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Abstract
One of the keys for supervised learning techniques to succeed
resides in the access to vast amounts of labelled training data.
The process of data collection, however, is expensive, time-
consuming, and application dependent. In the current digital era,
data can be collected continuously. This continuity renders data
annotation into an endless task, which potentially, in problems
such as emotion recognition, requires annotators with different
cultural backgrounds. Herein, we study the impact of utilising
data from different cultures in a semi-supervised learning ap-
proach to label training material for the automatic recognition of
arousal and valence. Specifically, we compare the performance
of culture-specific affect recognition models trained with man-
ual or cross-cultural automatic annotations. The experiments
performed in this work use the dataset released for the Cross-
cultural Emotion Sub-challenge of the Audio/Visual Emotion
Challenge (AVEC) 2019. The results obtained convey that the
cultures used for training impact on the system performance.
Furthermore, in most of the scenarios assessed, affect recogni-
tion models trained with hybrid solutions, combining manual
and automatic annotations, surpass the baseline model, which
was exclusively trained with manual annotations.
Index Terms: continuous affect recognition, cross-cultural anal-
ysis, audiovisual processing, semi-supervised learning.

1. Introduction
High quality labelled data is of vital importance in supervised
learning approaches. The increasing amount of sensors and
devices permanently connected to the Internet allows the con-
tinuous collection of information. So that this data can help
improving the performance of machine learning algorithms, it
needs to be annotated. Data collection can, therefore, be expen-
sive and time-consuming. This process is even costlier when it
comes to affective datasets, as the gold standard being mapped to
a specific sample is determined by analysing the individual labels
provided by multiple annotators on the same sample. Further-
more, these annotators need specific training, and are culturally
specific. The annotators should share the same culture as the
users in the dataset to guarantee annotation reliability, as dif-
ferent cultures show emotions differently [1, 2]. To ease the
data annotation process, researchers have investigated the use of
Semi-Supervised Learning (SSL) approaches [3].

Methods using SSL have been investigated with different
modalities [4, 5, 6, 7, 8, 9]. In the particular case of the audio
modality, SSL techniques have been employed in a wide range
of problems, such as automatic speech recognition [10], sound
classification [11], or depression detection [12], to name but
a few. In the field of affective computing, researchers investi-
gated the benefits of SSL in the problem of emotion recognition

from audio [13] and video [14, 15]. Previous works proposed
methods to enhance the annotations inferred via SSL to mitigate
the propagation of the error caused by the inference, reducing
their impact to the overall system performance [16]. Further
studies explored cooperative [17] and collaborative [18] learning
approaches, which combine expert (manual) and machine (auto-
matic) annotations. Others investigated the benefits of using SSL
in crowdsourcing paradigms to generate emotional labels [19].

The possibility to automatically annotate affective datasets,
or to reduce the number of annotators needed for labelling with-
out deteriorating the quality of the annotations themselves is the
primary goal when using SSL. Despite the usefulness of SSL
techniques in affect-related problems, to the best of the authors’
knowledge, the limitations of SSL in cross-cultural settings has
not been investigated yet. SSL-powered systems that automati-
cally gather data from online social media platforms [20] might
benefit from these investigations in order to determine whether
cultural aspects need to be taken into account for improving the
quality of their annotations. In this work, we aim to analyse
how the cultural dependencies on conveying emotions impact
the performance of affect recognition models when using SSL
annotations as training material. Specifically, we focus this study
on the continuous recognition of arousal from the voice, and va-
lence from the face, assessing our models on German, Hungarian,
and Chinese cultures.

The rest of the paper is laid out as follows. Section 2 presents
the dataset employed, while Section 3 describes the methodol-
ogy followed. Section 4 details the experiments performed and
analyses the results obtained. Finally, Section 5 concludes the
paper and suggests some future work directions.

