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1. Introduction

Evaluation of air quality models (AQMs) is a key practice in
advancing the scientific understanding of various physical/chemi-
cal processes treated in the models, since it can help to validate the
formulations and parameterizations of major atmospheric pro-
cesses introduced by model development and demonstrate their
impact on capabilities of models in reproducing the atmospheric
observations. The evaluation of AQMs, especially on a regional
scale, has conventionally focused on comparing model predictions
with either ground-level measurements or to a lesser extent
airborne in-situ data or ground-based remote sensing profiles. Not
until recently, with the launches of many satellites by the U.S. Na-
tional Aeronautics and Space Administration (NASA), the U.S. Na-
tional Oceanic and Atmospheric Administration (NOAA), the
European Space Agency (ESA), the Canadian Space Agency (CSA),
and the Japan Aerospace Exploration Agency (JAXA) that can
measure atmospheric constituents, radiation budgets, and cloud/
aerosol properties, did the atmospheric science community start to
realize the potential and feasibility of utilizing such data to evaluate
regional-scale air qualitymodels (Vijayaraghavan et al., 2008).With
the development of more satellite instruments/sensors, more sat-
ellite data are now available with a global coverage and a large
number of atmospheric constituents simulated by air quality
models can be constrained.

Most current satellites commonly used for measuring atmo-
spheric composition and aerosol/cloud properties are low polar-
orbiting sun-synchronous satellites, which typically orbit at an
altitude of 700e800 km and view the equator (or the low-mid
latitudes) on the Earth at the same local time every day (Martin,
2008). Many sensors carried onboard those satellites passively
detect the emitted or scattered radiation from atmospheric gases
or aerosols. The detected radiances are then converted to
geophysical quantities of interests through complex retrieval
processes. Compared to other measurements, there are two major
advantages for using satellite retrieval data for air quality appli-
cations: large synoptic spatial coverage and vertically integrated
measures of atmospheric components aloft (Engel-Cox et al.,
2004; Vijayaraghavan et al., 2008). Recently, an increasing num-
ber of air quality studies have utilized satellite data in many ways,
e.g., identifying forest wildfires or dust storm events (Bian et al.,
2007; Song et al., 2008; Magi et al., 2009), tracing the long-
range transport of air pollutants (Heald et al., 2003; Hodzic
et al., 2007; Wang et al., 2009; Huang et al., 2013), deriving
boundary/initial conditions (BCs/ICs) for regional air quality
models (Tang et al., 2009), monitoring air quality in rural or
remote regions where no ground-level network (Engel-Cox et al.,
2004), conducting inverse modeling to estimate emission of pre-
cursors (Kopacz et al., 2009; Streets et al., 2013) or performing
data assimilation to constrain/improve the model performance
(Sandu and Chai, 2011; Miyazaki et al., 2012; Saide et al., 2013),
and evaluating performance of regional and global AQMs
(Kondragunta et al., 2008; Zhang et al., 2009, 2012a,b; Knote et al.,
2011; Wang and Zhang, 2012).

Significant progress has been achieved in the past decade in
the development of online-coupled meteorology and chemistry/
air quality modeling (Zhang, 2008; Baklanov et al., 2014). One of
the key issues addressed by online-coupled models is to investi-
gate the complex climateechemistryeaerosoleclouderadiation
feedback processes, which are closely related with column abun-
dance of atmospheric constituents such as ozone (O3) and fine
particular matter (PM2.5) as well as aerosol/cloud properties such
as aerosol optical depth (AOD) and cloud optical thickness (COT) in
the troposphere. Accurately reproducing those column abun-
dances and aerosol/cloud variables in the atmosphere is thus
important in estimating the aerosol direct and indirect effects as
well as interactions between meteorology/climate and air quality
for online-couple models. The satellite retrieval products provide
valuable and unique information for validation of the capabilities
of models in representing column abundances and aerosol/cloud
variables.

In Part I paper, a multi-model simulation intercomparison of O3
and PM2.5 formation indicators are conducted and a few key in-
dicators are also evaluated using available surface and satellite
observations (Campbell et al., 2015). In this Part II paper, a number
of satellite retrievals of column abundances of gases (e.g., carbon
monoxide (CO) and nitrogen oxide (NO2)), radiation budgets (e.g.,
downward surface solar radiation (SWDN) and outgoing top-of-
atmosphere (TOA) longwave radiation (OLR)), and aerosolecloud
associated properties (e.g., AOD and COT) are used to evaluate re-
sults from three online-couple models from six research groups as
part of the collaborative Air Quality Model Evaluation International
Initiative Phase 2 (AQMEII2) project (Alapaty et al., 2012).
AQMEII2 is targeted at evaluating the most advanced online-
coupled AQMs with representation of climateechemistryeaer-
osoleclouderadiation interactions and examining their status in
simulating these complex interactions. In the context of AQMEII2,
the objectives of this Part II are twofold. First, to perform an oper-
ational evaluation of the column abundances of major gases and
radiation/aerosol/cloud variables simulated by the participating
models using satellite retrievals over the North America (NA)
domain which covers the continental U.S., southern Canada, and
northern Mexico for the years 2006 and 2010. Second, to examine
the current status and capability of those state-of-the-science fully
coupled AQMs in predicting those variables. This study provides the
first comparative assessment of the capabilities of the current
generation of online-coupled models in simulating column
variables.
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2. Model description and evaluation protocols

2.1. Model description

Six research teams apply three state-of-the-science online-
coupled models over the NA domain which covers southern Can-
ada, continental U.S., and northern Mexico during AQMEII2. These
models include the Weather Research Forecasting model (WRF)
with chemistry (WRF/Chem) version 3.4.1 (Grell et al., 2005), the
WRF coupled with the Community Multiscale Air Quality model
system version 5.0.1 (WRFeCMAQ) (Wong et al., 2012), and the
Global Environmental Multi-scaleeModeling Air quality and
Chemistry model version 1.5.1 (GEMeMACH) (Moran et al., 2010).
Model/simulation configurations are summarized in Table 1 of
Campbell et al. (2015). Four out of six research groups apply WRF/
Chemwith different model configurations. They are North Carolina
State University, U.S., Technical University of Madrid, Spain, Na-
tional Center for Atmospheric Research, U.S., and University of
Murcia, Spain (the simulations from those groups are referred to as
NCSU, UPM, NCAR, and UMU, respectively). The U.S. Environmental
Protection Agency (EPA) uses WRFeCMAQ and Environment Can-
ada (EC) uses GEMeMACH (their simulations are referred to as EPA
and EC, respectively). In addition to slightly different domain sizes,
large differences exist in the horizontal/vertical resolution, the
physical and chemical modules, and natural emissions selected by
each group. Among the six groups, NCSU, EPA, and EC conduct the
full year simulations for both 2006 and 2010. UPM performs a
simulation for 2006 only and UMU and NCAR perform a simulation
for 2010 only. All WRF-based models use the Lambert Conformal
projection while GEMeMACH uses a rotated polar projection. All
groups simulate the secondary organic aerosol (SOA) formation
except for UPM. All groups include aqueous-phase (AQ) chemistry
and NCSU, EPA, and NCAR have included AQ chemistry for both
convective and resolved clouds. Most groups treat online dust
emissions except for UPM and EC. Aerosol indirect effects are
considered by all the simulations except for EPA.

