

onds while the image was acquired. VTIQ shear wave

elastography was performed three times in each patient

by one investigator (G.P. or J.Z.). Both are well-experi-

enced head and neck sonographers.

The features documented were 2-D sonography

(horizontal, vertical) with accurate tumor size measure-

ments, color Doppler US and complete LN mapping of

the SWV via VTIQ. The localization of the cervical LN

was marked on the skin, and the adjacent anatomic struc-

tures were exactly described.

As illustrated in Figure 1, three quantitative meas-

urements of SWV were made at distinctive sites and

repeated three times: normal tissue outside the lesion (as

a reference); minimal SWV inside the lesion; maximum

SWV inside the lesion. Each SWV value was defined as

the median of the three measurements within and outside

the lesion. Normal tissue outside the lesion was used as a

reference.

On the basis of the histopathological results,

patients were divided into two groups, those with benign

lesions and those with head and neck squamous cell met-

astatic LNs. Stiff tissue was defined as an SWV �6 m/s,

and soft tissue was defined as an SWV �3.5 m/s. The

velocity measured at different areas was categorized into

three groups (<30%, 30%�69% and �70% of the whole

neoplasm) to simplify the exact classification compared

with two groups only.

If there was a single suspected LN, extirpation

under general anesthesia was performed. If the patient

underwent complete neck dissection, the most suspicious

LN was pre-operatively documented and classified at the

correct cervical level. The removed LN was sent sepa-

rately from the remaining neck preparation for histologic

examination. The surgical procedure was performed

by the same investigator who performed US pre-oper-

atively to eliminate the danger of false LN selection.

The size of the extirpated LN was compared with the

size measured by US pre-operatively to verify the

correct selection. Additionally, intra-operative photo

documentation was performed. All surgical pathology

results were compared with the pre-operative US

examination results.

The following questions were examined and docu-

mented pre-operatively:
� What is the mean SWV outside the cervical LN?
� What is the average maximum SWV within the cervi-

cal LN?
� What percentage of the elastographically measured

area of the LN is stiff, which is defined as an SWV

�6 m/s, or soft, defined as an SWV �3.5 m/s, in

VTIQ?

All quantitative data are expressed as the mean §
standard deviation for continuous variables and as per-

centages for categorical variables. Chi-square and Fish-

er’s exact tests were performed for group testing of

categorical variables. For continuous variables, t-tests

were used for comparisons among groups. Moreover, we

performed logistic regression analysis. All statistical

analyses were performed using SPSS Version 25 (IBM,

Armonk, NY, USA), with p values <0.05 considered to

indicate statistical significance.
RESULTS

In this prospective study, 108 LNs from 108

patients were eligible for inclusion. There were a total of

57 benign LNs and 51 malignant LNs. We performed

bivariate and multivariate analyses.

Among the 2-D US characteristics, well-defined

margins were more prevalent among benign LNs

(89.5%) than among malignant LNs (43.1%). Hilar

blood flow was predictive of benign LNs, and peripheral

and diffuse flow were predictive of malignant LNs

(Table 1).

The maximum SWV (average § standard devia-

tion) within the lesions in the malignant group was 8.3 §
1.7 m/s, with a minimal SWV of 4.1 § 1.2 m/s. Among

benign LNs, the average maximum SWV was 4.1 §
1.8 m/s, and the average minimal SWV was 2.7 §
0.8 m/s. Both maximum and minimum SWVs within the

cervical masses significantly differed between benign

masses and MLNs (p < 0.001) (Table 2).