2. Cross-cultural Emotion Dataset
The present work investigates the Cross-cultural Emotion Sub-
challenge (CES) dataset, an audio-visual dataset with continuous
emotional annotations in the valence-arousal space [21]. The
dataset was released for the CES task of the 9th Audio/Visual
Emotion Challenge (AVEC) and Workshop [22], and consists of
a subset of the interactions gathered in the SEWA database [23].
CES captures spontaneous in-the-wild interactions between pairs
of friends or relatives from German, Hungarian, and Chinese
cultures, while remotely discussing a commercial they had just
seen. The German and Hungarian cultures were available in
the train, development, and test partitions. Interactions from the
Chinese culture were only available in the test partition.

The interactions were recorded using a computer-based
platform. Audio data was recorded at 48 kHz, video data at
50 Frames Per Second (FPS), and affect-related annotations at
10 Hz. The video modality always contains information from
one of the two interactants, while the audio modality contains
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Figure 1: Block diagram illustrating our system. Audio or video signals are received as input, and Low Level Descriptors (LLDs)
are extracted from them using OPENSMILE or OPENFACE, respectively. Functionals are computed from the LLDs, and arranged in
fixed-length sequences. These are then fed into a single-layer Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) followed by
three stacked Fully Connected (FC) layers to learn the time dependencies of affect, and infer the corresponding affective dimension.

Table 1: Summary with the number of interactions available from
the Cross-cultural Emotion Sub-challenge dataset per culture
(German – DE, Hungarian – HU, Chinese – CN) and partition,
the duration of the original interactions, and the duration of the
compiled segments of the original interactions in which acoustic
and visual information corresponds to the same interactant (used
in this work). Duration-related information is computed time-
wise and displayed with (HH:)MM:SS format.

Partition Culture # Interactions Duration

Original Used

Train
DE 34 1:33:27 44:03
HU 34 1:08:41 31:44∑

68 2:42:08 1:15:47

Dev.
DE 14 37:52 18:18
HU 14 28:50 14:34∑

28 1:06:42 32:52

Test

DE 16 46:47 21:24
HU 18 36:18 18:09
CN 70 3:18:14 1:27:31∑

104 4:41:19 2:07:04

information from both. To ensure a fair use of the involved
modalities, we exclusively analyse the segments of the interac-
tions corresponding to the timestamps in which the information
from both acoustic and visual modalities match; i. e. , the infor-
mation from the interactant speaking is the same as the one being
video recorded. Table 1 summarises the data available and used
in this work.

3. Methodology
This section introduces the system implemented (cf. Section 3.1),
illustrated in Figure 1, and describes the SSL approach followed
in this work (cf. Section 3.2).

3.1. Implemented System

Three main components form our system (cf. Figure 1), which
we proceed to describe in the following paragraphs.

Data Preparation. Based on the nature of the CES dataset
(cf. Section 2), we first cropped the original videos selecting the
timestamps in which the interactant speaking is the same as the
one being video recorded. Furthermore, we compensated the
delay annotators might have experienced between perceiving

and reporting the emotional state of the interactant [24]. Using
annotation delay compensation, we shifted the affect-related
annotations back in time by 2.4 seconds [25]. The next step is
the extraction of audiovisual features from the cropped videos.

The 23 Low Level Descriptors (LLDs) of the EGEMAPS
feature set [26] are extracted from the audio signals using OPENS-
MILE [27]. For the visual modality, we opted for extracting
the intensities of 17 Facial Action Units (FAUs) using OPEN-
FACE [28]. Both acoustic and visual LLDs are extracted at
different sampling rates. To overcome this issue, we computed
their functionals, as a technique for summarising the information
extracted. Specifically, we used sliding windows of 4 seconds
length with a hop size of 0.1 seconds to compute the mean and
standard deviation of the LLDs extracted in the corresponding
time span. The window length selected ensures capturing useful
affect-related information [22]. The hop size used contributes
to homogenising the sampling rates between the audiovisual
functionals and the annotations. The functionals are finally stan-
dardised to boost the convergence when training the models.

