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1 Introduction
Ahomeomorphism f ∶X→ Y between twometric spaces X, Y is said to be quasiconformal if there is a constant
H ≥ 1 such that for all x ∈ X,

lim sup
r→0+

supy∈B(x,r) dY(f(x), f(y))
infy∈X∖B(x,r) dY(f(x), f(y))

≤ H.

In metric measure spaces satisfying suitable conditions such as Ahlfors regularity and a Poincaré inequality,
the study of quasiconformal mappings was begun by Heinonen and Koskela in [12] and by now the literature
is extensive, see for example [3, 11, 13, 21, 25]. As in the classical Euclidean setting, there are also other notions
of quasiconformality. For Ahlfors Q-regular spaces X, Y, a homeomorphism f ∶X → Y is said to be geometric
quasiconformal if there is a constant K ≥ 1 such that whenever Γ is a family of curves in X, we have

1
K
ModQ(fΓ) ≤ ModQ(Γ) ≤ KModQ(fΓ).

For the de�nition of Q-modulus and all other concepts needed in the paper, we refer to Section 2. If both
X and Y are complete and also support a Q-Poincaré inequality, the two notions of quasiconformality are
equivalent, see Theorem 9.8 in [13].

A fact that has received much less attention is that quasiconformal mappings also quasi-preserve the
Q
Q−1 -modulus of certain families of surfaces obtained as “essential boundaries" of sets of �nite perimeter. This
result was proved in Euclidean spaces by Kelly [18, Theorem 6.6]. In the metric space setting, the theory of
functions of bounded variation (BV) and sets of �nite perimeterwas �rst developed byAmbrosio andMiranda
[2, 23]. The authors of the current paper together with Shanmugalingam extended Kelly’s result to metric
spaces in [15].

In the current paper, our main goal is to show that the converse holds as well: if a homeomorphism f
quasi-preserves themodulus of families of surfaces, then it is a quasiconformalmapping. Since the analogous
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fact is already known to hold for families of curves, we invest most of our e�orts in studying the duality of
moduli of families of curves and surfaces. Speci�cally, for a nonempty bounded open set Ω ⊂ X and two
disjoint sets E, F ⊂ Ω, we consider the family of curves Γ joining E and F in Ω, and the family of surfaces L
separating E and F in Ω in a suitable sense. Then we prove the following theorem; the precise formulation
and assumptions on the sets E and F are given in Theorem 4.5.

Theorem 1.1. Let 1 < p <∞ and suppose X is a complete metric space equipped with a doubling measure and
supporting a 1-Poincaré inequality. For some constant C ≥ 1 depending only on p and the space X, we have

1 ≤ Mod p
p−1

(L)
p−1
p Modp(Γ)

1
p ≤ C.

In Euclidean spaces, this was proved (with constant C = 1) by Ziemer [26], and later by Aikawa and Ohtsuka
who show in [1] that the same result holds for a more general weighted modulus with weights coming from
the Muckenhoupt Ap-class. Combining Theorem 1.1 with the characterization of quasiconformal mappings
by means of the moduli of curve families, we get the following theorem.

Theorem 1.2. Suppose that X and Y are complete Ahlfors p-regular metric spaces supporting a 1-Poincaré
inequality. Suppose f ∶X → Y is a homeomorphism and there exists C0 > 0 such that for every collection L of
surfaces in X,

Mod p
p−1

(fL) ≤ C0Mod p
p−1

(L).
Then f is quasiconformal.

This is given, in a somewhat more general form, in Theorem 5.1. Results similar to Theorem 1.1 and Theorem
1.2 were very recently proved in the metric space setting by Lohvansuu and Rajala [22], but their viewpoint
was somewhat di�erent. In [22] (similarly to [26]) the authors understood a “surface” to be a set of �nite
codimension one Hausdor� measure separating E and F in a topological sense. By contrast, we understand
surfaces to be sets of �nite perimeter in the spirit of [18] and [15].

Moreover, we wish to study the problem under weaker assumptions: instead of Ahlfors regularity it is
in fact enough to assume in Theorem 1.2 that the measures on X and Y are doubling and satisfy suitable
one-sided growth bounds. Additionally, we do not assume the sets E and F to be closed, as was done in [22]
and [26]. Working with more general sets makes it a rather subtle problem to �nd the correct de�nition for a
“surface” that separates E and F; for this we apply the concept of �ne topology, relying on results proved in
[4, 6, 7]. Hence our arguments combine the theory of quasiconformalmappings, BV theory, and �ne potential
theory in metric spaces.

2 Notation and de�nitions
In this section we gather the de�nitions and assumptions that we need in the paper.

Throughout the paper, (X, d, µ) is a completemetric measure space with µ a Radonmeasure.We assume
that X consists of at least 2 points. If a property holds outside a set with µ-measure zero, we say that it holds
almost everywhere, or a.e.

Given x ∈ X and r > 0, we denote an open ball by B(x, r) ∶= {y ∈ X ∶ d(y, x) < r}. Given that in a metric
space a ball, as a set, could havemore than one radius andmore than one center, wewill consider a ball to be
also equipped with a radius and center; thus two di�erent balls might correspond to the same set. We then
denote rad(B) ∶= r as the pre-assigned radius of the ball B = B(x, r), and aB ∶= B(x, ar) for a > 0.

De�nition 2.1. We say that µ is doubling if there exists a constant Cd ≥ 1, called the doubling constant, such
that

0 < µ(2B) ≤ Cdµ(B) <∞
for every ball B.
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We say that (X, d, µ) is Ahlfors Q-regular, with Q > 0, if there is a constant CA ≥ 1 such that whenever
x ∈ X and 0 < r < diam(X), we have

rQ

CA
≤ µ(B(x, r)) ≤ CA rQ .

Throughout the paper, we always assume µ to be doubling.

De�nition 2.2. Let A ⊂ X. The codimension 1 Hausdor� measure of A is given by

H(A) ∶= lim
r→0+

inf {∑
k∈I

µ(Bk)
rad(Bk)

∣A ⊂⋃
k∈I
Bk where rad(Bk) ≤ r and I ⊂ N} .

