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Introduction

In modern medicine the terms ‘‘regenerative
medicine’’ and ‘‘Tissue Engineering’’ have become
key words, envisioning our ability to grow and to
engineer functional tissue in vitro that will enable
us to repair and substitute damaged or degenerated
tissue in vivo (Caplan and Goldberg, 1999; Solchaga
et al., 2001). Tissue engineering can be defined as
the art of reconstructing mammalian tissue, both
structurally and functionally (Hollander et al.,
2006), whereas this reconstruction process may
be performed entirely in vitro, with mature tissue
being transplanted, or partially in vitro followed by
a maturation process after transplantation in vivo.
Here we attempt to imitate natural processes in
our bodies, which, in order to survive, must be able
to repair and regenerate damaged tissues by
replacing them with progenitor cells that have
the capacity to differentiate into the specialized
cell type (Tallheden et al., 2006). Modern medicine
has greatly improved our abilities in the fields of
diagnosis, prevention and treatment of a range of
infectious, metabolic, neurodegenerative, cardio-
vascular, respiratory and cancerous diseases. New
understandings of embryonic development and
new technical skills have led to the therapeutic
approach of repairing connective tissue through
tissue engineering, thus opening an entirely new
starting point for cartilage repair (Cancedda et al.,
2003; Caplan, 1991, 2000; Caplan et al., 1997;
Short et al., 2003). The need for effective cartilage
repair strategies has been rising continuously, as
the increase in life expectancy in humans also leads
to a major increase in rheumatoid arthritis and
osteoarthritis (OA). It is estimated that more than
39 million people in the European Union and over
20 million Americans have OA and it is anticipated
that by the year 2020, these numbers will have
doubled. In Germany, OA has major economic
consequences, creating direct and indirect costs
of 8 billion Euros per annum.1 As existing pharma-
1www.g-netz.de
ceuticals (steroids and non-steriodal anti-inflam-
matory drugs) are unsatisfactory as they only
treat the symptoms of OA by reducing pain and
inflammation, these numbers make it clear that
new effective treatments for OA are of vital
importance.

This article will present selected methodologies
for cartilage repair and the potential usefulness of
mesenchymal stem cells (MSCs) and critically
evaluate their strengths and limitations in articular
cartilage regeneration and tissue engineering.
Challenges in connective
tissue engineering

Tissue engineering has evolved as a new field,
promising in vitro construction of whole transplan-
table tissue. Basically, three main components are
required for successful tissue engineering: Firstly, a
scaffold providing an adequate three-dimensional
surrounding. Secondly, appropriate cells which
are able to differentiate and maintain the specific
cell phenotype. Thirdly, the addition of the right
bioactive substances such as growth factors,
cytokines or hormones as a suitable stimulus for
specific lineage differentiation of the cells (Kuo
et al., 2006) (Figure 1). Connective tissue injuries
of the bone, tendon and cartilage represent a large
fraction of trauma medicine. Although bone has
a high turnover rate, is vascularised and callous
formation happens rather quickly, large bone
defects resulting from massive traumata, tumors
or metabolic and degenerative diseases have a
limited capacity for self-repair and require special
treatment strategies (Kajiwara et al., 2005;
Krampera et al., 2006). Although osteochondral
grafts have been successfully used for several
decades (Czitrom et al., 1986; Marco et al., 1993;
Meyers et al., 1983), grafting is often related to
donor-site morbidity, increased risk of infection
from allografts, immunocompatibility, implant re-
jection and necrosis (Hangody and Fules, 2003).
Also tendon injuries, often the consequence of

http://www.g-netz.de


              

