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1. Introduction 

Lung cancer is the foremost cause of cancer-related mortality across 
the world. It presents a group of histologically as well as molecularly 
heterogeneous diseases and is classified into two broad histological 
types such as small cell lung carcinoma (SCLC) and non-SCLC (NSCLC). 
NSCLCs constitute around 85% of all lung cancer cases and consists of 
three different subtypes namely adenocarcinoma, squamous cell 

carcinoma, and large cell carcinoma [1–9]. On the other hand, SCLC; a 
highly aggressive form which spreads into submucosal lymphatic ves-
sels and regional lymph nodes constitutes around 10–15% of all lung 
cancers [10]. The standard treatment strategy for patients with ad-
vanced NSCLC primarily includes platinum-based therapy followed by 
second-line cytotoxic chemotherapy with around 1-year median sur-
vival [11]. Although cigarette smoking was identified as the single most 
predominant cause of the lung cancer epidemic, various other factors 
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such as exposure to workplace agents, environmental pollution etc. are 
also found to be associated with lung cancer occurrence [12,13]. Recent 
advances in early detection and improvements in adjuvant therapies 
have upstretched hopes for the improved patient survival in the coming 
days [14,15]. However, management of lung cancer patients still pre-
sents a major challenge to the oncologists [16]. This can be primarily 
attributed to factors such as late stage diagnosis, tumor recurrence and 
chemoresistance [16–18]. In order to overthrow these major draw-
backs, there arises an urgent need to develop effective biomarkers for 
early diagnosis as well as prognosis which in turn can facilitate suc-
cessful management of this aggressive cancer type. Notably, TIPE (TNF- 
alpha induced protein 8), a transcription factor nuclear factor-kappa B 
(NF-κB) inducible, oncogenic molecule and cytoplasmic protein of 
21 kDa which was first identified in human head and neck squamous 
cell carcinoma holds prospect in the management of lung cancer 
[19,20]. It is reported to be expressed in different normal tissues in 
human with a much higher expression in lymphoid tissues and placenta 
[21]. A sequence in the amino terminus of the open reading frame of 
this protein shares a notable homology to the death effector domain II 
of Fas-associated death domain-like interleukin-1beta-converting en-
zyme-inhibitory protein (FLIP), which is involved in the regulation of 
cell death [21]. In addition, mTIPE; the crystal structure of TIPE from 
Mus musculus, revealed that it resembles a water dipper. It has a cy-
lindrical domain which is connected to an N-terminal grip-like domain, 
consisting of 20 residues and two long electron densities. Further, it 
possesses a hydrophobic cavity lined with highly conserved hydro-
phobic residues, which provides help in substrate binding inside the 
cavity or hydrophobic cofactors [22]. Notably, TIPE on its own or 
alone, is reported not to exert oncogenic properties. Its interaction with 
Gαi; the inhibitory G-protein, was found to be critical for dopamine D2 
receptor short form (D2S receptor) transformation of non-transformed, 
Gi/Go-coupled D2S receptor transfected mesenchymal Balb/c-3T3 fi-
broblast cells [20]. Further, deletion of TIPE in intestinal epithelial cells 
resulted in enhanced cell death as well as decreased cell proliferation 
implying its vital role in the maintenance of colon homeostasis. TIPE 
also plays an important role in genetic susceptibility as it was reported 
to contribute to Staphylococcus aureus sepsis in A/J mice [20]. 

The expression and function of TIPE have been studied in various 
human cancers. Different studies reveal it to have a strong impact on 
several clinicopathological characteristics of tumor such as TNM stage, 
lymph node involvement, distant metastasis etc. Growing evidence 
suggests that TIPE may serve as a potential therapeutic target against a 
range of neoplasms. Further, it is also reported to possess potential as a 
prognostic marker for the patients with different cancer types [23–50] 
(Table 1). 

In the present study, we evaluated the expression of TIPE in lung 
cancer tissues and its role in different processes involved in the devel-
opment and progression of lung cancer. We found that TIPE plays a 
pivotal role in the survival, proliferation, invasion, and migration of 
lung cancer cells through modulation of Akt/mTOR/STAT-3 signaling. 
Signal transducer and activator of transcription-3 (STAT-3) plays a vital 
role in the pathogenesis of diverse cancers through regulation of dif-
ferent tumorigenic proteins. Further, alterations in Akt and dysregula-
tion of upstream activators and downstream effectors of mammalian 
target of rapamycin (mTOR) are observed in case of malignancy 
[51–58]. As STAT-3 and Akt/mTOR pathways are often reported to be 
deregulated in case of lung cancer, therefore their negative regulation 
seems to form a strong basis for the identification of novel biomarkers 
as well as targeted therapy against this cancer type [4,59]. Further-
more, tobacco components are well known to modulate the growth, 
survival, migration and invasion of lung cancer cells [60]. Therefore, 
we also evaluated the effect of four different tobacco components such 
as nicotine, NNK, NNN, and BaP on NCIH460 human lung cancer cells 
after knockout of TIPE. The results showed TIPE to be involved in the 
effective mediation of tobacco induced proliferation, survival and mi-
gration of human lung cancer cells. 

Table 1 
Involvement of TIPE in different cancers. 
(Table adapted and modified from Bordoloi et al. [19].) 

Status of TIPE; model Targets/outcome References 

Breast cancer 
↑TIPE; tissue samples Tumor progression [23] 
↓TIPE; MCF-7 cells ↑p21 [48] 
↓TIPE; MDA-231, LM2- 

4175 cells 
↑SNX1, ↑NR4A1, ↑AP2A1, ↓IL5, ↓SRC, 
↓MAPT, ↓NEK2, ↓TRAF4, ↓PDCL, 
↓GTF2F2, ↓GRAP2, ↓ABL1, ↓AKAP2, 
↓GAP43, ↓PIK3CA, ↓EGFR 

[45] 

TIPE, HS578T, MCF-7 cells – [50] 
↓TIPE, MDA-MB-435 cells, 

athymic mice 
↓VEGFR-2, ↓MMP-1, ↓MMP-9` [24] 

↑TIPE, MDAMB-231 cells – [26] 

Cervical cancer 
↑TIPE, tissue samples Platinum resistance [25] 

Colon cancer 
↑TIPE, CACO2, HCT116 ↑Cyclin D1, ↑phospho-Rb [27] 
↓TIPE, HCT116 ↑p21 [48] 
TIPE; HCT116 – [49] 