Note that a complete metric space equipped with a doubling measure is always proper, that is, closed and
bounded sets are compact. Given an open set Ω ⊂ X, we write u ∈ L1loc(Ω) if u ∈ L1(V) for every open V ⋐ Ω;
this expression means that V is a compact subset of Ω. Other local spaces are de�ned analogously.

A curve is a continuous mapping from a compact interval into X, and a recti�able curve is a curve with
�nite length. The length of a recti�able curve γ is denoted by `γ . Every recti�able curve can be parametrized
by arc-length, see e.g. [10, Theorem 3.2]. In the following de�nitions, we let 1 ≤ p <∞; in most of the paper
we will assume that 1 < p <∞.

De�nition 2.3. LetM be a collection of Borel measures on X. The admissible class ofM, denoted A(M),
is the set of all nonnegative Borel functions ρ∶X→ [0,∞] such that

∫
X

ρ dλ ≥ 1

for all λ ∈M. The p-modulus of the familyM is given by

Modp(M) ∶= inf
ρ∈A(M)∫

X

ρp dµ.

We say that a nonnegative Borel function ρ is p-weakly admissible for the collectionM if ρ is admissible for
all but a p-modulus zero collection of measures.

Modp is an outer measure on the class of all Borel measures, see [8]. There are two types of collections of
measures associated with quasiconformal mappings. Firstly, given a collection Γ of curves in X, we set Γ to
also denote the arc-lengthmeasures restricted to each curve in Γ; then the admissibility condition is replaced
by

∫
γ

ρ ds ≥ 1

for every recti�able γ ∈ Γ, where

∫
γ

ρ ds ∶=
`γ

∫
0
ρ(γ(s)) ds

for recti�able γ. We say that a property holds for p-almost every curve if it fails only for a curve family with
zero p-modulus. Secondly, for a collection L of sets of �nite perimeter in a set Ω, we consider the measures
P(U, ⋅) for each U ∈ L (see the de�nition given later).

De�nition 2.4. Let Ω ⊂ X be µ-measurable. Given a function u∶Ω → R, a Borel function g∶Ω → [0,∞] is
said to be an upper gradient of u in Ω if for every nonconstant recti�able curve γ in Ω,

∣u(x) − u(y)∣ ≤ ∫
γ

g ds, (2.1)
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where x and y are the endpoints of γ.We interpret ∣u(x)−u(y)∣ =∞whenever either ∣u(x)∣ or ∣u(y)∣ is in�nite.
A function u is said to be in the Newton-Sobolev class N1,p(Ω) if u ∈ Lp(Ω) and there is an upper gradient g
of u in Ω such that g ∈ Lp(Ω). We let

∥u∥N1,p(Ω) ∶= ∥u∥Lp(Ω) + inf ∥g∥Lp(Ω),

where the in�mum is taken over upper gradients g of u inΩ.We say that a nonnegative µ-measurable function
g is a p-weak upper gradient of a function u in Ω if (2.1) holds for p-almost every curve in Ω.

If u ∈ N1,p
loc (Ω), then there exists aminimal p-weak upper gradient of u in Ω, always denoted by gu, satisfying

gu ≤ g a.e. in Ω for every p-weak upper gradient g ∈ Lploc(Ω) of u in Ω; see [4, Theorem 2.25] We refer the
reader to [4, 14, 24] for more details regarding mappings in N1,p

loc (Ω).

De�nition 2.5. We say that the space X supports a p-Poincaré inequality if there exist constants CP > 0 and
λ ≥ 1 such that for all balls B in X, all measurable functions u on X and all upper gradients g of u,

⨏
B

∣u − uB ∣ dµ ≤ CP rad(B)
⎛
⎜
⎝
⨏
λB

gp dµ
⎞
⎟
⎠

1/p

.

Here we denote the integral average of u over B by

uB ∶= ⨏
B

u dµ ∶= 1
µ(B) ∫

B

u dµ.

We will assume throughout the paper that X supports a 1-Poincaré inequality.

De�nition 2.6. For any disjoint sets E, F ⊂ X, we de�ne Γ(E, F;X) to be the collection of curves in X joining
E and F. We say that X is a Loewner space if there is a function ϕ∶ (0,∞) → (0,∞) such that

Modp(Γ(E, F;X)) ≥ ϕ(t)

whenever E and F are two disjoint, nondegenerate continua (compact connected sets) such that

t ≥ ∆(E, F) ∶= dist(E, F)
min{diam(E), diam(F)} .

De�nition 2.7. The p-capacity of a set A ⊂ X is given by

Capp(A) ∶= inf ∥u∥N1,p(X),

where the in�mum is taken over functions u ∈ N1,p(X) satisfying u ≥ 1 in A. If a property holds outside a set
with p-capacity zero, we say that it holds p-quasieverywhere, or p-q.e.

We say that a set V ⊂ X is p-quasiopen if for every ε > 0 there is an open set G ⊂ X such that Capp(G) < ε
and V ∪ G is open.

The relative p-capacity of two sets A ⊂ Ω ⊂ X is given by

capp(A,Ω) ∶= inf∫
X

gpu dµ

where the in�mum is over all functions u ∈ N1,p(X) such that u ≥ 1 p-q.e. in A and u ≤ 0 in X∖Ω. Recall that
gu denotes the minimal p-weak upper gradient of u.

We know that Capp is an outer capacity in the following sense:

Capp(A) = inf{Capp(W) ∶ W ⊃ A, W is open}

for any A ⊂ X, see e.g. [4, Theorem 5.31].
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If Ω ⊂ X is µ-measurable, then

v = 0 p-q.e. in Ω implies ∥v∥N1,p(Ω) = 0, (2.2)

see [4, Proposition 1.61].
From now on, let 1 < p <∞.

De�nition 2.8. A set E ⊂ X is p-thin at x ∈ X if
1

∫
0

(
capp(E ∩ B(x, t), B(x, 2t))
capp(B(x, t), B(x, 2t))

)
1
p−1 dt

t
<∞.