Affective states are context-related, and, as a consequence,
it is beneficial to include contextual information, as past infor-
mation in the time domain, when modelling affect [29, 30]. This
temporal modelling can be achieved using Recurrent Neural Net-
works (RNNs). In this work, we emulated the time annotators
need to perceive affect and modelled the current annotation, y[n],
with current and previous input features,

[
x[n], · · · , x[n−N ]

]
.

Nevertheless, the current annotations do not only correlate with
the features themselves, but also depend on the previous annota-
tions. Hence, we modelled affective annotations as

y[n] = f

([
x[n] · · · x[n−N ]

y[n− 1] · · · y[n−N − 1]

])
, (1)

where N corresponds to the number of samples needed to capture
2.4 seconds of data, in concordance with our chosen annotation
delay compensation factor. This many-to-one approach can be
interpreted as a technique for data augmentation.

Neural Network Architecture. Affective annotations are mod-
elled with a Gated Recurrent Unit Recurrent Neural Network
(GRU-RNN) followed by three stacked Fully Connected (FC)
layers. The GRU-RNN, with 32 hidden units, aims to capture
the time dependencies of the input data sequence, and learns a
hidden representation. The purpose of the FC layers, with 32,
16, and 1 neurons, respectively, is to progressively compress the
information embedded in the hidden representation learnt with
the GRU-RNN. The last FC layer uses a HardTanh activation
function, so the inferred annotations belong to the range [−1, 1].
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Table 2: Summary of the Concordance Correlation Coefficients
(CCC) obtained by comparing the ground truth and the pre-
dicted arousal annotations from acoustic features per culture on
both development and test partitions. Specifically, we compared
the performance of the models when trained using Manual or
Automatic annotations as training material. For each scenario,
the selection of the interactions used to train the M model was
performed culture-wise. The highest CCC scores per culture in
each scenario are highlighted.

Culture DE HU DE+HU

Models M A M A M A

Dev. DE .266 .059 .115 .006 .219 .111
HU .019 .007 .074 .147 .075 .160

Test
DE .102 .021 .218 .027 .258 .129
HU .177 .031 .200 .030 .163 .040
CN .004 .003 .007 .008 .007 .003

The network is trained using the Concordance Correlation
Coefficient (CCC) as the loss, with Adam as the optimiser. The
learning rate of the optimiser was set to 1 · 10−4. Data from all
available interactions was read at once, and we selected one in
every five consecutive windows of features as training material.
This way, we reduced the oversampling of the training data, and
contributed to a better network generalisation. The weights of
the network were updated using mini-batches of 1 000 samples.
The network was trained during a maximum of 300 epochs, and
implemented an early stopping method to stop training when
the loss on the validation partition does not improve for 20
consecutive epochs.

As the previous gold standard annotations defined in Equa-
tion (1) are not available at inference time, the inferred anno-
tations in previous time steps are used on the prediction of the
current annotation. The buffer with previously inferred annota-
tions is initialised with zeros at every new interaction coming to
the system, and continuously updated.

Post-processing. The inferred annotations are post-processed
using a median filter before the actual assessment of the models.
The median filter uses a kernel size of 3 samples to post-process
the annotations associated to the audio modality, and a kernel
size of 33 samples to post-process the annotations associated to
the video modality. These parameters were optimised for the
assessment of the baseline model on the development partition.

3.2. Semi-Supervised Learning Approach

Our purpose is to assess the cultural influence on training affect
recognition models with SSL annotations. Hence, interactions
with SSL annotations need to be included as training material.
For a fair comparison between the models, we split the interac-
tions in the train partition into two disjoint subsets, named SM

and SA. The subset SM contains half of the original interactions
with their corresponding manual annotations, and is used to train
a Manual model. The M model is then used to automatically
annotate the interactions belonging to the subset SA, which con-
tains the interactions excluded from SM . Next, we used the
interactions belonging to SA and their corresponding SSL an-
notations to train an Automatic model. Finally, we combined
SM and SA subsets with their corresponding manual and SSL
annotations, respectively, to train a Manual + Automatic model.