Endometrial cancer 
↑TIPE, tumor specimens ↑Ki-67, ↑MMP-9 [28] 

Esophageal squamous cell carcinoma 
↑TIPE, TE-1, TE-8, TE-15 

cells 
– [30] 

↓TIPE, Eca109 cells ↑Apoptosis [29] 

Gastric cancer 
↓TIPE; BGC823 cells Modulation of caspase-3, -8, -9 [32] 
↓TIPE; athymic mice ↓tumor growth 
↑TIPE; tissue samples ↑metastasis, ↓prognosis [33] 
↑TIPE; MKN-28, SGC- 

7901, MGC-803 cells 
– [31] 

↑TIPE; tissue samples – [34] 

Hepatocellular carcinoma 
↑TIPE; Bel7402, SK-Hep-1, 

HepG2, SMMC7721, 
Huh7 cells 

↓YAP phosphorylation [35] 

Lung cancer 
↑TIPE; H460, H1299 cells ↓Phosphorylated LATS1 [37] 
↓TIPE; A549 cells ↑p21 [48] 
TIPE; H1299 cells – [49] 
↑TIPE; tissue samples – [38] 
↑TIPE; tissue samples – [39] 

Melanoma 
↓TIPE; MDA-MB435 cells ↑NR4A1, ↑AP2A1, ↓TOP2A, ↓EGFR, ↓ 

PDCL, ↓IL5, ↓GRAP2, ↓GTF2F2, 
↓AKAP2, ↓GAP43, ↓ABL1 

[45] 

Non-Hodgkin lymphoma 
TIPE; 514 NHL patients, 

557 cancer-free 
controls 

Polymorphism rs1045241C > T [36] 

Osteosarcoma 
↑TIPE; 143b, LM7, HOS, 

SaOS-2, U2OS, MG-63 
cells 

Modulation of miR-138 [43] 

↑TIPE; KHOS, 143b, LM7, 
U2OS, MG-63 cells 

Modulation of miR-99a [42] 

↓TIPE; U2OS cells ↑p21 [48] 

Ovarian cancer 
↑TIPE; tissue samples ↓Survival [40] 
↑TIPE; tissue samples Platinum resistance [41] 

Pancreatic cancer 
↑TIPE; tissue samples` ↑EGFR [44] 

Prostate cancer 
↓TIPE; PC-3 cells ↑IGFBP3, ↑NR4A1, ↑AP2A1, ↓IL5, ↓ 

MAPT, ↓TOP2A, ↓TRAF4, ↓EGFR, ↓ 
PDCL, ↓GTF2F2, ↓GRAP2, ↓ABL1, 
↓GAP43, ↓AKAP2, ↓GRIP1 

[45] 

↑TIPE; LNCaP, PC-3, DU- 
145 cells 

↑integrin, ↑MMP, ↑VEGFR-2 [46] 

(continued on next page) 
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2. Materials and methods 

2.1. Tissue microarray 

Immunohistochemical analysis was done to analyze the expression 
of TIPE in different stages, grades and pathological conditions of lung 
cancer tissues compared to normal lung tissues. For this analysis, tissue 
microarray (TMA) which contained paraffin-embedded tissues (US 
Biomax, Inc., Cat. No. LC1503) from different individuals were used. 
The slide comprised of a total of 75 tissues (duplicated cores from the 
same patient in all cases) which include 29 adenocarcinoma, 3 ade-
nosquamous carcinoma, 29 squamous cell carcinoma, 2 bronch-
ioalveolar carcinoma, 4 small cell undifferentiated carcinoma, 2 large 
cell carcinoma, 1 neuroendocrine carcinoma and 5 normal lung tissues 
(Suppl. Table 1). 

2.2. Immunohistochemistry 

Immunohistochemical analysis was done using Histostain-Plus IHC 
Kit, HRP, broad spectrum (Invitrogen, Cat. No. 859043; CA, USA), 
Metal enhanced DAB Substrate Kit (Cat No. 34065; Invitrogen, CA, 
USA) and anti-TIPE primary antibody (Cat. No. ab64988; abcam®, 
Cambridge, USA; 1:50 dilution) following the manufacturer's protocol. 
The immunostained slide was analyzed under Olympus light micro-
scope. Brown color stained tissues are taken as positive for the presence 
of antigen of interest and scored as per the staining intensity (scaled 
from 1 to 3) and number of positive cells (scaled from 0 to 4+) [61,62]. 
The scoring was done twice, independently (blinded fashion) and then 
average was taken into consideration. 

2.3. The Cancer Genome Atlas (TCGA) dataset analysis 

Open data portal of the TCGA and cbioportal were used for pro-
curing information regarding the genetic alteration of TIPE in the 
samples of non-small cell lung cancer (NSCLC) patients (http://www. 
cbioportal.org). Evaluation of NSCLC patients survival linked with al-
teration in TIPE was done with the help of Kaplan-Meier survival curve 
[56,63–65]. 

2.4. Cell culture 

NCIH460 lung cancer cells were obtained from National Centre for Cell 
Science (NCCS), Pune, India. The cells were maintained in Dulbecco's 
Modified Eagle Medium (DMEM; Gibco™; Life Technologies, NY, USA), 
supplemented with 10% fetal bovine serum (FBS; Gibco®, NY, USA) and 
1× Pen-Strep (Invitrogen, CA, USA) at 37 °C in a CO2 incubator. 

2.5. CRISPR/Cas9 mediated gene knockout 

For performing gene knockout studies, CRISPR/Cas9 mediated gene 
editing tool was used. NCIH460 cells were seeded in a 24 well plate at a 
density of 25,000 cells/well and allowed to attain confluency by 
70–80%. The cells were then transfected with CRISPR/Cas9 All-in-One 
Lentivector sets (Human) expressing human Cas9 and scrambled sgRNA 
CRISPR/Cas9 All-in-One Lentivector (Cat. No. K010; Applied Biological 
Materials, Richmond, BC, Canada) and TNFAIP8 sgRNA CRISPR/Cas9 

