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. Introduction

Recently, a new Internet paradigm called ‘‘Internet of People
IoP)’’ has emerged for promoting the current Internet of Thing
rameworks into the next generation that is more personal, user-
entric, human-driven [1,2]. In this context, plenty of research
irections need to be investigated to close the gap between
uman intelligence and machine intelligence and therefore ac-
omplish user-centric cyber-physical-social systems [3–5]. These
esearch directions include but are not limited to crowdsens-
ng [6], financial data protection [7], health monitoring [8], and
ehaviour analysis [9].
Moreover, sentiment analysis and affective computing plays

n essential role in enabling machines emotional intelligence,
hich itself is an interdisciplinary research area spanning various
esearch fields such as computer science, cognitive science, and
ocial science [10–15]. With the usage popularity of intelligent
dge devices, such as smartphones, wearable rings or watches,
mart speakers, intelligent vehicles, automatically detecting and
nalysing human’s emotional or affective states via the Internet
ecomes more attractive and feasible, which is defined as Internet

∗ Corresponding author.
E-mail address: jing.han@informatik.uni-augsburg.de (J. Han).
 a
of Emotional People (IoEP) henceforth. The importance of IoEP is
t least twofold: (i) It enables the intelligent assistants in devices
o be more friendly and empathetic, and consequently promotes
heir user experience. (ii) It particularly benefits for patients,
ho are either suffering from a mental health disorder or in
ehabilitation progress by the disease, such as stress, anxiety, and
epression. By tracking their mental states, it helps the doctor to
ake a diagnostic scheme and provide therapies for these mental
nd emotional problems accordingly.
Albeit the interest and attractiveness of IoEP, there are two

ssential characteristics, i. e., diversity and scarcity. The diver-
ity suggests that the information of interest around humans
s divergent for different groups and variable in different time
eriods. In this context, it is of necessity to devise individual
odels for the tasks of interest to achieve appropriate perfor-
ance. Such a conventional isolated learning strategy, however,
uffers from several fundamental issues, which severely prevents
s from integrating affective computing technologies into real
uman-centric applications. It is time and expert prohibitive to
anually and repeatedly design separate models for each task.
lthough this issue can be partially solved by certain technologies
ike automated Machine Learning (autoML) that lets machines

utomatically construct the model structure without exhausting

mailto:jing.han@informatik.uni-augsburg.de
https://doi.org/10.1016/j.future.2020.08.002
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human interference [16,17], it is somewhat pragmatically un-
feasible to implement so many models into one system due to
the limited memory size, computational resources, and energy.
Whereas, the scarcity characteristic of IoEP implies that only a
limited amount of labelled data can be used in many individual
raining cases, due to the time- and cost-consuming annotation
rocess [18]. Without sufficient training data, it is hard to obtain
reliable and robust model, especially for a neural network-based
odel owing to its data-hungry essence. These two character-

stics severely hinder the deployment progress of IoEP, because
onventional learning strategies generally tackle each task in-
ependently, and largely overlook the knowledge shared among
ifferent tasks.
To cope with these issues, the most popular strategies are as-

ociated with Transfer Learning (TL) [18] and Multi-Task Learning
MTL) [19–21]. With TL, a pre-trained model for a task with a
ich resource can be reused for another recognition task with
ow resource [22]. Thus, TL can well address the data scarcity
roblem, and relax the task-dependent assumption to a certain
xtent. Nevertheless, it is still particularly designed for improving
he target task, and suffers a serious catastrophic forgetting — a
henomenon that the model endures an abrupt performance de-
rease or, in the worst case, being completely overwritten by the
ew task [23,24]. In comparison with TL, MTL learns several tasks
y one model simultaneously. Therefore, it cannot only largely re-
uce the number of models, but also efficiently exploit the shared
nformation among various tasks. However, in the training stage,
t requires a large size of training data, and consequently needs
arge storage memory size and heavy computational load. Even
orse, when facing a new task, the model has to be re-trained

rom scratch, which significantly reduces its flexibility [23,24].
Motivated by these analyses, in the present article we in-

end to shed some fresh light on affective computing by using
lifelong learning paradigm, with the purpose of renovating the
urrent isolated learning strategy into the next continual genera-
ion, namely continual affective computing. Lifelong learning, also
nown as continual learning, was initially proposed by Thrun and
itchell in 1995 for a robot control [25]. It aims to empower
achines with the capability of continually acquiring and trans-

erring knowledge and skills throughout their lifespan, just like
uman beings. That is, concepts and their relationships learnt in
he past can help us understand and learn a new subject better,
ecause a lot of information and knowledge are shared across
omains and tasks [23–25]. Therefore, with lifelong learning,
machine can retain and accumulate the knowledge learnt in

he past and make use of the knowledge seamlessly in future
earning [23,24].

Note that, lifelong learning differs from TL, where the learn-
ng process is one-directional — previous tasks help the current
ask, but not the other way around. Likewise, it is distinct from
TL that is absolutely not continual. Generally speaking, lifelong

earning holds multifold advantages [23,24]: (i) Continuous learn-
ng. It avoids the requirement of a large number of models when
ealing with many different tasks sequentially. (ii) Knowledge
ccumulation and transformation. It can accumulate knowledge
rom previous tasks, and then use it to help with new task
earning. Hence, it efficiently makes use of the relationship among
ifferent tasks, and partially reduces the needs of a large amount
f training data for each task. (iii) Discovery of new tasks. That
s, the model with lifelong learning can learn in a dynamic open
nvironment by itself where novel objects and scenarios that
ave not been learnt before may be available. Because of these
dvantages, lifelong learning has emerged as one of the lead-
ng potentials to handle the aforementioned problems raised for
ffective computing.
To the best of our knowledge, merely a handful of related