Despite different model configurations, all six simulations use
the same set of anthropogenic emissions and chemical ICs/BCs, in
order to minimize the differences caused by different chemical
inputs. The anthropogenic emissions are comprised of data from
the U.S., Canada, and Mexico. For the U.S. emissions, the 2008 Na-
tional Emission Inventory (NEI) (version 2, released April 10, 2012)
is used as the basis for both the 2006 and 2010 model ready
Table 1
Statistics summary for all models in 2006.

Speciesa Satellite NCSU UPM

NMB (%) NME (%) R NMB (%) NME (%

CO MOPITT �9.3 9.7 0.90 �7.7 8.4
NO2 SCIAMACHY 14.1 33.6 0.90 �14.7 33.2
HCHO SCIAMACHY �24.5 29.0 0.77 �27.3 30.7
SO2 SCIAMACHY 16.1 76.5 0.59 26.2 82.3
TOR OMI/MLS 38.0 38.0 0.47 29.9 29.9
OLR NOAA/CDC �1.3 2.4 0.93 �2.2 3.3
LWDN CERES �1.9 2.5 0.99 �0.3 2.1
SWDN CERES 4.3 7.2 0.93 0.4 7.0
AOD MODIS �35.8 46.1 �0.02 �3.8 31.5
COT MODIS �64.1 64.1 0.68 e e

CF MODIS �2.8 10.4 0.81 0.5 11.6
CCN MODIS �64.0 64.0 0.52 �48.5 48.9
CDNC MODIS �33.6 47.7 0.18 �16.1 44.7
LWP MODIS �28.0 29.9 0.67 �22.6 29.8
PWV MODIS �1.4 8.7 0.97 �0.2 8.5

e Simulation results either not available or have issues.
a CO, NO2, HCHO, SO2 and TOR are all tropospheric abundance with units of 1018 molecu

LWDN, and SWDN with units of W m�2, AOD, COT, and CF are unitless; CCN with unit of
emission datasets (Pouliot et al., 2015). The 2008-based modeling
platform provides all the SMOKE inputs and datasets for processing
with SMOKE (Pouliot et al., 2015). These files contain the chemical
speciation files, the temporal allocation, and spatial allocation used
for emission processing with SMOKE. Year specific (2006 and 2010)
updates for different sectors (i.e., on/off road transport, wildfires
and prescribed fires, and Continuous Emission Monitoring (CEM)-
equipped point sources) are used. Canadian emissions are derived
from the Canadian National Pollutant Release Inventory and Air
Pollutant Emissions Inventory for the year 2006. These included
updated spatial allocations for Canadian mobile emissions for the
emissions of NH3, as well as other updates (Im et al., 2015a).
Mexican emissions are based on a 1999 inventory and projected to
year 2008 (Im et al., 2015a). Four groups use theModel of Emissions
of Gases and Aerosols from Nature (MEGAN) version 2 that is
embedded in WRF/Chem and two groups use different versions of
the Biogenic Emissions Inventory System (BEIS), which may lead to
large differences of isoprene emissions as indicated by Im et al.
(2015a). The chemical ICs/BCs are provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF) Integrated
Forecast system (IFS)- Model for Ozone And Related Tracers
(MOZART) model in the context of the Monitoring Atmospheric
Composition and Climate (MACC) project for major gaseous and
aerosol species with a 3-h temporal resolution and 1.125� spatial
resolution (Inness et al., 2013). These ICs/BCs are remapped based
on different chemical speciation and aerosol size representations of
the individual models.

2.2. Satellite data description

Table A1 in the supplementary material summarizes satellite
data used in this study. These include tropospheric CO column
abundances from the Measurements of Pollution in the Tropo-
sphere (MOPITT), tropospheric NO2, formaldehyde (HCHO), and
sulfur dioxide (SO2) abundances from the Scanning Imaging Ab-
sorption Spectrometer for Atmospheric Chartography (SCIMACHY),
the tropospheric O3 residuals (TORs) derived from the Ozone
Monitoring Instrument (OMI)/Microwave Limb Sounder (MLS),
SWDN and downward surface longwave radiation (LWDN) from the
Cloud's and the Earth's Radiant Energy System (CERES), OLR from
the Advanced Very High Resolution Radiometer (AVHRR), and AOD,
COT, cloud fraction (CF), cloud condensation nuclei (CCN), and
precipitable water vapor (PWV) from the Moderate Resolution
EPA EC

) R NMB (%) NME (%) R NMB (%) NME (%) R

0.88 �9.4 9.9 0.83 �2.2 5.3 0.85
0.93 2.1 34.9 0.86 �37.7 45.2 0.89
0.78 �11.5 30.6 0.51 59.2 59.8 0.71
0.62 42.1 91.0 0.59 114.2 144.7 0.64
0.56 e e e 19.9 19.9 0.87
0.86 0.4 1.5 0.97 e e e

0.98 �1.6 2.0 0.99 e e e

0.86 5.4 6.1 0.97 2.6 6.0 0.96
0.08 �34.9 39.4 �0.04 �56.7 56.7 0.08
e e e e 195.5 197.0 0.70
0.76 �2.4 8.7 0.90 e e e

0.56 e e e e e e

0.12 e e e �76.3 76.5 0.39
0.57 �34.7 44.7 0.41 222.2 230.4 0.88
0.97 1.3 8.7 0.98 e e e

les cm�2, 1015 molecules cm�2, 1015molecules cm�2, DU, and DU, respectively; OLR,
109 cm�2, CDNC with unit of cm�3; LWP with unit of g cm�3; PWV with unit of cm.
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Imaging Spectroradiometer (MODIS). Cloud droplet number con-
centration (CDNC) and cloud liquid water path (LWP) derived by
Bennartz (2007) based on MODIS retrievals are also used. A brief
description of those datasets is provided in the supplementary
material.

In this study, all satellite data used are level-3 monthly average
(except for CDNC, which is daily average) retrieval data from public
resources with various resolutions (see Table A1) except for CDNC
and LWP, which are derived based onMODIS data (Bennartz, 2007).
All the level-3 data have beenwell validated and quality assured by
the satellite data retrieval teams using independent aircraft and/or
sonde data (Martin, 2008). The satellite data with different reso-
lutions are mapped to the Lambert conformal projection used in all
simulations using the bi-linear interpolation of the NCAR command
language (http://www.ncl.ucar.edu/). The uncertainties associated
with individual data/retrieval algorithms may help explain some
differences between simulations and satellite-derived products and
will be further discussed in Sections 3 and 4.

