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Abstract

During the last four years the polynomiality of the
average number of pivot steps required by the Simplex-
Method was proven under two different stochastic models:
The Sign-Invariance-Model and the Rotation-Symmetry-Model.
The Sign-Invariance-Model allows high probabilities for
emptyness of the feasible region, for redundancy and for
unboundedness of the objective and leads to very
optimistic results on the average number of pivot steps.
The Rotation-Symmetry-Model reflects more pessimistic
assumptions on the Real-World-Distribution of Linear
Programming Problems, because every generated problem
has a feasible point. The evaluation of the average
behaviour leads to a higher size of steps. It is an

open question whether this size can still be diminished.
The talk will report on some recent improvements in the
analysis of that model (e.g. Phase I-results, sign-
constraints) and some generalizations. In addition,

some open problems shall be discussed.



Introduction and Motivation

We are interested in the number of pivot steps which
are required by the Simplex-Method for the solution
of problems

s T n
Maximize v'x where x, v € R

subject to Ax < b A € R(m,n), m > n.

In particular, we concentrate on the following question:

How many steps are required on the average if (m,n)

is fixed and if v, A, b are somehow distributed random

vectors?

In the past some successful approaches to such an analysis
of the average behaviour could be done for parametric
variants resp. for variants based on the parametric

Simplex-Algorithm. Examples are

Shadow-Vertex-Algorithm (used by Borgwardt, Haimovich)

Lemke's Algorithm (used by Smale)

Lexicographic Lemke-Algorithm (used by Todd, Adler/
Megiddo)

Constraint-By-Constraint-Method (Adler/Karp/Shamir).

Whereas we observe a great similarity in the choice of
the variant, the stochastic models used for the analysis

differ tremendously.



The most important models are

I a rotation-invariance model (used by Borgwardt 18337,
1978,81,82)
II a4 permutation-invariance model (used by Smale 1982,
1983 and Blair 1983)
ITT a sign-invariance model (used by Haimovich,Todd ,Adler/
Megiddo,Adler/Karp/Shamir all 83-84)

Polynomial upper bounds for the average number of steps could
be derived under models I and IIT.

The results for III showed a much lower size (quadratic in
the lower dimension, i.e. n2 in our case).

The sign-invariance model can be explained as follows.

Consider that the input data v, A, b are fixed.
Now we generate 2M problems out of the generic problem
by left-multiplication of A resp. b with so-called

sign matrices

+ 1 0
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a sign matrix is a diagonal matrix whose diagonal

elements have the absolute value 1.

Since there are 2™ such sign-matrices, we obtain an
instance class of 2" problems

Maximize VTX

subject to SA x = Sb.



Now the main assumption of that model is that all of these
3 generated problems should have equal probability.

A geometrical interpretation gives additional insight.
We have (in the generic problem) m 1linear inequalities

T
a1 X % b1
s T *
am X = bm

Now we assume that each of these inequalities can be

"flipped" or inverted into > independently and with
probability %,

Again, we obtain a class of 2™ problems, each having
a probability of 2™ for realization.

It is clear that a feasible inner point of one of these
problems cannot be feasible in any other problem, since

at least one inequality must have been flipped.

And we observe that (under weak nondegeneracy assumptions)
(g} + {T] + ... F [QJ problems have feasible points.

But this number is (for m >> n) far less than 2™,

In the latter case the share of feasible problems becomes
very small (tending to O). Since all problems are counted

in the analysis of the expected number of steps, we can
expect a small size of steps. In the opposite case,

namely m ~ n, i.e., m - n << n, we have similar difficulties.
Here most of the problems are unbounded and do not have

an optimal solution.

As infeasibility the nonexistence of an optimal solution
can be detected easily and quickly. So also this situation

yields a very optimistic estimation.



The following figure shows the typical situation for
m=2©6and n = 2. 26 = 64 problems are generated, only

22 of them have feasible regions.
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The main results under that model are due to Todd, Adler/
Megiddo, Adler/Karp/Shamir and say that

Theorem

E. o (s) < C Min (mz, nz), where C € R, C > O
E
and where E. n denotes the expected value for m restric-
>
tions and n variables and s denotes the number of pivot
steps.



The Rotation - Invariance - Model

The above mentioned dangers of infeasibility and high
probability for unboundedness of the objective are not
valid under the stochastic model of the author, the
rotation-invariance-model. Here we deal with problems of
the following kind

Maximize VTX a. € R"

i
subject io a, Tx — &

A
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m>n

where d95+++, @y, Vv are distributed independently,
identically and symmetrically under rotations over R\ {0}.