bone

tendon

cartilage

Figure 1. The principle of tissue engineering. The concept of tissue engineering comprises three main factors: Firstly, a
compatible biomaterial (A), secondly adequate cells, such as stem cells (B) and thirdly the addition of specific bioactive
substances (C) enhancing appropriate cell differentiation and specific tissue formation such as bone, tendon and
cartilage.
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recurrent micro- or macro-traumata or the side
effect of antibiotic treatment with gyrase inhibi-
tors such a chinolones (Bosch, 2000; Hankemeier
et al., 2007; Sendzik et al., 2005; Shakibaei et al.,
2000, 2001a; Shakibaei and Stahlmann, 2001, 2003)
present another major clinical problem, as tendon,
like cartilage, is a bradytroph tissue with slow and
very limited regenerative capacities (Beris et al.,
2005; Moller et al., 2000; Schulze-Tanzil et al.,
2004a; Ahmed et al., 1998). Furthermore, the
tendon also contains very few cells, the tenocytes,
which produce a highly specialized extracellular
matrix (ECM) (Canty and Kadler, 2002; Kannus,
2000; Rees et al., 2000). As with bone, the present
regeneration strategies for tendon repair evolve
around allo- and autografting of tendon; however,
recently, treatments have been expanded by novel
tissue-engineering approaches using bio-compati-
ble and bio-degradable scaffolds in combination
with tenocytes or MSCs (Krampera et al., 2006).
The specific characteristics of articular cartilage
are mainly due to the special construction of its
ECM. The ECM is produced by the cartilage cells,
the chondrocytes, which make up less than 5% of
the tissue’s total three-dimensional volume. A
particular feature is that the cells do not have
any direct cell-to-cell contact with each other and
each cell has to be regarded as an individual
functional unit responsible for maintaining the ECM
in its immediate surrounding through balanced and
tightly regulated anabolic and catabolic activities.
The ECM produced by the chondrocytes is specific
for hyaline cartilage and 40–50% consists of
collagens (90% of which is collagen type II) and
20–25% consists of different proteoglycans (aggre-
can, decorin, biglycan and fibromodulin) (Kuettner,
1992). Cartilage develops during embryogenesis
through condensation and subsequent differentia-
tion of MSCs. During this process the cells start to
synthesise cartilage matrix-specific proteoglycans
and collagen type II (Cancedda et al., 1995). In
adults, articular cartilage chondrocytes retain a
mature state; however, in adolescents during
enchondral bone development, at the site of the
growth plate the chondrocytes become hyper-
trophic, produce alkaline phosphatase and collagen
type X and are eventually reabsorbed while new
bone is formed (Cancedda et al., 1995; Kuettner,
1992). For scientists and medical doctors cartilage
repair presents a major challenge because of its
unique construction. Cartilage itself lacks both
vascularisation and innervation. Healing processes
are therefore slow and the resulting scar tissue
most often lacks the necessary mechanical proper-
ties and physical durability of the original articular
cartilage (Cancedda et al., 2003; Vachon et al.,
1986). This scar tissue cannot withstand the
physiological strain and the result is further
degeneration of the cartilage, continued decline
in joint function, inflammation, restricted joint
movement and deformity. The main symptoms of
OA are therefore well known: pain, stiffness and
swelling of the joints. Advanced OA leads to further
instability, putting stress on the ligaments and
tissues surrounding the joints. Currently, more than
200 diseases that affect the joints are summarized
under the term OA. Established treatments for OA
include mainly preventive measures such as weight
control, exercise or treatment of underlying meta-
bolic diseases. Recently, neutraceuticals, which
contain polyphenolics, have also been discussed
for OA treatment (Csaki et al., 2008; Khanna et al.,
2007; Shakibaei et al., 2007a, b). Conservative
surgical techniques used to achieve clinical carti-
lage regeneration (Hunziker, 2002) such as the
micro-fracture method (Steadman et al., 1999;
Sledge, 2001) and the mosaic-plastic method
(Hangody et al., 2001a, b) involve autologous
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grafting of chondral or osteochondral fragments.
However, the results of trials on OA patients have
been unsatisfactory (Quinn et al., 1998a, b; Wohl
et al., 1998).
Cartilage tissue engineering

One of the best-known current regenerative
medicine strategies to achieve cartilage defect
repair is the Autologous Chondrocyte Transplanta-
tion (ACT) method. The ACT method was intro-
duced in the 1980s by a Swedish group as a novel
clinical treatment for articular cartilage repair to
solve the problem of progressive degeneration in
OA joints (Brittberg, 1999). Following the basic
principles of repair, a cartilage defect was filled
with autologous chondrocytes (i.e. derived from is
the same patient). The idea was that, by introduc-
tion of the chondrocytes in single-cell suspension
into the defect, cell condensation would be
triggered, imitating the condensation phase in
early embryonic development. This condensation
phase in turn would provide the chondrocytes with
an adequate stimulus to synthesis new cartilage-
specific matrix and result in regeneration of
articular cartilage tissue in the cartilage defect.
In a biopsy a 150–300mg sample of cartilaginous
tissue is removed in an initial surgical procedure
from a non-weight-bearing area of the joint, for
example in the knee from the supromedial edge of
the femoral condyle, and expanded as a cell
culture in vitro until enough cells are obtained for
defect filling. In the second surgical procedure,
these cells are then re-implanted into the cartilage
defect. To secure the chondrocytes at the im-
planted side and prevent them from floating away,
a periosteal flap is further sewed over the defect
(Brittberg et al., 1994, 1996). In several animal
studies ACT has shown excellent outcomes (Breinan
et al., 1997; Brittberg et al., 1996; Dell’Accio et
al., 2003; Grande et al., 1989; Lee et al., 2003;
Rahfoth et al., 1998). In human patients ACT has
been performed on over 12,000 patients worldwide
(Peterson et al., 2000). Results after 3–9 years are
very encouraging, with a significant reduction in
pain reported in treated patients (Peterson et al.,
2002), although repair of the defect is not uniform
in all areas of the joint (Brittberg et al., 1994;
Peterson et al., 2000).