2.3. Evaluation protocols

An operational performance evaluation is conducted in terms of
the spatial distribution and domainwide performance statistics
following the evaluation protocol from Zhang et al. (2006, 2009).
The metrics used in this analysis include the normalized mean bias
(NMB), the normalized mean error (NME), the correlation coeffi-
cient (R) and the coefficient of determination (R2), and the
normalized standard deviation (NSD) (see Supplementary for
associated formulas). Not all simulations predict or output all var-
iables and only the available variables are used for the intercom-
parison (see Tables 1 and 2 for variable availability). The model
outputs for all gas column abundances except for TORs and for all
aerosol/cloud variables except for CDNC are vertically integrated up
to the tropopause which is assumed to be 100 hPa (the exact choice
has little influence on those variables) following Zhang et al. (2009)
to generate the tropospheric amounts in order to match the satel-
lite data. For TORs, since they are very sensitive to the choice of
tropopause, the monthly average tropopause pressure provided by
the NCEP reanalysis database (similar NCEP data was used for OMI/
MLS retrievals) is used to calculate TORs from simulations. For
CDNC, it is processed as within low level warm clouds (corre-
sponding to pressure levels of 950e850 hPa) as suggested by
Bennartz (2007). All the gas column abundances and AOD are
Table 2
Statistics summary for all models in 2010.

Speciesa Satellite NCSU NCAR UM

NMB (%) NME (%) R NMB (%) NME (%) R NM

CO MOPITT �9.4 9.6 0.93 �10.0 10.2 0.93 e

NO2 SCIAMACHY 31.8 42.4 0.89 102.1 105.0 0.89 e

HCHO SCIAMACHY �25.0 33.8 0.69 14.2 32.2 0.69 e

SO2 SCIAMACHY �65.2 71.4 0.31 �65.6 71.5 0.30 e

TOR OMI/MLS 19.3 19.4 0.64 43.7 43.7 �0.20 e

OLR NOAA/CDC �0.8 1.9 0.95 �0.1 2.4 0.91
LWDN CERES �0.9 2.0 0.98 �5.0 5.0 0.99 �
SWDN CERES 2.7 6.8 0.91 14.4 15.0 0.89 1
AOD MODIS �29.5 42.7 �0.09 42.3 67.5 �0.17 e

COT MODIS �63.2 63.2 0.60 e e e e

CF MODIS 0.2 9.0 0.87 �9.1 13.1 0.74 �3
CCN MODIS �68.6 68.7 0.49 e e e e

CDNC MODIS �37.0 47.5 0.26 e e e e

PWV MODIS �1.1 10.1 0.96 �3.2 11.7 0.96 �
e Simulation results either not available or have issues.

a CO, NO2, HCHO, SO2, and TOR are all tropospheric abundance with units of 1018molec
GLW, and SWDN with units of W m�2; AOD, COT, and CF are unitless; CCN with unit of
available for 2010.
further processed to include the values only under cloud-free
conditions. As discussed in Section 5, no averaging kernels are
applied for the processing of model data. All model outputs are also
averaged at the same satellite crossing time in order to facilitate the
comparison. Since the domain size of individual simulation is
different, all simulation results have been re-gridded into the
domain of NCSU as a common domain to ensure a fair intercom-
parison. All the results are analyzed as annual average for all vari-
ables for 2006 and 2010. In addition, the model performance from
multiple models is examined using Taylor diagrams (Taylor, 2001)
to provide a concise statistical summary with respect to the cor-
relation, biases, and variances (as indicated by NSD).

3. Model evaluation for 2006

3.1. Column mass abundance

Fig. 1 compares the spatial distribution of tropospheric column
abundances for CO, NO2, HCHO, SO2, and TOR between satellite
observations and four simulations for 2006. The corresponding
performance statistics are given in Table 1. For CO, both MOPITT
observation and simulations show high CO abundances over the
continental source regions (e.g., the eastern U.S., the Atlantic coast
of the U.S., and California) and the trans-Pacific transport inflow
regions (e.g., the Pacific Northwest Ocean) and low CO columns
over elevated terrain (e.g., Rocky Mountains). All simulations
underpredict CO columns with NMBs ranging from �9.4% (EPA)
to �2.2% (EC) with systematic underpredictions despite the biases
are typically small and within the retrieval uncertainties. As re-
ported by Heald et al. (2003), regional emissions in particular
biomass burning emissions, are expected to be the main contrib-
utor to elevated CO concentrations, thus determining the CO col-
umns. Since all simulations use the same emission inventory, the
systematic underpredictions by all simulations might therefore be
caused by possible uncertainties (such as missing fire emissions) in
CO emissions. Other possible contributing factors may include
uncertainties associated with BCs from MACC and retrieval
methods used for MOPITT data. For example, Heald et al. (2003)
indicated that potential biases in the vertical profile of CO at
higher altitudes from their global model (which are very sensitive
to BCs) could be an important source for model biases against
MOPITT observations. Emmons et al. (2009) also reported the
possible positive biases for MOPITT CO retrievals over the
U EPA EC

B (%) NME (%) R NMB (%) NME (%) R NMB (%) NME (%) R

e e �12.1 12.4 0.82 4.6 5.6 0.89
e e 12.9 38.7 0.81 91.6 101.9 0.76
e e �10.9 34.0 0.53 87.6 88.3 0.67
e e �60.2 68.7 0.32 7.4 85.6 0.20
e e e e e 13.5 14.4 0.78

3.9 4.0 0.97 �0.9 1.6 0.97 e e e

4.1 4.2 0.99 �1.1 2.0 0.98 e e e

8.7 18.7 0.93 3.3 5.6 0.95 1.8 5.8 0.96
e e �36.1 43.1 �0.18 �59.5 59.7 �0.08
e e e e e 213.4 214.7 0.54

3.2 33.2 0.78 �5.7 10.7 0.90 e e e

e e e e e e e e

e e e e e �66.2 67.3 0.36
1.3 11.1 0.96 2.3 10.8 0.96 e e e

ules cm�2, 1015molecules cm�2, 1015 molecules cm�2DU, and DU, respectively; OLR,
109 cm�2; CDNC with unit of cm�3; PWV with unit of cm; LWP from MODIS is not

http://www.ncl.ucar.edu/


Fig. 1. Spatial distribution of tropospheric column gas abundances (from top to bottom: column CO, column NO2, column HCHO, column SO2 and TOR) between satellite observation and different models for year 2006 (blank color
denotes to missing values; due the erroneous mapping of O3 profile, TOR from EPA is not shown). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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continents as compared to oceans. The higher CO columns pre-
dicted by EC should be due to a much finer vertical resolution
within the lower to free tropospherewhere column CO abundances
are the highest (i.e., 24 layers vs. 16e17 layers for other models),
which can better capture the elevated CO.