Here O 1is feasible in any case. A typical situation for
m =06 and n = 2 would be

feasible region



The distribution under consideration is characterized by

its radial part. The rotation-symmetry leaves that freedom
to choose the radial-distribution as desired. Particularly
the redundancy rate can be chosen very high (close to 1 as
shall be discussed later) as well as extremely small ( O

for uniform distribution on the unit sphere or boundary

of the unit ball).

Under this stochastic model the author has derived a
polynomial upper bound for the average number of steps.

Result of 1981 for Phase II (Borgwardt)
1

n-1
E (s) = n3 m emn (% + l)

m,n e

The purpose of this talk is to report on some generalizations,
improvements and open questions. All these results are not

yet published, there is no dramatic breakthrough, but our
knowledge about the analysis of that model may get completer.

Some Generalizations

Note that our published results hold under somehow more
general conditions than postulated above. Consider problems
of the following type

.. T
Maximize v 'x

subject to a1T(x—XO) = DT,---s%nT(X'XO) & by

i . . n
where X, 1s a given, known point of R,

whets Gyyeu:y & v are distributed as above

‘I) m’
and where the values on the right side bisenn, by

are independently and identically distributed
positive random variables over R.



(Of course Aiseen, a., v, b1...., bm shall be independent).

Since all of the bi's are positive, X, is a known feasible
point. A problem-formulation of this kind can easily be
reduced to our original formulation.

1) We apply a linear transformation X = x - X
and obtain the problenm
Maximize v'x + vix

subject to aTTf £b,.,..., alx < b

2) We divide by the right hand sides Ei = %. a;
i

and get a "normalized" problem

gz T—
Maximize v'X

subject to E1T X< 1,...,a

. T ;
Since v Xo 1S constant.

The new vectors 51,... Em satisfy all the required
properties of the original model, they are distributed
independently, identically and symmetrically under

rotations. So we have the original situation.

Note that here the knowledge of X, 1s necessary. It

is still an open problem whether we can generalize

our results to the case where the problem is feasible,
but no feasible point is known. We have got some ideas
about that, but we are not yet through.



A dual interpretation and redundancvy

In the analysis of the author the parametric variant was
translated into the shadow-vertex-algorithm in order to
provide a dual interpretation of the algorithm. This
interpretation has the advantage that we can deal

directly with the input data when we want to evaluate

the probability that a typical basic solution is feasible and
situated an the Simplex-Path.

The only candidates for being Simplex-Vertices are the
basic solutions. At a basic solution X, are n (dimension)

of m (number of restrictions) restrictions active.

Let A = {A1

subset
and let

se.-,8"} = {1,...,m} be such an n-element-

X, be the solution of the system of equations

T

a X =1,.00... , a x = 1.

Al
The following lemmais the main tool for the analysis

Lemma

1) A basic solution X, 1s a vertex of the feasible region X
if and only if

CH (aAl,...,aAn) is a facet of CH (0’31"" am).

(Here CH stands for convex hull).



2) A vertex X lies on the shadow-vertex-Simplex-Path
only if

CH (aal"“' aAn) n span (u,v) * @

with a fixed u € R™\{o]}

The following figure gives an illustration of the efficiency
of these two conditions.

Here we see the upper half of a 3-dimensional polyhedron
CH {O,a1,..., a ). Its surface is covered by 27 visible
facets (triangles since n = 3), although more

then 20 points (restrictions) are involved. Only eight
of these facets are intersected by a two-dimensional
plane span (u,v).

These facets correspond uniquely to the vertices on

the Simplex-Path under consideration.



The dual interpretation also allows a simple explanation
of redundancy.

Lemma

If a; € Int (CH (0,&1,....,amJJ, then a; Tx < 1 is redundant.

The following figure shows a configuration with low redundancy
rate (as for uniform distribution on the unit sphere) and
a configuration with high redundancy rate (as for Gaussian

distribution or the so-called W. Schmidt-examples).




The number of facets or boundary simplices depends in a
dramatic way on the redundancy rate.

For high redundancy rate the size of the average number of
steps is surprisingly small. Here we refer to a famous

result of W. Schmidt under our model.

Theorem (W. Schmidt 1968)

If P (11 a; I} 5 %) = for r » =, then

o=

Em,n (V) < C (n) for m > o, n fixed.

Here V denotes the number of facets.

In 1979 we could generalize that result to the case where

i N .
P (1l a; [l = 1) = E) for r > and where 1T is a

polynomial.

A new result in this direction could be derived recently.

Theorem
If for r > = P (lla;, Il > r) behaves like EI
r

(where 1 = nz,k > o) then a € € R exists such that

lim sup E ., (s) =n e, € for fixed n.

m > o 2

Note that here we have got such a low-size result even
in the case that we have feasible problems in each case.



