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Abstract

In digital health applications, speech offers advantages over
other physiological signals, in that it can be easily collected,
transmitted, and stored using mobile and Internet of Things
(IoT) technologies. However, to take full advantage of this
positioning, speech-based machine learning models need to be
deployed on devices that can have considerable memory and
power constraints. These constraints are particularly apparent
when attempting to deploy deep learning models, as they re-
quire substantial amounts of memory and data movement op-
erations. Herein, we test the suitability of pruning and quan-
tisation as two methods to compress the overall size of neural
networks trained for a health-driven speech classification task.
Key results presented on the Upper Respiratory Tract Infection
Corpus indicate that pruning, then quantising a network can re-
duce the number of operational weights by almost 90 %. They
also demonstrate the overall size of the network can be reduced
by almost 95 %, as measured in MB, without affecting overall
recognition performance.

Index Terms: Compact Neural Networks, Pruning, Quantisa-
tion, Computational Paralinguistics, Cold and Flu Recognition

1. Introduction
The recent coronavirus disease 2019 (COVID-19) pandemic has
highlighted the need from remote digital health solutions [1].
One major challenge in creating such solutions, especially in
digital health systems utilising machine learning, is the devel-
opment of compact, resource-efficient inference models. This
challenge is also of particular importance when considering the
widespread use of Internet of Things (IoT) devices in digital
health, as IoT devices are generally associated with low re-
source and low power environments [2]. Moreover, advances in
low-complexity inference models that are deployable in IoT de-
vices can help alleviate security and privacy concerns surround-
ing the use of these devices [3].

As in most areas of intelligent signal sensing, deep learn-
ing is emerging as the dominant modelling technique in digi-
tal health settings [4, 5]. Deep learning models have connec-
tion numbers measuring in the millions, require hundreds of
megabytes of memory to store as well as generating substan-
tial data movement operations to support their computation [6].
There is, therefore, a fundamental mismatch between the com-
putational requirements needed to support deep learning and
those available on IoT devices. Deep learning models, there-
fore, have to be run on servers and powerful workstations with
the required resources. In turn, this demands the transmission
of data from the collecting devices to the server, creating pri-
vacy concerns [3] and an over-reliance on network availabil-
ity [7, 6, 8, 9].

A growing research direction is the development of ap-
proaches to optimise a large network until it is executable on
a low resource device [7]. Many of these approaches focus on
reducing the memory footprint (how much memory is required
to store and run a network) and the computational complexity
(the number of required calculations and their precision) of a
network while preserving its accuracy. Such approaches can im-
prove system performance while reducing the size of the model
by up to 80 % [7]. To date, such techniques have shown promise
across a range of different learning tasks, but their potential has
not yet been realised for digital health applications.

The work presented in this paper focuses on creating
low-resource neural networks using two well-established tech-
niques: pruning and quantisation. Pruning is the process of
removing unused connections and, eventually, neurons from a
network. It has been widely used in a range of speech pro-
cessing tasks, for example in speech recognition [10, 11, 12];
denoising, and enhancement [13, 14, 15]; and, emotion recog-
nition [16]. The efficacy of quantisation, a lowering in the reso-
lution of a network’s weights and biases, has been established in
similar applications [17, 18, 19]. Moreover, pruning and quan-
tisation have often been used together [20, 13]. However, to the
best of the authors’ knowledge, these techniques have not been
investigated in speech-health applications [4].

In this work, we test the capability of pruning and quantisa-
tion to reduce the model size whilst retaining the overall accu-
racy of a network trained for the task of cold and flu recognition
from speech. For this task, we utilise the Upper Respiratory
Tract Infection Corpus (URTIC) dataset as featured in the IN-
TERSPEECH 2017 Computational Paralinguistics Challenge
(COMPARE) [21]. A range of different approaches have al-
ready been undertaken on this data, from conventional OPENS-
MILE [22] based systems [21, 23], to more contemporary deep
learning systems [24]. As the aim of the presented work is to ex-
plore the advantages of network pruning and optimisation, we
opted to train standard multi-layer dense neural networks, the
suitability of which have been demonstrated for this data [25].

The rest of this paper is laid out as follows. The two com-
pression methodologies are outlined in Section 2. Then, the key
experimental settings are given in Section 3, and subsequent re-
sults and discussion given in Section 4. Finally, we conclude
the paper and propose future work directions in Section 5.