Although ACT has been in use for some time, it
still faces several major challenges, including
donor-site morbidity, chondrocyte de-differentia-
tion during in vitro culture and fibrocartilage
formation after cell implantation instead of defect
healing (40% of ACTs show evidence of chondrocytes
hypertrophy) (Dell’Accio et al., 2003; Brittberg et al.,
2003; Schulze-Tanzil et al., 2002, 2004b; Brittberg,
1999). Especially, chondrocyte de-differentiation
during monolayer culture poses problems. In vivo,
chondrocytes are embedded in a well-structured
ECM, helping them to maintain their function
and vitality (Shakibaei et al., 1993, 1997; Shakibaei
and Merker, 1999). Monolayer culture, in which
chondrocytes are forced to give up their chondro-
genic phenotype and the absence of their specific
ECM, leads to a shift in the chondrocytes from
the production of cartilage-specific proteins, such
as collagen type II, to non-specific proteins, such
as collagen type I (von der Mark, 1980; von der
Mark et al., 1977; Marlovits et al., 2004). After
re-implantation these de-differentiated chondro-
cytes continue to produce unspecific matrix com-
ponents leading to a more fibrocartilage repair
tissue that lacks the biomechanical properties and
the resilience of articular cartilage. Up to the
fourth passage in vitro chondrocytes can sponta-
neously re-differentiate in a three-dimensional
environment (Schulze-Tanzil et al., 2002; Shakibaei
et al., 2006). Also, bioactive stimuli such as insulin-
like growth factor I (IGF-I) and the transforming
growth factor beta (TGF-b) have been shown to
prolong and reconstitute the re-differentiation
capacity of monolayer-expanded chondrocytes
(Barbero et al., 2003; Hunziker, 2001; Jenniskens
et al., 2006; Shakibaei et al., 2006).
Next-generation ACT

As the classical ACT method has shown flaws,
refined approaches to promote chondrocyte re-
differentiation for effective cartilage repair are on
trial, combining chondrocytes with a great variety
of carrier systems (scaffolds) or biomaterials
(Marlovits et al., 2006). The so-called ‘‘second-
generation ACT’’ uses a biomaterial membrane
(such as the bilayer collagen type I/type III
membrane Chondro-GideTM) instead of the perios-
tal flap to secure the chondrocytes in the defect.
The aim is to reduce a periostal reaction connected
with the periostal flap usage such as periosteal
hypertrophy. In the so-called ‘‘third-generation
ACT’’ a three-dimensional environment is created
in vitro with a scaffold; this is loaded with
chondrocytes and this neo-cartilaginous tissue-
engineered construct re-implanted. Although ma-
terials vary greatly from producer to producer
(Hunziker, 2002), in general, scaffold material has
to be structurally and mechanically stable, reab-
sorbable and non-toxic for the cells (Tuli et al.,
2003). Some of the most frequently used materials
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are polylactide-co-glycolide-based (Mercier et al.,
2005), hyaloron-based (Solchaga et al., 2005b) or
atelocollagen-based (Ochi et al., 2002). In vitro and
in vivo studies on animals (Wakitani et al., 1998;
Solchaga et al., 2005b) and humans (Ochi et al.,
2002; Zheng et al., 2007) had quite positive results
with up to 75% hyaline cartilage formation after 6
months (Zheng et al., 2007). However, severe signs
of hypertrophy and partial ossification of the
implants could also be observed (Ochi et al.,
2002). As scaffolds may pose additional problems
depending on their composition, scaffold-free
techniques (Kelm and Fussenegger, 2004; Marlovits
et al., 2003) have also been implemented in animal
models (Mainil-Varlet et al., 2001; Barnewitz et al.,
2003). To enhance tissue integration, several
biological substances such as fibrin glue or collagen
cross-linkers are on trial, however, up to now
without sweeping results (Ahsan et al., 1999;
Jurgensen et al., 1997; Grande and Pitman, 1988).

As cartilage lesions are generally large and
unconfined and do not provide an appropriate
environment for chondrocytes to be retained long
enough to elaborate an ECM, problems also remain
in second- and third-generation ACT, such as the
poor integration of the repair tissue into the
surrounding cartilage (Ahsan et al., 1999; Hunziker,
2001, 2002), so that the required size of the neo-
cartilaginous construct to fill up the cartilage
defect frequently cannot be achieved (Hunziker,
2002) and the loss of the chondrocytes chondro-
genic phenotype and re-differentiation potential
resulting in chondrocytes being incapable of
cartilage production after in vivo implantation
(Schulze-Tanzil et al., 2002, 2004b; Shakibaei
et al., 1999). Therefore, successful repair of
cartilage lesions is only likely to be achieved
when three-dimensional cartilage implants can
be generated that have enough ECM for fixation
within the joint.