This result should be compared with a by-result in the
analysis of the sign-invariance-model .

(Adler/Megiddo and Adler/Karp/Shamir) remarked that

the order of steps for their complete method is O (n 5/2)

on the average.

However, Adler/Karp/Shamir have shown that even the expected
number of vertices of x under the sign-invariance model is
bounded from above by a value € (n) which is independent of m.

So it seems to be very interesting to study the possible
implicit relations and similarities between the stochastic
assumptions of the sign-invariance model and the distri-
butions of the W. Schmidt-type.

The most important question is:

Let us "observe" the restrictions from a "typical"
feasible point in the sign-invariance-model.

Do the distances between this point and the restric-
ting hyperplanes and the directions simulate a
distribution as in the rotation-symmetry-model?



We can neither prove such a conjectured relationship nor
define precisely what we mean by "typical" point.

At this point we should remark that these W.Schmidt-examples
dre a very special case of the rotation-symmetry-model. For
almost all distributions according to our model we have

lower bounds which are increasing to infinity with m » .

Result for the Phase I-Method

In my published paper (1982 b)I gave an algorithm for
Phase I which should exploit the Phase II - result and
which was constructed in such a manner that the stochastic
assumptions for the shadow-vertex-algorithm are met. The
(rather crucial) method works as follows.

Take M. for the orthogonal projection from R" into

RK and denote by I, the problem
Maximize TI, (v) T m,_ (x)
k k

s.t. Ma)' mo) <1 fori=1,...,n.

and let X, be the feasible set for L+
Our complete method proceeds as follows:

Initialization: Find a vertex of Xz and solve IZ'
If this is impossible, STOP



Typical Step (2 <k < n):

Take the solution x € RK™T of I, -1 and augment it
with a o in its k-th component. Then (3)1ies on an
edge of X, . Start the shadow-vertex-algorithm from a
vertex adjacent to that edge. Find a solution for

Ik in Xk. If such a solution does not exist, STOP.

The resulting vertex of the last step 1s then the desired
optimal solution. The total number of steps was estimated
in the following simple way in (1982 b)

Em i (st} -3 expected number of steps for Ly
* k=2

1
a 1 ) k-1
< Tk (*
=y ene+2-/m

2 2 en (n 1
= n” (n+1) y (? + E)m.
Since k is small at the begin of the sumation, we lost
the small growth in m as derived for Phase II.

But this order of size can be diminished significantly.
The reason is that our Phase II - estimation is based
on the worst distributions (concerning redundancy and
average behaviour as the uniform distribution of the
unit sphere).

Note that the distributions of Hk (ai) (for k = n)
are marginal distributions. A consequence is that only
a subclass of the rotational - symmetric distributions



over Rk can occur as the result of a projection from

R" into Rk. The "bad distributions", where the

probability is concentrated at the boundary of the

support, are avoided here. The density of the marginal
distributions is much more concentrated in the interior

of the support. The latter situation_leads to a higher
redundancy rate and to a much better behaviour of the algorithm.
This gives the motivation for a hope that the term m can

be improved.

And indeed, if we insert the representation as a marginal
distribution into our integrals, we are able to reduce

the cases k = Zyovv.,, n = 1 to the case k = n.

So we obtain a better bound of the type

New result

.
m 1 (n + 1)4 % m (1 + %E).

—
A

Problems with nonnegativity constraints

Another drawback in our theory -as published- was our
unability to analyze problems with sign-restrictions,
because here we have n restrictions which are fixed

and do destroy the property of rotational symmetry.

Now we have found a way to deal with such problems.
We have to include the sign-restrictions into the set

of the "normal" restrictions. Therefore, we describe



Xi > o by the condition - P ey Tx = 1 for all p = o.
The dual polyhedron CH (0’31”“"am) 1s replaced by the
set CH (o;aT,....,amJ ¥ G0 (—e1,....,—en)

(CC means convex cone),
and the boundary simplices CH ( aAl"""aAn) by the
boundary simplex-cones

CH (aal”""aak) + L0 (—ek+1,....,—enj.

For the solution algorithm we define Jk (k = 2,....,n)

as the original problem with additional constraints

We initialize by solving J, as above.

In the typical step we start from a solution of J

k-1
and solve Jy with our shadow-vertex-algorithm.

If this is impossible, we STOP.

Again, only boundary simplex-cones correspond to vertices
of X and only such vertices are visited on the path whose
boundary simplex cones are intersected by a two-dimensional
plane.
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So we obtain our result even for such problems

2

E [stJ = (n + 1)4 = m (1 + EE).
5

m,n

Let me finish with a personal opinion.
Until now we have got an impression why the Simplex-Method
works so efficiently, but we are far from understanding

it completely.
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