Table 2. Bivariate analysis of lesion characteristics based on
Virtual Touch imaging quantification

Variable Benign Malignant p Value

Shear wave velocity
Maximum inside lesion 4.1 § 1.8 8.3 § 1.7 <0.001
Minimum inside lesion 2.7 § 0.8 4.1 § 1.2 <0.001
Outside lesion 2.2 § 0.6 2.3 § 0.6 0.349

Area �6 m/s
0�29% 94.7% (54/57) 25.5% (13/51) <0.001
30%�69% 5.3% (3/57) 47.1% (24/51)
70%�100% 0% (0/57) 27.5% (14/51)

Area �3.5 m/s
0�29% 10.5% (6/57) 70.6% (36/51) <0.001
30�69% 17.5% (10/57) 27.5% (14/51)
70�100% 71.9% (41/57) 2.0% (1/51)

Data are expressed as the mean § standard deviation or percentage
(numbers) respectively. Boldface indicates significant differences.
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The categorized areas with SWVs �6 m/s and

�3.5 m/s significantly differed for soft and stiff lesions

(p < 0.001) (Table 2).

As described, we divided the LNs into three groups

based on the intralesional area of SWV �3.5 m/s. Group

1 contained a total of 42 LNs, with 6 benign LNs

(14.3%) and 36 malignant LNs (85.7%). In group 2, 10

of 24 LNs (41.7%) were benign, and 14 (58.3%) were

malignant. Group 3 had a total of 42 LNs, with 41 benign

LNs (97.6%) and 1 malignant LN (2.4%) (Table 2).

We also divided the LNs into three groups based on

the intralesional area of SWV �6 m/s. Group 1 had a

total of 67 LNs, with 54 benign LNs (80.6%) and 13

malignant LNs (19.4%). In group 2, 3 of 27 LNs

(11.1%) were benign, and 24 (88.9%) were malignant.

Group 3 had a total of 14 LNs, which were all malignant

(100%) (Table 2).

The average SWV for regular cervical soft tissue

outside the lesions measured with VTIQ was 2.2 §
0.6 m/s. There was no significant difference between the
Table 3. Multivar

Covariate Coefficient, B Odds

Sex �0.064 0.
Age 0.043 1.
Ill-defined margins 1.658 5.
Perfusion pattern

Diffuse (reference) - -
None �1.450 0.
Hilar �2.206 0.
Peripheral �0.547 0.

Area of SWV
�3.5 m/s (70%�100%, reference) - -
�3.5 m/s (0�29%) 4.540 93.
�3.5 m/s (30%�69%) 3.835 46.

SWV = shear wave velocity.
Boldface indicates significant differences.
two groups with respect to the SWV of tissue outside the

lesion (Table 2).

Patients with malignant LNs were older than those

with benign LNs. Through further statistical testing, we

determined that the SWV of tissue outside the lesion did

not differ with respect to age in general.

Furthermore, we performed multivariate analysis

using the variable intralesional area of SWV �3.5 m/s.

Table 3 outlines the logistic regression analysis of

the potential predictors of malignant LNs. Intralesional

areas with SWVs �3.5 m/s of 0�29% (odds ratio [95%

confidence interval]: 93.672 [8.054�1089.453]) and

30%�69% (46.280 [3.716�576.437]) were predictive of

malignant LNs. The odds of predicting malignancy com-

pared with the reference group (percentage area of SWV

�3.5 m/s: 70%�100%) exponentially increased with a

smaller percentage area of SWV �3.5 m/s. A blurred

boundary (5.248 [1.100�25.033]) was also predictive of

malignancy.

When we performed another multivariate analysis

for an intralesional percentage area of SWV �6 m/s, our

logistic regression analysis revealed numerical problems

that resulted in instability of the analysis by singularities.

In fact, there was no benign LN with an intralesional

area of SWV �6 m/s of 70%�100%, which was used as

the reference group. The perfusion pattern, which was

statistically significant in bivariate analysis, did not

reach statistical significance in multivariate analysis as a

predictor of malignancy.
DISCUSSION

The aim of this prospective study was to investigate

the diagnostic performance of multimodal US using

VTIQ shear wave elastography in the differentiation of

benign and malignant cervical LNs. Lymphoma was

excluded in this study because it might be softer than
iate analysis

ratio 95% Confidence interval p Value

938 0.211�4.164 0.933
044 0.999�1.090 0.055
248 1.100�25.033 0.038

- - 0.225
234 0.012 4.624 0.340
110 0.009 1.336 0.083
579 0.060 5.540 0.635

- - 0.001
672 8.054 1089.453 <0.001
280 3.716 576.437 0.003
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MLNs (Okasha et al. 2014; Chae et al. 2019; Rüger et al.