tudies are available in the affective computing literature [26,
7]. These studies, nonetheless, merely focused on the sentiment
nalysis in the context of natural language processing [26,27].
t remains unclear how it performs for many other tasks with
ther cues, such as acoustic or visual signals. For this reason, we,
or the first time, apply lifelong learning to audiovisual affective
omputing, taking the example of emotion recognition in a cross-
ulture scenario, i. e., cross the tasks of French emotion recognition
nd German emotion recognition in our work. The rationale behind
his task selection is threefold: (i) Audiovisual emotion recog-
ition is one of the most active research domains in machine
earning nowadays [28,29]. (ii) It has been systematically bench-
arked by a series of challenges [30]. (iii) Additionally, it has
een widely known that recognising emotions across cultures is
till a major challenge, given the variety of languages and cultural
ackgrounds [31–33].
Furthermore, in this work, we introduce the lifelong learning

lgorithm of Elastic Weight Consolidation (EWC) for the raised
ask [34]. As the first work in this direction, we attempt to
nvestigate the feasibility of the proposed lifelong learning for
ffective computing in the audio and/or video modalities, in an
pplication of cross-cultural emotion recognition. Finally, we con-
uct extensive experiments on two emotional databases, which
ere recorded in different cultures, i. e., French and German.
e further report results on the two cultures, and visualise the
erformance improvement and effect of EWC for the tasks at
and, followed by a detailed analysis.
The remainder of this article is structured as follows. In Sec-

ion 2, we briefly review past and related studies. Then, in Sec-
ion 3, we present a detailed description of the introduced lifelong
earning and EWC, as well as its learning process in cross-cultural
udiovisual emotion recognition. After that, we introduce the se-
ected databases, features, and experimental setups in Section 4,
efore delivering detailed experimental results and discussions in
ection 5. Finally, we draw our conclusions and highlight future
esearch directions in Section 6.

. Related work

As mentioned in Section 1, TL and MTL are widely considered
o be two of the most frequently used strategies to address
he cross-task problem in the context of affective computing.
lenty of related studies are available in the literature. Here-
nafter, we concentrate the investigation on emotion or sentiment
ecognition.

.1. Transfer learning

The principle of TF is to transfer knowledge from a source task
r domain to a target one. The tasks or domains are generally
etermined by the discrepancies in the aspects of modalities, data
istributions, and label spaces [18,22,35]. Specifically, to transfer
he knowledge across modalities, Albantie et al. [36] proposed a
eacher–student learning framework, where a speech emotion
ecognition network (the student) is trained by distilling the
nowledge of a pre-trained facial emotion recognition network
the teacher) across unlabelled videos. This framework, how-
ver, assumes the availability of a well-trained complex teacher
etwork. To relax this assumption, Han et al. [37] introduced
n emotion embedding framework across multiple modalities. It
onsidered a triplet loss to minimise the distance of the intra-
lass samples while maximising the distance of the inter-class
amples, regardless of the modalities where the samples come
rom. In doing so, the salient emotional information is able to flow
reely across modalities.

To reuse the knowledge from mismatched data distributions,
lorot et al. [38] firstly used a stacked denoising autoencoder for
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sentiment classification. By building the model in a hierarchical
nd an unsupervised manner, it is able to discover intermediate
ext representations of the review comments for different prod-
cts. After that, similar studies have been done for cross-corpus
peech emotion recognition [39,40]. Rather than extracting the
igh-level representative features, domain-invariant acoustic rep-
esentations by means of a domain adversarial training approach
as further proposed and investigated as well recently [41–43].
y this method, an additional network is trained to distinguish
he domains from which the extracted representations come.

Differ from the TL algorithms designed to mitigate the modal-
ty and feature mismatch, fine-tuning seems to be the most
requently used way to deal with the label mismatched problem.
or example, the studies [44,45] have shown that the models
re-trained on large-scale datasets for other classification tasks
an be fine-tuned on emotion recognition tasks to learn acoustic
nd visual representations. A similar investigation was shown for
entiment analysis as well [46].
Nonetheless, all aforementioned TL studies merely focus on

mproving the model performance on the following tasks and
gnore how it performs on previous ones. Therefore, it fails to
ddress the challenges when facing diverse and changeable tasks
s demonstrated in Section 1.

.2. Multi-Task Learning

MTL is frequently utilised to reduce the number of models
hile it largely explores the shared information across all tasks.
or speech emotion recognition, Eyben et al. [19] firstly proposed
o jointly train five different emotional dimensions. The exper-
mental results have indicated that the MTL model remarkably
utperforms single-task-based models. Following this work, Han
t al. [47] combined the emotion prediction with an annotation
ncertainty as joint tasks to be learnt together. Moreover, Xia
nd Liu [48] suggested incorporating the losses from both the
ategorical and the dimensional emotion recognition to optimise
he neural networks. Further, Zhang et al. [21] investigated MTL
n a cross-corpus scenario, where many tasks, such as corpus,
omain, and gender distinctions, were considered to be optimised
long with emotion recognition. Other similar studies have also
een reported in [49–51].
When compared with TL, MTL is capable of learning mul-

iple tasks simultaneously. Nevertheless, it requires to retrain
he model from scratch when an unseen task comes. Hence,
TL is very computationally inefficient, and hinders the learning
f novel tasks in real time [23,24]. This further highlights the
ecessity of lifelong learning for affective computing in IoEP
pplications.
In our study, to evaluate the performance of the proposed

ifelong learning paradigm, we take MTL as a performance upper
ound and refer it to be joint training. That is, training data in-
ended for different tasks are agglomerated as one larger dataset
n the training process.

.3. Emotion recognition in general

In affective computing, emotion recognition can be defined
s a process of automatically perceiving the affect of human
eings, and it usually leverages methodologies and techniques
rom multiple research areas covering signal processing, machine
earning, and so on. In particular, two kinds of emotion models are
requently explored, namely, categorical models and dimensional
odels. That is, the perceived emotions can be presented as
iscrete labels from multiple discrete categories such as happy
nd sad [52], or continuous values in dimensional spaces such as

he dimensions of arousal (the degree of intensity of an emotional
tate) and valence (how positive or negative an emotional state
s) in a circular representation [53].

