Soil organic carbon patterns under different land uses in South India
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ABSTRACT

Soil organic carbon (SOC) is the largest terrestrial organic carbon pool; thus, there is a growing interest in its
spatial distribution and potential for carbon sequestration. However, our knowledge about spatial distribution
in different soil depths and under different land uses is still limited in many regions of the world. The aim of
this study was to analyse the soil depth and land use specific SOC contents in a small catchment (6.46 kmz2) lo-
cated in the tropical monsoon climate of South India and to determine potential auxiliary variables suitable to de-
rive high resolution maps. A soil survey was carried out, taking 112 soil cores representing three soil depth

ggﬂ‘ﬁgﬁ;ie carbon increments each (<0.2 m, 0.2 - 0.5 m, and 0.5 - 0.9 m, respectively) and a number of spatially distributed auxiliary
Tropics variables (slope; curvature; elevation above the next potential irrigation source; water erosion; wetness index;
Land use mean NDVI) were determined. The interrelationship between SOC contents and these variables and their princi-
South India pal components were analysed with a combination of an ANCOVA, an iterative linear regression and a multivar-

Inceptisols (USDA soil taxonomy) iate non-linear regression procedure. The mean SOC contents of 3.4 g kg™ (upper 0.9 m) are consistent with large
scale data. The more detailed analysis of land use specific differences in SOC contents showed that the sampling
points of irrigated arable land had the highest mean contents in topsoil and over the whole measured depth. SOC
contents under arable land were followed by those under plantations, forests/shrubland and grassland. Within
the different land use categories SOC under arable land declines with increasing elevation above the next poten-
tial irrigation source, SOC under grassland is positively correlated with mean NDVI, and SOC under forest/shrub-
land is best described by variables indirectly related to the accessibility of forest areas. Overall, this study indicates
that the commonly used relations to estimate spatial distribution of SOC on larger scales might not be adequate
for large areas in South India, which are dominated by pronounced dry and wet seasons, intensive irrigation
farming and human-induced forest degradation.

1. Introduction Despite the improved SOC maps available on the global scale, e.g.

Hiederer and Kéchy (2011) with a resolution of 30 x 307, there is still

Soil organic carbon (SOC) is the largest terrestrial organic carbon
pool. The latest global SOC map based on the Harmonized World Soil
Database (FAO, 2009) was derived by Hiederer and Kochy (2011). It re-
ported global SOC contents of 1417 Gt C in the upper meter and 699 Gt C
in the top 0.3 m (Hiederer and Kéchy, 2011). Hence, small changes in
rates of mineralization of this pool due to climate and/or land use and
management change will directly affect atmospheric CO, concentra-
tions (Stockmann et al.,, 2013). For both climate mitigation and amelio-
ration of soil quality and fertility, there is a growing interest in adopted
agricultural soil management to stabilize or increase soil SOC contents
(Lal, 2007; Stockmann et al,, 2013). Moreover, considerable efforts to re-
duce forest degradation, which leads to a decline in SOC stocks (e.g.
Chhabra and Dadhwal, 2004), are taken in many parts of the world.
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limited knowledge on the small scale SOC patterns in many regions of
the world. Today, more detailed SOC maps are mostly available from
OECD states where a large number of studies focus on in-field SOC
variability (e.g. Bornemann et al.,, 2010; Dlugof et al., 2010) or SOC in-
ventories are combined with models to estimate the spatial distribution
of SOC in different soil depths (Lacoste et al., 2014; Meersmans et al.,
2009). Depending on spatial scale and data availability, different auxilia-
ry variables are used in these studies to estimate the spatial distribution
of SOC contents or stocks. On the larger regional to global scale, the spa-
tial distribution of SOC contents (partly stocks) is mostly estimated
combining SOC data with typological soil units available in global soil
maps (e.g. Hiederer and Kochy, 2011), combinations of soil units with
land use information or ecosystem categories (D'Acqui et al., 2007;
Don et al.,, 2011). On smaller scales from single fields to landscape seg-
ments, a wide variety of auxiliary variables were successfully tested
for 3D SOC mapping. These range from high resolution terrain attri-
butes, geological variables, detailed land use information and soil
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properties to modeled or measured erosional status (Dlugof3 et al.,
2010; Lacoste et al., 2014; Minasny et al., 2013; Quine and Van Oost,
2007).

In India, considerable efforts have been made over the last decades
to provide modern and homogenous soil maps (Harindranath et al.,
1999; Krishnan et al., 1996; Natarajan et al., 1996; Shiva Prasad et al.,
1996). Despite the well-known relations between land use and SOC
contents, most estimates of SOC contents or stocks available in India
are based on relations between soil units or groups of soil units from
these maps and SOC data (Bhattacharyya et al., 2000). Regional studies
focusing on the spatial distribution of SOC in South India are relatively
rare (Krishnan et al., 2007) and mostly limited to differences in SOC
stocks under forest with different degradation status (Chhabra and
Dadhwal, 2004) or effects of land use change on SOC stocks (Jenny
and Raychaudhuri, 1960). Generally, it can be concluded from these
land use change studies in India as well as from more extensive meta-
analyses in the tropics (Don et al., 2011) that SOC contents or stocks de-
cline from primary forest to grassland and to cropland. Besides these soil
degradation studies, which allow addressing some spatial variation in
SOC stocks, there is a large number of recent studies from India dealing
with SOC contents in different agricultural regions and the potential
benefits from SOC sequestration due to adopted agricultural soil man-
agement (Brar et al., 2013; FAO, 2004; Pathak et al.,, 2011; Srinivasarao
et al,, 2013). However, studies focusing on more small-scale patterns
in SOC contents within small catchments with different land uses,
which also take different soil depths into account, are to our knowledge
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Fig. 2. Long-term (1981-2011) monthly precipitation measured in a distance of 4 km from
the test site at the Krishnagiri reservoir; error bars give 95% confidence intervals; mean
monthly temperatures taken from climate-data.org (Anon., 2013).

missing. Nevertheless, soil depth-specific spatial SOC patterns are of
major importance to understand processes of carbon sequestration on
the landscape scale affected by the different carbon saturation status
of soils (Qin et al., 2013; Wiesmeier et al., 2013).
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Fig. 1. Computed extent of the test catchment with topography and hydrological situation.