In order to investigate the cultural impact on the performance
of SSL, we set two different scenarios. In the first scenario, only

Table 3: Summary of the Concordance Correlation Coefficients
(CCC) obtained by comparing the ground truth and the pre-
dicted arousal annotations from acoustic features per culture on
both development and test partitions. The baseline model was
trained using the original manual annotations. The remaining
models were trained combining manual and automatic annota-
tions (M+A model). The interactions used to infer the automatic
annotations were selected culture-wise. The highest CCC scores
per culture among the hybrid models assessed are highlighted.

Culture Baseline DE HU DE+HU

Dev. DE .308 .235 .010 .224
HU .148 .012 .148 .314

Test
DE .142 .099 .036 .237
HU .165 .203 .052 .204
CN .006 .005 .009 .006

German interactions were included in SM . In the second one,
only Hungarian interactions were included in SM . We extended
this analysis with a third scenario, in which SM contained half of
the interactions from both German and Hungarian cultures. This
splitting was performed by seeding the pseudo-random num-
ber generator and is publicly available1. Interactions belonging
exclusively to the train partition were used to train the models
assessed on the development partition. The models assessed on
the test partition used interactions from both train and devel-
opment partitions as training material. Thus, at this stage, the
interactions belonging to the development partition were also
split and included in the two disjoint subsets SM and SA, and
processed as described in the aforementioned procedure.

4. Experimental Results
The interactions belonging to the CES dataset had been man-
ually labelled in terms of valence and arousal. Thus, we used
these manual annotations to train the baseline models for our
experiments. As arousal information is considered to be stronger
in the voice, while valence information, in the face [31], we
focused our analysis on the automatic recognition of arousal
from acoustic features (cf. Section 4.1), and valence from visual
features (cf. Section 4.2). The performance of the trained models
in the different scenarios outlined in Section 3.2 is assessed by
computing the CCC between the inferred and ground truth anno-
tations from all interactions belonging to each specific cultural
subset in the development or test partitions.

4.1. Arousal Recognition from Acoustic Information

The results obtained on the automatic recognition of arousal are
summarised in Tables 2 and 3. Table 2 compares the performance
of the models when using manual or automatic annotations ex-
clusively as training material. Table 3 compares the performance
of the baseline model, which uses manual annotations from all
the interactions as training material, with the hybrid models,
which are trained using both manual and automatic annotations.

The performance analysis of the models trained with manual
or automatic annotations (cf. Table 2) indicates the suitability of
the manual annotations. When only German interactions were
used in SM , the trained M model achieved a better performance
than the A model on both development and test partitions. In
the second scenario, in which only Hungarian interactions pop-

1https://github.com/EIHW/AVEC19CES CrossCulturalSSL
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Table 4: Summary of the Concordance Correlation Coefficients
(CCC) obtained by comparing the ground truth and the pre-
dicted valence annotations from visual features per culture on
both development and test partitions. Specifically, we compared
the performance of the models when trained using Manual or
Automatic annotations as training material. For each scenario,
the selection of the interactions used to train the M model was
performed culture-wise. The highest CCC scores per culture in
each scenario are highlighted.

Culture DE HU DE+HU

Models M A M A M A

Dev. DE .447 .487 .211 .131 .360 .207
HU .130 .161 .241 .168 .182 .190

Test
DE .272 .357 .166 .117 .203 .193
HU .100 .268 .085 .064 .238 .078
CN .027 .246 .030 .024 .043 .035

ulated SM , M and A models obtained the best performances
on the German and Hungarian interactions belonging to the de-
velopment partition, respectively. On the test partition, the M
model scored the highest CCC on the German and Hungarian
interactions, while for the Chinese interactions, the best CCC
was obtained with the A model. In the last scenario, which com-
bined German and Hungarian interactions in SM , the M and A
models scored the highest CCC on the German and Hungarian
interactions belonging to the development partition, respectively.
On the test partition, the M model obtained the best results in all
the cultures assessed. From a cultural perspective, the German
model obtained the best performance on the German interactions
belonging to the development partition, while the multicultural
model scored the highest CCC on the Hungarian ones. On the
test partition, the multicultural model achieved the best perfor-
mance on the German interactions, while the Hungarian model
scored the highest CCC on both the Hungarian and Chinese ones.