With that said, different systems and frameworks have been
roposed to recognise a person’s emotional state from modalities
uch as audio, text, video, and physiological signals. Alternatively,
ne can also build multimodal systems to integrate information
rom different modalities [28,54,55]. Moreover, similarly to other
pplications where deep neural networks are employed, advances
n emotion recognition have also benefited from deep learning
echniques. For a comprehensive overview and in-depth discus-
ion of the state-of-the-art, remaining challenges and open issues
n emotion recognition, readers are referred to [10,13,56,57].

. Lifelong learning for audiovisual emotion recognition

As a prospective study of continual affective computing, in
his paper, we carry out a cross-cultural audiovisual emotion
ecognition task as a first attempt, to demonstrate how lifelong
earning can be achieved in affective computing domain. For this
eason, in the following sections, we first briefly describe the
efinition and goals of lifelong learning in Section 3.1. After that,
typical lifelong learning paradigm is presented in Section 3.2,
hich aims to lessen the catastrophic forgetting effect when
raining a model on multiple tasks sequentially. Then, procedures
n how to construct and train a continual emotion recognition
odel are elaborated in detail in Section 3.3.

.1. Lifelong learning and catastrophic forgetting

Lifelong learning was first defined in [25] as a learning algo-
ithm applied in a lifelong context, where a series of tasks can
e learnt sequentially instead of in isolation, so that knowledge
an be transferred across these tasks. In particular, like humans,
nowledge obtained in previous learning tasks should be retained
or future use.

Lately, the concept of lifelong learning was defined in [23]
s follows. Given a stream of n tasks {T1, T2, . . . , Tn} already
earnt by a model, a knowledge base B can be obtained where all
reviously learnt knowledge is maintained. Note that, these tasks
an be of different types and from different domains [23]. Then,
hen a new task Tn+1 comes, the objectives of lifelong learning
re mainly twofold: on the one hand, the existing knowledge in
should be leveraged to help optimise the performance of the
ew task Tn+1; on the other hand, the knowledge obtained from
n+1 should be integrated into B by updating it without causing a
orgetting of prior knowledge of all past tasks.

From the above description, it could be noticed that the
nowledge base B plays a crucial role throughout the whole learn-
ng process. This, to some extent, can gain insight from human
earning mechanisms. We, as human beings, could learn better,
asier, and faster, when we have more knowledge obtained on
ur previous life experiences [23]. Therefore, following the line
f human intelligence, the crux of learning in a lifelong manner
s to endow the system the capability of performing human-like
nowledge-based learning.
However, in the context of deep learning, the catastrophic

orgetting issue associated with the knowledge base B is consid-
rably severe in most network systems. That is, when training
deep learning system (trained on some other task already) for
new task, the new learning process tends to interfere catas-

rophically with the previous learning. As a consequence, the
erformance of the system will be degraded heavily for past tasks,
hich is in contrast to the human brains and human learning
ystems [58]. To address this issue, in recent years, a number
f lifelong learning techniques have been proposed and studied
n the deep learning community, generally falling into three cat-
gories: dynamic architecture-based approaches, memory-based
nes, and regularisation-based ones. For more details of various
ifelong learning strategies, please refer to [23,24].
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3.2. Elastic Weight Consolidation

In the current study, we focus on a regularisation-based life-
ong learning approach called Elastic Weight Consolidation (EWC),
hich tackles the catastrophic forgetting problem by regularising
he parameters in a network. The approach was first proposed by
irkpatrick et al. [34] in 2017. Recently, it has been successfully
xploited in several domains and applications [26,59]. Further, it
as been derived into several relevant variants being investigated,
. g., EWC++ [60], online EWC [61], and R-EWC [62].
The idea of EWC is motivated by a consolidation process of

uman memory, which is known as synaptic consolidation or
ynaptic maintenance. This process enables us to consolidate
revious memories within the related synapses to handle long-
erm memory tasks by reducing the plasticity of these synapses,
nd thus, these previously consolidated memories will not be
ltered by a future memory [63].
Similarly, in EWC, the plasticity of the task-relevant parame-

ers (like the synapses in nervous systems) in a previously learnt
odel can be altered accordingly, to avoid changing significantly
n these parameters when a future unseen task arrives. Espe-
ially, this is achieved by regularising the learning process with a
uadratic penalty on the difference between the parameters for
he prior and current tasks, the process of which is detailed in the
ollowing paragraphs.

In general, as aforementioned, given a prior optimised configu-
ation of parameters θ∗1:n−1 for the past n−1 tasks, the objective of
lifelong learner is to learn an updated set θ∗1:n for a new task Tn.

n the following, an example when n = 2 is illustrated for an easy
nderstanding, but EWC works when n > 2 as well. In this case,
wo datasets D1 = (X1,Y1) and D2 = (X2,Y2) are applied for the
wo tasks T1 and T2, respectively, with samples x ∈ X and their
orresponding labels y ∈ Y . Additionally, the sets of parameters
∗

1 and Θ∗2 denote the configurations that deliver low loss (i. e.,
igh performance) for θ1 and θ2, where θ1 and θ2 represent the
arameters of T1 and T2, respectively.
In a conventional learning system where T1 and T2 are trained

ndependently, our target is to find two configurations that meet
he following criteria:
∗

1 ∈ Θ∗1 and θ∗2 ∈ Θ∗2 , (1)

here θ∗1 and θ∗2 denote the configurations of θ that result in a
ood performance for T1 and T2, respectively.
Nevertheless, in EWC, as T2 is learnt after T1, the optimisation

f θ2 is distinguished from that in Eq. (1), and can be given as
ollows:
∗

2 ∈ Θ∗1 ∩Θ∗2 , (2)

here θ2 is optimised with a constraint to stay in a low-error re-
ion of T1 centred around θ∗1 . In this manner, a good configuration
2 should lie in the intersection of the low-error regions of T1 and
2 to prevent forgetting T1, as depicted in Fig. 1.
Mathematically, when considering the learning process from
probabilistic perspective, we can model the relevance of the

rainable parameters θ with respect to all the training data (i. e.,
= D1 ∪ D2) as the posterior probability distribution p(θ |D).

hen, the logarithm value of it can be decomposed by the Bayes’
heorem:

log p(θ |D) = log p(D|θ )+ log p(θ )− log p(D). (3)

Then, when splitting D into D1 and D2 and employing them
ne after the other, the above equation can be written as:

log p(θ |D) = log p(D2|D1, θ )+ log p(θ |D1) (4)

− log p(D2|D1),
Fig. 1. Illustration of Elastic Weight Consolidation (EWC).

here D1 denotes the data for the prior task T1, while D2 is for
he current task T2.