If E is not p-thin at x, we say that it is p-thick. We denote the collection of all points where E is p-thick by
bpE. If X ∖ E is p-thin at each point x ∈ E, we say that the set E is p-�nely open. Then the p-�ne topology on
X is the collection of all p-�nely open sets.

De�nition 2.9. Given a nonempty open set Ω and two disjoint sets E, F, we de�ne the capacity of the con-
denser (E, F;Ω) by

capp(E, F;Ω) ∶= inf∫
Ω

gpu dµ,

where the in�mum is taken over all u ∈ N1,p(Ω) satisfying 0 ≤ u ≤ 1 in Ω, u = 1 in E ∩ Ω, and u = 0 in F ∩ Ω.

De�nition 2.10. A function u ∈ N1,p
loc (Ω) is a p-minimizer in an open set Ω ⊂ X if for all φ ∈ Lipc(Ω) we have

∫
{φ/=0}

gpu dµ ≤ ∫
{φ/=0}

gpu+φ dµ,

where Lipc(Ω) denotes the collection of Lipschitz functions that are compactly supported in Ω. If the above
inequality holds for all nonnegative φ ∈ Lipc(Ω), we say that u is a p-superminimizer, and if it holds for all
nonpositive φ ∈ Lipc(Ω), we say that u is a p-subminimizer.

Next we consider the theory of BV functions in metric spaces.

De�nition 2.11. For an open set Ω ⊂ X and u ∈ L1loc(Ω), the total variation of u in Ω is given by

∥Du∥(Ω) ∶= inf
⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim inf
n→∞ ∫

Ω

gun dµ ∶ (un)n∈N ⊂ Liploc(Ω), un → u in L1loc(Ω)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We say u ∈ L1(Ω) is of bounded variation on Ω, denoted u ∈ BV(Ω), if ∥Du∥(Ω) <∞.

It is shown in [23, Theorem 3.4] that ∥Du∥ is a Radon measure in Ω for any u ∈ BVloc(Ω). We call ∥Du∥ the
variation measure of u.

De�nition 2.12. A measurable set U ⊂ X has �nite perimeter in Ω if ∥DχU∥(Ω) < ∞. We call ∥DχU∥ the
perimeter measure of U and we will denote it P(U, ⋅).

De�nition 2.13. We say that X supports a relative isoperimetric inequality if there exist constants CI > 0 and
λ ≥ 1 such that for all balls B and for all measurable sets U, we have

min{µ(B ∩ U), µ(B ∖ U)} ≤ CI rad(B)P(U, λB).

We know that when µ is doubling and X supports a 1-Poincaré inequality, then it supports a relative isoperi-
metric inequality, see for example [20, Theorem 3.3] (in a slightly di�erent form, this was proved earlier in [2,
Theorem 4.3]).
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The noncentered Hardy-Littlewood maximal function of a function ρ ∈ L1loc(X) is de�ned by

Mρ(x) ∶= sup
B∋x

⨏
B

∣ρ∣ dµ, (2.3)

where the supremum is taken over all open balls containing x ∈ X.
Finally we give the de�nition of quasiconformal mappings on metric spaces. Let (Y , dY , µY) be another

metric space equipped with a Radon measure µY .

De�nition 2.14. For a function f ∶X→ Y, de�ne for all x ∈ X and r > 0

Lf (x, r) ∶= sup
y∈B(x,r)

dY(f(x), f(y)) and lf (x, r) ∶= inf
y∈X∖B(x,r)

dY(f(x), f(y)).

A homeomorphism f is (metric) quasiconformal if there is a constant H ≥ 1 such that for all x ∈ X we have

lim sup
r→0+

Lf (x, r)
lf (x, r)

≤ H.

A homeomorphism f is geometric quasiconformal if there is a constant K ≥ 1 such that whenever Γ is a family
of curves in X, we have

1
K
Modp(fΓ) ≤ Modp(Γ) ≤ KModp(fΓ).

It is known that when both X and Y are Ahlfors p-regular and support a p-Poincaré inequality, the two
notions of quasiconformality are equivalent, see Theorem 9.8 in [13]. We will make use of this fact in Section
5, but we will give a self-contained proof where we only need somewhat weaker assumptions than Ahlfors
regularity.

Standing assumptions: Throughout this paper we will assume that 1 < p < ∞ and that (X, d, µ) is a com-
plete metric measure space that supports a 1-Poincaré inequality, such that µ is doubling. We will use the
letter C to denote various nonnegative constants that depend only on p and the space X, and the value of C
could di�er at each occurrence.

3 Background results
In this section we will gather most of the background results needed in the paper. We start with the following
coarea formula for BV functions, which is stated in Remark 4.3 of [23].

Theorem 3.1. Suppose Ω ⊂ X is open and u ∈ BV(Ω). For each t ∈ R, denote the super-level set of u by
{u > t} ∶= {x ∈ Ω ∶ u(x) > t}. Then for every nonnegative Borel function ϕ on Ω and every Borel set A ⊂ Ω,

∫
R

⎛
⎜
⎝
∫
A

ϕ dP({u > t}, ⋅)
⎞
⎟
⎠
dt = ∫

A

ϕ d∥Du∥.

We have the following “continuity from below” for families of measures; for a proof see Lemma 2.3 in [27].

Lemma 3.2. If {Lj}j∈N is a sequence of families of Borel measures such that Lj ⊂ Lj+1 for each j, then

Modp (⋃
j∈N
Lj) = lim

j→∞
Modp(Lj).

By applying Fuglede’s and Mazur’s lemmas, see e.g. [13, p.19, p.131], we get the following.
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Lemma 3.3. Let L be a family of Borel measures withModp(L) <∞. Then there exists a p-weakly admissible
function ρ such that

∫
X

ρp dµ = Modp(L).

The following lemma is proved in [22, Lemma 5.2].