To achieve this goal a precise knowledge of the
biochemical and molecular signaling pathways
activated and involved in chondrogenesis is there-
fore vitally important. A major signaling pathway
involved in activation of the chondrogenic differ-
entiation of chondrocytes is the MAPKinase path-
way (Schulze-Tanzil et al., 2004b; Shakibaei et al.,
2001b), which stimulates the specific chondrogenic
transcription factor Sox9. Growth factors such as
the insulin like growth factor-I or the transforming
growth factor-b1 have been shown to stimulate the
MAPKinase pathway through activation of the
adaptor protein Shc (Src homology protein) which
in turn activates the MAPKinase members ERK 1/2
(extracellular regulated kinase 1/2) (Shakibaei
et al., 2006). Monolayer studies have already shown
that in vitro stimulation with these growth factors
prolongs the chondrocyte re-differentiation poten-
tial suggesting that growth factor treatment may
indeed be a new approach for ACT (Shakibaei et al.,
2006).

MSCs for cartilage regeneration

As stated above, obtaining vital and differen-
tiated chondrocytes presents one of the major
challenges for successful ACT. Not only that each
biopsy presents an additional trauma to an already
damaged joint cartilage, but the expansion phase
the chondrocytes have to undergo in vitro leads to
rapid cell de-differentiation with a loss of their
chondrogenic potential (von der Mark et al., 1977;
Darling and Athanasiou, 2005; Shakibaei et al.,
1997). Although re-differentiation of these cells has
been shown in vitro with (Barbero et al., 2003;
Jakob et al., 2001) and without (Anderer and
Libera, 2002) the addition of growth factors such
as TGF-b, an alternative, easily obtainable cell
source with stable chondrogenic potential becomes
necessary. As other cartilage sources such as nasal
and rib cartilage have not been fully assessed for
their ability to repair articular cartilage (Naumann
et al., 2002), an undifferentiated progenitor cell
that possesses multilineage differentiation poten-
tial and is present everywhere in the body would be
ideal for tissue engineering. Here, MSCs present
themselves as a promising cell source for the
regeneration of cartilage as they possess chondro-
genic differentiation potential, are easily obtain-
able in high numbers and expandable in vitro
without losing their differentiation potential
(Caplan and Goldberg, 1999; Pittenger, 2008).