The major objectives of this study are firstly, to determine the soil
depth-specific (0 m to 0.2 m, 0.2 m to 0.5 m, and 0.5 m to 0.9 m) distri-
bution of SOC contents in a small, intensively used catchment under
monsoon climate typical for South India and secondly, to analyze the
drivers of spatial patterns in SOC contents taking land use, topography,
erosion and vegetation status into account.

2. Materials and methods
2.1. Test site

The test site is located in the Krishnagiri District in Tamil Nadu, India,
about 220 km west of Chennai and 100 km south-east of Bangalore. It
covers a small catchment of approximately 6.46 km? draining into the
Thimmapuram lake with a surface area of about 0.64 km?. The altitude
of the catchment at the lake outlet is 477 m increasing to 876 m above
sea level at the peak of a small Inselberg (12.74° N, 78.24° E) in the east-
ern part (Fig. 1). The landscape is generally characterized by a flat-
bottomed valley floor (approx. 70% of catchment area) and partly very
steep slopes of the Inselberg with granitoid gneiss rock (Geological
Survey of India, 2001). The catchment represents a typical landscape
segment of the ‘foothills’ of the Eastern Ghats.

The climate of the test site is representative for the wet and dry, trop-
ical monsoon climates of South India with a long-term mean annual rain-
fall of 779 mm (measured 1981-2011 at the Krishnagiri dam located 4 km
north-west of the catchment) and a potential evapotranspiration es-
timated to be 1670 mm a™' in the district (Natarajan et al., 1996).
Rainfall has a pronounced seasonality with a first small peak end of
May and a main rainy season related to south-west (summer) as well
as north-east (winter) monsoon between August and November
(Fig. 2). Compared to rainfall, the seasonality of temperature is small
(Fig. 2) with an average of about 26.4 °C (Anon., 2013).

Following the 1:500,000 soil map of Tamil Nadu (Natarajan et al.,
1996) the soils in the test catchment can be roughly characterized in
relation to topographic subdivisions, with moderately deep, well
drained, sandy loamy soils in-between rock outcrops at the slopes of an
Inselberg, and deep, moderately drained, clayey soils in the gently sloping
valley floors. Soils in the catchment are all classified as Inceptisols (subor-
der: Tropepts; greater group: Ustropepts; subgroup: Typic Ustropepts)
following the taxonomy of the US Department of Agriculture (USDA)
used by the Indian State Soil Survey (Natarajan et al., 1996). Comparing
the location of the two topographic subdivisions from the 1:500,000
map with the topography derived from a 90 x 90 m SRTM DEM (Jarvis
et al,, 2008) it indicates that the resolution of the soil map is not appropri-
ate to use the drainage classes of the map subdivisions for further

Table 1

Land use in the Thimmapuram lake catchment derived from aerial photographs and
ground-truth mapping in 2011 and 2012; USLE C factors adapted from studies in South
India (Chatterjee et al., 2013; Dabral et al., 2008; Jain and Das, 2010; Vemu and
Pinnamaneni, 2011); USLE P factor of arable land (mostly small flood irrigated parcels)
was averaged from values reported by Chen et al. (2012) and Yoshikawa et al. (2004).

Land use Area USLE factors

[ha] [%] C P
Arable land 1933 299 0.37 0.25
Plantations® 117.7 183 0.2 1
Grassland® 70.3 109 0.2 1
Shrubland® 38.5 6.0 0.2 1
Forest” 1238 19.2 0.03 1
Settlements & infrastructure 315 49 1 1
Wetland 6.6 1.0 - -
Lake 64.3 9.9 - -
Total sum 645.9 100

¢ Plantations summarize plantations of Mango, Jasmine, Chilly, Palm trees etc. typically
planted in the area.
b Grassland, shrubland and forest include an area of approx. 10% of rock outcrops.
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statistical analyses. Probably more detailed maps exist but were not avail-
able for our study.

Land use in the catchment also follows topography with sparse for-
ests, shrubland and grassland on the steeper slopes in its eastern part
and arable land and plantations (e.g. Jasmine) in the mostly flat areas
around the lake (Table 1). Generally, the area is dominated by irrigation
farming, which allows two crops per season (approximately 90-95% of
the arable land in the catchment is irrigated ). Depending on water avail-
ability, which is governed by the annual variability of monsoon rainfall
and the proximity to water sources for irrigation, the cropping intensity
varies. In the direct proximity of the lake and along the channel between
the upper water tank and the lake (Fig. 1) paddy rice is planted twice
per season in most years. Moving upslope from the lake to the Inselberg
in the north-eastern part of the catchment, a gradual change from rice
dominated cultivation to a combination of rice and vegetables and/or
millet, sorghum or bean variations is observed. In case of limited irriga-
tion options due to larger distances to water sources (approximately
5-10% of arable land), mostly millet, sorghum and bean variations are
planted. The hydrological situation in the catchment is very complex,
dominated by man-made water harvesting structures, channels and
groundwater wells intensively used for irrigation, often by pumping
water to fields above water level of the irrigation source. From the
end of the rainy season in December to approximately April, the catchment
gets additional water through the Krishnagiri dam (personnel communi-
cation with the dam management), which was established in the
late 1950s to store monsoon runoff of the Ponnaiyar river (gross capacity:
47 - 105 m>). This inflow is transferred via the small reservoir in the north
of the catchment (Fig. 1) into the Thimmapuram lake, which itself was
built for irrigation purposes and to improve ground water recharge.