The spatial distribution of NO2 columns is generally well repro-
duced by all four simulations and many hot spots of NO2 columns
observed by SCIAMACHY are captured in the Northeastern U.S.,
Midwest, Texas, and California, which correlate well with high NOx
emission source areas (e.g., industrialized and urban areas). The
domainwide statistics show mixed performance for different sim-
ulations in terms of magnitude, with NMBs of �37.7% (EC), �14.7%
(UMP), 2.1% (EPA), and 14.1% (NCSU), respectively. The discrepancies
between simulations and satellite retrievals can be attributed to a
few likely reasons. First, a previous study by Choi (2011) suggested
that NOx emissions from the NEI 2005 have large uncertainties and
may be overestimated in the southern U.S. Pouliot et al. (2015)
showed that 2006 domainwide NOx emissions are fairly similar
between the NEI 2005 based AQMEII Phase 1 model inputs and the
NEI 2008 based AQMEII Phase 2 model inputs, but also showed
significant shifts in emission estimates for some source sectors such
as mobile sources. The relative large biases for NO2 columns by all
simulations may be an indication that further work is needed to
evaluate emission inputs. Second, since all the simulations use the
same set of NOx emissions, the mixed performance (i.e., over-
prediction vs. underprediction) also could be caused by different
reaction rates used for NO2 associated reactions simulated by
different gas-phase mechanisms. Third, as reported by Martin
(2008), tropospheric NO2 and SO2 concentrations are dominant in
the planetary boundary layer (PBL) due to intensive surface sources
and short lifetimes. As a result, both column NO2 and SO2 abun-
dances in PBL can contribute to more than two-thirds of tropo-
spheric NO2 and SO2 columns over polluted regions. Therefore,
differences in PBLmixingprocesses simulated by themeteorological
models may play an important role. An examination of PBL heights
(PBLHs) (figures not shown) show that EC predicts the largest PBLH
followedbyEPA,UPM, andNCSU, althoughPBLHsbetweenUPMand
NCSU are very close, due to the same Yonsei University PBL scheme.
The pattern of PBLH can help to explain the predicted NO2 columns
from NCSU, EPA, and EC (i.e., the largest NO2 columns from NCSU
followed by EPA and EC). UPM predicting the smallest NO2 despite
with the lowest PBLH might be due to other reasons such as gas-
phase mechanisms. Fourth, there might be missing processes such
as the plume-in-grid in currentmodel treatments, whichwas found
to help improvements of column NO2 performance by previous
studies (Vijayaraghavan et al., 2009). Finally, there are uncertainties
associated with satellite retrievals. Boersma et al. (2004) and some
other studies (e.g., Martin et al., 2003; vanNoije et al., 2006) showed
that different NO2 column retrieval approaches may lead to
±5 � 1014e1 � 1015 molecules cm�2 for additive error (±35%e60%
relative error) over polluted areas. The algorithms used to convert
themeasured irradiances to columnvalues are in part dependent on
air-qualitymodels, which are used to calculate air mass factors used
in the retrieval process. Recent work ofMcLinden et al. (2014) found
air mass factors generated using higher resolution model and sur-
face data allows significant local gradients to be resolved, increasing
the retrieval estimated maximum vertical column densities of NO2
by a factor of 2.

Both SCIAMACHY observations and four simulations show high
HCHO abundances over the southeastern U.S., California, and
coastal areas of Mexico (except EC which does not include the
coastal areas of Mexico), where biogenic and biomass burning
emissions are high. The correlation is moderate for all simulations
with values of R ranging from 0.69 to 0.79 (i.e., R2 of 0.48e0.62),
suggesting that all simulations reproduce the spatial distribution
relatively well. The discrepancies in magnitude between simula-
tions and observations, however, are relatively large except for EPA,
with NMBs of �27.3% (UPM), �24.5% (NCSU), �11.5% (EPA), and
59.2% (EC), respectively. The much larger HCHO columns predicted
by EC could be due to a few reasons. First, the photolysis rates of
HCHO predicted by EC might be low due to much higher predicted
cloud water (Fig. 3) leading to the lower destruction of HCHO.
Second, among all gas mechanisms in this study, ADOM-II simu-
lates only isoprene without species terpene/monoterpene from
biogenic sources. All the terpene/monoterpene emissions are
mapped into a lumped species ethane. Instead of generating longer
chain aldehydes and ketones, the terpene/monoterpene masses
from biogenic emissions in ADOM-II goes into HCHO upon oxida-
tion. This treatment leads to much higher HCHO formation
compared to mechanisms that explicitly represent terpene/mono-
terpene. Finally, as reported by Carlton and Baker (2011), BEIS v3.14
tended to generate a factor of 1.5 higher HCHO emissions compared
to MEGAN v2, which may partially contribute the higher HCHO
columns predicted by both EPA and EC compared to NCSU and
UPM. Due to the fact that the bulk of the NO2 and HCHO columns
are within the lower PBL over polluted regions and are closely
related to NOx and VOC emission sources, the ratio of column
HCHO/NO2 has been proposed as a robust indicator (Martin et al.,
2004) for surface photochemistry (especially NOx- or VOC-limited
O3 chemistry) and has been further examined by the Part I paper
(Campbell et al., 2015).

All four simulations moderately or significantly overpredict SO2

columns (NMBs ranging from 16.1% to 114.2%) with moderate
spatial correlation (values of R2 ranging from 0.34 to 0.41). Similar
to NOx, high SO2 levels are predicted by all simulations over source
regions and are correlated with observations. The larger differences
between simulations and observations for SO2 columns compared
to other gases could be largely due to the larger uncertainties
associated with SO2 retrievals. As reported by McLinden et al.
(2014), SO2 retrievals using higher resolution profiles and surface
data can increase maximum vertical columns of SO2 by a factor of
1.4. The higher SO2 predicted by EC is due to a lower oxidation rate
of SO2 by OH radicals (i.e., 8.3 � 10�13 cm3 molecule�1 s�1 in
ADOM-II vs. 8.8e9.5�10�13 cm3molecule�1 s�1 in CBMZ and CB05
under ambient temperature and pressure) (Lurmann et al., 1986)
and by aqueous chemistry (Makar et al., 2015). NCSU predicts the
lowest SO2 columns due to the inclusion of both heterogeneous
chemistry of SO2 on aerosol particles and in convective clouds. Both
treatments convert a large amount of SO2 from gas-phase into
particulate sulfate. However, convective cloud chemistry is also
simulated by EPA which gives higher overpredictions of SO2 col-
umns than NCSU, suggesting the important role of SO2 heteroge-
neous chemistry.

Due to an erroneous mapping of O3 profile from 50 hPa to
100 hPa in the simulation conducted by EPA which leads to unre-
alistic high TORs, only TOR plots from the other three simulations
are shown in Fig. 1 and Table 1 for 2006. All three simulations show
systematic overpredictions of TORs compared to OMI/MLS with
NMBs of 19.9% (EC), 29.9% (UPM), and 38.0 (NCSU), respectively,
which are mainly caused by the O3 profiles provided by MACC. The
general better TOR performance from EC is associated with higher
vertical resolution that can represent the tropopause provided by
NCEP reanalysis data better.

Fig. 2a shows the Taylor diagram for the column abundances of
the five gases from simulations in 2006, which can help assess the
general skill of the models. Due to the large amplitude of SO2 var-
iations, all markers for SO2 are displayed as outlier points outside
the plot area. Most simulations underpredict the amplitude of
variability (with the NSD less than 1) of column abundance of most
gases. R values range between 0.8 and 0.9 (R2 between 0.64 and



(a)
(b)

Fig. 2. Taylor diagram with NSD (desire value is 1), R (desired value is 1), and NMB (desire value is 0) for selected (a) column gas species and (b) radiation/aerosol/cloud variables
among 4 simulations for year 2006. Note that the point marked REF on the X-axis represents the observed field and all markers on the plot area represent the simulation results. The
distance between the markers and the REF point is a measure of model performance, with smaller distances indicating better model performance. The closer the markers are to the
X-axis, the better the model is able to reproduce the observed spatial pattern. The closer the marker is to the isoline crossing REF (i.e., the NSD is equal to 1), the better the model is
able to reproduce the amplitude of variations in the satellite data. The hemispherical lines centered over “REF” on the horizontal axis represent the combined desired level of NSD
and correlation values (the closer the markers to the inner hemispherical lines, the better overall model performance in terms of both magnitude and correlation). The size of the
markers is proportional to the magnitude of an NMB, with smaller markers indicating smaller NMBs (regular triangle representing positive bias and inverse triangle representing
negative biases).