Sources, isolation and characterization
of MSCs

The term stem cell is used to denote an
unspecialized progenitor cell residing in niches in
various organs and tissues from which it can be
recruited to replenish specific tissue cells when
they die (Caplan and Dennis, 2006; Fuchs et al.,
2004). Stem cells are not only found in the embryo
but also in the fetus and in the adult individual. The
acquisition of stem cells for tissue engineering from
the fetal or adult individual has the advantage of
avoiding possible immunologic responses connected
with allogenic cell transplantation. Furthermore,
the use of embryonic stem cells presents ethical
considerations that are redundant in adult or fetal
stem cells. The earliest stem cells to be identified
belong to the hematopoetic lineage and were
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isolated from the bone marrow. Today, stem cells
have been discovered in almost all organs including
peripheral blood, bone marrow, muscle, fat,
pancreas, skin, neuronal system and others (Till
and McCulloch, 1980; Wickham et al., 2003; Zuk
et al., 2001; Bottai et al., 2003; Alexanian and
Sieber-Blum, 2003; Williams et al., 1999; Caplan,
1991; Cancedda et al., 2003). MSCs have been
isolated from bone marrow (Caplan et al., 1997;
Friedenstein et al., 1987, 1966), umbilical cord
blood (Bieback et al., 2004; Kogler et al., 2004),
adipose tissue (Zuk et al., 2002; Kern et al., 2006)
and peripheral blood (Huss et al., 2000; Zvaifler
et al., 2000; Ukai et al., 2007; Koerner et al., 2006;
Giovannini et al., 2008). In the sixties, Friedenstein
et al. (1966) had already described the presence, in
bone marrow, not only of hematopoietic stem cells
but also of MSCs capable of osteogenesis in vitro.
Today bone-marrow-derived MSCs have been
differentiated into various specific cell lineages
(Pittenger et al., 1999; Short et al., 2003; Caplan,
1991; Otto and Rao, 2004; Majumdar et al., 2000;
Kramer et al., 2004; Conget and Minguell, 1999;
Fortier et al., 1998; Carlberg et al., 2001; Csaki
et al., 2007). MSCs present approximately 2–3% of
the total nuclear cell fraction in the bone marrow.
They can easily be isolated through bone marrow
aspiration and expanded over several passages
without losing their differentiation potential
(Caplan, 1991; Csaki et al., 2007; Pittenger et al.,
1
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expanded from bone marrow (BM), umbilical cord blood (UC
desired MSCs can be obtained via several isolation methods: (A
the mononuclear cell fraction, (A2) through plating the ent
through plating the entire cell fraction after enzymatic dige
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1999). After obtaining the bone marrow aspirate,
for example in humans and canines from the iliac
crest or in horses often from the sternum, it should
be immediately diluted in 3% citric acid or heparin
to prevent blood coagulation. After arrival in the
cell-culture laboratory, the stem cells are sepa-
rated from the remaining bone marrow through
density-gradient centrifugation with Ficoll or
Percol (for example from Biochrom, Germany) and
plating of the nuclear fraction, through plating the
entire bone marrow after erythrolysis, through
separating the MSCs by magnetic cell sorting or by
FACS analysis (Caplan, 1991; Lange et al., 2005; Lee
et al., 2004; Martin et al., 2002). One of the main
characteristics of stem cells is their potential to
adhere onto plastic during in vitro conditions
(Figure 2). In vitro MSCs have a fibroblast-like
morphology which they maintain during extended
passaging. Furthermore, they express several
adhesion molecules also found on mesenchymal,
endothelial and epithelial cells (Conget and
Minguell, 1999). The International Society for
Cellular Therapy has listed the main factors
required for a cell to be regarded as a mesenchymal
stem cell in a position statement (Dominici et al.,
2006). MSCs are characterized by their adhesion
potential in monolayer culture and their differen-
tiation potential into chondrocytes, osteocytes and
adipocytes in vitro (Figure 3). Furthermore, the
International Society for Cellular Therapy has listed
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: osteoblasts : adipocytes : chondrocytes

: mesenchymal stem cells

Figure 3. The multipotency of mesenchymal stem cells. Treatment with an osteogenic-specific induction medium
causes the MSCs (A) to differentiate to osteoblasts (B) and deposit mineralized nodules that can be stained with von
Kossa. After treatment with a specific adipogenic induction medium, MSCs contain a high amount of neutral lipids
(stained with Oil red O), indicating their differentiation into adipocytes (C). In three-dimensional high-density culture,
with an appropriate chondrogenic induction medium, MSCs differentiate to chondrocytes (D) and produce cartilage-
specific proteoglycans (stained with alcian blue). magnification: (A and B) 200� ; (C and D) 400� .
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several markers that cells should exhibit or lack in
order to be classified as MSCs. Markers that MSCs
should exhibit include CD105+, CD73+ and CD90+,
whereas MSCs should lack CD45�, CD34� and
several other hematopoetic stem cell markers
(Csaki et al., 2007; Dominici et al., 2006)
(Figure 4). Parallel to bone-marrow-derived MSCs,
MSCs are derived from umbilical cord blood.
Umbilical cord blood has proven to be a good
source of MSCs and umbilical-cord-blood-derived
MSCs have been differentiated into multiple cell
types such as endothelial cells, neurons, smooth
muscle cells, adipocytes, chondroblasts and osteo-
blasts (Bieback et al., 2004; Kogler et al., 2004;
Watt and Contreras, 2005; Aoki et al., 2004).
Umbilical-cord-blood-derived MSCs have already
become commercially available for horses and
humans. Recently it has become increasingly
fashionable to encourage parents to have their
babies’ umbilical cord blood deep frozen in case
the need arises for later use. Also, the equine
sporting industry has become a fore rider in
collecting umbilical cord blood, hoping for regen-
eration of cartilage and tendon injuries with
umbilical-cord-blood-derived MSCs (Koch et al.,
2007). Apart from bone marrow and umbilical cord
blood, adipose tissue also appears to be a good and
plentiful source of MSCs both in humans and
animals (Qu et al., 2007; Yamamoto et al., 2007;
Zuk et al., 2001). Adipose-tissue-derived MSCs can
be isolated from liposuctions in large numbers and
after 1–2 h digestion of the adipose tissue with
collagenase in a shaking water bath at 37 1C, easily
grown under standard tissue culture conditions
(Figure 2). The advantage over other methods of
obtaining MSCs is that, for one, adipose tissue can
be obtained by procedures that are minimal
invasive and, MSCs yields obtained from adipose
tissue are higher compared to other sources of MSCs
such as bone marrow or umbilical cord blood
(Helder et al., 2007; Kern et al., 2006). Although
adipose-derived MSCs have been successfully dif-
ferentiated in vitro into different lineage cells
including adipogenic, chondrogenic, myogenic and
osteogenic cells (Zuk et al., 2002), in the human,
adipose-tissue-derived MSCs may have inferior
chondropogenitor capacities compared to bone-
marrow-derived MSCs (Im et al., 2005). However, in
a comparative study of MSCs from bone marrow,
adipose tissue and umbilical cord blood no pheno-
typic differences were observed (Wagner et al.,
2005). There have also been reports of MSCs
isolated from peripheral blood (Huss et al., 2000;
Zvaifler et al., 2000; Ukai et al., 2007; Koerner
et al., 2006; Giovannini et al., 2008), although
yields are significantly lower and chondrogenic
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Figure 4. Immunolabeling of isolated mesenchymal stem cells. As defined by the International Society for Cellular
Therapy, stem cells should exhibit the markers CD105 and CD90 and should not exhibit the hematopoetic stem cell
markers CD45 and CD34. magnification: 200� .