Furthermore, we assume that D1 and D2 are independent. In
his circumstance, Eq. (4) can be reformulated as

log p(θ |D) = log p(D2|θ )+ log p(θ |D1)− log p(D2), (5)

here the posterior probability term log p(θ |D1) contains all the
nowledge related to T1. Hence, when implementing EWC, the
im is to get information about the parameter importance from
og p(θ |D1), and then take this information into account in the
ucceeding learning to prevent or at least mitigate the forgetting.
nfortunately, this posterior is intractable. To handle this issue,
aplace approximation is employed to approximate it as a Gaus-
ian distribution with mean given by θ and a diagonal precision
y the diagonal of the Fisher information matrix F as

i = ED1

∂2 log p(D1|θ )
∂θ2

i θ=θ∗1

, (6)

where i denotes the index of values on the diagonal of the matrix
. Fi then can be exploited to estimate the importance degree of
ach parameter to T1. For instance, a great value of Fi indicates
high importance degree, and thus implies that it should not
e changed much so that the performance of prior tasks can be
aintained.
As a consequence, when training the network for T2 after T1, a

enalty term with respect to T1 is added to the objective function
s

′(θ ) = L(θ )+
1
2
λ ·

∑
i

Fi(θi − θ∗1,i)
2, (7)

where L′(θ ) represents the new loss function in EWC, and L(θ ) is
he loss for T2 only. In addition, λ is a pre-defined hyperparameter
o regulate how important the past tasks are compared to the
urrent one, and i is the index of each trainable parameter.
In summary, when learning a new task, EWC penalises large

hanges to the most relevant parameters with respect to past
asks and suggests updating parameters for the new task mainly
long directions with low Fisher information. In our case, this
raining strategy enables T2 to be learnt without suffering catas-
rophic forgetting of T1.

.3. Continual emotion recognition

As discussed in Section 3.2, aiming at addressing catastrophic
orgetting, a network can be learnt with the assistance of EWC, in
hich the importance of parameters with respect to prior tasks is
xploited to selectively adjust the plasticity of parameters when
new task is given.
Although there are several studies that investigate this learn-

ng approach and its variants as aforementioned, we believe that
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Algorithm 1: The training process of EWC-based continual
cross-cultural emotion recognition.

Initialise:
N: the total number of databases;
n: index to indicate the nth database;
Dn = (Xn,Yn): the nth database;
θ : parameters of the model;
θ0: initialised parameters of θ ;

1 for n = 1, . . . ,N do
2 if n = 1 then
3 optimise θ via minimising a conventional loss;
4 else
5 compute the Fisher Information for the prior Dn−1;
6 save the prior configuration θ∗n−1;
7 optimise θ via minimising an EWC-based loss

function;
8 end
9 θ ← θ∗n ;

10 end

this is the first attempt to explore it in the field of audiovisual
ffective computing. In particular, in this work, cross-cultural
motion recognition is taken as a paradigm to investigate its
ffectiveness and efficiency. Being an active research area in
ffective computing nowadays, the main goal of cross-cultural
motion recognition is to establish a compatible and efficient
ramework to handle the discrepancy across multiple cultures,
roviding a good test bed of the proposed continual affective
omputing.
In this case, a neural network will be learnt to estimate emo-

ion patterns, via learning sequentially from a series of databases
Dn} with n = 1, 2, . . . ,N , each consisting of plenty of emotional
nstances from one specific culture. After training on one database
or the current culture Tn, the Fisher information can be estimated
s given in Eq. (6), and in the meanwhile, the best configuration
f θ∗n is kept for future usage. Then, when given a new database of
nother culture Tn+1, the network will be optimised using Eq. (7).
hese procedures can be performed repeatedly until all N cul-
ures have been used for training the network. The pseudo-code
escribing these procedures is also presented in Algorithm 1.
Our expectation is that after training the Nth culture, the

erformance of all prior N − 1 tasks is not heavily degraded.

. Experimental implementation

To evaluate the effectiveness and efficiency of the proposed
ontinual emotion learning in a cross-culture scenario, exten-
ive experiments were carried out. In this section, the databases
nd features applied in our experiments are first given in Sec-
ion 4.1. Then, we detail the experimental setups for the sake
f experiment replication in Section 4.2. After that, we describe
he evaluation measures for the performance comparison in Sec-
ion 4.3.

Before going into each part, we would like to introduce the
nternational Audio/Visual Emotion Challenge (AVEC), from which
he employed corpora and experimental settings in this work are
riginated. This challenge has been organised from 2011 to 2019,
nd aims to automatically and accurately detect subjects’ emo-
ional states continuously through the acoustic, visual, and also
hysiological signals [30,64]. In each year, two to three related
atabases are selected and benchmarked for the challenge.
able 1
tatistical information of RECOLA and SEWA datasets over training, development,
nd test partitions.

RECOLA SEWA

# users # segments # users # segments

train 9 67500 34 55072
dev 9 67500 14 22307
test 9 67500 16 27597∑

27 202500 64 104976

4.1. Evaluated databases and features

For the given task, two multimodal emotional datasets were
hosen, i. e., the RECOLA dataset and the SEWA database. In
he following, we briefly introduce these two datasets and the
elected features.