All-in-One Lentivector set (Human) (Cat. No K2414505; Applied 
Biological Materials, Richmond, BC, Canada) with the help of 
Lentifectin™ transfection reagent (Cat. No. G074, Applied Biological 
Materials, Richmond, BC, Canada) in incomplete opti-MEM media 
(Suppl. Table 2). Then, 10% FBS (Gibco®, NY, USA) was added to the 
transfected cells after 5–8 h and post 24 h incubation, fresh DMEM 
medium (with 10% FBS and 1× Penstrep) was added to the cells after 
removing the previous plasmid containing media. Upon recovery for 
24 h, positive selection of cells was carried out by adding puromycin 
(Cat. No. P8833, Sigma-Aldrich, Missouri, USA) at the concentration of 
2.5 μg/ml to the cells. As the CRISPR/Cas9 plasmids have the pur-
omycin resistance gene, therefore the transfected cells should only ex-
hibit puromycin resistance. Subsequently, the puromycin resistant cells 
were allowed to grow followed by single cell selection which was car-
ried out by plating single cell per 100 μl in 96 well plates. Finally, se-
lected single cell clones were confirmed for TIPE knockout with the 
help of Western blot analysis. The clones exhibiting complete inhibition 
of the expression of TIPE protein was regarded as the one with suc-
cessful TIPE knockout and was grown further for post-knockout studies. 

2.6. Cell proliferation assay 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) 
assay was performed to evaluate the effect of TIPE knockout on the pro-
liferation of lung cancer cells. Further, effect on the proliferation of to-
bacco components' such as nicotine-derived nitrosamine ketone (NNK) 
(Cat No. 78013; Sigma-Aldrich, Missouri, USA), N-nitrosonornicotine 
(NNN) (Cat No. 75285; Sigma-Aldrich, Missouri, USA), nicotine (Cat No. 
N3876; Sigma-Aldrich, Missouri, USA) and Benzo(a)pyrene (BaP) (Cat No. 
B1760; Sigma-Aldrich, Missouri, USA) treated TIPE knockout cells was 
also determined using this assay. Firstly, 2 × 103 cells/well of scrambled 
control and TIPE knockout cells were seeded in 96 well plates and in-
cubated for 24 h in a CO2 incubator. After 0 and 72 h, MTT (Cat. No. 
M2128, Sigma-Aldrich, Missouri, USA) was added to the wells. After in-
cubation for 2 h, 100 μl of DMSO (Cat No. 1.16743.0521, Merck, 
Darmstadt, Germany) was added upon removing the culture medium 
followed by 1 h incubation at room temperature and then absorbance was 
measured at 570 nm with a microplate reader (TECAN Infinite 200 PRO 
multimode reader, Switzerland). In case of evaluation of the effect on the 
proliferation of tobacco treated TIPE knockout cells, after 24 h incubation 
of the seeded cells, NNK (0.05 μM), NNN (0.05 μM), nicotine (1 μM) and 
BaP (0.25 μg/ml) were added to the scrambled control as well as TIPE 
knockout cells. MTT was added at 0 and 24 h and the same procedure was 
followed henceforth. % proliferation was determined by normalizing with 
the 0 h absorbance value and considering the absorbance of scrambled 
control cells as 100%. For evaluating the proliferation in NNK, NNN, ni-
cotine and BaP treated TIPE knockout cells, scrambled control cells treated 
with the respective components was considered as 100%. 

2.7. Colony formation assay 

The colony forming ability of TIPE knockout lung cancer cells was 
evaluated using this assay. In addition, this assay was also used to 
evaluate the colony formation ability of tobacco components-treated 
TIPE knockout cells. Briefly, Scrambled control and TIPE knockout cells 
were seeded at a low density in 6 well plates and allowed to grow for 
2 weeks with frequent replacement of media. In case of evaluation of 
the clonogenic potential of tobacco components-treated TIPE knockout 
cells, NNK (0.05 μM), NNN (0.05 μM), nicotine (1 μM) and BaP 
(0.25 μg/ml) were added to the scrambled control and TIPE knockout 
cells after 24 h incubation of the seeded cells and allowed to grow for a 
week. The colonies formed in both the cases were then fixed with 70% 
ethanol followed by crystal violet (Cat No: 548-6209; SRL Pvt. Ltd., 
India) staining. The images of the colonies formed were captured and 
the survival fraction was determined. 

Table 1 (continued) 

Status of TIPE; model Targets/outcome References 

Renal cancer 
↑TIPE; RCC-RS cells – [26] 

Thyroid cancer 
↑TIPE; tissue samples – [47] 
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Fig. 1. Immunohistochemical analysis of TIPE expression in lung cancer tissues. A. Representative images of TIPE expression in lung cancer tissues (left panel). 
Graphical representation of TIPE expression in lung cancer tissues compared to non-malignant lung tissues (right panel); B. TIPE expression in NSCLC and SCLC; C. 
TIPE expression in small cell carcinoma, adenosquamous carcinoma, squamous cell carcinoma, adenocarcinoma, bronchioalveolar carcinoma and large cell carci-
noma; D. TIPE expression in different stages of lung cancer i.e. stage I, II and III (left panel). TIPE expression in different grades of lung tumor i.e. grade 1, 2, and 3 
(right panel); data are presented as mean  ±  SE, p-value < 0.05, < 0.005, < 0.001 are denoted as *, ** and *** respectively. 
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2.8. Migration and Invasion assays 

Migration assay was performed to assess the effect of TIPE knockout 
on the migration of human lung cancer cells. Further, the effect of to-
bacco components on the migration potential of TIPE knockout cells 
was also determined with this assay. Initially, 6 × 105 cells/well of 
scrambled control and TIPE knockout cells were seeded and waited 
until the formation of a monolayer. Subsequently, serum free DMEM 
medium was added to the cells, incubated for 6–8 h and then a wound 
was created in the culture well. The migration of the cells was de-
termined by monitoring the wound area at different time intervals using 
an inverted microscope (Nikon T1-SM, Japan) and images were cap-
tured and analyzed using ImageJ software. For analyzing the effect of 
treatment with tobacco components, after serum starvation followed by 
scratching of wound, NNK (0.05 μM), NNN (0.05 μM), nicotine (1 μM), 
and BaP (0.25 μg/ml) were added to the cells and the same procedure 
was adopted thereafter. Further, the effect on the invasion of NCIH460 
lung cancer cells upon TIPE knockout was evaluated using a Boyden 
chamber assay, for which serum starved (for 18 h) cells were 
seeded (5 × 104 cells/500 µl serum free DMEM medium) in the upper 
chamber of the transwell insert pre-coated with matrigel (24-well, 8 
mm; Cat No. 354480; Corning, New york, USA). Subsequently, DMEM 
medium with 10% FBS was added to the lower chamber followed by 
incubation in a CO2 regulated incubator for 24 h. The cells on the upper 
surface of the membrane were then scraped off using cotton swabs and 
those at the bottom of the insert were fixed using 70% ethanol. They 
were then stained using 0.01 % (w/v) crystal violet, eluted and finally 
absorbance was measured at 590 nm uisng a plate reader (TECAN 
Infinite 200 PRO multimode reader, Switzerland) and % invaded cells 
were determined. 