Lemma 3.4. If ρ is a p/(p−1)-integrable, p/(p−1)-weakly admissible function for a family of Borel measures
L such that

Mod p
p−1

(L) = ∫
X

ρ
p
p−1 dµ

and ϕ is another p/(p − 1)-integrable, p/(p − 1)-weakly admissible function for L, then

Mod p
p−1

(L) ≤ ∫
X

ϕ ρ
1
p−1 dµ.

Wenote that various results thatwe cite, such as the following theorem, rely on assuming the space to support
a p-Poincaré inequality, but this follows via Hölder’s inequality from the 1-Poincaré inequality that is our
standing assumption.

Theorem 3.5. Suppose that X satis�es the lower mass bound

µ(B(x, r)) ≥ crp

for all x ∈ X and 0 < r < diam(X), and some constant c > 0. Then X is a Loewner space.

Proof. See Theorem 5.7 in [12]. Note that the so-calledφ-convexity assumed in this theoremholds since under
our assumptions the space is quasiconvex, meaning that every pair of points can be joined by a curve whose
length is at most a constant number times the distance between the points; see e.g. [4, Theorem 4.32].

The space X is linearly locally connected in the following sense.

Theorem 3.6. Suppose X satis�es the upper mass bound

µ(B(x, r)) ≤ C0rp

for all x ∈ X and r > 0, and a constant C0 > 0. Then there exists a constant C1 ≥ 1 such that for every ball
B = B(x, r), any pair of points in B ∖ 1

2B can be joined by a curve in B(x, C1r) ∖ B(x, r/C1).

Proof. See Remark 3.19 in [12]; note that there it is also assumed that the space is of Hausdor� dimension p,
but this is not needed in the proof.

Finally we give a few results concerning superminimizers; recall De�nition 2.10. Let W ⊂ X be an open set.
We de�ne the lsc-regularization (lower semicontinuous regularization) of a function u onW by

u∗(x) ∶= lim
r→0

ess inf
B(x,r)

u, x ∈ W .

The following proposition is given as part of Theorem 8.22 in [4].

Proposition 3.7. If u is a p-superminimizer in W, then u∗ is lower semicontinuous in W and u = u∗ p-q.e. in
W .

More precisely, the fact that u = u∗ p-q.e. in W is given in the proof of [4, Theorem 8.22]. By (2.2) we know
that u∗ is still a p-superminimizer.

It is a well known fact that superharmonic functions are �nely continuous; this was shown in the metric
space setting in [7] and [19]. Here we record this result in the following theorem, which follows by combining
Proposition 7.12, Theorem 9.24(a,c), and Theorem 11.38 of [4].
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Theorem 3.8. Let u be a p-superminimizer in W . Then u∗ is continuous with respect to the p-�ne topology in
W .

4 Proof of Theorem 1.1
Wewill consider the following families of curves and surfaces; recall the concept of capacitary thinness from
De�nition 2.8.

De�nition 4.1. For an open set Ω ⊂ X and any disjoint sets E, F ⊂ X, we de�ne Γ(E, F;Ω) to be the collection
of curves in Ω joining E ∩ Ω and F ∩ Ω. We also de�ne the collection of measures

L(E, F;Ω) ∶= {P(U,Ω ∩ ⋅) ∶ U ⊂ X is µ-measurable with
bpE ∩ Ω ⊂ int(U) and bpF ∩ Ω ⊂ ext(U)},

where ext(U) = X ∖ U.

By an abuse of terminology, wewill also talk about the sets U belonging toL(E, F;Ω). Essentially, the bound-
aries of U are “surfaces” that “separate” E and F in Ω, but since we do not assume E and F to necessarily be
compact subsets of Ω, the choice of the correct de�nition for L(E, F;Ω) becomes rather subtle. If one would
employ the usual de�nition where the surfaces need to stay at a strictly positive distance from E and F, it
would be di�cult to prove the lower bound of Theorem 1.1. On the other hand, if one allows the surfaces to
“touch” E and F signi�cantly, then it becomes di�cult to prove the upper bound. For this reason, we allow
the surfaces to “touch” E and F only at capacitary thinness points.

Throughout this section, we will abbreviate L = L(E, F;Ω) and Γ = Γ(E, F;Ω). We begin by proving the
lower bound.

Proposition 4.2. Let Ω ⊂ X be nonempty, open and bounded and let E, F ⊂ X with E∩ F = ∅. ThenModp(Γ) <
∞, and if alsoMod p

p−1
(L) <∞, then

1 ≤ Mod p
p−1

(L)
p−1
p Modp(Γ)

1
p .

Proof. Since E ∩ Ω and F ∩ Ω are two disjoint compact sets, we have d ∶= dist(E ∩ Ω, F ∩ Ω) > 0 and so
Modp(Γ) <∞; e.g. d−1χΩ is an admissible function. By [12, Proposition 2.17] and [16, Theorem 1.11] we have

capp(E, F;Ω) = Modp(Γ); (4.1)

recall De�nition 2.9. Then by [5, Theorem5.13]we �nd a capacitary potential of E and F inΩ, that is, a function
u ∈ N1,p(Ω) such that 0 ≤ u ≤ 1 in Ω, u = 1 in E ∩ Ω, u = 0 in F ∩ Ω, and

capp(E, F;Ω) = ∫
Ω

gpu dµ.

We �nd two disjoint open setsW1,W2 ⊂ Ω with E∩Ω ⊂ W1 and F∩Ω ⊂ W2. Since u is a capacitary potential,
for any nonnegative φ ∈ Lipc(W1) ⊂ Lipc(Ω) we have that u + φ is admissible for capp(E, F;Ω) and so

∫
Ω

gpu dµ ≤ ∫
Ω

gpu+φ dµ,

and so by the locality of minimal weak upper gradients (see e.g. [4, Corollary 2.21]),

∫
{φ/=0}

gpu dµ ≤ ∫
{φ/=0}

gpu+φ dµ.
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Thus u is superminimizer in W1, and analogously a subminimizer in W2. Let u∗ be the lsc-regularization of
u in W1 and the analogously de�ned usc-regularization of u in W2, and u∗ = u in Ω ∖ (W1 ∪W2). Then by
Proposition 3.7, u∗ is lower semicontinuous inW1 and, analogously, upper semicontinuous inW2, and u = u∗
p-q.e. in Ω.

