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1. Introduction 

The simultaneous emergence of social media environments as a new source of data and unprecedented advancement of artificial 
intelligence (AI) has opened doors to many next-generation applications in healthcare. We discuss first precisely this ever-increasing 
synergy between the three domains (cf. Figure 1), the related challenges, followed by our contribution to the emotion-aware and 
pain-aware AI for remote patient monitoring and counselling. 
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1.1. The avenues for the social media data analytics / AI in healthcare 

Because the social media provides an unparalleled insight into the lives, emotions of the real people, it can be leveraged to 
recognise patterns relating to their health needs. For example, a patient’s feedback on his/her treatment, in the context of their 
ethnicity, age, gender, smoking, drinking habits gives health professionals a better insight into the patient-education and demo-
graphic-tailored remedies (Antheunis, Tates, & Nieboer, 2013). Social media data helps create strategies for improving customer 
engagement for different healthcare services, e. g. targeted stimulus to motivate a fitness regime (Korda & Itani, 2013). Social media 
enables everyone to exchange their healthcare experience, and to learn from others (Spink et al., 2004). Information sharing also 
helps healthcare professionals to identify the gaps towards a better health outcome, e. g. reduction of waiting times, improved 
customer satisfaction and doctor-patient relationship (Smailhodzic, Hooijsma, Boonstra, & Langley, 2016). In a pandemic like COVID- 
19, or even otherwise, a web-assisted video platforms can be used to address customer grievances, and for remote patient con-
sultations, counselling and health monitoring (Armfield, Gray, & Smith, 2012) – the related research being the prime focus of this 
paper. While not the main focus of this paper, but for the sake of completeness, the novel challenges posed by AI to the ‘AI- 
Healthcare-Social data’ synergy are identified next, when considering widespread adaption of any application including the research 
presented herein. 

1.2. The anomalous challenge of AI to the healthcare-social data-AI synergy 

1.2.1. AI-Driven data augmentation 
The rapid AI advancements have made high volume, high velocity social media analytics a feasible reality (Amiriparian, Schmitt, 

Hantke, Pandit, & Schuller, 2019b; Pandit, Amiriparian, Schmitt, & Schuller, 2019a). Such is the pace of this progress that the finesse 
with which AI performs complicated tasks remains hard to believe, yet is a common knowledge ironically – be it coherent synthetic 
text generation, voice mimicking, or a high resolution ‘deep-fake’ video production. For example, it might be hard to believe that a 
few applications of social data in healthcare in this very manuscript were suggested by the GPT-2 English language model 
(Radford et al., 2019)1, with a frighteningly impressive human-like coherency. Because a human-like content generation is now this 
easy, the same AI advancement simultaneously manifests itself both as a novel challenge and as an opportunity. 

Likewise, issues related to data privacy, a central consideration in healthcare, have become complex. Highly personal data (e. g. 
health issues, vital signs) is what drives the healthcare. AI helps with synthetic yet realistic data augmentation, coupled with more 
advanced anonymisation techniques addressing privacy-related issues. Simultaneously and ironically, research in AI-based deano-
nymisation has made anonymisation of data lot more challenging (Malin & Sweeney, 2004). 

1.2.2. White-box AI: A prerequisite in healthcare 
The earliest and the main criticism of deep learning technology has long been its inexplicability. A white-box AI is a necessity in 

healthcare, where an incorrect treatment can be fatal, where each diagnosis should be based on a reliable understanding of the data 
available. In recent years, there are monumental developments with several approaches proposed for model explainability 
(Alber et al., 2019). In this paper as well, in addition to reporting performance metrics, we compute feature attributions towards better 
understanding of the models proposed. 

Fig. 1. Synergy between social media content (the data), artificial intelligence (the technology), and healthcare – an application end of the utmost 
importance. 

1 https://talktotransformer.com/ 
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1.3. Prerequisites of an emotion-aware/unaware AI in healthcare 

Data mining has helped improve diagnosis and treatment of various diseases (Rodríguez-González et al., 2012), e. g. diagnosis of 
cancer (Ruiz et al., 2018), sleep apnea (Janott et al., 2018; Qian et al., 2017), diabetes (Pratt, Coenen, Broadbent, Harding, & Zheng, 
2016), cardiovascular diseases (Goldberger et al., 2000), and assessment of psychological stress (Thelwall, 2017; Yoo, Lee, & Ha, 
2019). It can also be used as a preventive and diagnostic method to identify ‘red flag’ situations in real-time, e. g. to help identify 
people prone to suicide, or those with mental conditions such as bipolar disorder (Amiriparian et al., 2019a), autism (Roche et al., 
2018), depression (Schuller, 2016), undergoing pain (Lucey, Cohn, Prkachin, Solomon, & Matthews, 2011; Walter et al., 2013) or 
stress (Zhou, Hansen, & Kaiser, 2001). As discussed previously, an assistive technology recording dyadic conversations and estimating 
the psychological and physiological state of the recorded individuals can be envisioned. 