593
0.81) for most species, indicating the ability of all models in
reproducing the spatial pattern of column abundances. The large
amplitude of SO2 variability indicates potential issues associated
with aqueous chemistry of all models and high uncertainties with
satellite retrievals. The large variability for HCHO from EC may be
associated several reasons as discussed earlier, in particular its use
of ethene as a surrogate for monoterpenes (Makar et al., 2015).
Overall, the performance for CO columns is the best by all models,
followed by NO2, HCHO, TOR, and SO2.
3.2. Aerosol and cloud variables

Fig. 3 shows the spatial distribution of selected aerosol/cloud
related variables (i.e., AOD, CF, LWP, and PWV) between satellite
observations and predictions by different simulations for 2006.
Fig. A1 shows COT, CCN, and CDNC. LWP and CCN from observations
are only available over the ocean. The domainwide statistics are
summarized in Table 1. All simulations exhibit a systematic and
large underprediction of AOD over the western U.S. and the spatial
distributions are also quite different compared to MODIS AOD. The
most noticeable differences are in western U.S. and northern
Mexico, where simulations fail to capture the high level of MODIS
AODs (up to 0.45) and are lower by factors of 3e4 than MODIS
observations. The AOD underpredictions off the west coast are the
least pronounced for UPM. Since this area is located close to the
domain boundaries and AOD can be affected by the trans-Pacific
transport of Asian air pollutants and dust storms, the differences
in model performance suggest that different approaches used to
map the aerosol boundary conditions from MACC to the regional
models contribute to the model biases in AOD predictions, in
particular when the representation of aerosol size bins used in
MACC differs from that used in the regional model. Contrasting to
western U.S., all simulations better estimate the MODIS AOD over
eastern U.S., where anthropogenic aerosol loadings are high. The
domainwide NMBs are �56.7% (EC), �35.8% (NCSU), �34.9% (EPA),
and �3.8% (UPM), respectively. The model biases well exceed the
uncertainties associated with MODIS retrievals (see Table A1) and
several possible reasons may help explain the discrepancies be-
tween MODIS observations and simulations over the western part
of domain. First, simulated AOD depends strongly on PM2.5 mass
concentration predictions. The inaccurate prediction of PM2.5
loadings, particularly from the dust emissions, may lead to the
underprediction of AODs over the arid areas. Two out of four sim-
ulations (i.e., UPM and EC) lack of dust emissions and the other two
(i.e., NCSU and EPA) may simply underpredict dust emissions.
Second, higher uncertainties exist for MODIS AOD over the deserts
of western U.S. and northern Mexico. A recent work by Drury et al.
(2008) found that high positive biases of MODIS AOD exist over the
above desert areas caused by some errors in the surface reflectance
estimates from the MODIS retrieval algorithms. Using their
improved AOD retrievals, they produced much lower AOD.

All simulations for which cloud fractions were submitted
reproduce the spatial distribution of MODIS CF well with high
values (>0.7) over the oceans, southeastern Canada, and north-
eastern U.S. and low values (<0.4) over the mountainous areas of
western U.S. and Mexico. All three simulations can also reproduce
the magnitude of MODIS CF well with NMBs of �2.8%
(NCSU), �2.4% (EPA), and 0.5% (UPM). All three simulations capture
the high values (>75 g cm�2) and general distribution of LWP off
the Atlantic coasts and Pacific Northwest, but the magnitude is less
than the satellite retrieval. The predicted pattern for LWP is
correlated with CF. All simulations underpredict LWP with NMBs
of �34.7% (EPA), �28% (NCSU) and �22.6% (UPM), which is mainly
caused by the limitations in the cloud parameterizations of WRF/
Chem for NCSU and UPM such as the inaccurate contribution of
convective clouds to LWP (Zhang et al., 2012b) and aerosolecloud
interaction treatments such as uncertainties associated with the
Abdul-Razzak and Ghan (2002) scheme (AG) and the missing
aerosol indirect effects in WRFeCMAQ for EPA. All three simula-
tions show good agreement of PWVwith MODIS retrievals in terms
of both spatial distribution and magnitude. Consistent spatial gra-
dients of PWV are shown between simulations and observations,
with high values in low latitude/altitude regions and low values in
high latitude/altitude regions. The domainwide NMBs are �1.4%



Fig. 3. Spatial distribution of aerosol/cloud related variables (from top to bottom: AOD, CF, LWP, and PWV) between satellite observation and different models for year 2006 (blank color denotes to missing values; CF/PWV from model EC
and CF from model EPA are not available; scale for LWP of EC is different). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Spatial distribution of radiation (from top to bottom: SWDN, LWDN, and OLR) between satellite observation and different models for year 2006 (blank color denotes to missing values; LWDN and OLR from model EC are not
available). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(NCSU), �0.2% (UPM), and 1.3% (EPA), respectively. The general
pattern of PWV does not closely correlate with aerosol loadings and
cloud covers (as demonstrated by AOD, CF, and LWP). This is due to
the fact that on the regional scale PWV is largely a function of
synoptic-scale meteorology rather than aerosols/cloud processes
(Ten Hoeve et al., 2011).

As shown in Fig. A1, COT is largely underpredicted by NCSU due
to the missing COTs contributed by rain, snow, and graupel from
WRF/Chem (Zhang et al., 2012b). Another reason may be due to the
underprediction of LWP, which is ultimately determined by
underprediction of aerosol loading and uncertainties in the cloud
schemes and aerosolecloud interaction parameterizations as
mentioned earlier. Both NCSU and UPM underpredict CCN, in
particular along the Atlantic coasts. Due to the fact that CCN is
highly related to the amount of aerosols available for activation, the
model underpredictions of CCN likely are caused by an under-
prediction of aerosol loadings and potential inaccurate represen-
tation of landeocean interactions, which transport too little
aerosols to marine areas. The result contrasts with the study by
Zhang et al. (2012b), in which too high CCN was predicted off the
Atlantic coasts due to too strong transport of continental polluted
air. Zhang et al. (2012b) predicted much higher wind speeds
compared to this study (Yahya et al., 2015a). Compared to CCN, the
performance for CDNC is better for NCSU and UPM. All three sim-
ulations underpredict MODIS CDNC, with the lowest values
(domainwide average of ~39 cm�3 for EC vs. ~93e121 cm�3 for
NCSU and UPM) and a different spatial pattern by EC. MODIS, NCSU,
and UPM all show high CDNC over the midwest, eastern U.S., and
Atlantic Ocean. Since CDNC has substantial impacts on other pre-
dicted cloud properties such as COT and LWP, the results shown
here are consistent with the underprediction of other variables.
Besides the limitations associated with cloud schemes, the un-
certainties related to the aerosol activation scheme (i.e., AG
scheme) for both WRF/Chem and GEMeMACH simulations may be
another contributor to the underprediction of CDNC. Several
studies (e.g., Ghan et al., 2011; Zhang et al., 2012b; Gantt et al.,
2014) showed that an aerosol activation parameterization based
on Fountoukis and Nenes (2005) and its recent updates can give
higher CDNC due to a higher activation fraction of aerosols, which
should be considered in future model development to improve the
model performance of CDNC, COT, and LWP.