Let L0 be the collection of super-level sets of u∗, Ut ∶= {x ∈ Ω ∶ u∗(x) > t}, for t ∈ (0, 1). By Theorem
3.8 we have u∗ = 1 in bpE ∩ Ω. Thus the sets Ut ∩W1, for t ∈ (0, 1), are open and contain bpE ∩ Ω, and so
each set int(Ut) contains bpE ∩ Ω. Analogously, bpF ∩ Ω ⊂ ext(Ut) for all t ∈ (0, 1). In conclusion we have
L0 ⊂ L, or more precisely P(Ut ,Ω ∩ ⋅) is in L for every t ∈ (0, 1). ThusMod p

p−1
(L0) ≤ Mod p

p−1
(L) <∞.

Let ρ ∈ Lp/(p−1)(X) be any admissible function for Mod p
p−1

(L0). By e.g. [4, Proposition 2.44] we know
that gu,1 ≤ gu in Ω, where gu,1 and gu are the minimal 1-weak and p-weak upper gradients, respectively,
of u in Ω. Thus also u ∈ N1,1(Ω). Since Liploc(Ω) is dense in N1,1(Ω), see [4, Theorem 5.47], it follows that
u ∈ BV(Ω) with d∥Du∥ ≤ gu,1 dµ ≤ gu dµ in Ω. Using also the coarea formula of Theorem 3.1, we get

1 ≤
1

∫
0

⎛
⎜
⎝
∫
Ω

ρ dP(Ut , ⋅)
⎞
⎟
⎠
dt

= ∫
Ω

ρ d∥Du∥ ∣∣ since u∗ = u a.e.

≤ ∫
Ω

ρ gu dµ

≤
⎛
⎜
⎝
∫
Ω

ρ
p
p−1 dµ

⎞
⎟
⎠

p−1
p ⎛

⎜
⎝
∫
Ω

gpu dµ
⎞
⎟
⎠

1
p

=
⎛
⎜
⎝
∫
Ω

ρ
p
p−1 dµ

⎞
⎟
⎠

p−1
p

Modp(Γ)
1
p ,

using also (4.1). Taking the in�mum over admissible ρ, we get

1 ≤ Mod p
p−1

(L0)
p−1
p Modp(Γ)

1
p ≤ Mod p

p−1
(L)

p−1
p Modp(Γ)

1
p .

In the case where E and F are compact, we get the lower bound also for the following smaller family of sur-
faces:

L∗ ∶= L∗(E, F;Ω) ∶= {P(U,Ω ∩ ⋅) ∶ E ⊂ int(U) and F ⊂ ext(U)}. (4.2)

Proposition 4.3. Let Ω ⊂ X be a nonempty bounded domain and let E, F ⊂ Ω be disjoint nonempty compact
sets. IfMod p

p−1
(L∗) <∞, then

1 ≤ Mod p
p−1

(L∗)
p−1
p Modp(Γ)

1
p .

Proof. The proof is almost the same as for Proposition 4.2; we only need to note that since E and F are com-
pact, according to Theorem 1.1 in [17] we �nd for every ε > 0 a function u ∈ Liploc(Ω) with 0 ≤ u ≤ 1 in Ω,
u = 1 in E, u = 0 in F, and

∫
Ω

gpu dµ < capp(E, F;Ω) + ε.

Then we can consider the super-level sets {x ∈ Ω ∶ u(x) > t} for t ∈ (0, 1), which all belong to L∗.

Nowwe prove the upper bound. Part of the idea for the following proof came from Lohvansuu and Rajala [22];
the authors would like to thank them for sharing an early version of their manuscript.
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Proposition 4.4. LetΩ ⊂ X be open and E, F ⊂ X be disjoint sets with Capp(bpE∖E) = 0 and Capp(bpF∖F) =
0. IfMod p

p−1
(L) =∞ thenModp(Γ) = 0, and if 0 < Mod p

p−1
(L) <∞ then

Mod p
p−1

(L)
p−1
p Modp(Γ)

1
p ≤ C

for a constant C.

Note that in particular, a closed set E satis�es Capp(bpE ∖ E) = 0.

Proof. Let x ∈ X ∖ bpE. Since Capp(bpE ∖ E) = 0, by de�nition of the variational capacity we get

capp(B(x, t) ∩ bpE, B(x, 2t)) ≤ capp(B(x, t) ∩ E, B(x, 2t))

for every t > 0. Thus

1

∫
0

(
capp(B(x, t) ∩ bpE, B(x, 2t))

capp(B(x, t), B(x, 2t))
)

1
p−1 dt

t
≤

1

∫
0

(
capp(B(x, t) ∩ E, B(x, 2t))
capp(B(x, t), B(x, 2t))

)
1
p−1 dt

t
<∞.

Thus, X ∖ bpE is p-�nely open. Similarly, X ∖ bpF is p-�nely open and so X ∖ (bpE ∪ bpF) is as well.
Now by Theorem 1.4 in [6], we have that X∖ (bpE∪ bpF) is p-quasiopen. Then for each i ∈ N, we can �nd

an open set Gi ⊂ Xwith Capp(Gi) < 1/i and so that (X∖(bpE∪bpF))∪Gi is open.We can assume that the sets
Gi form a decreasing sequence. Furthermore, we know that Capp(E ∖ bpE) = 0 and Capp(F ∖ bpF) = 0 (see
Corollary 1.3 in [6]) so then since Capp is an outer capacity, we can choose Gi to contain E∆bpE and F∆bpF,
where ∆ denotes the symmetric di�erence. We now have that (bpE ∪ bpF) ∖ Gi = (E ∪ F) ∖ Gi and this is a
closed set.