However, in order for its widespread use in the health sector, it needs meet very high standards of requirements, aside from its 
explainability of its predictions. First, it needs to be robust for use in a non-laboratory, unconstrained, noisy, i. e. ‘in-the-wild’ 
conditions, with data featuring spontaneous behaviours. It should ideally capture nuances of emotions/affects of people of different 
backgrounds, rather than a crude classification into three (positive, negative, and neutral), or six or such tiny number of basic 
emotion classes. It should ideally track one’s emotions continuously in time, in real-time. In summary, an explainable value-con-
tinuous, time-continuous, multidimensional, subject-independent, light-weight, real-time, physiological and affect prediction model 
trained on the in-the-wild data is desired; the scope of this paper. 

1.3.1. Scope of this paper 
In this paper, we unearth learnings of a shallowest possible CNN one can ever realise, as it learns to predict human emotions from 

in-the-wild videos. The training and predictions are of value- and time-continuous affect dimensions of individuals coming from very 
different cultures, contexts, gender and age-groups featured in the SEWA database, without making use of any audio or textual data. 
Inspired by these findings, we also explore use of this network topology for remote video-based pain monitoring on the UNBC- 
McMaster Shoulder Pain Expression database, and the BioVid database. 

1.4. Organisation of the paper 

In Section 2, we discuss each previous research directly relevant to our current study. We discuss in detail the performance metric 
we chose for evaluation in Section 3 and the datasets we used in Section 4, complete with statistical analysis of the features and the 
labels – which is crucial before beginning with the experiments. We detail next the experimental design pipeline, different types of 
models we tried, and how the powerful, yet shallowest-realisable CNN evolved through these experiments in Section 5. We present 
the insights gained by analysing the trained weights mapping the features to the output labels in Section 6. We re-evaluate our 
proposed approach for the time-continuous pain prediction problem in Section 7. We summarise our findings, mentioning briefly the 
limitations of this study in Section 8. We also list various avenues for future work as the logical next step – including the research 
paths we have already begun venturing into. 

2. Related research 

The target research problem here is the explainable, robust, value- and time-continuous recognition of affect dimensions (e. g. 
arousal and valence) on in-the-wild audiovisual recordings, featuring spontaneous behaviours in the conversational context. The 
publicly available databases (e. g. SMARTKOM (Schiel, Steininger, & Türk, 2002), IEMOCAP (Busso et al., 2008), RECOLA 
(Ringeval, Sonderegger, Sauer, & Lalanne, 2013), MAHNOB Mimicry (Bilakhia, Petridis, Nijholt, & Pantic, 2015), 4D CCDb 
(Vandeventer, Aubrey, Rosin, & Marshall, 2015)) do not typically meet this criteria, featuring either the non-spontaneous behaviours, 
and/or the laboratory recordings, and/or only the categorical and/or only the sample-level labels, and/or are too small Kossaifi et al.. 
The only exceptions are SEWA Kossaifi et al. and GRAS2 (Eyben, Weninger, Paletta, & Schuller, 2013). The GRAS2 database has 
arguably more Gabor effect-free recordings; likely to generate a more robust model (Pandit et al., 2018a; 2018b). However, its time- 
bound consent stands expired. 

The ‘Automatic Sentiment Analysis in-the-wild’ (SEWA) corpus Kossaifi et al. has consistently featured in the ‘Affect Recognition’ 
sub-challenge of the Audio/Visual Emotion Challenge since a few years (AVEC 2017, 2018, 2019) (Ringeval et al., 2018a; 2018b; 
2017). It is arguably the most popular in-the-wild public database available to date, featuring time-continuous, high resolution labels 
for multiple dimensions of affect. The participants of the AVEC challenges (Chen et al., 2019; Kaya et al., 2019; Zhao, Li, Liang, Chen, 
& Jin, 2019) compete to correctly predict these affect labels for different cultures, based on the audio, textual, and video features 
provided. The bag-of-words representation computed using openXBOW (Schmitt & Schuller, 2017) has been shown to perform well 
across all the three modalities. 

In this paper, we combine and extend two of our previous research works. With Pandit, Schmitt, Cummins, and Schuller (2019b), 
we ventured into the territory of ‘explainable AI’ for time- and value-continuous in-the-wild affect predictions for healthcare. We 
investigated how a trained model uses only 521 text features to predict the three affect dimensions by computing their feature 
attributions. These 521 features represent the frequency of those specific 521 words in a 6 second window. Consistent to human 
perception, the model relies heavily on action markers such as <laughter> and <slight_laughter> to predict arousal and valence. 
Even more interestingly, the model reassigned high relevance to words implying contexts when predicting liking, e. g. ‘dazu’/ 
‘außerdem’ (therefore), ‘endlich’ (at last), ‘über’ (over (something)), ‘Zusammenhang’ (context), ‘weil’ (because). We also established 
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that the text-features themselves were informative enough that even a simple feedforward network utilised these features effectively 
to predict the affect dimensions. 