2.2. Soil sampling and analysis

For an inventory of the soil carbon contents in the catchment a field
sampling campaign was carried out in early May 2012. The late dry sea-
son was chosen for the sampling campaign as almost all litter is miner-
alized or consumed via intensive grazing of sheep and goats on all land
uses. Overall 112 soil cores were extracted down to a depth of 0.9 m or
as deep as possible using a Piirckhauer soil auger (Eijkelkamp, NL; ap-
proximately 2 cm diameter). The Piirckhauer was used as it allowed
penetrating into hard, dry clayey soils which was not possible with
other hand augers with larger diameters. The complete samples from
the auger were sub-divided within the field into three depth increments
(from 0.0 m to 0.20 m, from 0.20 m to 0.50, and from 0.50 m to 0.90 m,
respectively). Subsequently these depth increments are referred to as
depth D1, depth D2 and depth D3. Samples were stored in plastic bags
to be transported to the laboratory in the dark. Sampling locations
were determined to represent typical land uses (Fig. 3) and a potential
soil gradient between the lake and the Inselberg. Land use classes
(Table 1) were defined as arable land, plantations, grassland, shrubland,
and forest. For each of these classes, an area proportional number of sam-
pling locations were randomly chosen from a generic 20 m x 20 m raster
covering the eastern part of the catchment where the strongest gradients
in slope and erosion potential can be expected. As we hypothesized
that soil erosion might be an important driver of SOC patterns, especially
in the forest area, an additional number of samples (approx. 12) were
taken along a steep thalweg with visual signs of recent erosion and in a
downslope flat area where deposition was observed.

The soil samples were oven dried at 105 °C for 24 h. Coarse particles
were separated by 2 mm sieving, roots and other undecomposed organ-
ic matter particles were removed by hand picking. To determine the
coarse soil fraction, both coarse (>2 mm) and fine soil fractions
(<2 mm) were weighed. Afterwards the fine soil fractions were ground-
ed with a hand mortar. The total C and N contents were determined by
elemental gas-chromatography using a CNHS elemental analyzer (vario
MicroCUBE, Elementar, Hanau, Germany). Although the soils in the area
are characterized as non-calcareous (Geological Survey of India, 2001)
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Fig. 3. Land use and sampling locations in the test catchment.

all soil samples were checked for inorganic carbon content with HCL. In
the case of any signs of inorganic carbon (approximately 25% of all sam-
ples) we determined the total inorganic carbon content (TIC) with a
combined total carbon (TC) and TIC analyzer (DIMA-TOC 100, Dimatec,
Essen, Germany).

To keep the C content values consistent based on the data from the
CNHS elemental analyzer (vario MicroCUBE) we used the ratio of TIC
to TC from the DIMA-TOC100 to calculate total organic carbon (TOC)
from the TC data of the CNHS elemental analyzer (Eq. (1)). The resulting
TOC contents are subsequently referred to as SOC contents.

TIChiMmaA-
TOC = TCenps-analyser (1 N W) "
DIMA-TOC

As the soil sampling campaign was carried out during the dry season
the very clayey and dry soils could be hardly sampled for subsoil bulk
density. Hence, only regional information regarding subsoil bulk density
(1.6 - 10% kg m™) was available from global maps (Anon., 2007). To de-
termine top-soil bulk density stainless steel sampling rings with a cut-
ting edge at the bottom (diameter 0.06 m, length 0.07 m) were
hammered into the soil and afterwards excavated. The sampled soil
was dried at 105 °C in the laboratory and bulk density was calculated
from ring volume and dry sample weight. Bulk density samples were
taken at 20 locations representing the different land uses. Interestingly,
the topsoil bulk densities only slightly varied between the different land
uses (Mean + standard deviation: (1.40 =+ 0.13) - 10 kg m™).

Unfortunately, the available soil texture and bulk density data did not
allow to parameterize any pedo-transfer function (e.g. Meersmans
et al., 2009) to calculate bulk density for different soil depths. However,
using the available spatially uniform bulk density information and the
measured coarse fractions for each sample allowed to at least estimate
SOC stocks. As these estimates are associated with a larger uncertainty
compared to measured SOC contents, we mostly restrict our spatial
analyses to SOC contents. Nevertheless, we partly used the calculated
SOC stocks to indicate that the spatial distribution of the coarse fraction
does not bias our general findings regarding SOC differences under dif-
ferent land use categories.

2.3. Terrain analysis

A number of primary terrain attributes and one terrain index that
might affect the spatial distribution of SOC were calculated. The deriva-
tion of these parameters was based on a SRTM DEM (Jarvis et al., 2008)
down-scaled to a resolution of 20 m x 20 m. For this downscaling an in-
verse distance approach was used with a weighting exponent of one to
linearly interpolate between the center values of each 90 m x 90 m grid
cell of the original SRTM data. The downscaling to 20 m x 20 m was nec-
essary for two reasons: (i) the sediment transport capacity approach
implemented in the later on used erosion model WaTEM/SEDEM (Van
Oost et al.,, 2000; Van Rompaey et al., 2001; Verstraeten et al., 2002) is
calibrated to this grid size, and (ii) the higher resolution more easily
allowed to burn-in the major streams and drainage channels into the



DEM, which connect the steep slopes in the eastern part of the catch-
ment with the Thimmapuram lake.

The following primary terrain attributes were calculated using
ArcGIS 10 (ESRI, USA): slope, profile curvature (Curv_prof; orientated
in the direction of maximum slope) and plan curvature (Curv_plan;
orientated perpendicular to the direction of maximum slope). The latter
terrain attributes were chosen as these represent concavities and con-
vexities of slopes, which might be related to lateral soil movement
and hence changes in SOC patterns (e.g. DlugoR et al., 2010). The second-
ary attribute wetness index (Moore et al., 1991) was used as proxy vari-
able for soil moisture potentially affecting SOC contents:

2)

where A is the specific catchment or contributing area (m? m~!) orthog-
onal to the flow direction, calculated as the grid cell specific catchment
area divided by the grid length (20 m), and 3 is the slope.

Another potential driver of spatial variability in SOC is the spatially
varying irrigation within the catchment. As it is difficult to get detailed
data regarding irrigation amounts, which is the most important driver
of crop growth in the region, we tried to identify a commonly available
proxy variable valuable to estimate irrigation potential. Generally, there
are two irrigation sources typically used in this region of India. On the
one hand, there is a long tradition in channel irrigation based on an
interconnected system of water harvesting reservoirs/lakes (as the
Thimmapuram lake). On the other hand, more and more farmers
pump ground or surface water to fields located on elevations above
these water sources. Furthermore, the groundwater level around the
lake is partly so shallow (if the lake is board full) that it is directly avail-
able for plants. Hence, a hypothetical height distance to the next open
water source (elevation above surface water, EaW) is calculated, assum-
ing that irrigation water availability is directly related to stream and lake
levels (which are assumed to correspond to groundwater levels)
extractable from the DEM. To this end, we calculated the specific catch-
ment area of each stream/lake raster cell and associated the height of
the respective outlet to these individual catchments. The result is a set
of intersecting horizontal plains, each with the elevation of the respec-
tive outlet point. The difference between the elevation of the original
DEM and the maximum plain elevation at a certain location leads to a
raster, which represents EaW.