Take open sets Ω1 ⋐ Ω2 ⋐ . . . ⋐ Ω with Ω = ⋃∞i=1 Ωi. De�ne

Γi ∶= {γ ∈ Γ(E, F;Ω) ∶ ∣γ∣ ⊂ Ωi ∖ Gi},

where ∣γ∣ is the image of γ in X. Fix i ∈ N and a recti�able curve γ ∈ Γi (assume for now that Γi /= ∅). Let

Li,j ∶= {P(U,Ω ∩ ⋅) ∶ dist(Ωi ∩ E ∖ Gi , X ∖ U) > j−1 and dist(Ωi ∩ F ∖ Gi , U) > j−1}.

Also �x j ∈ N. We wish to construct an admissible function for Li,j. First we construct a Whitney covering of
γ. Set

d(x) ∶= dist(x, (Ωi ∩ (E ∪ F) ∖ Gi)) ∪ (X ∖ Ω))

and note that d(x) > 0 for all x ∈ ∣γ∣ ∖ (E ∪ F). For k ∈ Z set

∣γ∣k ∶= {x ∈ ∣γ∣ ∶ 2k−1 < d(x) ≤ 2k}

and
Fk ∶= {B(x, d(x)25λ ) ∶ x ∈ ∣γ∣k} .

So Fk forms a cover of ∣γ∣k. Then by the 5-covering theorem, we can �nd a pairwise disjoint subcollection
Gk ⊂ Fk such that

∣γ∣k ⊂ ⋃
B∈Fk

B ⊂ ⋃
B∈Gk

5B.

Since ∣γ∣k is bounded, Gk is �nite for each k. Letting B ∶= ⋃k∈Z Gk, the collection of �ve times enlarged balls
from B is a cover for ∣γ∣ ∖ (E ∪ F). Now for U ∈ Li,j, set

T ∶= sup{t ∈ (0, `γ) ∶
µ(U ∩ 5B)
µ(5B) ≥ 1

2 for all B ∈ B such that γ(t) ∈ 5B} .

We know that the above supremum is attained and T ∈ (0, `γ) since Ωi ∩ bpE ∖ Gi = Ωi ∩ E ∖ Gi is a compact
subset of the open set int(U) and Ωi ∩ bpF ∖ Gi = Ωi ∩ F ∖ Gi is a compact subset of the open set ext(U), and
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by the de�nition of B. Let B1 ∈ B such that γ(T) ∈ 5B1. By continuity of γ and de�nition of T, there exists
κ > 0 such that γ(T − κ) ∈ 5B1 and µ(U∩5B)

µ(5B) ≥ 1
2 for all B ∈ B such that γ(T − κ) ∈ 5B. Thus µ(U∩5B1)

µ(5B1) ≥ 1
2 .

Again by continuity of γ, there exists δ > 0 such that γ(T+δ) ∈ 5B1. Then since T+δ > T, we know that there
exists a ball B2 ∈ B with γ(T + δ) ∈ 5B2 such that µ(U∩5B2)µ(5B2) < 1

2 . So we have

µ(U ∩ 5B2)
µ(5B2)

< 1
2 ≤ µ(U ∩ 5B1)

µ(5B1)
. (4.3)

By the fact that 5B1 ∩ 5B2 is nonempty (since it contains γ(T + δ)), it is easy to check that rad(B1) ≤
2 rad(B2) ≤ 4 rad(B1). Hence 5B2 ⊂ 25B1. By using �rst (4.3) and the doubling property and then the relative
isoperimetric inequality of De�nition 2.13, we get for some constant C̃ > 0 (depending only on the doubling
constant)

1
C̃
≤ min{µ(25B1 ∩ U)

µ(25B1)
, µ(25B1 ∖ U)

µ(25B1)
} ≤ 25CI rad(B1)

µ(B1)
P(U, 25λB1). (4.4)

Choose Kj ∈ Z so that 2Kj < 1
2 min{1

j , dist(Ω
0
i , X ∖ Ω)}. Then for any k ≤ Kj and B ∈ Gk, either 25B ⊂ U

or 25B and U are disjoint, which implies that µ(U∩25B)µ(25B) ∈ {0, 1}. Therefore we know that B1 ∈ Gk for some
k ≥ Kj. De�ne

ϕi,j ∶= 25CI C̃ ∑
k≥Kj

∑
B∈Gk

rad(B)
µ(B) χ25λB .

Recall that Gk is �nite for each k. Also ∣γ∣ is bounded, so there exists a K0 ∈ Z such that Gk is empty for all
k ≥ K0. Hence the function ϕi,j is p/(p − 1)-integrable. Furthermore, ϕi,j is admissible for Li,j, since for any
U ∈ Li,j, by (4.4) we have

∫
Ω

ϕi,j dP(U, ⋅) = 25CI C̃∫
Ω

∑
k≥Kj

∑
B∈Gk

rad(B)
µ(B) χ25λB dP(U, ⋅)

= 25CI C̃ ∑
k≥Kj

∑
B∈Gk

rad(B)
µ(B) P(U, 25λB)

≥ 1.

Using Lemma 3.3, pick a p/(p − 1)-weakly admissible function ρi,j such that

Mod p
p−1

(Li,j) = ∫
X

ρ
p
p−1
i,j dµ.

Recall the de�nition of the noncenteredHardy-Littlewoodmaximal function from (2.3).We now apply Lemma
3.4 which gives

Mod p
p−1

(Li,j) ≤ ∫
X

ϕi,j ρ
1
p−1
i,j dµ

≤ C∫
X

∑
k≥Kj

∑
B∈Gk

rad(B)
µ(B) χ25λB ρ

1
p−1
i,j dµ

≤ C∑
k∈Z

∑
B∈Gk

rad(B)
µ(B) ∫

25λB

ρ
1
p−1
i,j dµ

≤ C∑
k∈Z

∑
B∈Gk

rad(B) ⨏
25λB

ρ
1
p−1
i,j dµ

≤ C∑
k∈Z

∑
B∈Gk

rad(B) inf
x∈B
Mρ

1
p−1
i,j (x)

≤ C∫
γ

Mρ
1
p−1
i,j ds;

(4.5)
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the last inequality holds because the curve γ travels at least the length rad(B) inside B, and the balls in each
Gk are pairwise disjoint and clearly two balls B1 ∈ Gk and B2 ∈ Gl can only intersect if ∣k − l∣ = 1.