2.9. Western blot 

Western blot analysis was performed to determine the different targets 
of TIPE and also to evaluate effect on different proteins in tobacco com-
ponents (NNK; 0.05 μM, NNN; 0.05 μM, nicotine; 1 μM and BaP; 0.25 μg/ 
ml) treated TIPE knockout cells. Briefly, cells were lysed using whole cell 
lysis buffer (20 mM HEPES, 2 mM EDTA, 250 mM NaCl, 0.1% (v/v) 
Triton-X100, 2 μg/ml leupeptin hemisulfate, 2 μg/ml aprotinin, 1 mM 
PMSF, 1 mM DTT) and the protein concentration was determined using 
Bradford reagent (Cat. No. 500-0205; Bio-Rad, California, USA). 50 μg of 
proteins were mixed with 5× Laemmli Buffer (250 mM Tris HCl, 10% 
SDS, 30% Glycerol, 5% β-mercaptoethanol, 0.02% bromophenol blue) and 
then resolved in a SDS-Polyacrylamide gel (12% or 8%). The proteins were 
then transferred to nitrocellulose membrane (Bio-Rad, California, USA), 
blocked and then probed with primary antibodies followed by horseradish 
peroxidase (HRP)-conjugated secondary antibodies (Suppl. Table 3). 
Clarity Western ECL Substrate (Cat. No. 1705061; Bio-Rad, California, 
USA) in a ChemiDoc™ XRS System (Bio-Rad, California, USA) was used for 
visualizing the bands. The house keeping gene α-tubulin was used as the 
loading control. 

2.10. Statistical analysis 

Student's t-test was done for the statistical analysis. The data are 
represented as mean  ±  SE. p-Value  < 0.05 indicates statistically 
significant; p-value < 0.05, < 0.005, < 0.001 are denoted as *, ** and 
*** respectively. 

3. Results 

In this study, firstly we determined the expression of TIPE in lung 
cancer tissues of different histological types, pathological conditions, 
stages and grades of lung tumor. In addition, this study unravels the 
role of TIPE in the regulation of different process in lung cancer cells 
along with underlined mechanism. It is well established that tobacco is 

the major risk factor of lung cancer. Therefore, in this study we also 
deciphered the role of this important protein in the modulation of to-
bacco mediated proliferation, survival and migration of lung cancer 
cells and the mechanism involved. 

3.1. Expression analysis of TIPE in human lung cancer tissues 

In the present study, we first analyzed the expression of the TIPE 
protein in lung cancer tissues. Our analysis revealed TIPE to be sig-
nificantly upregulated in lung cancer tissues compared to non-malig-
nant lung tissues (Fig. 1A). Notably, TIPE exerted around 2-fold in-
crease in its expression in the malignant lung tissues when compared to 
the normal lung tissues. In addition, the expression of TIPE was ana-
lyzed in both SCLC and NSCLC, two major histological types of lung 
cancer and it was found to be upregulated in both SCLC and NSCLC 
tissues compared to the normal tissues. Interestingly, TIPE exerted more 
than 2-fold increase in its expression in NSCLC type whereas in case of 
SCLC, the increase was not found to be significant (Fig. 1B). Besides, 
upon analyzing the expression of TIPE with respect to disease pa-
thology, it was found to be significantly upregulated in squamous cell 
carcinoma and adenocarcinoma tissues compared to the normal tissues. 
Furthermore, upregulation of TIPE was also observed in other disease 
pathologies such as adenosquamous cell carcinoma, small cell carci-
noma, large cell carcinoma and bronchioalveolar carcinoma compared 
to the normal tissues (Fig. 1C). In addition, analysis of the stage as well 
as grade wise difference in the expression of TIPE, it was observed that 
TIPE exerted significant upregulation in different stages of lung cancer 
such as stage I, II and IIIa and different grades of lung tumor which 
include grade 1, 2 and 3 in comparison with normal tissues (Fig. 1D). 

3.2. Association between genetic alteration of TIPE and overall survival of 
NSCLC patients 

The genetic alterations in TIPE in the tissues of different NSCLC 
patients were studied. 3% genetic alteration was found to be present in 
TIPE as analyzed in a total of 1144 NSCLC cases in TCGA datasets. 
Different alterations present in TIPE include mutations such as missense 
mutation, truncating mutation, amplification and deep deletion 
(Fig. 2A). Upon consideration of the univariate analysis for NSCLC 
patients' survival data from the TCGA portal, decreased overall survival 
(OS) of NSCLC patients was observed with the increased copiousness of 
alterations in TIPE. The median survival of a total 11 cases with TIPE 
alteration was reported to be 26.3 months. On the other hand, in 943 
cases without TIPE alteration, median survival was reported to be 
43.91 months (Fig. 2B). However, the number of TIPE mutant patients 
is low and the survival differences are not statistically significant, hence 
analysis with greater number of NSCLC patients would be more sub-
stantial. 

3.3. Effect of TIPE knockout on the proliferation of lung cancer cells 

The effect of knockout of TIPE on the proliferation of human lung 
cancer cells was determined with the help of MTT assay. Our results 
showed that knockout of TIPE caused significantly decreased pro-
liferation of NCIH460 cells. Further, we determined the effect of NNK, 
NNN, nicotine and BaP on the proliferation of NCIH460 human lung 
cancer cells after knockout of TIPE. After treating with all the four to-
bacco components separately, a significant decrease in the proliferation 
of TIPE knockout lung cancer cells was observed in comparison with 
scrambled control cells treated with the respective components. The 
highest inhibition in the proliferation was observed in nicotine treated 
TIPE knockout cells followed by BaP, NNK and NNN treated TIPE 
knockout cells respectively. Thus, these results suggest that TIPE is 
involved in the positive regulation of the proliferation of lung cancer 
cells. In addition, it is also found to modulate tobacco induced pro-
liferation of lung cancer cells effectively (Fig. 3). 
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3.4. Effect of TIPE knockout on the clonogenic potential of lung cancer cells 