            402
induction is difficult to achieve. Recently, MSCs
were even found to persist in adult cartilage
(Alsalameh et al., 2004). Their role is still unclear
and the authors of this study argue that fibrocar-
tilage formation during OA might be a result of
cytokine-induced wrong programming of cartilage
MSCs (Alsalameh et al., 2004).
Induction of chondrogenesis in MSCs

In vivo MSCs differentiation is initiated through
an interaction of molecular signals emitted from
neighbouring tissue cells that are transduced via
either an extra- or intracellular pathway. Differ-
entiation of MSCs can then be induced through
stimulation of stem cell surface receptors, soluble
cytokine and growth factors, through ECM proteins
such as proteoglycans and collagens or through
direct interaction with surface proteins of neigh-
bouring cells such as the chondrocytes. Present
attempts on in vitro chondrogenic differentiation
of MSCs are therefore based on the knowledge of
chondrogenic development, cartilage homeostasis
and function in vivo. Chondrogenic differentiation
of MSCs in vitro is therefore mainly performed in a
three-dimensional environment such as the micro-
mass pellet culture as described by Johnstone et al.
which is the most frequently used system (Pittenger
et al., 1999; Johnstone et al., 1998). Here,
250,000–500,000 MSCs are centrifuged in a conical
tube and then incubated for various time periods
ranging from 14 to 21 days at 37 1C in a humidified
atmosphere. After 1 day in culture, the cells
aggregate and form a round cell pellet. Other
three-dimensional culture methods for cartilage
formation include high-density bridge cultures
(Figure 5) and alginate bead cultures (Lange
et al., 2005; Shakibaei and De Souza, 1997;
Shakibaei et al., 1993).