In another research (Schmitt, Cummins, & Schuller, 2019), we questioned necessity of a recurrent neural network (RNN) for a 
value-continuous time-series prediction problem. While the RNNs learn the long-term dependencies in theory, they fail to do so in 
practice for some fundamental reasons (Hochreiter & Schmidhuber, 1997). RNNs with nodes with memory units (e. g. Gated Re-
current Units (GRU) and Long Short Term Memory (LSTM)) alleviating this problem continue to suffer from the vanishing and 
exploding gradient problems (Pascanu, Mikolov, & Bengio, 2013). The CNNs utilise the adjacencies and contexts, while also allowing 
data parallelisation. CNNs are, thus, much faster to train and test (Pandit et al., 2019a). In Schmitt et al. (2019), we established that 
CNNs are as effective as RNNs, if not more, in predicting arousal and valence dimensions even in the cross-cultural context. In this 
paper, we use the video features to predict affect dimensions using CNNs similar to those used in Schmitt et al. (2019), and explain 
the model workings through feature attribution computation similar to Pandit et al. (2019b). We later test the approach on the time- 
continuous pain intensity prediction problem. 

3. Choice of evaluation metric 

The primary focus of this paper is the explainable, time-continuous prediction of the affective and physiological state of a subject 
under observation, e. g. a patient. Choosing a metric for evaluation of the predictive capability of the system is a crucial step. For a 
time-series prediction that is value-continuous (i. e. a regression problem), arguably the most popular performance metrics are: the 
Mean Squared Error (MSE), the Mean Absolute Error (MAE), the Pearson Correlation Coefficient (CC or ρ) and the Concordance 
Correlation Coefficient (CCC or ρc). Thus, given a bivariate population, i. e. the two time-series, =X x: ( )i N

1 and =Y y: ( ) ,i
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The first two (MAE and MSE) quantify the extent to which the two time-series differ. Neither translates to any meaningful 
inference without the prior knowledge of the magnitude of the variables. The two also fail to capture correlated variation of the 
quantities being measured (i. e. whether a greater value of one corresponds to a greater value of the other). While a covariance metric 
quantifies such relationships, this metric too is impossible to interpret without knowing the variable magnitudes. The normalised 
covariance metric, called the Pearson correlation coefficient, quantifies the strength of the linear relationship between two variables, 
ignoring the bias and the scale. The CCC metric goes a step further, and penalises any deviation from the identity relationship, i. e. the 
non-unity scaling and the non-zero bias. For a standardised, subject-independent, ‘in-the-wild’ health monitoring system, knowing 
and proving existence of a strong linear relationship is not enough. Rather, an accurate prediction (and not the scaled prediction) is 
the central necessity. For this reason, we use the most stringent ‘CCC’ metric as the evaluation metric. 

4. The datasets 

4.1. Overview in terms of the subjects, and the data-splits 

The SEWA dataset features spontaneous dyadic internet-based conversations between the participants, discussing an advertise-
ment they watched. The recordings were not standardised intentionally, and are truly in-the-wild. The participants were allowed to 
converse from wherever they wished (e. g. home, office, cafeteria), with no set requirement on the devices (notebooks, microphones, 
cameras) and internet connection in use. Many of the audiovisuals suffer from bad lighting conditions, noise, echoes and even frame 
freezing. The participants came from several age-groups, with various degrees of mutual acquaintance, and different cultural 
backgrounds. With 201 male and 197 female participants, and with nearly 60 pairs from each of the 6 linguistic populations (Chinese, 
English, German, Greek, Hungarian, Serbian), the dataset features behavioural data from diversified and balanced demographics. 
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Only the Chinese, German, and Hungarian recordings have been annotated, and are available for research (cf. Table 1). Note that in 
our experiments, the test split is huge compared to the training and validation splits. 

As for the experiments relating to pain monitoring, we use the UNBC-McMaster Shoulder Pain Archive (Lucey et al., 2011) con-
taining 200 video sequences with more than 48,000 labelled frames from 25 subjects suffering from shoulder pain problems. The 
subjects undergo eight standard motion tests; abduction, flexion, and internal and external rotation of each arm separately. The 
number sequences annotated for a subject vary from 2 to 16. We use 9 subjects (71 sequences) for training, and 7 subjects (68 
sequences) as a validation set. The models are tested on the remaining 9 subjects (the remaining 61 sequences). 

We also used the BioVid database (Lucey et al., 2011) featuring 87 subjects, subjected to 5 levels of pain using a different heat 
stimulus 20 times in a random order, each for 4 s minimum. The 5 pain stimulation levels were calibrated separately for each 
participant, ranging from no stimulation, to the ‘beginning of feeling pain’ (pain threshold), with a gradual increase to the un-
acceptable pain-level (tolerance threshold). We report the results for training to validation to test split ratio of 1:1:1. In the pain- 
related experiments, the main focus is to understand the learnings of the model and whether it is consistent to the provided definition 
of the pain label, thus the human understanding of the pain. 