Colony formation assay was performed to measure the survival 
fraction of human lung cancer cells after knockout of TIPE. The results 
of our findings showed that knockout of TIPE led to significantly re-
duced clonogenic potential of NCIH460 cells compared to scrambled 
control cells implying the involvement of TIPE in enhancing the 

survival of lung cancer cells. In addition, similar to the proliferation 
assay, in this assay as well, decreased survival fraction of TIPE knockout 
cells treated with different tobacco constituents such as NNK, NNN, 
nicotine and BaP were observed than the scrambled control cells treated 
with the respective components. The highest reduction in survival 
fraction was observed in case of nicotine treated TIPE knockout cells 
followed by NNK, NNN and Bap treated TIPE knockout lung cancer cells 

Fig. 2. Genetic alterations in TIPE in NSCLC tissue samples and its relationship with patients' overall survival (OS) in case of NSCLC. A. Genetic alterations such as 
mutation, amplification and deep deletion in TIPE of NSCLC patients as per data procured from TCGA portal. B. Association between genetic alterations in TIPE with 
OS of patients with NSCLC. 
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(Fig. 4). Thus, these results clearly imply that TIPE is responsible for the 
positive regulation of the lung cancer cell survival. Further, it is also 
strongly associated with the regulation of tobacco induced survival of 
lung cancer cells. 

3.5. Effect of TIPE knockout on the migration of lung cancer cells 

In order to decipher whether TIPE has any role in the migration of 
lung cancer cells, migration assay was carried out. The results showed 
that loss of TIPE inhibited the migration potential of lung cancer cells 
effectively. In scrambled control cells, complete healing of wound was 
observed at 24 h. However, in case of TIPE knockout lung cancer cells, 
92% wound area was found to remain. In case of NNK, NNN, nicotine 
and BaP treated scrambled control cells, complete healing of the wound 
was observed at 12 h. Increasing lines of evidence suggest that tobacco 
and its components have significant involvement in cancer cell migra-
tion [66–68]. Therefore, in tobacco treated cells, complete healing of 
the wound was observed 12 h prior to the untreated scrambled control 
cells. However, in case tobacco components treated TIPE knockout 
cells, significantly more wound area was observed to remain at 12 h. 

Notably, in all the four tobacco components treated TIPE knockout 
cells, more than 60% wound area was found to remain (Fig. 5A–C). 
Therefore, TIPE can be considered to have important role in the reg-
ulation of the migration potential of lung cancer cells. Further, it is also 
involved in the regulation of tobacco mediated migration of NCIH460 
cells. 

3.6. Effect of TIPE knockout on the invasion of lung cancer cells 

Boyden chamber assay was carried out to determine whether 
knockout of TIPE has any effect on the invasive potential of human lung 
cancer cells. We observed that the % invaded cells to the lower part of 
the transwell insert were significantly less in TIPE knockout NCIH460 
cells compared to scrambled control cells (Fig. 5D). Thus, TIPE is in-
volved in the regulation of invasive potential of lung cancer cells as loss 
of TIPE caused decreased invasion of NCIH460 lung cancer cells. 

3.7. Effect of TIPE knockout on signaling molecules/pathways in lung 
cancer cells 

The findings obtained thus far in this study indicate TIPE to have 
vital role not only in the proliferation but also in the survival, migration 
and invasion of human lung cancer cells. Notably, there are various 
signaling molecules/pathways associated with diverse cancer hallmarks 
[69]. Thus, modulation of these pathways inflects cancer cell growth, 
proliferation, survival, migration, invasion etc. [69,70]. Therefore, it is 
critical to know the involvement of these signaling molecules/pathways 
and hence expression analysis of different proteins with the help of 
Western blot was performed. Notably, loss of TIPE downregulated the 
expression of apoptosis regulatory proteins such as survivin, XIAP, Bcl-2 
and upregulated the expression of caspase 9. Further, loss of TIPE re-
sulted in the downregulation of Cox-2, c-Myc and Cyclin D1 effectively. 
Notably, in TIPE knockout cells, downregulation in the expression of 
LC-3B was also observed. In addition, knockout of TIPE resulted in the 
downregulation of CXCR-4, MMP-9 and VEGF-A which are involved in 
cancer cell invasion, migration, metastasis and angiogenesis [71,72]. 
Importantly, loss of TIPE expression led to the upregulation of two 
tumor suppressors namely p53 and p21 effectively (Fig. 6A). Emerging 
evidence suggests that PI3K/Akt/mTOR pathway plays a vital role in 
oncogenesis and is often found to be activated in lung cancer [73]. 
Aberrations in different messenger molecules of this pathway lead to 
proliferation, inhibition of apoptosis, angiogenesis and metastasis of 
tumor cells [74,75]. Therefore, we determined whether TIPE mediated 
lung cancer has any involvement with this signaling axis. The results 
suggested that knockout of TIPE affected the important components of 
Akt/mTOR pathway. Loss of TIPE downregulated the expression of p- 
AktS473, p-mTORS2448, and p-S6S235/236. Further, an upregulation in the 
expression of PTEN was observed. The tumor suppressor phosphatase 
and tensin homolog deleted on chromosome 10 (PTEN) is a phospha-
tase which antagonizes phosphoinositol-3-kinase/Akt pathway re-
sulting in reduced cell proliferation and survival [62,76–81]. Thus, 
TIPE plays role in the positive regulation of lung cancer through acti-
vation of Akt/mTOR signaling pathway. Further, reports suggest that 
interaction between STAT-3 and Akt signaling pathway plays an im-
portant role in tumor development and progression in various cancers 
[77–91]. Constitutive activation of PI3K/Akt leads to the aberrant ac-
tivity of STAT-3 [5,92–98]. Our results showed that knockout of TIPE 
downregulated the expression of p-STAT-3S727 notably (Fig. 6B). Alto-
gether, loss of TIPE can be suggested to reduce the proliferation, sur-
vival, invasion and migration of lung cancer cells through inactivation 
of Akt/mTOR/STAT-3 signaling. Noteworthy, this is the first report 
which indicates the involvement of Akt/mTOR/STAT-3 signaling axis 
in TIPE mediated lung tumorigenesis. 