2019). Furthermore, lymphomas can usually be diag-

nosed according to clinical signs on presentation and

have a distinctive appearance in B-mode US similar to a

“string of beads” (Bialek and Jakubowski 2017). The

correct diagnosis of a cervical LN is essential in terms of

treatment decisions and survival (Kau et al. 2000; Ferlito

et al. 2002).

Both the maximum and minimum SWVs within the

cervical masses were higher for MLNs than for benign

masses. Previous studies have reported similar findings

(Luo et al. 2011; Fujiwara et al. 2013; Cheng et al. 2016;

Turgut et al. 2017). The percentage area of masses with

an SWV �6 m/s was higher for malignant LNs. In fact,

there were no benign LNs with an intralesional area of

SWV �6 m/s of 70%�100%. The multivariate analysis

identified intralesional areas of SWV �3.5 m/s of

0�29% and of 30%�69% as highly predictive of malig-

nant LNs with odds ratios of 93.7 and 46.3, respectively.

Zhang et al. (2015) reported a higher percentage area

with a certain SWV for malignant LNs. The cutoff val-

ues used were an area of 45.27% and an SWV of

3.14 m/s.

Our findings indicate that an LN with an intrale-

sional area of SWV �3.5 m/s of 0�29% is 93.7 times

more likely to be malignant than an LN with an intrale-

sional area of SWV �3.5 m/s of 70%�100%. Moreover,

we could not find any benign LNs with an intralesional

area of SWV �6 m/s of >70%. Hence, a fast diagnostic

workout via histology or removal is mandatory in this

situation.

For 270 LNs, Azizi et al. (2016) identified the best

cutoff value of 2.93 m/s for predicting malignancy by

performing US with the Siemens Acuson S3000 US sys-

tem and using a 9 L4 Multi-D probe. Another group

used 3.03 m/s as a cutoff value and obtained a sensitivity

of the maximum SWV for differentiating benign and

malignant LNs of 93% (Kilic and Colakoglu Er 2019).

In the study by Herman et al. (2019), examination of the

SWV did not add much new predictive power compared

with that provided by classic US parameters.

In our study, the perfusion pattern was statistically

significant in bivariate analysis. However, it did not

reach statistical significance in multivariate analysis as

an independent predictor of malignancy. Nevertheless,

other publications have reported an association of

peripheral and diffuse perfusion with malignant LNs

(Bruneton et al. 1984; Ying et al. 1998; Dragoni et al.

1999).

Among the demographic characteristics, patients

with malignant LNs were older than those with benign

lesions. The stiffness of the regular cervical tissue out-

side the lesion did not exhibit any significant difference

with respect to the entity of the lesion or the age itself,
confirming the common fact that malignant LNs are

more likely to be found in elderly patients (Cooper et al.

2009; Smith 2009; Azizi et al. 2015; Herman et al.

2019).

The strengths of this study include the prospective

design and the large number of LNs examined. Accord-

ing to the percentage area of SWV �3.5 m/s of the cervi-

cal lesion, we created three groups to simplify the

categorization. However, this separation made it

impossible to perform receiver operating characteris-

tic curve analysis as in other studies (Azizi et al.

2016; Cheng et al. 2016; Zhang et al. 2016). There-

fore, further studies should measure the percentage

area as a continuous variable.
CONCLUSIONS

Multimodal sonography with VTIQ reveals signifi-

cant differences between LN metastases and benign

LNs. Intralesional areas of SWV �3.5 m/s of 0�29%

and 30%�69% are highly predictive of malignancy.

Therefore, VTIQ can be a suitable tool for the entity dif-

ferentiation of cervical LNs and can help us determine

further treatment options.
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