2. Network Compression
Within digital health settings, low-resource models can provide
fully-fledged low-complexity machine learning models capable
of fast and accurate inferences on IoT devices. A multitude
of methods exist for achieving this aim; this section introduces
the two methods used in this work: pruning (Section 2.1) and
quantisation (Section 2.2).
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Fully Connected Network Pruned Network

Figure 1: Pruning is the process of creating a sparsely-
connected model by identifying and removing redundant
weights and neurons from a full model

2.1. Network Pruning

Pruning removes unused connections and, eventually, neurons
from a network (Figure 1). It involves omitting the weights that
do not contribute to the actual output calculation and therefore,
also have no contribution to the backpropagation. In principle,
pruning does not affect the nodes needed to make correct pre-
dictions. Therefore, networks should maintain their accuracy as
they are pruned. Moreover, analogous to dropout, the action of
pruning often increases network generalisability [6, 8].

Pruning is achieved by first training a ‘full’ network to
identify the importance of all connections. Then, connections
falling below a certain, manually set, threshold are removed or
fixed to be zero. Neurons that consequently have no incoming
or outgoing connections can then be deleted. Using this pro-
cess, Srinivas et al. were able to prune a LeNet-like architecture,
trained for MNIST by up to 85 %, without degrading its perfor-
mance [8]. They performed a similar experiment on AlexNet,
demonstrating they could compress the size of the network by
35 % without affecting its performance [8].

To achieve stronger results, pruning can be run multiple
times on a single network. Han et al. suggest a method for prun-
ing redundant weights containing three steps [6]. First, a ‘full’
network is trained in order to identify important connections.
Next, the network is pruned, and thirdly, the resulting sparse
network is retrained to fine-tune the remaining weights. Results
demonstrate that this process could reduce the parameter count
of AlexNet by a factor of 9 and VGG-16 by 13 without any loss
in accuracy [6].

2.2. Quantisation

Quantisation can be viewed as a lowering in resolution of the
data type used to represent a network’s weights and biases (Fig-
ure 2). Most contemporary deep learning approaches use float-
64 or float-32 data types for storing their values, however, many
studies have demonstrated that this level of precision is not nec-
essary. In many cases, lowering the number of bits, for example
by conversion to a float-16, or even int-8 representation, can
yield performances matching the original network [9]. Some
studies have even demonstrated the suitability of using single-
bit representations [26].

Quantisation comes with other positive side effects. Firstly,
it can considerably reduce the network’s training time and over-
all inference delay, as for lower bit representation, the required
mathematical operations are, in general, less time-consuming.
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Figure 2: Example of the conversion of float-32 representations
(top) into int-8 representations (bottom)

Secondly, the lower resolution can help to improve generalisa-
tion by helping to prevent over-tuning.

Networks can be quantised by restricting all weight and
bias values to low-bit-width integers during training and infer-
ence [9]. However, studies have suggested it can be more ad-
vantageous to first train the network at a higher resolution, like
a float-32 data type, then quantise these values once it is ready
for inference and deployed on the device [27]. We used this
method in this work.

2.3. Concurrent Network Pruning and Quantisation

It is possible to use both compression methods together. This
process is typically performed by first pruning, then quantising
the remaining weights and biases [28]. Wu et al. used a combi-
nation of parameter pruning and a k-means based quantisation
method to compact a speaker enhancement network to 10 % of
its original size without overly affecting its performance [13].
Similarly, Shangguan et al. demonstrated that these techniques
can be used to reduce the size of a recurrent neural network
(RNN) – long-short term memory (LSTM) network trained for
speech recognition to 57 % of its original size, also without
overly affecting its performance [20].

3. Experimental Setting
To test the efficacy of network compression in a digital health
scenario, we conduct our experiments on a corpus collected for
assessing the affect of cold and flu on speech (Section 3.1). The
model set-up (Section 3.2) and key setting regarding the com-
pression techniques (Section 3.3), as well as the evaluation met-
rics (Section 3.4) are also given in this section.

3.1. Upper Respiratory Tract Infection Corpus

We used the Upper Respiratory Tract Infection Corpus (UR-
TIC) in our experiments. The dataset was presented as part of
the INTERSPEECH 2017 Computational Paralinguistics Chal-
lenge (COMPARE) [21] and contains 28 652 audio recordings of
630 different subjects (382 male, 248 female). All recordings
were made in quiet rooms with a microphone/headset/hardware
setup. The mean age of the participants was 29.5 years, with a
standard deviation of 12.1 years and a range of 12 to 84 years.

Participants undertook the German version of the Wiscon-
sin Upper Respiratory Symptom Survey (WURSS-24) [29]. The
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Table 1: Partitioning of the Upper Respiratory Tract Infec-
tion Corpus as used for the Cold Sub-Challenge of the INTER-
SPEECH 2017 Computational Paralinguistics Challenge (top),
and the rebalanced training and development partitions used in
this work (below)

# Train Devel Test
∑

Upper Respiratory Tract Infection Corpus (URTIC)

C 970 1 011 895 2 876
NC 8 535 8 585 8 656 25 776∑

9 505 9 596 9 551 28 652

Balanced Train and Development Partitions

C 1 869 432 – 2 301
NC 1 869 432 – 2 301∑

3 738 864 – 4 602

questionnaire is an evaluative illness-specific quality of life in-
strument that assesses the symptoms of the common cold. The
audio recordings were split into two classes: chunks with a cor-
responding WURSS-24 equal to zero were assigned to Non-
Cold (NC), while chunks with a corresponding WURSS-24
greater than zero were assigned to Cold (C).