In vitro MSCs require a stimulus to differentiate
into chondrocytes. This stimulus can be achieved
with a large variety of different growth and
differentiation factors, hormones or cytokines
(Caplan and Goldberg, 1999; Magne et al., 2005).
The major ones include TGF-b1, IGF-1, dexametha-
sone, the family of bone morphogenic proteins
(BMPs) and fibroblast growth factor (FGF) (Carlberg
et al., 2001; Csaki et al., 2007; Denker et al., 1999;
Grigoriadis et al., 1988; Nakayama et al., 2003;
Nixon et al., 2000; Pittenger et al., 1999; Tsutsumi
et al., 2001).
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Figure 5. Schematic drawing of the three-dimensional High-Density Culture Model. A nitrocellulose filter is placed on a
steel net bridge and cells are cultured on the filter. This model mimics the condensation phase that is at the beginning
of cartilage development, by allowing the cells to aggregate and form cell–cell interactions. Cell-culture medium
reaches the filter-medium interface, nurturing cells through diffusion, thus mimicking an in vivo environment.
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In chondrogenic differentiation media, TGF-b1 is
the most commonly used growth factor (Caplan,
1991; Pittenger et al., 1999; Johnstone et al.,
1998). Chondrogenic differentiation through
TGF-b1 is probably mediated by smad3 and
b-catenin, as well as along the Wnt signaling
pathway, enhancing MSCs proliferation while simul-
taneously inhibiting adipogenesis and osteogenesis
(Zhou et al., 2004; Jian et al., 2006). Up-regulation
of b-catenin is essential to commit a cell to the
chondrogenic lineage (Day et al., 2005; Hill et al.,
2005). However, in mature adult chondrocytes,
b-catenin can also stimulate chondrogenic hyper-
trophy and ossification (Kitagaki et al., 2003;
Tamamura et al., 2005). This is a logical step since
although articular cartilage chondrocytes normally
stay at a mature state, in growing adolescents the
chondrocytes become hypertrophic, produce alka-
line phosphatase and collagen type X and are then
eventually reabsorbed while new bone is formed
at the site of the enchondral bone growth plate.
TGF-b1 has also been shown to act via the
MAPKinase signaling pathway, part of its mechanism
being mediated by ERK1/2; however, collagen type
II production is independent of this (Longobardi
et al., 2006). It is well known that the MAPKinase
pathway plays a pivotal role in differentiation,
development of the chondrogenic phenotype and
specific function of chondrocytes (Shakibaei and
Merker, 1999; Shukunami et al., 2001) and recently
it was shown that ERK1/2 interacts physically
with the chondrogenic transcription factor Sox9
(Shakibaei et al., 2006). This concurs with the
findings that inhibition of the MAPKinase pathway
enhances adipogenesis (Jaiswal et al., 2000). IGF-1
can influence chondrogenesis independently of
TGF-b1 and may even be involved in a synergism
with TGF-b1. Indeed, the expression of the chon-
drogenic-specific transcription factor Sox9, the
amounts of collagen type II and cartilage-specific
proteoglycans in MSCs stimulated both with TGF-b1
and IGF-1 were comparable to that of mature
adult chondrocytes (Longobardi et al., 2006).
Dexamethasone, a synthetic glucocorticoid, stimu-
lates chondrogenesis directly via the glucocorticoid
receptor (Derfoul et al., 2006). In animals it has
been reported to be a potent stimulant for
chondrogenesis in horses, rabbits and bovines
(Bosnakovski et al., 2005; Grigoriadis et al., 1988;
Johnstone et al., 1998). Interestingly, dexametha-
sone potentiates the chondrogenic stimulation of
TGF-b (Derfoul et al., 2006). BMPs, belonging to the
TGF-b superfamily can further stimulate chondro-
genesis (Chubinskaya and Kuettner, 2003; Luyten et
al., 1992; Sailor et al., 1996; Schmitt et al., 2003;
Knippenberg et al., 2006; Indrawattana et al.,
2004). Here especially BMP-7 (Knippenberg et al.,
2006), a combination of BMP-2 and TGF-b (Schmitt
et al., 2003) or a combination of BMP-6 and TGF-b
(Indrawattana et al., 2004) seem to enhance
chondrogenesis whereas BMP-2 alone stimulates
osteogenesis (Knippenberg et al., 2006). BMP-2
seams to cooperate, like TGFb, with the Wnt signal
transduction pathway, up-regulating Wnt3a, lead-
ing to accumulation of b-catenin and the subse-
quent induction of Sox9 and chondrogenesis
(Fischer et al., 2002a, b). FGF-2 has also been
proposed to stimulate chondrogenesis in MSCs
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(Solchaga et al., 2005a; Chiou et al., 2006) and this
mechanism of action is mediated via the MAPKinase
signaling pathway (Murakami et al., 2000).

Tissue-engineering cartilage with MSCs

Analogue to the ACT, MSCs have been injected in
the knees of animals such as rabbit (Im et al., 2001;
Yan and Yu, 2007) and goat (Quintavalla et al.,
2002; Murphy et al., 2003). Although combining the
MSCs with soluble scaffolds, fibrin glue or a
periosteal flap, results have been ambiguous, both
formation of new cartilage and degradation and
fragmentation of the MSCs has been reported (Im
et al., 2001; Yan and Yu, 2007; Murphy et al., 2003;
Quintavalla et al., 2002). Further, MSCs have been
implanted after in vitro differentiation to chon-
drocytes; however, also here results have been
unsatisfactory (Jiang et al., 2003). The approach of
loading MSCs onto a three-dimensional scaffold
in vitro could provide a three-dimensional cons-
truct with mechanical properties that are congru-
ent with the weight-bearing function of the joint
(Noth et al., 2008). Therefore, MSCs have been
implanted on scaffolds and indeed successful
formation of cartilage-like tissue was observed in
parts of the defect (Chen et al., 2005; Wakitani
et al., 1994; Meinel et al., 2004; Liu et al., 2006).
C

P
C

P

P

P

ECM

Figure 6. Transmission electron microscopy: High-Density
chondrocytes (C) and demonstrate typical cartilage nodule fo
matrix (ECM) in high-density culture conditions. Cartilage nod
MSCs, resembling a perichondrium-like structure (P). During
recruited from this outer layer. This transitional zone is s
morphology and large, thick fibrillar ECM production different
structured ECM. Magnification: 6500� ; Inset: immunolabeling
Collagen fibrils are present and gold particles are detectable o
Magnification: 75,000� .
Attempts have been made such as press-coating
MSCs onto the surface of a bio-degradable polymer
or seeding the MSCs onto an amalgam scaffold of
poly-L-lactic acid and alginate (Caterson et al.,
2002, 2001). Recently, electrospun nanofiber scaf-
folds have come into focus of cartilage tissue
engineering with MSCs (Li et al., 2002, 2005a, b;
Yoshimoto et al., 2003).