Now we show that⋃j Li,j = L. First note that

⋃
j
Li,j = {U ∈ L ∶ dist(Ωi ∩ E ∖ Gi , X ∖ U) > 0 and dist(Ωi ∩ F ∖ Gi , U) > 0}.

Now if we take U ∈ L, then Ωi ∩bpE∖Gi ⊂ Ω∩bpE ⊂ int(U), i.e. Ωi ∩bpE∖Gi is a compact subset of the open
set int(U). Hence there is a strictly positive distance between Ωi ∩ bpE ∖Gi = Ωi ∩ E ∖Gi and X ∖U. A similar
argument shows that there is a strictly positive distance between Ωi ∩ F ∖ Gi and U. Therefore U ∈ ⋃j Li,j,
proving that⋃j Li,j = L.

Now note that since we are assuming Mod p
p−1

(L) /= 0, and the families Li,j are increasing in j, by
Lemma 3.2 we have Mod p

p−1
(Li,j) > 0 for all su�ciently large j ∈ N (with i still �xed). Thus by (4.5),

CMod p
p−1

(Li,j)−1Mρ
1
p−1
i,j is admissible for Γi. Therefore

Modp(Γi) ≤ CMod p
p−1

(Li,j)−p ∫
X

(Mρ
1
p−1
i,j )

p
dµ.

Since themaximal function is a bounded operator from Lp(X) to Lp(X)when 1 < p <∞, see e.g. [4, Theorem
3.13], we get

Modp(Γi)
1
p ≤ CMod p

p−1
(Li,j)−1∥Mρ

1
p−1
i,j ∥

Lp(X)

≤ CMod p
p−1

(Li,j)−1∥ρ
1
p−1
i,j ∥

Lp(X)

= CMod p
p−1

(Li,j)−1
⎛
⎜
⎝
∫
X

ρ
p
p−1
i,j dµ

⎞
⎟
⎠

1
p

= CMod p
p−1

(Li,j)
1−p
p .

Recalling that limj→∞Mod p
p−1

(Li,j) = Mod p
p−1

(L), we get

Modp(Γi)
1
p ≤ CMod p

p−1
(L)

1−p
p , (4.6)

and in particularModp(Γi) = 0 ifMod p
p−1

(L) =∞. Note that (4.6) holds also if Γi = ∅.
Finally note that the sequence Γi is increasing with⋃i∈N Γi = Γ ∖ N, where

N ∶= {γ ∈ Γ ∶ ∣γ∣ ∩⋂
i
Gi /= ∅} .

But Capp (⋂i Gi) = 0, and so Modp(N) = 0, see e.g. [4, Proposition 1.48]. So by Lemma 3.2 we have
limi→∞Modp(Γi) = Modp(Γ ∖ N) = Modp(Γ). Combining this with (4.6) above, we get

Modp(Γ)
1
p = lim

i→∞
Modp(Γi)

1
p ≤ CMod p

p−1
(L)

1−p
p ,

and in particularModp(Γ) = 0 ifMod p
p−1

(L) =∞.

Now Theorem 1.1 from the introduction follows from Proposition 4.2 and Proposition 4.4.We give the theorem
in the following more precise form.

Theorem 4.5. Let Ω ⊂ X be nonempty, open and bounded and let E, F ⊂ X be such that E ∩ F = ∅ and
Capp(bpE ∖ E) = 0 and Capp(bpF ∖ F) = 0. IfMod p

p−1
(L) =∞ thenModp(Γ) = 0, and else

1 ≤ Mod p
p−1

(L)
p−1
p Modp(Γ)

1
p ≤ C

for some constant C ≥ 1.
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Proof. If Mod p
p−1

(L) = ∞ then Modp(Γ) = 0 by Proposition 4.4. Else Proposition 4.2 gives Modp(Γ) < ∞ as
well as the lower bound of the theorem, and in particular this guarantees 0 < Modp(Γ) <∞. Then the upper
bound follows from Proposition 4.4.

5 Proof of Theorem 1.2
Now we can prove Theorem 1.2 given in the introduction. We give it in the following somewhat more general
form.

Theorem 5.1. Suppose that (Y , dY , µY) is another completemetric space that supports a1-Poincaré inequality,
such that µY is doubling and

µ(B(x, r)) ≥ C−10 rp and µY(B(y, r)) ≤ C0rp (5.1)

for all x ∈ X, y ∈ Y, r > 0, and a constant C0 > 0. Suppose f ∶X → Y is a homeomorphism such that for every
collection of surfaces L = L(E, F;Ω) with Ω ⊂ X nonempty, open and bounded and E, F ⊂ Ω compact, we have

Mod p
p−1

(fL) ≤ C0Mod p
p−1

(L),

where
fL = {P(f(U), f(Ω) ∩ ⋅) ∶ bpE ∩ Ω ⊂ int(U) and bpF ∩ Ω ⊂ ext(U)}.

Then f is quasiconformal with a constant depending only on C0, p, and the space X.

Of course, (5.1) is satis�ed in particular if X and Y are both Ahlfors p-regular; recall De�nition 2.1. Also recall
the de�nitions of Lf and lf from De�nition 2.14.

Proof. As complete metric spaces equipped with a doubling measure and supporting a Poincaré inequality,
X and Y are quasiconvex, see e.g. [4, Theorem 4.32], and so for each of them a biLipschitz change in the
metric gives a geodesic space (see Section 4.7 in [4]). Since the theorem is easily seen to be invariant under
biLipschitz changes in the metrics, we can assume that X and Y are geodesic.