4.2. Overview of the labels and the features contained in the dataset 

The SEWA dataset features value- and time-continuous labels for arousal, valence, and liking (i. e. extent liking for the adver-
tisement is expressed), annotated by five to six annotators speaking the language of the participants of the audiovisuals they annotate. 
The annotators, therefore, can use each data modality available to them, namely, the linguistic content (what is expressed), the audio 
content (how it is expressed, e. g. prosody, tone, pitch), and the visual content (non-verbal cues, facial expressions). In the current 
research we make use of the FAU features extracted using OPENFACE2 (Baltrusaitis, Zadeh, Lim, & Morency, 2018) (cf. Table 2). 

For experiments related to the pain intensity prediction problem, we use the manually coded frame-level FAU features as an input, 
and the featured Prkachin and Solomon Pain Intensity (PSPI) (Lucey et al., 2011) labels as the prediction target. Likewise, the BioVid 
database contains manually coded FAU features and PSPI labels (PSPI_PA4, PSPI_SD) for 435 (87 subjects  ×  5 pain levels) from the 
total of 8 700 videos (87 subjects  ×  5 pain levels  ×  20 stimuli). Additionally, We extract FAU features for all of the 8 700 videos 
using the OPENFACE toolkit (Baltrusaitis et al., 2018), and generate the PSPI labels from the extracted features. The PSPI labels gen-
erated using the extracted FAUs are highly correlated with the PSPI_PA4, PSPI_SD featured in the dataset, and in turn, the subjective 
human-annotated pain intensity labels of the BioVid dataset. 

4.3. FAU label statistics and insights for affect prediction 

In the affect prediction study, we restrict our attention to employing the video-based features only, i. e. FAUs and the speaker-turn 
activation feature indicating that at least one participant is speaking. FAU is defined by the Facial Action Coding System (FACS) – a 
predefined set of different simultaneous facial muscle movements. We employ the 17 FAUs available to us, and the associated 
confidence scores. As discussed previously, the aim of the research is primarily to investigate how the neural networks utilise FAUs 
effectively for affect prediction, what makes their learnings generalise across different cultures, and if these learnings are consistent 
to human perception of emotion expressions. 

To explore the utility and challenges presented by the extracted FAU feature set, we first prepare a statistical summary of the 
activation values of the individual features (cf. Fig. 2). These input features are identical to those provided in the AVEC 2018 and 
AVEC 2019 challenges, i. e. the moving average and the moving standard deviations of 17 FAU activations computed for consecutive 
50 frames (1 s) with a hop of 5 frames (100 ms). Fig. 2 presents grouped box-plots of the corresponding moving statistics, for better 
comparison of the features across cultures. As can be seen from the plot, the ranges, quartiles, and outlier distributions are similar 
across the different cultures. 

Considering that the three cultures are vastly different from each another, the consistent statistics of FAU activations across 
cultures – in some sense – hint at the universality of the FAU features (Russell, 1994). One could expect, therefore, a superior pan- 

Table 1 
Participant count and duration for the data splits of the SEWA dataset for the AVEC 2019 challenge (Ringeval et al., 2018b), and for 
the experiments featured in this paper. 

Culture Partition #Subjects Duration (mmm : ss) 

German Training 34 093 : 12 
German Development 14 037 : 46 
German Test 16 046 : 38 
Hungarian Test 66 133 : 12 
Chinese Test 70 200 : 46 
Total Test Test 152 380 : 36 

Total 200 511 : 34 

2 https://github.com/TadasBaltrusaitis/OpenFace . 
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cultural performance of the models using the FAU features to predict affect. Because the median utility function is less affected than 
the mean by the outliers in the data, we consider the median heatmap column to be the better representatives of the features in the 
discussions next. 

It can be inferred from the heatmap in Figure 2 that not all FAU features convey equally useful information. For example, we 
notice that: 

• The close to zero standard deviations ( ∈ [0.00, 0.07)) of all of the AU12 to AU45 activation statistics indicate that AU12 to AU45- 
related inputs remain almost constant across the entire dataset. Medians of these features are close to zero likewise ( ∈ [0.00, 
0.05]), implying that the constant activation, too, is very close to zero ( < 0.05) likewise. 

• The range for the moving-mean and moving-standard deviations are drastically different for different FAUs. For example, the 
maximum moving-mean activation for the AU1 to AU10 FAUs is close to 5.0, while the AU12 to AU45 moving-mean activations 
rarely go past 1.0 (cf. the boxplots). 

• This dissimilarity between the different FAU features is so stark that even maxima (i. e. the outliers in one direction) of certain 
features (e. g. AU12_mean) are less than even medians of most other features. Such extremely high or low values, in the absence of 
a batch-normalisation layer, can drive prediction of a neural network astray – unless the features with stronger activations are 
more informative already. It is only then that a model can possibly assign quasi-zero weights to the erratic features. 