3.3. Radiation variables

Fig. 4 shows the spatial distribution of radiation variables (i.e.,
SWDN, LWDN, and OLR) between satellite observations and 2006
simulations. All simulations reproduce the spatial distributions
well for all three radiation variables with values decreasing with
increasing latitude, which is driven by the strength of solar radia-
tion. For SWDN, high values are also displayed at higher elevations
due to less scattering of incoming solar radiation by atmospheric
components. For LWDN, the high values at lower latitudes and low
values over the Rocky Mountains correlate very well (with
R2 > 0.96, see Table 1) with high and low cloud coverage over those
areas (see CF plots in Fig. 3). The pattern of OLR is different from
LWDN because of the larger impact of high level clouds on OLR.
Overall, SWDN is slightly overpredicted by all simulations with
NMBs of 0.4% (UPM), 2.6% (EC), 4.3% (NCSU), and 5.4% (EPA). LWDN
and OLR are slightly underpredicted except for OLR of EPA with
NMBs of �1.9% and �1.3% (NCSU), �0.3% and �2.2% (UPM),
and �1.6% and 0.4% (EPA). It should be noted that the simulated
aerosol/cloud properties play an important role in affecting the
performance of radiation through aerosol direct and indirect ef-
fects. The overpredictions of SWDN and underpredictions of LWDN
and OLR can be mainly attributed to underpredictions of AOD (due
to less scattering of solar radiation leading to higher SWDN), CF,
COT, and LWP (due to less clouds that lead to less emissions of
longwave radiation and less trapping of outgoing longwave
radiation).

Fig. 2b shows the Taylor diagram for selected radiation/aerosol/
cloud related variables from four simulations in 2006. There are
some outliers including the AOD from two simulations (i.e., NCSU
and EPA) due to negative correlation and LWP from EC due to a
large NSD. All simulations show a good agreement for SWDN,
LWDN, ORL, and PWV. Simulations generally overestimate the
amplitude of variability for SWDN (except NCSU), LWDN, and CF
and underestimate it for most of other variables. Correlation is
excellent for SWDN, LWDN, OLR, and PWV (typically > 0.9) and
good for CF and LWP (typically between 0.6 and 0.9), which is
consistent with Figs. 3 and 4. The negative correlation for AOD is
mainly caused by the large overpredictions over western U.S. and
slightly underprediction over eastern U.S. Overall, the results show
the high uncertainties in simulating many cloud related variables
and further model improvement for the related physical/chemical
treatments (e.g., aerosol activation scheme and aqueous-phase
chemistry scheme) is warranted.

4. Model evaluation for 2010 and its comparison with 2006

4.1. Column mass abundance

Fig. 5 shows the spatial distribution of tropospheric column
abundances for CO, NO2, HCHO, SO2, and TOR between satellite
observations and four 2010 simulations. The corresponding per-
formance statistics are given in Table 2. Similar to 2006, all simu-
lations can capture the spatial distribution of MOPITT CO columns
well (e.g., they match the high and low abundances areas well).
Most simulations underpredict CO columns with NMBs of �12.1%
(EPA),�10.0% (NCAR), and�9.4% (NCSU) except for ECwhich has an
NMB of 4.6%. The potential reasons for the model biases have been
discussed in Section 3.1. Compared to 2006, MOPITT CO columns
are higher over the Pacific Northwest and southern Canada in 2010,
indicating stronger trans-Pacific transport of Asian air pollutants in
2010, which is not well captured by most simulations except for EC.
This finding suggests the importance of higher vertical resolution in
free troposphere in simulating long lifetime species such as CO.
Similar to 2006, the locations of hot spots associated with high NOx
emissions are well reproduced by all 2010 simulations. However, all
simulations moderately or largely overpredict the NOx abundances
with NMBs of 12.9% (EPA), 31.8% (NCSU), 91.6% (EC), and 102.1%
(NCAR). The domain-average reduction of SCIAMACHY NO2 col-
umns from 2006 to 2010 is ~18%, which agrees well with the re-
ported NOx emission reduction of 22% between 2006 and 2010 in
EPA's NEI (Stoeckenius et al., 2015). Such a reduction is also re-
flected in the changes of simulated NO2 columns for NCSU and EPA,
by ~6% and ~10%, respectively. For HCHO, both SCIAMACHY and all
four simulations show high column abundances over regions with
high biogenic and biomass burning emissions in 2010, which is
similar to 2006. HCHO columns are underpredicted by NCSU and
EPAwith NMBs of�25.0% and�10.9%, while they are overpredicted
by NCAR and EC with NMBs of 14.2% and 87.6%. The inter-model
variability is likely caused by the differences in both biogenic
emissions and gas-phase mechanisms. As discussed in Section 3.1,
although BEIS used by EC and EPA predict higher HCHO emissions,
NCAR predicts an order of magnitude higher isoprene emissions
(i.e., 7.2 kton-C km�2 year�1 vs. 0.02e0.58 kton-C km�2 year�1)
than other simulations (Im et al., 2015a), which lead to the over-
prediction of HCHO. For EC, both higher HCHO emissions and larger
formation of HCHO through ADOM-II (see Section 3.1) result in the
large overprediction of HCHO. Two major factors determine the



Fig. 5. Spatial distribution of tropospheric column gas abundances (from top to bottom: column CO, column NO2, column HCHO, column SO2, and TOR) between satellite observation and different models for year 2010 (blank color
denotes to missing values; due the erroneous mapping of O3 profile, TOR from EPA is not shown). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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annual changes of HCHO columns from SCIAMACHY observations
between 2010 and 2006. One factor is the change of meteorology.
2010 is considered as a general warmer year compared to 2006.
Yahya et al. (2015b) found that the annual average surface tem-
perature over the Clean Air Status and Trends Network (CASTNET)
network increased from 11.7 �C in 2006 to 15.9 �C in 2010. The
increase of temperature will increase the biogenic emissions thus
leading to more HCHO. The other factor is the change of anthro-
pogenic emissions. Stoeckenius et al. (2015) reported an overall
reduction of anthropogenic VOC emissions from 2006 to 2010 that
can lead to less HCHO. The two factors may compensate each other
and thus create the interesting pattern for SCIAMACHY HCHO as
shown in Figs. 1 and 5, i.e., larger maximum HCHO over south-
eastern U.S. but lower domainwide mean values in 2010. Among
the three simulations with both 2006 and 2010 results, only EPA
reproduces this pattern. For SO2, three simulations (i.e., NCSU,
NCAR, and EPA) present very similar SO2 columns in terms of both
magnitude and spatial distribution while EC presents much higher
SO2 columns. All simulations miss some major hot spots over the
western part of domain and oceans observed by SCIAMACHY,
possibly due to missing source of SO2 emissions (e.g., ship emis-
sions) or uncertainties in retrievals. Most simulations underpredict
SO2 with NMBs of �65.2% (NCSU), �65.6% (NCAR), and �60.2%
(EPA) except for EC that overpredicts it with an NMB of 7.4%. NCSU
predicts the lowest SO2 columns again in 2010 due to treatments of
both SO2 heterogeneous chemistry and convective cloud AQ
chemistry as discussed in Section 3.1. The increasing trend shown in
SCIAMACHY SO2 columns between 2010 and 2006 contradicts with
the reported SO2 emissions reduction by ~40% from 2006 to 2010
by Stoeckenius et al. (2015) and suggests that further investigation
of satellite retrievals is needed, considering a rigorous enforcement
of SO2 emission control programs in North America (Pouliot et al.,
2015). All three simulations show overpredictions of TORs NMBs
of 13.5% (EC), 19.3 (NCSU), and 43.7% (NCAR), respectively, which
are due to uncertainties associated with O3 profiles provided by
MACC and emphasize the needs for carefully dealing with O3 pro-
files in future studies. The spatial pattern from NCAR is different
with both other simulations and OMI/MLS is due to the coarser
vertical resolution especially between 350 and 200 hPa, where it
cannot resolve the tropopause from NCEP data well.
(a)