.1.1. RECOLA & SEWA
The Remote Collaborative and Affective Interactions dataset

RECOLA) [65], is a standard database used in the AVEC challenge
eries since 2015 [30]. This database contains audiovisual record-
ngs of spontaneous and natural interactions from 27 French-
peaking participants in order to investigate socio-affective be-
aviours in the context of remote collaborative tasks [65]. In
articular, time- and value-continuous dimensional annotations
n terms of arousal and valence are provided with a constant
rame rate of 40 ms for the first five minutes of each record-
ng [65]. For the aim of the challenge, the dataset was then further
ivided into three disjoint partitions (i. e., training, development,
nd test), by well balancing the age and gender of the par-
icipants. Consequently, each partition includes nine recordings,
esulting in 67500 segments in total for each partition. For full
etails on the RECOLA database, please refer to [65].
The Automatic Sentiment Analysis in the Wild database

SEWA) [29], is a multicultural corpus consisting of audiovisual
ecordings of human interactive behaviours in naturalistic con-
exts from six different cultural backgrounds. Specifically, the
ecordings from German participants have been exploited in
he AVEC challenge series since 2017 [30]. Following the advice
hown in [30], our experiments are performed on the 64 German
ecordings. Moreover, time- and value-continuous dimensional
ffect ratings with respect to arousal and valence are available
t a constant frame rate of 100 ms. Similar to RECOLA, the full
erman corpus was further split into three subject-independent
arts, i. e., 34 recordings for training, 14 ones for development,
nd the remaining 16 ones for testing. As a result, 55 072, 22307,
nd 27597 annotated segments are obtained for the training,
evelopment, and test set, respectively. For full details on this
atabase, please refer to [29].
Overall, the general statistical information of the aforemen-

ioned datasets RECOLA and SEWA is shown in Table 1.

.1.2. Features
To extract features from these databases, bag-of-audio-words

BoAW) representations and bag-of-video-words (BoVW) fea-
ures were generated with the help of our open-source toolkit
penXBOW [66]. Note that, these features are provided in the
VEC challenge recently as established feature sets to develop
ppropriate baselines. Therefore, we employed the same feature
ets for a fair performance comparison with other related works.
In particular, for audio data, the extended Geneva Minimal-

stic Acoustic Parameter Set (eGeMAPS [67]) was extracted as
ow-Level Descriptors (LLDs) for each frame via our openSMILE
oolkit [68]. Then, BoAW representations were computed over a
ollection of successive frames for each step of 40 ms and 100 ms
o match the frequency of the annotations of RECOLA and SEWA,
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respectively. Note that, we followed the settings as provided
n the AVEC challenge baseline systems [30], i. e., segment-level
epresentations were computed from the LLDs with one hard
ssignment on a codebook of size 100. This resulted in a set of
00 acoustic BoAW features.
Similarly, following the suggestions in [30], 17 Facial Action

nits (FAUs) were first extracted per frame as LLDs via the open-
ource toolkit OpenFace [69]. Then, we applied the same process-
ng chain as when generating BoAW features. With this process,
e got additional 100-dimensional visual representations, on
oth the RECOLA and SEWA sets accordingly.

.2. Experimental setup

The proposed EWC-based continual emotion recognition
ethod was evaluated on the aforementioned datasets. Note that,

or a better understanding and a clearer view, we defined the
raining with the RECOLA database as FR, and the learning on
he SEWA German database as GE. This led to the following two
istinct sequential training schemes:

• FR after GE, w/ EWC, where the model is first trained on
SEWA, and later trained on RECOLA, with the EWC con-
straint;
• GE after FR, w/ EWC, where RECOLA is first employed to train

the model, and SEWA as the new task to be learnt.

dditionally, for comparison, we carried out other baselines as
ell. To be more specific, the following baseline systems were
un:

• single task only, where we performed isolated learning on
each dataset separately. In this scheme, we had two base-
lines which are marked as FR only and GE only;
• single task only with weight regularisation, where the model

was again optimised on a single dataset. However, the L2
regularisation penalty term was explored for better gen-
eralisation performance. With this scenario, another two
baselines were provided, i. e., FR only, w/ L2-norm and GE
only, w/ L2-norm;
• furthermore, we considered sequential fine-tuning as an

extra baseline, where the model is fine-tuned on the second
corpus after firstly having been optimised via the first one.
This is similar to the proposed training process, however,
without considering any constraint. In this case, we have FR
after GE, w/o EWC and GE after FR, w/o EWC.

esides of these outlined baseline systems, we also ran joint
raining, i. e., training the network on all available datasets jointly,
enoted hereinafter as FR and GE. The hypothesis is that the
ntroduced lifelong learning based sequential training scheme
ould perform better than the isolated learning scheme (single
ask only) and the fine-tuning based sequential training scheme,
nd meanwhile it could perform closely, or even competitively,
o the joint training scheme.

Moreover, within each training scheme, models were individ-
ally trained on acoustic features, visual features, or the combina-
ion of the two, for arousal and valence prediction, respectively.
o achieve this aim, we implemented all models by using deep
ecurrent neural networks with gated recurrent units (GRUs).
RUs are frequently applied in replacement of long short-term
emory units and can deliver comparable performance [70]. Note

hat, for the sake of fair comparison, the same network structure
as used for all training schemes, and the network settings were
mpirically chosen which can provide competitive performance
n both databases when comparing with other previous within-
ultural models [30]. To be more specific, each network consists
f four hidden layers with 100 units per layer. While training
 w
he network, the Adam optimiser was employed with an initial
earning rate of 0.001.

In addition, the early stopping strategy was executed if no
erformance improvement on the development set was observed
fter 20 successive epochs. It is important to note that, the de-
elopment set shared the same culture type with the training
et of the current task. For instance, when training a model fol-
owing FR after GE (learn SEWA first, then RECOLA), the learning
rocess first is ceased based on the performance on the SEWA
evelopment set when learning on the SEWA training set. After
hat, when continually learning on the RECOLA training set as a
ew task, the training process will be terminated by inspecting
ts performance on the RECOLA development set.

Furthermore, in all of the experiments, following the sugges-
ions of the AVEC challenges [30], annotation shifting was per-
ormed to compensate annotation delay, and a post-processing
hain of four stages was performed with an aim to refine the
btained predictions. For more details, please refer to [30].