• Interestingly, in spite of the featured high maximas and near-zero minimas (i. e. the high range) for AU 4, 6, 7, 10 -related 
statistics, the medians of the moving-standard deviations of activations are zero. As for the moving-standard deviations of acti-
vations, we note that more than 50% of the dataset is dominated by the zero-valued samples. This tells us that these four 
activations hardly ever fluctuate too much from their respective median values ( .560, .835, .230, .100) in time. 

• As for the remaining AU1, AU2, AU5, and AU9 activations, the medians of the moving-mean and the moving-standard deviations 
are ( .000, .175), ( .000, .440), ( .603, .835), ( .000, .235) respectively. As implied earlier, the first quantity represents roughly the 
degree of the FAU activation in time. The second quantity, i. e. the median of the standard deviation is a representative of the 
perturbation of that FAU activation. The latter is affected by both the magnitude and the frequency of perturbation. 

Table 2 
Illustrations of what the extracted FAU activations look like. (Image credits: with permission from imotions.com/blog/facial-action-coding-system/ 
). 

Action Unit (AU) Facial Muscles Description Example Movement 

From To 

1 Frontalis, pars medialis Inner Brow Raiser 

2 Frontalis, pars lateralis Outer Brow Raiser 

4 Depressor Glabellae, Depressor Supercilli Currugator Brow Lowerer 

5 Levator palpebrae superioris Upper Lid Raiser 
6 Orbicularis oculi, pars orbitalis Cheek Raiser 

7 Orbicularis oculi, pars palpebralis Lid Tightener 

9 Levator labii superioris alaquae nasi Nose Wrinkler 

10 Levator Labii Superioris, Caput infraorbitalis Upper Lip Raiser 

12 pars palpebralis Lip Corner Puller 

14 Buccinator Dimpler 

15 Depressor anguli oris (Triangularis) Lip Corner Depressor 

17 Mentalis Chin Raiser 

20 Risorius Lip stretcher 

23 Orbicularis oris Lip Tightener 

25 Depressor Labii, Relaxation of Mentalis, Orbicularis Oris Lips part 

26 Masetter; Temporal and Internal Pterygoid relaxed Jaw Drop 

45 Levator Palpebrae Relaxation, Orbicularis Oculi Contraction, Pars Palpebralis. Blink 
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5. Affect prediction: Experiment and model design pipeline 

We train various minimalist CNN topologies using the Keras (v2.2.2) library with the Tensorflow (v1.11.0) backend. Training and 
evaluations are run on regular notebook with a Nvidia GeForce GTX 1050 Ti GPU-card. The FAU features obtained from 34 video chat 
sequences of German participants (cf. Figure 3) and the RMSprop optimiser (learning rate = 0.001) are used for training, which runs 
for 2 000 epochs. We choose the model weights based on their performance on the development set. Because an attempt at mini-
misation of MSE does not necessarily translate into maximisation of CCC Pandit and Schuller, we use the deviation from the 
maximally achievable CCC i. e. ‘ CCC1 ’ as the loss function of choice. This strategy of employing CCC as part of the loss function 
has proven to be successful in practice as well (Pandit et al., 2019b; Schmitt et al., 2019; Trigeorgis et al., 2016). We choose the 
optimal delay compensation of 4.0 seconds and 2.8 seconds for arousal and valence respectively, based on our previous study 
(Schmitt et al., 2019). 

5.1. Minimalist model A 

In Schmitt et al. (2019), we demonstrated the suitability of CNNs over RNNs for the high noise, high resolution time-series 
prediction problems. We begin with an identical CNN architecture, except that we use the 37 visual features instead of the 47 acoustic 
ones, consequently resulting in a huge reduction in the number of trainable parameters. An output neuron in this architecture has a 
receptive field of about 10 s (∵ 50+30+20+5-3=102 time-steps=10.2 s, cf. Figs. 4 and 5). 

5.2. Minimalist model B 

We gradually remove the intermediate layers from the model A, while keeping about the same receptive field of the output 
neurons (cf. Fig. 5). While we experimented with number of different combinations of the number of intermediate layers (LN), the 
receptive field of the intermediate layers (TF) and the number of filters for each of the intermediate layers (NF), the most important 
revelation came from the observation that changing the ReLu activation to a linear one does not deteriorate the model performance. 
Because the input to output mapping is reasonably linear, there is no inherent requirement of too many filters for each layer. Unless 
stated otherwise, we discuss the extreme case, where number of intermediate Conv1D layers=1, and where =N 1,F =T 100F . 

Fig. 2. Boxplot of FAU activation levels and the three affect labels. Note that the range (cf. x-axes) for different FAU features are drastically different, 
and only a few FAUs dominate over the rest (cf. max values). Some of the FAUs (e. g. AU12_mean) rarely ever manifest, even their maximum values 
are close to minimum of almost all other FAU activations. 
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5.3. Minimalist model C 

The last layer of the Model B (cf. Fig. 5) is a Time-Distributed Dense layer. Because the output of the previous layer is a 
N × 1768 × 1 matrix (as we use only 1 filter), this dense layer only scales every output by a constant factor adding a constant offset. 
Because the relationship continues to be linear, and because a neural network, by definition, learns weights (scalings) and biases 
(offsets), this last dense layer is redundant. However, removing the dense layer (thus, resulting in Model C) deteriorates the per-
formance. This is not exactly surprising, since an explicit post-processing step, instead of a linear dense layer at the output, is often 
witnessed in the literature (Schmitt et al., 2019; Trigeorgis et al., 2016). The newly reduced topology leads us to the model D where, 
while maintaining minimalism of model C, we also ensure the superior predictive performance of the trained model B. 