Fig. 6. Taylor diagram with NSD (desire value is 1), R (desired value is 1), and NMB (desire
among 5 simulations for year 2010. See Fig. 2 caption for the meanings of coordinates and
Fig. 6a shows the Taylor diagram for four gases from four sim-
ulations in 2010. Unlike 2006, the amplitude of SO2 variability in
2010 is reduced due to much higher SO2 columns from observa-
tions, despite lower correlations (~0.2e0.3 in 2010 vs. 0.5e0.6 in
2006) caused by much lower simulated SO2 over western U.S. and
oceans. Generally, the performance for CO is still the best in 2010
among all gases followed by HCHO, NO2, TOR, and SO2. A generally
poorer performance is found for all species compared to 2006,
particularly for NO2 with two simulations becoming outliers and
for HCHO with one simulation becoming an outlier.

4.2. Aerosol and cloud variables

Fig. 7 shows the spatial distribution of selected aerosol/cloud
related variables (i.e., AOD, CF, and PWV) between satellite obser-
vations and five 2010 simulations. Fig. A2 shows the remaining
variables (i.e., COT, CCN, CDNC). The domainwide statistics are
summarized in Table 2. All simulations demonstrate a similar sys-
tematic underprediction of AOD over western U.S. shown in the
2006 simulations. NCSU and EPA slightly overpredict AOD and EC
slightly underpredicts it over eastern U.S. NCAR shows a factor of
two overprediction due to large overpredictions of dust contribu-
tions to PM2.5 (Im et al., 2015b). The domainwide NMBs are �59.5%
(EC), �36.1% (EPA), �29.5% (NCSU), and 42.3% (NCAR), respectively.
MODIS AOD retrievals show a general decreasing trend from 2006
to 2010, especially over eastern U.S., likely associated with the
reduction of anthropogenic emissions of aerosols and precursors.
NCSU, EPA, and EC reproduce this decreasing trend. The spatial
distribution of MODIS CF is generally captured by all simulations.
NCSU, EPA, and NCAR also reproduce the magnitude well with
NMBs of 0.2%, �5.7%, and �9.1%, respectively, while UMU largely
underpredict CF with NMBs of �33.2%. The trend for MODIS CF
between 2006 and 2010 is not very apparent with slightly more
domain average CF observed in 2010 and both NCSU and EPA
reproduce the trend. Similar agreements with MODIS PWV re-
trievals in terms of both spatial distribution and magnitude are
presented in 2010 compared to 2006. The domainwide NMBs
are �3.2% (NCAR), �1.3% (UMU), �1.1% (NCSU), and 2.3% (EPA). As
shown in Fig. A2 NCSU shows similar large underpredictions for
COT in 2010 due likely to the same reasons discussed in Section 3.2.
MODIS COT shows a decreasing trend from 2006 to 2010 (i.e.,
(b)

value is 0) for (a) selected column gas species and (b) radiation/aerosol/cloud variables
markers in the Taylor diagram.



Fig. 7. Spatial distribution of aerosol/cloud related variables (from top to bottom: AOD, CF, and PWV) between satellite observation and different models for year 2010 (blank color denotes to missing values; CF/PWV from model EC and
CF from model EPA are not available). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Spatial distribution of radiation (from top to bottom: SWDN, LWDN, and OLR) between satellite observation and different models for year 2010 (blank color denotes to missing values; LWDN and OLR from model EC are not
available). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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domainwide average of 16.0 vs. 15.2; ~5% reduction), which is to a
lesser extent captured by NCSU (i.e., 5.26 vs 5.15; ~2% reduction).
Similar to 2006, NCSU largely underpredicts CCN in 2010 with an
NMB of �68.6%. Despite the large underpredictions in both years,
NCSU reproduces the decreasing trend of MODIS CCN from 2006 to
2010 (i.e., with domain averages of 0.34 � 109 cm�2 and
0.28 � 109 cm�2 in 2006 and 2010 for MODIS vs. 0.13 � 109 cm�2

and 0.09 � 109 cm�2 for NCSU). Both NCSU and EC also under-
predict CDNC for 2010 with NMBs of �37.0% and �66.2%, respec-
tively, and NCSU also reproduces the decrease of CDNC observed by
MODIS in 2010 compared to 2006. In general, although relatively
large biases still exist for most of the predicted aerosol/cloud var-
iables in 2010, most simulations can capture the inter-annual
changes of those variables between 2010 and 2006.

4.3. Radiation variables

Fig. 8 shows the spatial distribution of radiation variables (i.e.,
SWDN, LWDN, and OLR) between satellite observations and 2010
simulations. Themodel performance for all radiation variables from
all simulations is generally good in terms of both spatial distribu-
tion and magnitude. SWDN is overpredicted by all simulation with
NMBs of 1.8% (EC), 2.7% (NCSU), 3.3% (EPA), 14.4% (NCAR), and 18.7%
(UMU). LWDN and OLR are underpredicted except for OLR of UMU
with NMBs of �0.9% and �0.8% (NCSU), �5.0% and �0.1%
(NCAR), �4.1% and 3.9% (UMU), and �1.1% and �0.9% (EPA). Since
NCSU, NCAR, and UMU all use the same WRF/Chem model and
similar radiation schemes (i.e., either RRTMG or RRTM), the rela-
tively larger overprediction of SWDN by NCAR and UMU should be
due to the lower predicted CF comparing to other simulations. The
satellite observations show a decrease for SWDN and LWDN and an
increase for OLR between 2010 and 2006, which is consistent with
the increase of CF. Both NCSU and EPA can reproduce the trend of
SWDN but show the opposite trend for LWDN and OLR, possibly
due to either uncertainties associated with aerosol indirect effect
treatments in WRF/Chem or the missing indirect effects of aerosols
in WRFeCMAQ.