.3. Evaluation metrics

To evaluate the performance of the EWC-based continual emo-
ion regression system, we computed the Concordance Correla-
ion Coefficient (CCC), which was officially utilised in the AVEC
hallenge series [30]. Formally, the CCC is defined by:

CC =
2ρσxσy

σ 2
x + σ 2

y + (µx − µy)2
, (8)

here ρ denotes the Pearson’s correlation coefficient (PCC) be-
ween two time-series (i. e., our predictions and the
old-standards in our case), µx and µy stand for the mean of
ach time series, and σ 2

x and σ 2
y represent the corresponding

ariances. CCC is preferred over PCC as it considers not only
he shape similarity between the two series but also the bias
erm (µx − µy)2. This is especially relevant for evaluating the
erformance of time-continuous emotion prediction models, as
oth the trends as well as the absolute prediction values are
ital. The value of CCC is within the range of [−1, 1], where +1
epresents perfect concordance, −1 total discordance, and 0 no
oncordance at all. Hence, a higher CCC implies better system
erformance.

. Experimental results and discussions

In this section, we present and discuss the prediction results
btained with the proposed method. In particular, we compare
ur models against other baseline systems. In addition, we further
nvestigate the effectiveness of the method by visualising the
ffect of the elastic-weight-based penalty term and its impact on
odel parameters.

.1. Cross-cultural emotion recognition

Table 2 demonstrates the results of various training strategies
or arousal and valence predictions on the RECOLA and SEWA
atasets, respectively. For a clear view, we sort these training
trategies into three categories, i. e., six baseline strategies to
ompare against, two lifelong training models, and a joint train-
ng strategy which can be viewed as an upper bound in our
ase. Moreover, results are summarised in three blocks with
espect to the applied feature sets, namely, audio, video, and the
ombination of the two.
First, we compare our models against six baselines. From the

able, one may notice that the performance is heavily degraded
hen there is a cultural mismatch between training and inferring
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Table 2
CC performances via various training strategies for emotion regression based on audio, video, or their combination. Performance on the development sets and test
ets of the two databases (FRdev, FRtest ,GEdev,GEtest ) as well as the average performance on the two test sets (µtest ) are reported for arousal and valence, respectively

Features Methods Arousal Valence

FRdev FRtest GEdev GEtest µtest FRdev FRtest GEdev GEtest µtest

Audio

Baseline strategies

FR only .631 .552 .311 .036 .294 .287 .248 .085 .024 .136
GE only −.022 .009 .388 .246 .128 .007 −.003 .390 .245 .121
FR only, w/ L2-norm .613 .543 .276 .049 .296 .227 .249 .140 .019 .134
GE only, w/ L2-norm −.023 .014 .357 .224 .119 .025 .046 .361 .240 .143
FR after GE, w/o EWC .640 .538 .334 .047 .293 .325 .272 .072 −.011 .131
GE after FR, w/o EWC −.057 −.006 .383 .243 .119 .027 .050 .360 .251 .151

Proposed lifelong learning strategies

FR after GE, w/ EWC .639 .538 .335 .046 .292 .232 .159 .265 .156 .158
GE after FR, w/ EWC .554 .509 .377 .157 .333 .019 -.009 .406 .192 .092

Joint training (upper bound)

FR and GE .498 .457 .389 .176 .317 .293 .234 .343 .186 .210

Video

Baseline strategies

FR only .167 .180 .277 .175 .178 .413 .354 .552 .397 .376
GE only .073 .014 .517 .374 .194 .406 .211 .571 .517 .364
FR only, w/ L2-norm .181 .217 .223 .227 .222 .432 .341 .561 .413 .377
GE only, w/ L2-norm .094 .029 .563 .404 .217 .396 .215 .581 .508 .362
FR after GE, w/o EWC .195 .241 .229 .212 .227 .430 .355 .480 .289 .322
GE after FR, w/o EWC .078 .024 .536 .365 .195 .368 .197 .564 .467 .332

Proposed lifelong learning strategies

FR after GE, w/ EWC .195 .241 .230 .212 .227 .479 .370 .583 .465 .418
GE after FR, w/ EWC .197 .184 .601 .413 .299 .466 .271 .562 .587 .429

Joint training (upper bound)

FR and GE .168 .177 .541 .455 .316 .550 .382 .598 .600 .491

Fusion

Baseline strategies

FR only .621 .578 .397 .102 .340 .529 .436 .334 .189 .313
GE only .090 .063 .581 .401 .232 .241 .134 .623 .485 .310
FR only, w/ L2-norm .634 .627 .351 .145 .386 .511 .380 .372 .222 .301
GE only, w/ L2-norm .080 .050 .588 .412 .231 .249 .134 .633 .536 .335
FR after GE, w/o EWC .631 .596 .436 .150 .373 .528 .421 .381 .250 .336
GE after FR, w/o EWC .056 .035 .613 .424 .230 .250 .150 .637 .527 .339

Proposed lifelong learning strategies

FR after GE, w/ EWC .600 .599 .500 .224 .412 .514 .412 .534 .370 .391
GE after FR, w/ EWC .551 .530 .568 .366 .448 .450 .252 .617 .569 .411

Joint training (upper bound)

FR and GE .534 .533 .601 .399 .466 .523 .399 .601 .584 .492
G
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sets. We may take the arousal prediction from audio as an exam-
ple. On FRtest , a CCC of .552 is obtained by training on the same
ultural data (i. e., FR only), while the performance dramatically
educes to .009 if training with German data only (i. e., GE only).
ikewise, for GEtest , the performance of GE only is remarkably
uperior to FR only. Similar observations can be drawn over all
hree distinct feature sets for the arousal prediction as well as for
he valence prediction.