5.4. Minimalist models D 

If WL
M and BL

M are the weights and biases of the layer L of model M, and I and O are the inputs and outputs of the model, we have: 
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5.5. Minimalist model E 

In an attempt to make the model computationally even more inexpensive, we experiment with a few input feature combinations. 
This feature selection, too, is data-driven, gaining insights from the visualisations of the filter weights and the feature attribution 
heatmaps, as we discuss in Section 6. 

5.6. Minimalist model F 

Likewise, we note that the most of the high magnitude contributions come from the top right quarter of the feature attribution 
matrix, indicating a likely correction in the annotator delay compensation. We have verified these findings – i. e. regarding the 
consistent correction in the annotator delay compensation – by advancing the training labels even more (by 40 samples for the model 
represented in Figure 6) and by rolling over the filter coefficients likewise (by 40 samples) for retraining of the models. The exact 

Fig. 3. The entire experimental design pipeline. 

8



tabulation of CCC scores across different receptive field values and different annotation delay compensation values is a work cur-
rently in progress. 

6. Affect prediction: Results and insights 

6.1. Feature attribution calculation 

Consider model D consisting of only one intermediate Conv1D layer between the input and the output layer. Because the output is 
just a single channel (we predict only one emotion dimension at a time), the number of filters associated with the last and the only 
intermediate Conv1D layer is one. Each output is the element-wise product of trained filter weights and a section of the input matrix, 
added to the trained bias value. Thus, the Conv1D layer represents the degree of similarity of the input features (in an interval equal 
to its receptive field) against the pattern described by the weights of the trained filter. 

Let the inputs and outputs of the model, and the filter weights and the bias of Conv1D be the matrices XF × T Y1 × T, ×W ,F TF and 
the scalar b respectively. 
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Distributing the constant bias b across the associated input features evenly, we get the contribution to the output yt0 by the feature 
+x ,f t t, 0 i. e. the feature attribution score +Sf t t, 0 as: 

= × +
×+ +[ ]S x w b

F T
.f t t f t t f t

F
, , ,0 0 (12) 

If the multiplication of the weight matrix and the input sub-sequence generates the output at a time-step that is central to the input 
sub-sequence, e. g. as in Keras implementation (cf. Fig. 6(a)), the contribution by +xf t t, 0 is: 

= × +
×+ +S x w b

F T
.

f t int T t f t int T t f t
F, 2 , ( 2 ) ,F F

0 0 (13) 

We present insights gained by inspecting the feature attribution heatmaps at various time-steps (t0) for the arousal and valence 
labels, for several subjects. Fig. 6 presents an example. 

6.2. Interpreting the feature attribution matrix and the filter weights 

As discussed, one interpretation of the filter weights is that the model seeks an input pattern that is most similar to the filter 
weights. The more similar the input pattern, the higher is the output activation. Because the output is ultimately a weighted linear 
combination of the filter coefficients (weighted by the input activations), the output can be regrouped into several column-wise or 
several row-wise summations. We make the following observations. 

• For the strictly non-negative feature activations (e. g. inputs in this study, the FAU activations), the sign of a weight indicates 
whether a certain feature activation is positively or negatively correlated with the output. 

• A dominant row (featuring high magnitude weights) amplifies the corresponding activations heavily; suggesting a high im-
portance of the feature. 

• This interpretation needs a careful reconsideration in the case of non-normalised inputs. Through high magnitude weights, the 
model also ensures that the low activations are represented enough to drive the output. 

• A row also represents a temporal trend of the specific feature activation in the input matrix that the filter expects to see. More 
similar an input row (a trend of a specific feature activation) is to the corresponding row in the weight matrix, more is the cosine 
similarity between the two vectors, driving the output to be more positive. Essentially, an output represents the extent to which 
the input encapsulates the various expected temporal trends of the individual feature activations (cf. Fig. 7). 

• Likewise, a column represents a specific feature activation combination. As for the FAUs, an example combination could be 0.71 
activation of lip corner puller (a smile), 0.51 cheek raiser, and so on, mapping to arousal label of 0.83, through weighted sum-
mations (cf. Fig. 7). 

• Thus, the output represents the extent to which an input encapsulates the various expected feature combinations at specific time- 
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steps, relative to the centre of the filter – moving across in the temporal dimension. 
• The filter-weights alone do not quantify the relevance of individual features, since the scale of the input features is a crucial 

missing context, but the feature attribution scores do. 