In this study, we further determined the mechanism of action of 
TIPE in NNK, NNN, nicotine and BaP treated TIPE knockout cells. NNK 
treated TIPE knockout cells showed downregulation in the expression 

Fig. 3. Role of TIPE on the regulation of the lung cancer cells' proliferation. A. 
TIPE expression after CRISPR/Cas9 mediated knockout in NCIH460 lung cancer 
cells as shown by Western blot analysis; B. effect of TIPE knockout on NCIH460 
lung cancer cells' proliferation shown using MTT assay; C. effect of TIPE 
knockout on nicotine, NNK, NNN and BaP mediated proliferation of NCIH460 
lung cancer cells observed from MTT assay compared to scrambled control 
treated with the respective components. Data are presented as mean  ±  SE, p- 
value < 0.05, < 0.005, < 0.001 are denoted as *, ** and *** respectively. 
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Fig. 4. Role of TIPE on the regulation of the lung cancer cells' survival. A. Representative images of clonogenic potential of TIPE knockout NCIH460 lung cancer cells 
compared to scrambled control cells shown using colony formation assay (left panel). Graphical representation of the effect of TIPE knockout on the survival fraction 
of NCIH460 lung cancer cells observed from colony formation assay (right panel); B. representative images showing the colony formation ability of TIPE knockout 
NCIH460 lung cancer cells treated with nicotine, NNK, NNN and BaP in comparison with scrambled control cells treated with the respective components; C. graphical 
representation of the survival fraction of tobacco components treated TIPE knockout lung cancer cells in comparison with scrambled control cells treated with the 
same. Data are presented as mean  ±  SE, p-value < 0.05, < 0.005, < 0.001 are denoted as *, ** and *** respectively. 
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Fig. 5. Role of TIPE on the regulation of the lung cancer cells' migration and invasion. A. Effect of TIPE knockout on NCIH460 cells' migration determined using 
wound healing assay. Images were captured at 0 and 24 h (10× magnification) (left panel). Graphical representation of the percent wound area remaining in TIPE 
knockout lung cancer cells in comparison with scrambled control cells (right panel); B. representative images of the effect of TIPE knockout on the migration of 
nicotine, NNK, NNN and BaP treated TIPE knockout cells along with scrambled control cells treated with the respective components; C. graphical representation of 
percent wound area remaining in different tobacco components treated TIPE knockout cells in comparison with scrambled control cells treated with the same; D. 
effect of TIPE knockout on the invasion potential of NCIH460 lung cancer cells shown using Boyden chamber assay (right panel). Data are presented as mean  ±  SE, 
p-value < 0.05, < 0.005, < 0.001 are denoted as *, ** and *** respectively. 
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of proteins involved in survival and angiogenesis such as survivin and 
VEGF-A compared to scrambled control cells treated with NNK. 
Further, upregulation in the expression of p53 and p21 tumor sup-
pressor proteins were also observed. In addition, NNK treated TIPE 
knockout cells showed downregulation of p-AktS473. Thus, these results 

suggest that TIPE is involved in the positive regulation of tobacco 
mediated proliferation, survival and migration of lung cancer cells 
through Akt signaling axis. Akt is involved in the regulation of different 
cellular processes which include glucose metabolism, cell cycle pro-
gression, apoptosis etc. In 90% of the NSCLC cells, constitutive 

Fig. 6. Role of TIPE in the regulation of different signaling molecules/pathways in lung cancer cells. A. Modulation of the expression of different proteins involved in 
diverse cellular processes in cancer cells such as proliferation, survival, regulation of apoptosis and cell cycle progression, autophagy, invasion, migration, angio-
genesis in TIPE knockout NCIH460 lung cancer cells (left panel) B. modulation of Akt/mTOR/STAT-3 signaling proteins in TIPE knockout NCIH460 lung cancer cells. 
α-tubulin served as the loading control; C. densitometric analysis of proliferation, survival, apoptosis, cell cycle progression, autophagy, invasion, migration and 
angiogenesis regulatory proteins in TIPE knockout lung cancer cells; D. densitometric analysis of Akt/mTOR/STAT-3 signaling proteins in TIPE knockout lung cancer 
cells. Densitometry was done using Image Lab software. α-Tubulin served as the loading control. Data are presented as mean  ±  SE, p-value < 0.05, < 0.005, < 
0.001 are denoted as *, ** and *** respectively. 
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activation of PI3K/Akt pathway has been noticed which promoted 
cellular survival as well as resistance to γ-irradiation and che-
motherapy. In addition, nicotine and NNK induced activation of Akt is 
also reported to cause tobacco-related carcinogenesis through regula-
tion of growth and apoptosis in tumor cells [99]. Further, down-
regulation in p-STAT-3S727 was also observed in NNK treated TIPE 
knockout cells compared to NNK treated scrambled control. It is well 
established that constitutive activation of STAT-3 occurs in different 
tumor cells. STAT-3 activation is also considered as an early event in 
oral carcinogenesis induced by tobacco chewing [100]. In addition, 
nicotine treated TIPE knockout cells also showed downregulation in the 
expression of survivin and VEGF-A together with upregulation of p21. 

Additionally, NNN and BaP treated TIPE knockout cells were found to 
exhibit downregulation in the expression of proteins involved in the 
growth, invasion, migration and angiogenesis such as VEGF-A, p53 and 
p21. Further, NNN, nicotine and BaP treated TIPE knockout cells 
showed upregulation of the tumor suppressors such as p53 and p21. 
Further, in all the three cases, downregulation in p-AktS473, p-S6S235/ 

236, and p-STAT-3S727 was observed compared to respective treated 
scrambled control cells (Figs. 7 & 8). Taken together, TIPE can be 
suggested to be involved in the positive regulation of tobacco induced 
lung carcinogenesis via Akt/STAT-3 signaling axis and its downstream 
targets. 