Moreover, results of another two baseline training models, FR
nly, w/ L2-norm and GE only, w/ L2-norm, are also provided in
able 2. These two models aim at improving the generalisation
erformance on new, unseen data. For instance, when comparing
R only and FR only, w/ L2-norm, the obtained CCCs on both test
ets are boosted for arousal via the fused audiovisual features,
rom .578 to .627 on FRtest and from .102 to .145 on GEtest . Nev-
rtheless, a severe performance discrepancy still exists between
he two sets, and this indicates that it is essential to construct a
odel to learn from data of both cultures.
Further, in order to learn from data of both sets, sequential

raining strategies have been evaluated in the last two baseline
ystems, namely FR after GE, w/o EWC and GE after FR, w/o
WC. These systems, without considering the EWC regularisation,
uffer severely from the catastrophic forgetting issue. Let us take
rousal prediction from audio signals with GE after FR, w/o EWC
s an example, where the model first learns from FR and then
 f
E. The obtained CCC for French decreases dramatically, from
631 to −.057 on FRdev and from .552 to −.006 on FRtest . It
an be seen that, though both tasks are learnt in a sequence,
erformance of the first task is damaged as the model adaptation
o the second culture disrupts the knowledge learnt from the first
ne. It suggests that advanced training strategies are inevitable
nd essential to deal with this issue.
With the proposed continual learning approaches, one may

otice that the aforementioned catastrophic forgetting problem is
lleviated remarkably, by preserving the knowledge of previous
asks via the EWC regularisation during training. Again, taking
or instance predicting arousal from audio signals, with EWC,
he CCCs achieved on the French dataset by GE after FR, w/
WC are .554 on FRdev and .509 on FRtest , respectively, and in
he meanwhile the CCCs for German are still competitive to a
erman-dependent model (.377 vs .388 on GEdev and .157 vs .246
n GEtest ). Such an observation can be found in Table 2 in other
cenarios.
Notably, when comparing FR after GE with GE after FR, it is

lso interesting to observe that, the performance of the latter is
n average superior to the former. For instance, when comparing
he average performance on the two test sets µtest , GE after FR,
/ EWC is better than FR after GE, w/ EWC in five out of six
ases (three feature sets by two emotion dimensions) except

or the valence prediction from audio signals. This may indicate
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Fig. 2. Visualisation of the performances in terms of CCC of the proposed methods comparing with other baseline approaches on the test sets of FR and GE. Results are
eparately shown for arousal and valence regressions via audio, video, and their combination (AV), respectively. Note that, the white bars indicate the performance of
matched culture-specific model, while the red dotted lines denote the performance of a joint training model. a: mismatched culture-specific model, b: mismatched
odel w/ L2-norm, c: sequential training w/o EWC, d: sequential training w/ EWC (ours).
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hat the order of the training tasks also plays a key role in a
ontinual emotion recognition system. We can gain some insight
rom curriculum learning and infer that learning several tasks in
proper order might lead to improved average performance.
Furthermore, from Table 2 one may observe that, in most

ases, when modelling emotion patterns from audio only, the
odels achieve better performance in the arousal prediction than

n the valence prediction. In contrast, when estimating via fa-
ial expressions, observations are found in another way around.
oreover, when combining audio and visual features via early fu-
ion, the performance is improved. These findings are consistent
ith previous studies [71,72]. In particular, when learning from
oth audio and visual signals, the best average CCCs on the two
est sets µtest are obtained by joint training (FR and GE), reaching
o .466 for arousal and .492 for valence, respectively.

Rather than the joint training paradigm, in our proposed mod-
ls, the two datasets were learnt one after the other, and this
educes the high storage requirement issue we might face in
oint training. With this manner, comparable average perfor-
ance µtest in terms of CCC is achieved with our EWC-based
odel GE after FR, w/ EWC, i. e., .448 and .411 for arousal and
alence, respectively. This suggests that sequential learning is,
o some degree, a potential replacement of joint training as the
ystem may benefit from lower storage requirement and compu-
ation load. This is extremely vital for real-life intelligent systems,
here the number of given tasks and thus the amount of training
ata might grow rapidly.
For a better interpretation, these results are also visualised in

ig. 2. In this figure, the performance of the proposed systems on
Rtest and GEtest are compared with their corresponding baseline
ystems under six distinct setting combinations of three different
eature sets and two emotion dimensions separately. Moreover,
he performance of two upper bound systems is depicted as
ell. In particular, in each subfigure, the upper bound of its
atched culture-specific model (e. g., FR only) is presented as a
hite bar; while the joint training upper bound is drawn as red
otted lines. Another four coloured bars denote the correspond-
ng performance of the mismatched culture-specific model (e. g.,
E only), the mismatched model with L2-norm (e. g., GE only,
/ L2-norm), the sequential training model without EWC (e. g.,
E after FR, w/o EWC), and the introduced sequential training
odel with EWC (e. g., GE after FR, w/ EWC, also the lifelong

earning model), respectively. As a consequence, the performance
egradation from all introduced and compared models can be
isualised as the white space between two bars.
We can see from Fig. 2 that, in most cases, our lifelong learning

odel outperforms other baseline models and yields less perfor-
ance difference with its matched culture-specific model than
ther baseline models. In particular, when training for arousal,
ur GE after FR, w/ EWC models achieve competitive or even bet-
er results than the joint training upper bounds (cf. Fig. 2(a), (e),
nd (i)). This demonstrates the great potential of implementing
ontinual emotion recognition by investigating advanced lifelong
earning algorithms.

.2. Hyperparameter selection

As given in Eq. (7), λ is utilised to regulate the contribution
f previous knowledge when learning a new task. Therefore, to
etter illustrate the effect of λ for the performance, we trained
arious models with different λs in the range of [10−2, 1010

].
ig. 3 shows how the performance of our lifelong model varies
ith respect to various λs on the development sets. Note that,

n this figure, only results on GE after FR, w/ EWC models are
emonstrated, as it generally performs better than FR after GE,
/ EWC (cf. Section 5.1).
As shown in Fig. 3, when λ is small, performance on the

revious task (i. e., French emotion recognition) is relatively low,
ompared with the second task (i. e., German emotion recogni-
ion). Then, when λ increases, the performance on FR improves
dev
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Fig. 3. The effect of the hyperparameter to control the regularisation λ in the proposed GE after FR, w/ EWC model, when predicting arousal and valence on the
development sets via three various feature types, i. e., audio, video, and audiovisual (AV). The average performance of both FR and GE is calculated and denoted as
avg.