Cartilage repair in clinical trials

To achieve clinical effectiveness, safety and
practicality of using MSCs for cartilage repair will
be necessary (Xian and Foster, 2006). As treatment
of animals with MSCs has led to ambiguous results,
clinical trials on human patients using MSCs for
articular cartilage repair are scarce (Wakitani,
2007; Wakitani et al., 2002). Wakitani et al.
(2002) performed a study on 24 human patients.
In this study, autologous MSCs were obtained from
the patients’ bone marrow, expanded in monolayer
culture, seeded onto a collagen type I membrane
and transplanted into the cartilage defect. Twelve
patients served as the control group and received
cell-free implants. The 2-year outcome showed
significantly greater hyaline cartilage formation
in the treated compared to the untreated
group. However, there was no way of tracking the
ECM

P

C

Culture. Chondrogenic-induced MSCs differentiate into
rmation with deposition of cartilage-specific extracellular
ules are surrounded by a layer of flattened fibroblast-like
appositional growth of the cartilage nodule, MSCs are

hown in the picture: MSCs with a flattened fibroblast
iate into smaller, rounded chondrocytes and produce fine-
demonstration of collagen type II after 7 days in culture.
nly on collagenous fibrils in the cartilage matrix (arrows).
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implanted MSCs for this long time period, so it
remains unclear whether the newly formed tissue
consisted of the implanted MSCs.
Hurdles in tissue-engineering cartilage
from MSCs

A major hurdle in cartilage tissue engineering
with MSCs is inadequate aging of the tissue-
engineered constructs. During in vitro chondrogenesis,
MSCs not only up-regulate hyaline cartilage-specific
markers such as collagen type II (Figure 6) and
adequate cartilage-specific proteins such as aggre-
can, but also markers typical for hypertrophic
chondrocytes such as collagen type X and alkaline
phosphatase (Johnstone et al., 1998). Collagen
type X makes up 45% of the collagen produced in
hypertrophic chondrocytes and is therefore con-
sidered an important marker of enchondral bone
formation (Shen, 2005; Gibson and Flint, 1985). In
chondrogenic differentiated MSCs, collagen type X
is considerably up-regulated in three-dimensional
culture and detectable around day 7 with RT-PCR
(Johnstone et al., 1998; Barry et al., 2001) and
around day 14 with immunohistochemistry (Nishio-
ka et al., 2005; Yoo et al., 1998). In contrast, in
healthy mature chondrocytes and in engineered
cartilage from mature chondrocytes, collagen type
X is not or is only marginally expressed (Zhang
et al., 2004; Riesle et al., 1998; Tallheden et al.,
2004).

Alkaline phosphatase activity, generally regarded
as a typical marker for osteogenesis can also be
found in large amounts in hypertrophic chondro-
cytes in the calcified zone, in enchondral ossifica-
tion centers and the growth plate (Henson et al.,
1995; Miao and Scutt, 2002). During chondrogenic
induction, MSCs upregulate alkaline phosphatase
production around the 7th day, reaching a peak
around the 14th day (Johnstone et al., 1998). In
contrast to MSCs, in adult mature chondrocytes
from the superficial and the middle zone of the
joint surface, Alkaline phosphatase activity is
minimal (Henson et al., 1995; Miao and Scutt,
2002).
Conclusion

In conclusion, MSCs present themselves as pro-
mising, attractive tools for cartilage repair. Their
properties make them ideal to study the develop-
ment, physiology and disease of cartilage. MSCs can
be obtained rather easily from a great number of
tissues of which the most suitable seem to be bone
marrow, umbilical cord blood and adipose tissue.
One of their great advantages, in contrast to
chondrocytes, is that they have a high proliferative
potential in culture and can be expanded to obtain
enough cells for tissue engineering of cartilage.
Today, tissue engineering and stem cell technolo-
gies have established themselves as approved new
approaches especially in cartilage and OA research.
However, although research with MSCs for cartilage
and connective tissue repair has come a long way,
we are still only at the beginning of this exciting
new journey. Future studies will need to investigate
mechanisms of MSC differentiation and the bio-
chemical signal transduction pathways involved in
maintaining and enhancing chondrogenic differen-
tiation in even more detail. Understanding the
biology of MSCs and their interaction with three-
dimensional scaffolds will enable us to create
more appropriate biomaterials capable of replacing
cartilage defects and eventually make our dream of
forming ‘‘laboratory-made’’ connective tissues in-
cluding cartilage, bone and tendon come true.
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