Fig. 6b shows the Taylor diagram for selected aerosol/radiation/
cloud variables from five simulations in 2010. AOD are still outlier
points due to their negative correlation. Compared to 2006, the
overall performance for SWDN, LWDN, and OLR are slightly better.
The performance for PWV is slightly worse. The performance for CF
and CDNC is generally comparable. Overall, the performance for
radiation variables is still the best in 2010, followed by PWV, CF,
CDNC, and AOD.

5. Conclusions

In this study, a comparative evaluation is performed for simu-
lations of 2006 and 2010 over the NA domain using three state-of-
the-science online-coupled models (i.e., WRF/Chem, WRFeCMAQ,
and GEMeMACH). A number of variables evaluated include
column-integrated gas abundances (i.e., tropospheric CO, NO2,
HCHO, SO2, and TOR), aerosol and cloud properties (i.e., AOD, COT,
CF, CCN, CDNC, LWP, and PWV), and radiation budgets (i.e., SWDN,
LWDN, and OLR) against available satellite retrieval data (i.e.,
MOPITT, SCIAMACHY, MODIS, CERES, and AVHRR).

The comparison results show that all simulations can reproduce
the MOPITT CO columns well with low biases and high correlations
for bothyears. Larger discrepancies exist forNO2,HCHO, SO2 column
abundances and TOR possibly due to several reasons including un-
certainties in emissions for NO2 and HCHO and simulated PBL
mixing processes, missing model treatments such as plume-in-grid
processes, uncertainties associated with BC/profiles for O3, and
uncertainties associated with satellite retrievals algorithms
themselves. Inter-model variability is also more apparent for
abundances of NO2, HCHO, and SO2 than CO due to several possible
reasons such as different oxidation rates caused by different gas-
phase mechanisms and different treatments of aerosol chemistry
(e.g., AQ chemistry and heterogeneous chemistry). For example, the
lowest SO2 columns simulated by NCSU in both 2006 and 2010 are
mainly due to the inclusion of both heterogeneous chemistry of SO2
on aerosol particles and convective cloud chemistry in their model.
NCSU, EPA, and EC simulations are performed for both years, which
enable a comparison for the simulated inter-annual trend from2006
to 2010 with that of satellite observations. Both NCSU and EPA are
able to reproduce the reduction of SCIAMACHYNO2 columns in 2010
causedbydecreasingemissions compared to2006. Among the three
2010 simulations, only EC captures thehighMOPITTcolumns caused
by the stronger trans-Pacific transport of Asian air pollutants in 2010
than 2006 and only EPA captures the trend of SCIAMACHY HCHO
columns caused by the increase of biogenic emissions and decrease
of anthropogenic emissions. SCIAMACHY shows an increasing trend
of SO2 column abundances from2006 to 2010, which is inconsistent
with reported reductions of SO2 emissions and the resultant de-
creases in simulated SO2 column abundances. Such an inconsistency
is more likely caused by uncertainties in the satellite data retrieval
algorithms than uncertainties in the SO2 emissions used in allmodel
simulations, given a rigorous enforcement of SO2 emission control
programs in North America.

Most simulations tend to underpredict most aerosol/cloud
related variables due to underpredictions of aerosol loadings,
inaccurate treatments associated with aerosolecloud interactions,
and uncertainties of satellite data. For example, all simulations
significantly underpredict AOD over the western part of the
domain, but this could be the result of either underestimation of
dust aerosols or positive biases associated with MODIS retrievals.
All simulations also tend to significantly underpredict COT, CCN,
and CDNC with NMBs generally between �70% and �30% due to
the underprediction of aerosol loadings, uncertainties associated
with cloud schemes, and potential underpredictions of aerosol
activations. However, most simulations perform better in repro-
ducing PWV, due to the fact that it is more dependent on the
synoptic-scale meteorology and less dependent on aerosol loadings
and cloud covers in the current model treatments. The investiga-
tion of inter-annual trend for the above variables shows that most
simulations can reproduce the decreasing trend from 2010 to 2006
for variables AOD, PWV, COT, CCN, and CDNC.

For radiation variables, all simulations show good agreement
with satellite data with NMBs of mostly less than 5%. This indicates
good performance of aerosol radiation schemes despite un-
certainties still existing in the current model treatments of aerosol/
clouderadiation feedbacks. The feedbacks of aerosols/clouds on
radiation are reflected in the general overprediction of SWDN and
underprediction of LWDN and OLR, with the former due likely to
the underpredictions of aerosol loadings (e.g., AOD) and the latter
due likely to the underpredictions of the magnitudes of cloud
properties (e.g., COT, CF, LWP, and CDNC). NCSU, EPA, and EC can
reproduce the inter-annual trend of SWDN observed by satellite.
Trends in LWDN and OLR are not reproduced by EPA and NCSU
possibly due to missing (i.e., EPA) or inaccurate (i.e., NCSU) aerosol
indirect effect treatments in the model (LWDN and OLR were not
stored in the EC simulations).

While the results in this study provide valuable information on
model evaluation against satellite retrievals, this work is subject to
several limitations in dealing with the simulation data processing
that should be addressed in the future. First, all satellite data used in
the work are level 3 data and are subject to higher uncertainties
without applying the averaging kernels (AK, which is only available
for level 2 data) for column abundances of gases. Therefore, the a
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priori profiles used byMOPITT, SCIAMACHY, andOMI/MLS retrievals
may further contribute to the uncertainties for the comparison
(applying AK in the processing ofmodel datawould have limited the
impacts of the a priori profiles). However, a recent study by Zhang
et al. (2010) found that applying AK from the MOPITT retrievals
may introduce more noises from the a priori and thus this caveat
should be noted for processing column CO. Another study of Schaub
et al. (2006) compared ground-based measured NO2 columns with
and without applying the AK from the Global Ozone Monitoring
Experiment (GOME) (which uses the similar retrieval methods as
SCIMACHY) and found that bothmethods showed a good agreement
with GOME retrievals under the clear sky conditions. Second, the
processingof themodel results used 100hPaas afixed cut-off for the
tropopause which may further introduce uncertainties and a more
accurate approach should be applied in the future. Third, AOD from
different simulations are currently calculated by different methods
assuming different preset complex refractive indexes within indi-
vidualmodels. Amore consistentway such as using the same offline
AOD calculation script but prognostic aerosol outputs fromdifferent
models should be considered in the future study to allow for amore
consistent comparison. Finally, some speculation analyses shown
earlier in this study can only be validated through sensitivity sim-
ulations. Those simulations are out of the scope of this work and
should be addressed in future studies.

Nevertheless, this study provides the first comparative assess-
ment of the capabilities of the current generation of regional
online-coupled models in simulating tropospheric columns of
major atmospheric components and atmospheric radiation bud-
gets, as well as cloud and aerosol properties. The analyses highlight
the strength and deficiencies of current model treatments in
simulating chemistryeaerosoleclouderadiation interactions, in
particular, aerosol indirect effects, in current generation of the
online-coupled models. The study also identifies several key areas
of further investigation and potential model improvements, such as
using higher vertical resolution to better represent column abun-
dances and using more advanced aerosol activation parameteriza-
tion for aerosolecloud interactions, thus providing the benchmark
for future online-couple air quality model development and
improvement, as well as re-assessment.
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