Fig. 4. Venn diagrams to visualise the relations among three parameter sets by analysing the important parameters obtained in three models for audiovisual emotion
prediction, where each of them can be viewed as a circle. In particular, the red circle denotes a culture-specific model, i. e., 1-FR or 1-GE; the green circle represents
another culture-specific model, i. e., 2-GE or 2-FR; and the purple circle indicates a sequential training model that learns task 1 and 2 sequentially. The values in
the circles show the number of important parameters, which belong to one set only or lie at the intersection of two or even three sets. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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in a large margin in most cases, until a point where it does
ot benefit from further increasing. Likewise, when depicting the
verage performance on FRdev and GEdev , a performance improve-
ent can also be observed along the increased λ until it becomes

lat again. In this regard, a proper λ is demanded to retain the
revious knowledge. However, the performance on GEdev either
ncreases (cf. Fig. 3(c)), remains (cf. Fig. 3(a) and (d)), or de-
reases slightly (cf. Fig. 3(b), (e), and (f)) under different settings.
his may highly depend on whether the previous knowledge is
eneficial or not to the current learning process.

.3. Effectiveness verification

In the following, we further verify the effectiveness of the
WC-based sequential learning approach by inspecting the im-
acts of EWC on the plasticity of parameters to be learnt. In
articular, in our selected RNN model for emotion regression
asks, there are more than 271K parameters to be learnt. Of these
arameters, their importance with respect to a given task can
e estimated by its Fisher information (cf. Section 3.2). On this
ccount, given a predefined threshold 10−4 to only consider the
arameters that have a Fisher value above it, for each model, a
arameter set can be generated to incorporate these important
arameters. Then, when EWC is applied, the plasticity of the
arameters in the set can be decreased to tackle catastrophic
orgetting when a new task comes.

In this study, we look into the relations of three parameter
ets of this kind, i. e., one for a model trained on French only,
ne for German only, and one for a model trained on the two
atabases one after another. Then, the relations of these three sets
an be demonstrated by a couple of Venn diagrams, under eight
udiovisual training scenarios, as shown in Fig. 4. In particular,
he four Venn diagrams in the upper row of Fig. 4 present the four
ases when carrying out sequential learning without EWC, while
he remaining four in the lower row are corresponding models
rained with EWC. Moreover, the values in the diagram depict the
umber of parameters which are vital to only one model, or two
odels (overlaps of every two circles), or three models (overlaps
f all three circles). Hence, when investigating the intersection
f a red circle (model trained only on the first task) and a purple
ircle (model learnt on two tasks) and comparing every two Venn
iagrams in a column, one may see that the intersection in the
ower diagram is always greater than (three out of four cases) or
t least equal to (one case only) that from the upper diagram. This
ight indicate that sequential training with EWC is capable of
aintaining more parameters that are important to the previous

ask, by reducing the plasticity of these parameters for future
earning.

.4. Discussion

Based on our previous results, it has been shown that, by
uantifying the importance of weights to previous tasks and then
djusting the plasticity of weights accordingly for new tasks,
ur EWC-based continual emotion recognition models outper-
orm other baseline models. The proposed method overcomes the
imitations of the conventional isolated training approach, and
ecomes a promising alternative of joint training to dealing with
he discrepancy among multiple cultures for emotion perception.

To close this section, we would like to point out some potential
imitations of the current EWC-based continual emotion recog-
ition system. As can be seen in Fig. 4, after learning two tasks,
he number of important parameters is increasing to preserve the
nowledge from both tasks, indicating that a lower amount of
arameters is able to be largely changed for future tasks. Due to
his limitation, EWC is not sufficient for learning a large number
f tasks, when most, if not all, parameters appear to be rather
ssential to keep the knowledge for all past tasks. The reason
s that it might be caught in a dilemma: on the one hand, new
nowledge can only be acquired by updating parameters accord-
ngly; on the other hand, past knowledge will get destroyed if any
arameter is modified.
Moreover, although the performance of the proposed model

s superior to other baseline models, meaning that the catas-
rophic forgetting problem is partially addressed, much work is
till needed towards closing the performance gap between it and
culture-specific model. Therefore, in future studies, other more
dvanced lifelong learning approaches will be investigated and
pplied towards general emotion perception systems. These tech-
iques include, but are not limited to, PathNet [73], GeppNet [74],
rogressive neural networks [75], and dynamically expandable
etworks [76].
Finally, as the first work towards lifelong learning in audio-

isual affective computing, merely two datasets cross languages
nd cultures were considered. In the future, we plan to investi-
ate the generalisation and robustness of the proposed lifelong
earning paradigm cross multiple corpora like the ones used
n [77], or cross multiple tasks. This work is of importance as it
eads to a more realistic application scenario.

. Conclusion

To prevent the catastrophic forgetting problem of conven-
ional machine learning algorithms, in this article we presented a
ifelong learning perspective for affective computing. More specif-
cally, we proposed the lifelong learning algorithm of Elastic
eight Consolidation (EWC) in a well-established application of

ross-cultural audiovisual emotion recognition. Through compre-
ensive experiments and analysis, it is found that EWC enables
model to learn multiple tasks in an open-set environment,
ith no or limited forgetting about the knowledge obtained from
revious tasks. These findings will facilitate the development and
mplementation of affective computing into a real-life scenario,
ecause of its heterogeneous and dynamic characteristics.
In future work, we will further investigate other advanced

ifelong learning algorithms, and compare their performance with
he introduced EWC in the context of affective computing. More-
ver, towards accomplishing emotional intelligence in the con-
ext of Internet of People (IoP), we are interested in investigating
he proposed emotion recognition model to support various ap-
lications, such as monitoring health states in smart homes [78,
9], reducing energy consumption according to personal living
abit in smart workplaces [80,81], and detecting negative emo-
ions of group in smart cities [82,83].

Furthermore, in this research work, we focused on learning
motion perception models based on the audio and visual ob-
ervations. Other than these two observations, additional factors
uch as the pressure and preferences of the users may also have
n impact on both how they perceive others’ emotions and how
hey express their own emotions. Hence, in the future, it is of
reat interest to take these subjective factors into account, for
imulating the complexity of emotional experience, in the context
f IoP.
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