Fig. 7. Role of TIPE in the regulation of dif-
ferent signaling molecules/pathways in nicotine 
and NNK mediated lung cancer. Effect on the 
expression of various proteins involved in the 
regulation of different cancer hallmarks and 
signaling pathways in A. nicotine and B. NNK 
treated TIPE knockout lung cancer cells. 
Densitometric analysis of different cancer hall-
mark regulatory proteins and signaling mole-
cules in C. nicotine and D. NNK treated TIPE 
knockout lung cancer cells compared with ni-
cotine and NNK treated scrambled control cells. 
Densitometry was done using Image Lab soft-
ware. α-tubulin served as the loading control. 
Data are presented as mean  ±  SE, p-value < 
0.05, < 0.005, < 0.001 are denoted as *, ** 
and *** respectively. 
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4. Discussion 

Despite the advances made in the field of therapy against lung 
cancer, its prognosis still remains very poor [10,15–18,101]. The poor 
survival rate of lung cancer is not only due to the ineffectiveness of 
existing lung cancer therapies, but also due to lack of effective bio-
markers for its early diagnosis as well as prognosis [102]. Hence, for the 
effective management of this aggressive cancer type, there is an urge to 
develop novel biomarkers. Notably, TIPE2, a protein belonging to TIPE 
family of proteins, was found to have profound role in the pathogenesis 

of lung cancer and also in tobacco promoted lung cancer as shown in 
our recent study [60]. Increasing lines of evidence suggest TIPE also to 
play important role in the prognosis of different cancers and thus pos-
sess enormous prospect as a clinical biomarker in lung cancer. 

Our findings revealed TIPE to exhibit higher expression in lung 
cancer tissues than the non-malignant lung tissues indicating it as a 
positive regulator of lung carcinogenesis. It was found to be upregu-
lated in both SCLC and NSCLC tissues, whereas upregulation in NSCLC 
tissues was found to be more pronounced. Additionally, it showed up-
regulation in different lung cancer pathologies such as squamous cell 

Fig. 8. Role of TIPE in the regulation of dif-
ferent signaling molecules/pathways in NNN 
and BaP mediated lung cancer. Effect on the 
expression of various proteins involved in the 
regulation of different cancer hallmarks and 
signaling pathways in A. NNN and B. BaP 
treated TIPE knockout lung cancer cells. 
Densitometric analysis of different cancer hall-
mark regulatory proteins and signaling mole-
cules in C. NNN and D. BaP treated TIPE 
knockout lung cancer cells compared with NNN 
and BaP treated scrambled control cells. 
Densitometry was done using Image Lab soft-
ware. α-Tubulin served as the loading control. 
Data are presented as mean  ±  SE, p-value < 
0.05, < 0.005, < 0.001 are denoted as *, ** 
and *** respectively. 
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carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell 
carcinoma, large cell carcinoma and bronchioalveolar carcinoma tis-
sues compared to the normal tissues. Notably, TIPE showed upregula-
tion in different stages (stage I, II and IIIa) and grades (grade 1, 2 and 3) 
of lung tumor compared to the normal lung tissues. Interestingly, in line 
with our study, TIPE was reported to be overexpressed in different 
cancers including breast cancer, cervical cancer, colon cancer, en-
dometrial cancer and ESCC [23,25,27–29]. Further, its expression was 
reported to be strongly associated with advanced pathological T stage, 
p-TNM stage, lymph node metastasis and poor survival in NSCLC pa-
tients [103]. A study carried out by Hadisaputri and group also reported 
TIPE to possess a strong correlation with different clinicopathological 
features including TNM stage, lymph node involvement, tumor depth, 
lymphatic and venous invasion, and distant metastasis in patients with 
ESCC [30]. In case of gastric, colon and lung cancers as well, TIPE 
expression was found to have strong association with TNM stage and 
lymph node metastasis [27,31,32,39]. Additionally, similar to our 
findings, overexpression of TIPE was found to be associated with higher 
histologic grade and lymph node metastasis in EC [28]. In ovarian 
cancer, TIPE overexpression was linked with large residual tumor size 
as well as high histologic grade [40]. Further, Zhang and group showed 
both nuclear and cytoplasmic overexpression of TIPE to be linked with 
high grade prostatic adenocarcinomas [46]. Altogether, these results 
indicate TIPE to be involved in the positive regulation of lung cancer. 

The role of TIPE in the regulation of different cancer hallmarks was 
studied after CRISPR/Cas9 knockout of TIPE in NCIH460 cells. The 
evaluation of inadvertent CRISPR-Cas9-mediated off-target analysis 
would have increased the rigor of the study but could not be done. 
However, our results showed that knockout of TIPE caused significantly 
decreased proliferation (77% inhibition) of lung cancer cells. Along 
with proliferation, enhanced survival also presents a major feature of 
cancer cells [104]. Knockout of TIPE also reduced the survival fraction 
of lung cancer cells compared to scrambled control cells. Notably, 
metastasis which initiates with the tumor cells invading the stroma and 
migrating to the blood stream, presents one of the most predominant 
cause for the extremely low survival rate of lung cancer patients 
[105,106]. Therefore, we evaluated the effect of TIPE on the migration 
and invasion of lung cancer cells and observed that loss of TIPE led to 
the significantly inhibited migration as well as invasion of lung cancer 
cells. Similar to our findings, Miao and group also showed knockdown 
of TIPE to result in reduced proliferation and clonogenic potential of 
colon cancer cells [27]. TIPE overexpression resulted in increased 
proliferation and expression of Cyclin and connective tissue growth 
factor proteins in liver cancer cells and its depletion led to decreased 
proliferation and motility in esophageal and gastric cancer cells 
[29,30,32,35]. Further, in line with our findings, downregulation of 
TIPE inhibited both migration and invasion of gastric cancer cells [31]. 
It promoted lung cancer cells' invasion via Hippo pathway [37]. Ad-
ditionally, its expression showed strong correlation with increased in-
vasion as well as frequency of pulmonary colonization in breast cancer 
cells [24]. 

It is well evinced that various signaling molecules or pathways are 
involved in the regulation of different hallmarks of cancer [69]. Hence, 
to determine the mechanism of action of TIPE mediated lung cancer, we 
analyzed the expression of different target proteins through Western 
blot analysis. The results showed that loss of TIPE downregulated the 
expressions of survivin, XIAP, Bcl-2 and upregulated the expression of 
Caspase 9. Survivin, XIAP and Bcl-2 plays important role in inhibiting 
apoptosis [107–109]. Further, we observed that TIPE knockout led to 
the downregulation of Cox-2, Cyclin D1, and c-Myc in TIPE knockout 
cells. Cox-2, Cyclin D1 and c-Myc are involved in regulating cellular 
growth and metabolism [107,110,111]. Moreover, downregulation of 
LC-3B, the marker of autophagosomes' formation was also observed in 
TIPE knockout cells [112,113]. A recent report showed knockdown of 
TIPE to downregulate the expression of autophagy markers such as 
LC3β I/II, 4EBP1, Beclin-1, and ATG3 in hepatocellular carcinoma 