The early feature relevance score matrices were hard to interpret, as these consisted of too many positive and negative scores. We 
added L1 regularisation loss, compelling the model to use a lot sparser filter weight matrix. Without much of a loss in predictive 
performance, this results in a sparser feature attribution matrix, which is a lot easier to analyse for a human and to gain insights. We 
use heatmaps of seaborn library with a diverging PiYG colormap centred at 0.0 to visualise the matrices, irrespective of the range of 
the scores. 

We experimented with the receptive field for the model D, and yet: 

Fig. 4. Receptive field of the output neuron when L number of Conv1D layers are stacked = +
=

T L1 ,
i

L

Fi
1

where TFi is the receptive field of the 

filter in the ith Conv1D layer. 

Fig. 5. Evolution of the models. Model ‘A’ has a topology similar to Schmitt et al. (2019). We derive the rest by reducing the number of layers, the 
number of filters and the number of input features. Feature selection is achieved by visualising feature attribution matrices. 
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• The model consistently relied on the following features, 1. AU02_std, 2. AU05_std, 3. Turns, and 4. Confidence_mean.  
• A few other FAUs, namely AU01, AU04, AU09, and AU10 were also found to be seldom making non-zero contributions to the 

prediction. 
• The contributions coming from the rest of the features were consistently close to zero, inspiring us to investigate data-driven 

feature selection. 
• The majority of the contributions come from the right half of the matrix, suggestive of a correction in the annotation delay 

compensation. 

Fig. 6. (a) Product of the filter weights and the input sub-sequence generates the output at a time-step that is central to the input sub-sequence. (b) 
An example feature attribution matrix S (upper subplot), the summation of the elements of matrix S (the black circle in the lower subplot), the gold 
standard and the prediction sequences (the lower subplot). The plot generation helps us verify that = = = +

y St f
F

t
TF

f t int TF t0 0
1

0
1

, 0 2
. For SEWA, the 

bottom half of S is typically quasi zero-valued, and most of the contributions to the output come from the top right quarter of S, suggestive of a 
correction in the annotation delay compensation. 

Fig. 7. The filter weight obtained for the 37-input arousal model (the model D in Fig. 5), and several ways of interpreting the filter weights. 
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6.3. Feature selection experiments and insights 

As discussed in the concluding remarks of the previous section, because the moving mean statistics almost always never con-
tribute to the output (barring a lone exception of confidence_mean), we reconfigured the model to consume only the moving standard 
deviations and the turns information, reducing the number of input features from 37 to 19, thus halving simultaneously also the 
number of learnable parameters (cf. Model E of Fig. 5). For the receptive field equalling 80 time-steps, the number of learnable 
parameters get reduced down to 1 523 ( × +80 19 3) from 2 963 ( × +80 37 3), i. e. 51.4%. 

Based on the feature attribution scores of this derived model, we further reduce these down to only 7 features, namely: 
Confidence_mean, AU01_std, AU02_std, AU04_mean, AU04_std, AU05_std, and Turns. Consequently, the learnable parameters reduce 
down to merely 563 ( × +80 7 3), i. e. 19% of the initial 2 963 learnable parameters. By optimising the delay compensation and the 
receptive field of the Conv1D filter, the number of learnable parameters can be reduced even further as discussed in Section 5.6 (cf. 
Model F in Fig. 5). We note that the majority, i. e. five of the seven features are FAUs, all of which relate to the eye movement and not 
the mouth, nose or any other facial features. The Table 3 lists the selected of the several model topologies we built and their 
corresponding predictive performance on the test splits. 

7. Pain intensity prediction 

Inspired by predictive performance of the minimalist CNN we proposed to model emotional state of the human subjects cross- 
culturally, that uses only a handful FAU activations recorded in the noisy conditions, we now turn our attention to the pain intensity 
prediction problem – equally relevant for many healthcare applications, including the automated remote patient monitoring system. 
An interpretable and explainable AI continues to be the primary focus of the experiments. One of the popularly used pain intensity 
metric is the Prkachin and Solomon Pain Intensity (PSPI) Scale (Lucey et al., 2011) given by the following equation: 

= + + +PSPI AU max AU AU max AU AU binary AU4 ( 6, 7) ( 9, 10) ( 43). (14) 

While we know that there exists a direct mapping from a single feature vector to the corresponding PSPI label, we do not use the 
available feature vectors in isolation. Instead, consistent to the original problem statement, we treat this as the time-series prediction 
problem. We add, therefore, a temporal dimension to our feature context, making the non-linear mapping slightly more challenging. 
That is to say, ideally, the trained model should learn to completely ignore the neighbouring feature vectors, and use specifically only 
the lone feature vector at a relevant time-step, and only the set of relevant activations. But because the neighbouring feature vectors 
correspond to consecutive frames of a video sequence, they are largely correlated with one another. In the case of UNBC-McMaster 
Shoulder Pain Archive, even this assumption is not necessarily true, as we do observe the sudden spikes in the manual annotations, 
consistently representing the FAU onsets. The max function makes the FAU to PSPI mapping non-linear. We explore whether the 
proposed minimalist model is able to learn the challenging target mapping using linear activations alone. 