2.4. Erosion modeling

To account for patterns of water erosion, which should be especially
important for SOC patterns in the forest and shrubland located on partly
steep slopes, we applied the spatially distributed erosion and sediment
delivery model WaTEM/SEDEM. It is a spatially distributed model com-
bining a water and tillage erosion model (WaTEM, Van Oost et al., 2000)
and a sediment delivery model (SEDEM, Van Rompaey et al., 2001).
WaTEM is an adapted version of the Revised Universal Soil Loss Equa-
tion (RUSLE; Renard et al., 1996). The most important adaptation is
the replacement of the slope length with the unit contributing area
according to Desmet and Govers (1996a).

SEDEM calculates sediment transport and sedimentation. Sediments
are routed along the flow pathway using a multiple-flow algorithm
(Desmet and Govers, 1996b). Deposition is controlled by grid cell specif-
ic transport capacity, which is assumed to be proportional to the poten-
tial rill (and ephemeral gully) erosion volume calculated following an
approach of Van Rompaey et al. (2001). If the local transport capacity
is lower than the sediment flux, deposition is modeled.

WaTEM/SEDEM requires a number of input maps as well as various
input parameters which are briefly described in the following: The 20 m
x 20 m DEM serves as main basis for the calculations. Aerial photo-
graphs were used to delineate single fields and parcels as well as land
use and pond distributions (see Fig. 3). A watercourse map (rivers/
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canals) was calculated from the DEM, in which artificial canals
were ‘burned in’ beforehand. The K factor was calculated from tex-
ture (Auerswald et al., 2014) as given in the soil map of Tamil Nadu
(Natarajan et al., 1996); it is either 10 kg m2 h MJ"' mm™ or
21 kg m2 h MJ"! mm™'. The R factor [M] mm ha™' h'! a’'] was
calculated from the long-term mean annual precipitation (P,,) at the
station Krishnagiri using an equation provided by Jain and Das (2010)
for South India (R = 81.5 + 0.38 P,y; for 340 < P, <3500 mm). A con-
servation practice factor (P factor) for the arable land, which is dominat-
ed by small fields (Fig. 3), mostly used to cultivate paddy rice or other
flood-irrigated crops, is not available from standard RUSLE/USLE litera-
ture. Hence, we took an average P factor of 0.25 for similar small paddy
rice fields averaged from values reported by Chen et al. (2012) for
Taiwan and Yoshikawa et al. (2004) for Japan.

The most complex RUSLE/USLE factor is the C factor which originally
combines daily erosivity (derived from long-term, high resolution rain-
fall data) with daily or seasonal soil cover by plants or plant residues
(derived from long-term measurements). As both is not available for
the test site, the C factors of the main land uses (Table 1) were estimated
from other studies carried out in Southern India (Chatterjee et al., 2013;
Dabral et al., 2008; Jain and Das, 2010; Vemu and Pinnamaneni, 2011).
However, all these studies use rough estimates of the C factors, e.g. calcu-
lating it from remote sensing derived Normalized Digitized Vegetation
Index (Jain and Das, 2010), or apply tabular data from Wischmeier and
Smith (1978) not experimentally tested under conditions comparable to
the respective test sites.

Due to the uncertainties associated with applying WaTEM/SEDEM in
the case of the small irrigation fields we did not analyze the spatial
distribution of erosion and deposition for the arable land and the plan-
tations but focus on the near natural areas not dominated by flood irri-
gation. Nevertheless, we compared the overall erosion potential within
the different land use categories. Erosion and deposition are given as the
variable ERO with negative values indicating erosion and positive values
indicating deposition.

2.5. Vegetation attributes

To account for the spatial patterns in vegetation density and activity,
which are important drivers of spatial SOC patterns in near-natural en-
vironments, a multi-temporal remote sensing analysis was performed.
A long-term mean Normalized Difference Vegetation Index (NDVI)
(Rouse et al., 1973) was calculated utilizing the near infrared (NIR)
and red bands of five satellite scenes acquired between 1992 and
2011. The used sensors were Landsat 5 TM (one scene in January
1992), Landsat 7 ETM + (scenes in November and December 2000),
and IRS-P6 LISS III (scenes in March and November 2011).

2.6. Statistical analysis

The following analyses were performed to evaluate the spatial
patterns in the land use and soil depth-specific amounts of SOC:

(i) SOC data as well as terrain attributes, soil erosion and NDVI were
analyzed for normality using visual interpretation of normal
Q-Q-plots. In case it was necessary (and possible) variables
were transformed to reach near normality.

(ii) A principal component analysis was performed using all seven
explanatory variables (Slope, Curv_plan, Curv_prof, WI, EaW,
ERO, NDVI) to derive the most important spatial patterns within
these variables which partly exhibit a strong collinearity, e.g.
between slope and wetness index.

(iii) To test whether the mean SOC values per land use and soil depth
are significantly different, an analysis of variance (ANOVA) was
performed. A clear correlation between the different land uses,
the principal components (PCs), and the single explanatory var-
iables was given (e.g. forest is mostly located on steeper slopes).
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Therefore, land use was taken as categorical explanatory variable
together with the continuous explanatory variables in an analysis
of covariance (ANCOVA). The ANCOVA allowed estimating inter-
cepts and slopes of land use specific linear regressions between
SOC and continuous explanatory variables. In case the model co-
efficients (intercept and slope) of different land uses were simi-
lar, such model could be stepwise simplified to test if specific
land uses can be aggregated into a new land use category without

procedure were performed taking likely interactions between
explanatory variables and curvilinear behavior into account
(Crawley, 2009). To avoid the problem of collinearity of ex-
planatory variables (terrain, erosion, and vegetation parame-
ters) PCs derived from these variables were also used in the
multivariate regression analysis. To test if regression model simpli-
fications are possible without losing explanatory power, again the
Akaike's Information Criterion (AIC; Akaike, 1974) was used.