From the evaluation of the hybrid models (cf. Table 3), we
observe that for the three cultures belonging to the test partition,
the performance of the best hybrid models surpassed the baseline
model. Specifically, hybrid models trained with German and
Hungarian interactions in SM achieved the highest CCC scores
on both the German and Hungarian interactions on the test set.
On the Chinese culture, the best model was obtained when using
Hungarian interactions only in SM .

4.2. Valence Recognition from Visual Information

The results obtained on the automatic recognition of valence are
summarised in Tables 4 and 5. Table 4 compares the performance
of the models when using manual or automatic annotations ex-
clusively as training material. Table 5 compares the performance
of the baseline model, which uses manual annotations from all
the interactions as training material, with the hybrid models,
which are trained using both manual and automatic annotations.

The performance analysis of the models trained with manual
or automatic annotations (cf. Table 4) shows interesting results.
When only German interactions were used in SM , the A model
obtained the highest CCC scores in all cultures from both de-
velopment and test partitions. On the other hand, when only
Hungarian interactions were used in SM , the M model achieved
the highest CCC scores in all cultures from both development
and test partitions. Finally, when both German and Hungarian
interactions populated SM , the M and A models scored the high-
est CCC on the German and Hungarian interactions belonging to

Table 5: Summary of the Concordance Correlation Coefficients
(CCC) obtained by comparing the ground truth and the pre-
dicted valence annotations from visual features per culture on
both development and test partitions. The baseline model was
trained using the original manual annotations. The remaining
models were trained combining manual and automatic annota-
tions (M+A model). The interactions used to infer the automatic
annotations were selected culture-wise. The highest CCC scores
per culture among the hybrid models assessed are highlighted.

Culture Baseline DE HU DE+HU

Dev. DE .451 .428 .183 .310
HU .232 .160 .223 .244

Test
DE .233 .492 .106 .200
HU .153 .142 .080 .115
CN .039 .075 .029 .044

the development partition, respectively. On the test partition, the
M model obtained a better performance than the A model in all
the cultures assessed. From a cultural perspective, the German
model obtained the best performance on the German interactions
belonging to the development partition, while the Hungarian
model scored the highest CCC on the Hungarian ones. On the
test partition, the German model scored the highest CCC in all
cultural interactions.

From the evaluation of the hybrid models (cf. Table 5), we
observe that for the three cultures belonging to the test partition,
the highest CCC scores were obtained with the hybrid model
that used German interactions to populate SM . Specifically, for
the German and Chinese interactions, the performance of this
model surpassed the baseline model.

5. Conclusions
This work assessed the impact of culture when using SSL on
the continuous recognition of affect. Specifically, we focused on
the automatic recognition of arousal from the voice, and valence
from the face. The results obtained conveyed that the culture of
the interactions used for training the models impacted the overall
system performance. In most of the cases analysed when com-
paring M and A models, the best performances were obtained
when affective models were trained using manual annotations.
Nonetheless, the use of SSL annotations alone showed highly
competitive results. When analysing the M+A models, we ob-
served that hybrid solutions, combining manual and automatic
annotations, surpassed the baseline, which only used manual
annotations, in most of the cases investigated. These results
encourage the use of automatic annotations or hybrid solutions
to ease the data annotation process in affect-related problems.

Future directions to carry on this work include the cross-
modal study of SSL for continuous affect recognition, and the
investigation of multi-task networks in this problem in order to
exploit the supplementary information embedded in the valence
and arousal dimensions simultaneously. Further work can be
performed towards a deep understanding of the benefits of using
teacher forcing strategies in multimodal paradigms aiming at the
continuous recognition of affect.
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