(HCC) cells implying the novel role of TIPE in regulating autophagy 
[109]. In addition, downregulation of CXCR-4 and VEGF-A, which play 
crucial role in tumor growth, invasion, metastasis, and angiogenesis 
was observed in TIPE knockout cells [71,114]. Further, knockout of 
TIPE led to the upregulation of p53 and its target p21, which regulate 
cell growth, migration, invasion, apoptosis and senescence [115]. 
Mounting evidence suggests that PI3K/Akt/mTOR pathway plays a 
vital role in oncogenesis [73,116,117]. Notably, in 90% of the NSCLC 
cells, PI3K/Akt pathway is reported to be constitutively activated which 
promotes cell survival [118]. Further, Akt/mTOR pathway is re-
sponsible for regulating cellular autophagy [117]. Therefore, we ex-
amined the effect of TIPE knockout on Akt/mTOR pathway in NCIH460 
cells. Our findings suggested that loss of TIPE inflected the critical 
constituents of this pathway which include downregulation of p- 
AktS473, p-mTORS2448, and p-S6S235/236 and upregulation of PTEN, a 
negative regulator of Akt [75]. In line with our findings, Day and group 
also showed that knockdown of TIPE led to the downregulation of IGF- 
1-mediated pIGF1R and pAkt, and upregulation of IGF-1-binding pro-
tein 3 (IGFBP3), which is involved in the negative regulation of IGF-1/ 
IGF1R cascade [45]. In a very recent report, Niture et al. found that 
transient or stable expression of TIPE resulted in reduced phosphor-
ylation of Serine-473 of Akt and Serine-2448 of mTOR in HCC cells. The 
study depicted TIPE induction to inhibit the Akt/mTOR pathway and 
cause HCC cells' autophagy [117]. Porturas and their group showed 
that shRNA mediated knockdown of TIPE led to the increased Akt 
phosphorylation at Serine 473 residue in Hepa1–6 murine liver cells 
[119]. Notably, constitutive activation of PI3K/Akt is reported to cause 
aberrant activity of STAT-3 which is responsible for the regulation of 
different cancer hallmarks [91,120–127]. This study also showed that 
knockout of TIPE led to the reduced expression of p-STAT-3S727. Alto-
gether, TIPE mediated lung carcinogenesis can be suggested to be 
plausibly modulated through Akt/mTOR/STAT-3 signaling axis (Fig. 9). 

Aforementioned, tobacco components are strongly involved in 
modulating different hallmarks such as growth, survival, migration and 
invasion of lung cancer cells [60]. Therefore, to determine the asso-
ciation between TIPE and tobacco induced lung cancer, TIPE knockout 
lung cancer cells were treated with four different tobacco components 
which include nicotine, NNK, NNN, and BaP and their effects on cell 
proliferation, survival and migration were evaluated. Nicotine, the 
principal addictive constituent of cigarette is reported to induce pro-
liferation, angiogenesis, migration, invasion of cancer cells in vitro and 
tumor growth and metastasis in vivo. It promoted the survival and 
proliferation of lung cancer cells through activation of PKC/Raf/MEK/ 
ERKs cascade [128–133]. Puliyappadamba and group reported that 
nicotine induced clonogenic potential in lung cancer cells via up-reg-
ulation of p53 and p21 [130]. Further, NNK; which is considered to be 
the strongest carcinogen among all the tobacco-specific nitrosamines 
was reported to induce NF-κB-dependent survival of tumor cells 
[129,132–135]. In addition, NNN, a well-known pulmonary carcinogen 
is another tobacco constituent responsible for lung cancer [136–139]. 
The binding of NNK and NNN to the nAChR induces proliferation, 
survival, migration, and invasion of tumor cells. Further, BaP was also 
found to promote the proliferation, migration and invasion of lung 
cancer cells effectively [140–142]. Our findings showed that, individual 
treatment with all the four tobacco components resulted in significant 
decrease in the proliferation and survival of TIPE knockout lung cancer 
cells than the scrambled control cells treated with the respective com-
pounds. It is well evinced that tobacco and its components possess 
significant association with cancer cell migration [24,66,67,142]. Our 
study showed that treatment with NNK, NNN, nicotine and BaP resulted 
in significant inhibition in the wound healing in TIPE knockout lung 
cancer cells implying its involvement in tobacco induced migration of 
lung cancer cells. Further, nicotine, NNK, NNN, and BaP treated TIPE 
knockout cells exhibited downregulation of survivin, VEGF-A and up-
regulation of p53, p21. Notably, nicotine and NNK mediated activation 
of Akt is reported to result in tobacco-related carcinogenesis via 

                                                     

13



regulation of tumor cell growth and apoptosis [118]. Activation of 
STAT-3 is also considered as an early event in oral carcinogenesis in-
duced by tobacco chewing [100]. In the present study, tobacco com-
ponents-treated TIPE knockout cells exhibited downregulation of p- 
AktS473 and p-STAT-3S727. Altogether, TIPE can be suggested to play an 
important role in the positive regulation of tobacco mediated lung 
carcinogenesis through Akt/STAT-3 and different proteins involved in 
regulating cancer cell growth, survival, migration, invasion and an-
giogenesis. 

5. Conclusion 

The present study evaluated the role of TIPE in the regulation of 
different cancer hallmarks. Our results showed that knockout of TIPE 
reduced the proliferation, survival, invasion and migration of lung 
cancer cells plausibly through Akt/mTOR/STAT-3 signaling axis. 
Notably, this study also showed for the first time that TIPE might be 
involved in the positive regulation of nicotine, NNK, NNN, and BaP 
mediated proliferation, survival and migration of lung cancer cells 
through modulation of Akt/STAT-3 signaling. As Akt/mTOR/STAT-3 
pathways are found to be mostly deregulated in lung cancer cases, 
hence their negative regulation might hold a strong basis for the de-
velopment of effective biomarkers and targeted therapies. Besides, TIPE 
modulated the expression of different proteins involved in growth, 
proliferation, survival, apoptosis regulation, invasion, angiogenesis, 
migration and metastasis of lung cancer cells. Taken together, TIPE can 
be implied to play a crucial role in lung cancer and also in tobacco- 
induced lung carcinogenesis and hence, targeting this protein seems to 
hold prospect in therapeutic interventions for lung cancer. 
Nevertheless, these findings need to be further validated through ex-
tensive in vitro, in vivo and clinical studies to establish its clinical 
importance wholly. 
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