losing explanatory power. To test if simplification of a model re- (v) To test the sensitivity of certain relations between soil depth-
duces explanatory power, we used Akaike's Information Criteri- specific SOC contents and potential auxiliary variables against
on (AIC; Akaike, 1974). data from individual sampling points, we used a cross-
Based on the aggregated land use categories, a soil depth-specific validation approach. Therefore, one SOC measurement after
iterative linear regression and a multivariate non-linear regression the other was omitted from the data used to derive the
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relations and the missing values were subsequently estimat-
ed. As goodness-of-fit parameters, we used the root mean squared
error (RMSE) and the model-efficiency coefficient (MEF) of Nash
and Sutcliff (Nash and Sutcliffe, 1970):

RMSE = %ZT‘: (x—%)’ 3)

n R
_ Zi:l (X’ f’) (4)

where n is the number of points, x; are the observed values, ; are
the predicted values, and X is the arithmetic mean of the observed
values.

3. Results
3.1. Soil depth and land use specific SOC contents

In the topsoil depth increment D1 (0 m to 0.2 m) the SOC contents
ranged between 1 g kg™! and 17 g kg™! (excluding one obvious outlier
under forest with a SOC content of 29 g kg™!), with a mean SOC content
of 6 gkg™! (Fig. 4A). On average about 16% of total soil carbon is inorgan-
ic carbon determined in 47% of all topsoil samples via the HCI test and
measured with a TC analyzer (DIMA-TOC 100). Under arable land inor-
ganic carbon contents were slightly higher with a mean of about 20% of
total carbon (no significant difference). As the geological map
(Geological Survey of India, 2001) does not indicate any source of inor-
ganic carbon in the parent material, we assume that this resulted on the
one hand from pedogenic carbonates (Durand et al., 2007) and on the
other hand from shell-bearing molluscs (Conchifera), especially accu-
mulated in the regularly flooded fields (visible remains of mollusc shells
have been found in the soil samples during processing). In general,
highest SOC contents were found under arable land and plantations,
while forest, shrubland, and grassland show substantially smaller SOC
contents (Fig. 4A). The difference in SOC between the intensively
cultivated irrigated and fertilized land uses and the less intensively
used forest, grassland and shrubland was also mirrored in the signifi-
cantly higher total nitrogen contents under arable land and plantations
(Fig. 4C). The ANOVA null hypothesis that mean land use specific SOC
contents are equal in soil depth D1 could be rejected (p = 0.010),
indicating the importance to take land use as major reason of spatial
variability in SOC contents into account.

In the second soil depth increment D2 (0.2 m to 0.5 m) the mean
SOC content declines significantly compared to D1 (p < 0.001) ranging
from 0.2 g kg™ to 11 g kg™ (mean 3 g kg™': Fig. 4D), whereas the lowest
measured values were associated with large uncertainty as these are
close to or even below the detection limit of the CNHS analyzer. Inor-
ganic carbon contents increased relatively with a mean of 28% of the
total carbon content (Fig. 4E). Again, the largest mean proportion of in-
organic carbon in total carbon content was found under arable land
(mean 41%). As expected, the total nitrogen contents in the second
soil depth were much lower than those in the topsoil depth increment,
with lowest values under grassland (Fig. 4F). The ANOVA null hypothe-
sis of no land use specific mean SOC content differences could not be
rejected (p = 0.19).

In the third soil depth increment D3 (0.5 m to 0.9 m) SOC contents
are again slightly smaller ranging from 0.1 g kg™' to 8.3 g kg™!, respec-
tively. The mean of D3 (2.3 g kg™!) is significantly smaller than the
mean in depth D2 (p = 0.03). However, the difference is less pro-
nounced than between depth D1 and D2 (Fig. 4A, D and G) because a
clear decline could only be detected under plantations and shrubland.
However, it is worth noting that especially under forest the number of
samples declined substantially from 21 in D1 to only 4 in D3, as the
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deeper soil depth could not be sampled due to the shallower soils
under forest. The ANOVA null hypothesis of equal mean SOC under all
land uses could be rejected for depth D3 (p = 0.014).

3.2. Importance of land uses and aggregate new land use categories

Combining land uses as categorical variables with other continuous
variables in an ANCOVA potentially allows determining the importance
of different land use classes in more detail and also to aggregate single
land use classes into categories used for further analysis. For soil depth
D1, best ANCOVA results were achieved employing land use, distance
above surface water (EaW) and PC7, representing Curv_plan and
Curv_prof (R? = 0.25; p = 0.001). Slopes and intercepts in the
ANCOVA were similar for forest and shrubland, so we tested for a
model simplification aggregating both land uses into a new land use cat-
egory. The aggregation did not on its own reduce the explanatory power
of the ANCOVA, whereas in combination with EaW it did significantly
affect the explanatory power of the model. The same was true for the
land use categories plantation and arable land.

In soil depth D2, best ANCOVA results were obtained applying land
uses and PC4, representing mostly water erosion, as explanatory vari-
ables (R? = 0.29; p = 0.0013). Again slopes and intercepts for forest
and shrubland were similar and aggregation of these land uses into a
new category did not reduce explanatory power of the model. The com-
bination of all land uses with PC4 significantly improved the overall
model.

In soil depth D3, best ANCOVA results were received using land uses
and Curv_prof as the explanatory variables (R? = 0.27; p = 0.014).
Aggregation of forest and shrubland was less clear from the ANCOVA
results but it did not reduce the overall power of the model. Only grass-
land in combination with Curv_prof had a significant explanatory
power.

In general, the soil depth-specific ANCOVA resulted in an aggre-
gation of forest and shrubland. Hence, in the following the land
use categories arable land, plantation, grassland and forest/shrubland
will be analyzed separately.

3.3. Land use category specific explanatory variables for SOC patterns

3.3.1. Linear regression analysis

Under arable land, the principal components derived from all seven
explanatory variables (Slope, Curv_plan, Curv_prof, WI, EaW, ERO, and
NDVI) or their transformations (log[Slope]) could not explain more of
the variation in SOC contents than single original explanatory variables.
Most important in soil depth D1 was the elevation above the nearest
surface water source (EaW; Table 2). In soil depth D2 no significant cor-
relation with the used explanatory variables could be detected and in
soil depth D3 curvature was important (Table 2). However, curvature
was a somewhat difficult predictor, since it always exhibited some out-
liers. Hence, PC1, which was significantly (p = 0.01) correlated with
curvature, WI and EaW, might be a better predictor.