We used the train/development/test partitioning of this
dataset provided by the challenge organisers (Table 1). How-
ever, during initial tests, we were unable to find a suitable
network architecture to achieve reasonable performance com-
pared to the challenge baselines. Therefore, we redistributed
the speech chunks in the training and development sets to bal-
ance the data distribution between the two classes (Table 1)1.
To make our results comparable with those in the literature, we
report our primary findings on the test-set only.

3.2. Classification Models

For the 2-class Non-Cold (NC) versus Cold (C) task, we cre-
ated three different dense neural networks using Keras. All
three models consist of a batch normalisation layer, multiple
dense hidden layers with sigmoid activation and dropout, and
a softmax layer to perform the classification. The three mod-
els enable the effectiveness of the compression techniques on
different-sized networks to be observed. We ran experiments on
a network with two hidden layers (Model A), five hidden layers
(Model B), and 2×2 hidden layers (Model C) (Figure 3). These
models have 39 128 332, 47 905 713, and 65 201 140 trainable
parameters respectively.

3.3. Key Settings

We used Python 3.7.1 combined with TensorFlow 1.14.0 and
the TensorFlow Model Optimisation Toolkit (version 0.1.3)
on Windows 10 Pro. All experiments were performed on an
AMD Ryzen 7 3700X (8C/16T) at stock speeds with 16 GB
3 200 MHz DDR4 RAM and a Samsung 960 EVO SSD.

We used the 6 373 dimensional COMPARE feature set as
supplied by the challenge organisers [21]. Each network was
first trained normally for 40 epochs – in this case, one epoch
means the network was exposed to all training examples once
– with a batch size of 32 and an initial learning rate of 1−4.

1balanced partitioning available on request

Dense (4,248) 

Dense (2,832) 

Softmax (2) Dense (1,888) 

Dense (4,248) 

Dense (2,832) 

Softmax (2) 

Dense (1,258) 

Dense (839) 

Dense (4,248) 

Dense (4,248) 

Softmax (2) 

Dense (2,832) 

Dense (2,832) 

Input: ComParE Features (6,373)

Model A
39,128,332
Parameters

Model B
47,905,713
Parameters

Model C
65,201,140
Parameters

Figure 3: An illustrative overview of the three different fully-
connected architectures tested in our compression experiments.
We tested networks with two hidden layers (Model A), five hid-
den layers (Model B), and 2×2 hidden layers (Model C)

During training, the learning rate is updated with:

lr =
lrinitial

num epochs
. (1)

The model is compiled to run with the Adam optimiser and a
binary cross entropy loss function.

In our first experiment, after initial training, the model was
saved and then pruned for five epochs using the model optimi-
sation tool provided by TensorFlow. Instead of deleting nodes,
the toolkit fixes a percentage of all weights per layer to the value
0.0, depending on the current sparsity. This value is calculated
using a polynomial decay function, meaning it initially grows
fast, then, slowly plateaus to the target sparsity. We used the
default TensorFlow settings, with the initial sparsity set to 0.5
and the target (final) sparsity set to 0.9 for all experiments. In a
second experiment, the original network was quantised by con-
verting it to a TensorFlow Lite FlatBuffer file (.flite), which sets
the datatype of all of the model’s weights to int-8. To further
evaluate how well both approaches work together, a third ex-
periment, which quantises the already pruned model, was also
conducted.

3.4. Evaluation Metrics

As per the challenges [21], we report all classification results
using the Unweighted Average Recall (UAR). We use McNe-
mar’s test [30] to check for significant changes in network per-
formance due to our compression techniques. All models were
compressed into .zip-files and the size in MB returned to give a
quantitative metric of the effectiveness of our compression tech-
niques. This measurement is needed, as the pruning technique
used in our experiments (Section 3.3) does not delete weights,
but instead fixes them to the value 0.0. We also report the num-
ber of weights set to zero in absolute values and as a percentage
of the number of weights in the original networks. We also
tested inference time, however, we observed very little change
in this parameter, so do not report these results.