We want to apply Proposition 4.3 and Proposition 4.4 to suitable sets de�ned via the homeomorphism f .
Fix x ∈ X and r > 0 and let L ∶= Lf (x, r) and l ∶= lf (x, r) > 0. Suppose also that L > 2C1l, where C1 is the
constant from Theorem 3.6. By choosing r su�ciently small, we have L < diam(Y)/4 (we can assume that
diam(Y) > 0). Since f(B(x, r)) is compact, there exists y ∈ f(B(x, r)) such that dY(f(x), y) = L.

Let E ∶= f−1(B(f(x), l)), and F ∶= f−1(F∗) where F∗ is the maximal connected set containing y and
contained in B(f(x),M) ∖ B(f(x), L/C1), for some �xed M ≥ 2C1L. By Theorem 3.6 (note that here we use
the upper bound in (5.1)) we have

F∗ ⊃ B(f(x),M/C1) ∖ B(f(x), L). (5.2)

Note that balls are connected in geodesic spaces, and f is a homeomorphism, so E and F are connected. Both
E and F are moreover closed, and since X and Y are proper, f and f−1 map bounded sets to bounded sets,
and so E and F are also bounded and thus compact. Since Y is connected, the set F∗ and thus also the set F
consists of at least 2 points and so diam(F) > 0. If r → 0 then diam(E) → 0, and thus by choosing r even
smaller if necessary, we can assume that diam(E) is less than diam(F). Note that Ω ∶= f−1(B(f(x),M + 1))
is also bounded. Let Γ = Γ(E, F;Ω) and L = L(E, F;Ω).

For the family fΓ consisting of the curves f ○ γ, with γ ∈ Γ, we have

fΓ = Γ(B(f(x), l), F∗;B(f(x),M + 1)).

From this it is easy to see that every curve in Γ(E, F;X) has a subcurve in Γ, and so Modp(Γ) =
Modp(Γ(E, F;X)); see e.g. [4, Lemma 1.34(c)]. Notice that f−1(y) ∈ F ∩ B(x, r), and we know that x ∈ E,
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so dist(E, F) ≤ r. It is straightforward to show that there is some z ∈ X ∖ B(x, r)with dY(f(x), f(z)) = l. Thus
r ≤ diam(E), which we noted to be less than diam(F), and so

dist(E, F)
min{diam(E), diam(F)} ≤ r

r
= 1.

By Theorem 3.5 we know that X is a Loewner space (note that here we need the lower mass bound in (5.1)),
and so

Modp(Γ) = Modp(Γ(E, F;X)) ≥ ϕ(1) > 0, (5.3)

where ϕ is the Loewner function for X. We observe that every curve in fΓ has a subcurve in the family
Γ(B(f(x), l), Y ∖ B(f(x), L/C1); Y). Thus

Modp(fΓ) ≤ Modp(Γ(B(f(x), l), Y ∖ B(f(x), L/C1)); Y).

Now by Proposition 5.3.9 in [14] we have

Modp(fΓ) ≤ C2 (log
L
C1l

)
1−p

(5.4)

for a constant C2 depending only on C0 and p (here we need the upper mass bound in (5.1)).
Since L < diam(Y)/4 and Y is connected, by (5.2) there exists a ball B ⊂ F∗ with rad(B) = L/2. Then from

the relative isoperimetric inequality of De�nition 2.13 and the doubling property of µY we see that for every
U ∈ fL,

P(U, B(f(x), 2λM)) ≥ (2CIM)−1min{µY(B(f(x), l)), µY(B)} =∶ c > 0.

It follows thatModp/(p−1)(fL) <∞, as c−1χB(f(x),2λM) is an admissible test function. Recall the de�nition of
the family L∗ ⊂ L from (4.2). For this family it is easy to verify (since f is a homeomorphism) that

fL∗ = L∗(B(f(x), l), F∗;B(f(x),M + 1)).

Thus by Proposition 4.3 and the assumption of the quasi-preservation of modulus of surfaces,

1 ≤ Mod p
p−1

(fL∗)
p−1
p Modp(fΓ)

1
p ≤ C

p−1
p

0 Mod p
p−1

(L)
p−1
p Modp(fΓ)

1
p .

Therefore, by Proposition 4.4 and since we hadModp(Γ) /= 0 (recall (5.3))

Modp(Γ)
1
p ≤ C

p−1
p

0 Modp(Γ)
1
p Mod p

p−1
(L)

p−1
p Modp(fΓ)

1
p ≤ C

p−1
p

0 CModp(fΓ)
1
p .

Combining this with (5.3) and (5.4), we have

ϕ(1) ≤ Modp(Γ) ≤ Cp−10 CpC2 (log
L
C1l

)
1−p

.

Thus
L
l
≤ C1 exp(C0C

p
p−1 C

1
p−1
2 ϕ(1)

1
1−p ).

Recall that we were assuming L > 2C1l; in conclusion

lim sup
r→0+

Lf (x, r)
lf (x, r)

≤ C1max{2, exp(C0C
p
p−1 C

1
p−1
2 ϕ(1)

1
1−p )}

for every x ∈ X. Therefore f is quasiconformal.

Remark 5.2. Note that in the above proof we employed the family L∗ because it is not clear that

fL = L(B(f(x), l), F∗;B(f(x),M + 1)).

This is the case because it is not clear that

bpE ⊂ int(f−1(U)) and bpF ⊂ ext(f−1(U))
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for every U ∈ L(B(f(x), l), F∗;B(f(x),M+1)), as would be required in the de�nition ofL(E, F;Ω). In other
words, the image under f or f−1 of every “separating surface”might not be a “separating surface”. It is known,
at least in Ahlfors regular spaces, that a quasiconformal mapping (whose inverse is also quasiconformal)
preserves the measure-theoretic interior, exterior, and boundary, see [9], [21, Theorem 6.1], and [15, Lemma
4.8]. If we knew a similar property to hold for capacitary thickness points, then the above problemwould not
arise. Thus we ask:

• If f ∶X→ Y is a quasiconformal mapping, do we have f(bpE) = bp f(E) for every (closed) set E ⊂ X?
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