Under plantations none of the explanatory variables or their PCs was
significantly related to SOC content in D1. This might result from the
higher diversity of the plantations ranging from young jasmine planta-
tions located in regularly flooded fields to old palm tree stands planted
along field borders and in the direct proximity of villages. In soil depth
D2, the principal components PC2 and PC5 as well as Curv_prof and
EaW had similar explanatory power for the SOC patterns (Table 2). In-
terestingly, PC2, which represented 25% of the variability in all auxiliary
variables, was significantly (p < 0.001) correlated not only with EaW
and Curv_prof but also with slope.

Under grassland the most important explanatory variables (p < 0.01)
were PC1, representing 46% of the variability of the auxiliary variables, as
well as Curv_plan and NDVI (Table 2). Especially mean NDVI and PC1
seemed to be reasonable predictors for SOC contents in D1 as an average
vegetation density should be closely related to potential carbon inputs to
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Table 2

Correlation coefficients and significance levels (on bold values) relating soil organic carbon contents of different land use categories and soil depths (D1: 0 mto 0.2 m; D2: 0.2 mto 0.5 m;
D3:0.5 mto 0.9 m) with respective auxiliary variables and their principal components (PC1-PC7); auxiliary variables are: slope, plan curvature (Curv_plan), profile curvature (Curv_prof),
wetness index (WI), elevation above next surface water (EaW), modeled water erosion (ERO), and mean normalized difference vegetation index (NDVI).

Arable land Plantations Grassland Forest & shrubland

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3
Variable Correlation coefficients R and significance levels
PC1 —047* —0.20 —0.34 —0.22 0.03 0.31 0.71* 0.08 0.48 0.24 0.57* 0.27
PC2 0.04 —0.27 —0.30 0.00 0.39* —0.05 0.34 —0.20 —0.41 —0.33 —0.40 —0.11
PC3 0.14 0.02 —0.20 —0.06 —0.12 0.18 —0.23 —0.35 —0.04 0.12 —0.13 0.12
PC4 0.32 —0.28 0.07 0.01 0.03 0.35- 0.28 —0.56 —-0.17 —0.22 0.12 —0.40
PC5 0.24 —0.02 —0.35 0.22 0.39* 0.08 0.18 0.24 0.57 0.20 0.36 0.44
PC6 —0.22 0.10 0.20 0.18 —0.20 0.04 —0.35 —0.51 0.30 —0.39" —0.36 043
PC7 —0.17 0.22 0.14 —0.20 0.05 —0.06 0.22 —0.21 —0.39 —0.29 0.00 0.45
Slope —0.22 0.02 —0.20 0.13 —0.03 0.08 —0.31 0.30 0.68** 0.26
log(Slope) 0.04 0.15
Curv_plan 0.39" 0.31 —049" —0.14 0.01 —0.08 0.66" 0.36 0.67 —0.28 —0.24 —032
Curv_prof —0.15 —0.29 044" 0.06 0.38" —0.17 —0.25 0.03 —0.48 0.03 —0.10 —0.16
WI —0.10 0.06 0.22 0.23 0.17 —0.09 —0.48 0.36 —0.21 —0.35% —0.54* —0.26
Eaw —0.57*" 0.04 0.13 0.03 —0.40" 0.17 —0.54 —0.12 —0.59 0.34 0.49* 0.45
ERO —0.61 —-0.19 —-0.17 —0.08 0.09 0.02
NDVI 0.29 —0.18 0.23 —0.24 0.08 —0.11 0.71* 0.02 0.19 0.17 043 —0.12

Significance levels: -, *, **, and *** are p < 0.1, p < 0.05, p < 0.01, and p < 0.001, respectively; due to the uncertainty with modeling erosion in small flood-irrigated fields erosion as

co-variable was not taken into account in areas of arable land and plantations.

soils. For the deeper soil depths D2 and D3 no highly significant (p < 0.01)
relations were detected to any PC or auxiliary variable.

Under forest/shrubland highly significant relations with PCs or aux-
iliary variables only occurred in the soil depths D1 and D2, which was
probably a consequence of the small number of remaining samples in
the deepest soil depth. Apart from different significant correlations
with PCs the most important auxiliary variables in both depths were
slope, Wl and EaW (Table 2). Compared to most other soils under arable
land, plantations and grassland all these variables were inversely relat-
ed to SOC content, as SOC contents increased with slope and EaW and
decreased with WI.

3.3.2. Nonlinear multivariate regression analysis

The estimates based on the iterative nonlinear multivariate-
regression analysis were used only for the upper two soil depths, as gen-
erally the number of available sampling points substantially decreased
with depths, whereas the uncertainty associated with the measure-
ments increased due to the small overall carbon contents. As the differ-
ent PCs as auxiliary variables did not improve the explanatory power of
the linear regression models, we used only the original auxiliary vari-
ables for this analysis, which are more straightforward to be interpreted.

Significant relations (p < 0.05), which explained some of the vari-
ability in soil depth and land use category specific SOC contents, were

Table 3

found for D1 under arable land, D2 under plantations, D1 under grass-
land, and D1 and D2 under forest/shrubland (Table 3). The restriction
to only one explanatory variable in each of the regression equations
did not reduce the explanatory power. This was confirmed by a step-
wise model simplification from using multiple variables to only one ex-
planatory variable, while calculating the AIC values. One exception was
D2 under plantations which could be better estimated if EaW would be
combined with Curv_prof (R? = 0.36; p = 0.003). However, due to the
outlier problem in the distribution of Curv_prof and the missing im-
provement by using two variables found during the following cross-
validation, we omitted Curv_prof from the regression.