4. Results and Discussion
As mentioned in Section 3.1, we began initial experimentation
using the original URTIC partitioning [21]. However, due to
the large imbalance between the two classes, we were unable
to identify suitable network architectures with these data splits.
We, therefore, re-balanced the data and were able to identify
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Table 2: Comparison of UARs for uncompressed and compres-
sion networks on the rebalanced URTIC development set

Model A B C

Original 0.93 0.92 0.92
Pruned 0.93 0.91 0.89
Quantised 0.89 0.92 0.92
Quantised & Pruned 0.89 0.92 0.89

suitable models for compression (Section 3.2). The results of
this work are given for completion (Table 2), but it should be
noted they are incomparable with other works on this corpus.
The key observation from this initial work is that compression
has minimal effect on overall system performance.

To ensure comparability with other works on the URTIC
corpus, a complete analysis of our results gained on the original
test set is provided (Table 3). The first key observation is that
all the compression results had minimal impact on system per-
formance as measured by UAR; all systems scored in the range
[0.65–0.68]. Indeed, the results of the McNemar’s tests (not
shown) revealed no significant differences between the results
obtained on the original and compressed networks.

Pruning reduced the number of meaningful weights in the
network by almost 90 %. Given the target sparsity was set to
0.9 (Section 3.3), the model optimisation worked as intended.
The number of weights remaining for models A, B, and C
was 3 978 664, 4 870 754, and 6 624 302 respectively. Pruning,
therefore, results in a reduction in network size, as measured in
MB (Section 3.4), by almost 80 %.

A similar effect was observed after quantising the networks,
converting the weight and biases from float-32 into int-8 rep-
resentations. Quantisation did not affect the total number of
network parameters; these remained the same. It did, however,
reduce the overall size of each network by approximately 75 %,
without affecting accuracy. This size reduction is expected, con-
sidering that an int-8 representation only takes up 25 % of the
space of a float-32 representation.

Finally, the combination of pruning, then quantising re-
sulted in compression rates of approximately 95 %. Despite this
considerable reduction in network size, the accuracy of the sys-
tem is unaffected. The achieved compression rate can also be
logically explained when observing that pruning initially results
in a compression of approximately 79 %, which is then brought
down to 95 % by the subsequent additional 75 % compression
action of quantisation. The consistency in UAR values indicates
that the two techniques do not interfere with each other, further
justifying their combined use.

Our results match that in [28], who also observed the
combination of pruning and quantisation as a highly efficient
method to considerably reduce the overall size of a network
without a loss of accuracy. A similar finding was observed
in [19]. The authors binarised a convolutional recurrent neu-
ral network trained for speech-based emotion recognition. This
action reduced the size of their network by 96 %, also without
overly affecting its accuracy.

The UARs achieved by the compressed networks, despite
being trained on a reduced amount of data, are not considerably
reduced when compared to state-of-the-art systems in the liter-
ature. The official COMPARE baseline was a UAR of 0.71 [21]
while the winners of the challenge achieved a test set UAR of
0.72 [31]. It is worth noting that these two papers did not em-
ploy any compression techniques; the baseline is a fusion of

Table 3: Comparison of UARs and other network compres-
sion metrics for uncompressed and compression networks on
the URTIC test set

Model A B C

Hidden layers 2 5 2×2

Uncompressed Network

UAR on test set 0.68 0.68 0.65
Trainable parameters 39× 106 48× 106 65× 106

Size [in MB] 137.4 168.6 228.8

Pruned

UAR on test set 0.67 0.67 0.66
Weights set to 0 35× 106 43× 106 59× 106

Reduction in weights 89.8% 89.8% 89.8%
Size [in MB] 28.8 35.1 47.5
Reduction in size 79.0% 79.2% 79.2%

Quantised

UAR on test set 0.68 0.68 0.65
Size [in MB] 32.1 40.0 55.1
Reduction in size 76.6% 76.3% 75.9%

Pruned & quantised

UAR on test set 0.67 0.67 0.66
Size [in MB] 7.0 8.8 11.8
Reduction in size 94.9% 94.8% 94.8%

three different systems, including an end-to-end network, while
the winning entry utilised a three-layer feedforward network.

5. Conclusions
With an ever increasing need for remote digital health systems,
the need for compact deep learning models capable of running
remotely in embedded devices has also increased. The work
presented in this paper demonstrated, on the Upper Respira-
tory Tract Infection Corpus, that the combination of pruning
and quantisation can reduce network size by up to 95 % with-
out overly affecting accuracy. We observed this effect on three
differently sized networks, the largest of which, a 2 × 2 hid-
den layer dense network with 65 213 886 parameters. We were
able to reduce this network from an initial size of 228.8 MB to
only 11.8 MB with a final parameter count of 6 637 048. Such a
reduction would make this network considerably more feasible
for use in embedded devices. Future work will include the de-
ployment of such models in embedded devices and will test how
network compression affects other related performance metrics,
such as execution time and energy consumption.
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