As already indicated by the coefficient of determination of the differ-
ent regression equations, the MEF values obtained by the cross-
validation were largest in the case of arable land and grassland in soil
depth D1, and in the case of forest/shrubland in soil depth D2
(Table 3; MEF: 0.17-0.33). In the case of soil depth D1 under forest/
shrubland and D2 under plantations, respectively, the MEFs are close
to zero indicating that instead of using the regression equations the
SOC contents could have been equally estimated using the soil depth
and land use category specific mean SOC contents. Hence, the only valu-
able auxiliary variables potentially usable to predict the land use cate-
gory specific SOC contents are EaW (D1 on arable land), NDVI (D1 on
grassland), and slope (D2 in forest/shrubland).

Estimates of soil depth (D1 and D2) and land use category specific SOC contents based on linear and non-linear regressions; quality of the derived estimates given in goodness-of-fit-
parameters from cross-validation; soil depths D1 and D2 represent soil depths of 0 m to 0.2 m, and 0.2 m to 0.5 m; RMSE is root mean squared error, MEF is the Nash and Sutcliffe

(1970) model efficiency coefficient.

Best SOC content model

Explanatory power of model Cross-validation of model

Equation/Mean SOC (10 g kg™!) Tested range R? p-Value RMSE of SOC (10 g kg™") MEF
Arable land
D1 2.14 — Eaw®1® 1.3 m<EaW<32m 0.35 0.001 0.36 0.17
Plantation
D2 0.49 — 0.015 x EaW 0.5m<EaW <23 m 0.16 0.021 0.26 0.01
Grassland
D1 —0.60 + 2.21 x NDVI 0.3 < NDVI < 0.6 0.51 0.020 0.20 030
Forest & shrubland
D1 0.52 — 0.04 x W1 —23<WI<78 0.12 0.044 0.26 —0.02
D2 0.17 + 0.01 x slope 0.5% < slope < 26% 0.46 0.003 0.10 033
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Fig. 5. Box-plots of stone content (>2 mm) of the different soil depths; boxes show the median and the 1. and 3. quartile, while whiskers give minimum and maximum; values above boxes

give number of samples; black rectangles represent mean values.

4. Discussion
4.1. SOC contents under different land use categories

Generally, the mean topsoil (0 m to 0.2 m) SOC contents of 6 g kg™' in
the Thimmapuram catchment are in the range of SOC contents found in
similar soils in southern India, e.g. 4 g kg™! to 8 g kg™ on the peninsular
plateau (Bhattacharyya et al., 2000).

The most surprising finding was that we could not confirm the gen-
eral results from many studies dealing with SOC contents/stocks under
different land uses which usually indicate a decrease of SOC from forest
to grassland and to cropland (e.g. Powlson et al., 2011). For the tropics
this general finding is strongly supported by e.g. Don et al. (2011)
who performed a meta-analysis using 385 studies to estimate the ef-
fects of land use change (more than five years before sampling) upon
SOC stocks. Their study indicated a tremendous decline of SOC stocks
if primary tropical forest is converted to grassland or cropland but still
a substantial decline of SOC stocks (on average in the upper 32 cm) of
(—6.4 + 2.5)% and (—21.3 4 4.1)% if secondary forest is converted to
grassland and cropland, respectively. It might be argued that our results
cannot be compared to the results of Don et al. (2011) as we did not
measure bulk densities at all locations and all depths which would be
necessary for a more substantial determination of SOC stocks. However,
due to the small differences in topsoil bulk density under the different
land use categories (mean (1.4 & 0.13) - 10° kg m™), a combination
of a homogenous bulk density with the spatially varying topsoil coarse
fraction contents (Fig. 5A) does not weaken but strengthen our topsoil
SOC content findings. While the highest SOC contents were found in
topsoils under arable land and plantations and lowest under the grass-
land and forest & shrubland category, the opposite is true for coarse
fractions (Fig. 5). Hence, the differences between land use categories
should be slightly more pronounce when comparing topsoil SOC stocks
instead of SOC contents. This effect is less clear for the subsoil depths as
these show smaller differences in coarse fraction contents (Fig. 5),
which again might be affected by the decreasing number of samples
with increasing soil depth. In general, we assume that our contradicting
results compared to Don et al. (2011) originate from the fact that our
test site and hence its SOC contents are dominated by (i) the monsoon

climate with a pronounced dry period and (ii) the intensive land use
either for irrigation farming or forestry.

The difference in mean SOC contents/stocks between arable land
and forest/shrubland was most pronounced in the topsoil depth incre-
ment (under forest/shrubland —36% and —41% in SOC contents and
stocks, resp.). In the subsoil depths D2 and D3, the differences in mean
SOC contents/stocks were much smaller comparing arable land with
forest/shrubland (— 12% and — 16%, respectively), while much more
pronounced differences were found between arable land and grassland
(—55% and — 58% for SOC contents and stocks, respectively). The differ-
ent declines in SOC with depth might be associated to three processes:
(i) there is more C input into topsoil due to the smaller rooting depths
in case of irrigated crops and grassland compared to forest, (ii) forest
under monsoon climate might especially invest in deeper roots to
compensate water shortage in the dry period, and (iii) soil organic
matter accumulates in topsoils of paddy fields (Lo Seen et al., 2010)
due to the reduced mineralization under water logged conditions and
a prolonged vegetation period due to irrigation during the first months
of the dry period. However, the results regarding the decline of SOC con-
tents with depth might be also a bit misleading, since the number of
sampling locations especially under forest/shrubland drastically de-
creased by 64% between soil depth D1 and D3, while it decreased only
by 26% under arable land. The reason for the strong decline of the num-
ber of samples with depth under forest/shrubland might result from the
shallower soils and/or very hard and dry subsoil (with higher stone con-
tents) hindering a deeper penetration of the soil auger. Generally, the
smaller SOC contents found under forest/shrubland and grassland,
which are in contrast to other results from India (Saha et al., 2011),
have potentially a number of reasons: (i) The forest/shrubland in the re-
gion is heavily degraded due to the long-term use as forest pasture, as
source of non-wood products and fire wood, as well as its regular burn-
ing (Saha, 2002; Schmerbeck and Seeland, 2007). (ii) Forest/shrubland
is located on the steepest parts of the catchment (mean slope at sam-
pling locations: (13.6 4 7.6)%) while arable land is located on mostly
flat areas (mean slope at sampling locations: (2.1 4+ 1.9)%) near the
lake shore, which are subject to intensive irrigation and thus accumula-
tion of soil organic matter (Krishnan et al.,, 2007; Lo Seen et al., 2010).
(iii) The grassland is heavily used for grazing of a large number of
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livestock which leaves the soil more or less bare during the dry period.
Moreover, cattle dung is/was typically used as cooking fuel instead of
fertilizing the grassland (Lal, 2007).

The general relation that increasing soil erosion is associated with
decreasing SOC stocks is already underlined through other studies in
India (Krishnan et al., 2007; Saha et al., 2011). Accounting only for
those sampling points where erosion is modeled (neglecting deposi-
tional sites), there is an obvious difference between arable land and
forest/shrubland regarding erosion intensity (0.46 t ha' a™' vs.
140thatal).

4.2. Land use category specific explanatory variables for SOC patterns

Focusing on the SOC patterns within the different land use categories,
we found interesting results which highlight the importance of human
impacts on SOC contents in the region. Under arable land, the variability
of SOC content is best explained by EaW (Tables 2 and 3). Assuming that
EaW is a valuable proxy variable for potential irrigation, this seemed to
be consistent with earlier studies. E.g. Krishnan et al. (2007) found that
topsoil (<0.3 m) under irrigated cropland in India had significantly
higher SOC stocks than rainfed cropland (4.8 kg m™2and 3.6 kg m™,
respectively). In general, there are no data available on irrigation
amounts and spatial distribution of irrigation over the last decades po-
tentially affecting SOC contents in the region. Best estimates of overall
irrigation within districts or within meso-scale catchments result from
agricultural statistics (Indian Ministry of Agriculture, 2014) or hydro-
logical models solving the water balance (Wagner et al., 2011). Howev-
er, such data cannot be applied to derive spatial variability of irrigation
in different fields within a small catchment. Hence, such a robust vari-
able as EaW, which can be easily derived from a DEM and which at
least has some relation to channel and well irrigation, seemed to be a
useful proxy in data scarce regions dominated by irrigation farming.

In the case of grassland, the most important predictor of topsoil SOC
content is the mean NDVI representing the vegetation status (density
and viability) during the last decades (Tables 2 and 3). This seemed to
be consistent with general findings about the positive relations between
above ground biomass and SOC contents as used in many SOC turnover
models (e.g. Dlugof3 et al., 2012).

Focusing on forest/shrubland the results are somewhat counterintu-
itive. First of all it is surprising that no relation between SOC patterns
and modeled erosion was found, which was expected due to the steep
slopes and the degradation of forest and understory canopy, especially
at the beginning of the monsoon season after several dry months.
These results hold even true for areas with obvious signs of erosion
along a thalweg and its footslope where sedimentation occurred. The
reason that depositional sites do not show higher SOC contents within
the upper 0.9 m compared to erosional sites might result from the depo-
sition of already SOC depleted soils coming from the erosional sites and
the preferential loss of fines and the associated carbon (Schiettecatte
et al., 2008). One could speculate that at depositional sites SOC stocks
are higher compared to erosional sites as SOC might be buried in depths
below 0.9 m, but this could not be unraveled with our data. Other stud-
ies that have been conducted in India compared not eroded sites with
heavily degraded sites (e.g. Saha et al., 2011) and found that high ero-
sion rates imply low SOC contents. Our results indicate that this finding
cannot be easily transferred to a single land use with internal patterns of
erosion and deposition.

Apart from the counterintuitive behavior regarding erosion, it is
also somewhat surprising that forest/shrubland areas with large WI
(representing the wettest conditions) show smallest SOC contents
(Table 2), although best growing conditions and hence highest C inputs
could be expected. However, even more puzzling is the fact that the
most strongly related co-variable slope is positively related to SOC con-
tents (Tables 2 and 3), implying that the steepest slopes show the
highest SOC contents. As at our test site as well as generally in the region
the most remote and steepest slopes carry the densest forest and shrub

vegetation, it can be assumed that the resulting SOC patterns in forest/
shrubland are not directly resulting from topography or topography
driven natural processes (erosion, water availability) but are interrelat-
ed to human and/or livestock accessibility of these slopes. If the assump-
tion holds true that SOC contents under forest/shrubland are highest on
steepest slopes because these areas exhibit the densest vegetation, it
could have been expected that the mean NDVI is also a good predictor.
However, this was not the case at the sampling locations (Table 2).
Based on our field surveys, we often found the densest forest on
steepest slopes alternating with rock outcrops on a scale of several me-
ters. Hence, it can be considered a fact that the 30 m x 30 m NDVI prod-
ucts do not show the density of these forests correctly, as pixels always
include a mixture of the reflectance of vegetation and rock.

5. Conclusions

Based on 112 soil cores, the soil depth and land use specific SOC con-
tents (partly SOC stocks) were analyzed in a small catchment in the
tropical south of India, which is in general dominated by an intensive
human use for irrigation farming, pasturing and forestry. Within the
different land use categories SOC was related to a number of auxiliary
variables (slope; curvature; elevation above next surface water; water
erosion; wetness index; mean NDVI). Our key findings are: (i) In contra-
diction to most studies evaluating SOC contents or stocks under differ-
ent land uses we find the highest SOC contents/stocks under arable
land, followed by forest/shrubland and grassland. This counterintuitive
behavior in the relation of SOC contents/stocks under arable land and
forest/shrubland is most probably a result of the prolonged carbon as-
similation, higher N inputs and retarded C mineralization due to regu-
lar/permanent flooding of arable land during the vegetation period
compared to the intensive use of forest biomass leading to soil and veg-
etation degradation. (ii) SOC content of topsoil under arable land de-
clines with elevation above the next surface water, a proxy variable
for the proximity to the next potential irrigation source. (iii) SOC con-
tent of topsoil under grassland is positively correlated with mean
NDVI. (iv) SOC content under forest/shrubland is best described by
variables indirectly related to the accessibility of forest areas (positive
correlation with slope and elevation above next surface water). Inter-
estingly, no significant correlation between SOC content under forest
and erosion/deposition could be found. Overall, this study indicates
that the commonly used relations to estimate spatial distribution of
SOC on larger scales might not be adequate for large areas in South
India dominated by pronounced dry and wet seasons, intensive irriga-
tion farming and human induced grassland and forest degradation.
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