Table 3 
Performance comparison of the trained models in terms of CCC. Each of the models was trained using an identical Training and Development set 
featuring only the German-speaking subjects. The trained model was tested on 16 German(DE)-, 66 Hungarian(HU)- and 70 Chinese(ZH)-speaking 
participants. The results presented here are entirely reproducible using the scripts made available at https://github.com/vedhasua/tiny_emotionet. 
For the sake of completeness, we also note the state of the art performance on the AVEC 2019 Chinese test-split as reported by the challenge winners. 
As these models use recurrent neural networks, data parallelisation is not possible. These models also necessitate much complex multimodal feature 
extraction steps, followed by explicit early- and/or late- fusion steps, and were trained using a much larger training and validation data from 
subjects from two cultures (Ringeval et al., 2018b), as opposed to ours which used the data from only 48 German-speaking subjects for training and 
validation (cf. Table 1). 

Model Topology Affect Dimension Test Splits 

DE HU ZH 

Similar to Schmitt et al. (2019): 37 Features, [200x5] Relu, [64x20] Relu [32x30] Relu, 
[32x50] Relu [1] Linear 

Arousal 0.578 0.393 0.438 
Valence 0.573 0.477 0.315 

Model D (cf. Fig. 5): 37 Features, [80x1] Linear, [1] Linear Arousal 0.606 0.525 0.367 
Valence 0.625 0.420 0.451 

Model E (cf. Fig. 5): 19 Features, [80x1] Linear, [1] Linear Arousal 0.566 0.532 0.481 
Valence 0.611 0.422 0.431 

Model E (cf. Fig. 5): 7 Features, [80x1] Linear, [1] Linear Arousal 0.569 0.534 0.337 
Valence 0.601 0.390 0.430 

AVEC 2019 Winning Submissions 
Chen et al. (2019): Data Augmentation, ResNet-based feature extraction, Early- and Late- 

Fusion, DBLSTM 
Arousal Not Applicable, Used in training 0.513 
Valence 0.515 

Kaya et al. (2019): PCA of EGEMAPS, Early fusion with FAUs, [200,100,200] GRU-RNN, Weighted 
late-fusion 

Arousal Not Applicable, Used in training 0.466 
Valence 0.499 

Zhao et al. (2019): Multimodal feature extraction, Adversarial Domain Adaptation, LSTM, fully 
connected 

Arousal Not Applicable, Used in training 0.400 
Valence 0.471 
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7.1. UNBC McMaster shoulder pain archive: Experiments and insights 

The database contains 200 FAU and PSPI sequences for 25 subjects, amounting to 48 398 feature vector-label pairs in total. The 
statistics of the training, validation and test splits are reported in Table 4. We note the large variance in sequence lengths. We also 
note that the three splits we chose through iterations are fairly evenly distributed in terms of sequence lengths, numbers of sequences 
and subjects. The database features not only the FAU activations 4, 6, 7, 9, 10, 12, 20, 25, 26 and 43 (Lucey et al., 2011), but also the 
FAU 0, 15, 27 and 50 activations. The feature matrices are sparse, with many zero-valued rows. The number of zero-valued feature 
vectors in the training, validation and testing split are 13 423, 11 739 and 11 094 respectively (i. e. nearly 75% of the frames). 

The only other annotations available in the database are the sequence-level self-reported and observer-reported pain ratings, and 
the frame-level Active Appearance Model (AAM) facial landmark points. In the interest of explainable AI, we use the FAU activation 
sequences as the inputs, assisting training of a lot sparser filter-weight matrix. We train the models to predict PSPI levels, with varying 
receptive fields for the output neurons. Just as one would expect, typically: 

• The predictions improve with the reduction in receptive field if every other hyperparameter, including number of epochs is kept 
constant. This is somewhat expected, since a single feature vector governs the output at any time-step, albeit non-linearly. 

• As a corollary, the model takes more epochs to arrive at a better generalising mapping i. e. higher performance on the unseen test 
partition, when the receptive field is larger. 

• Even with large number of epochs of training, a model with receptive field of 1 time-step performs consistently and significantly 
better than the one with a larger receptive field of 60 time-steps (cf. Fig. 9, p-value  <  0.01 and  <  0.001 for ‘UNBC McMaster’ 
and ‘BioVid’ databases respectively). 

• The model relies mostly on only the 6 relevant FAU activations out of 14, occurring at precisely the time-step at its centre (cf. 
Fig. 8(a)).  

• The model has been observed to assign comparable weights to some ‘irrelevant’ activations at non-central time-steps, likely in an 
attempt to correct the errors due to non-linearity of the target mapping, to help fine-tune the predictions, e. g. AU20 in Fig. 8(a). 

• While the weights assigned to most other activations are largely close to zero; these tiny non-zero weights act as low-pass filters 
for the output time-series; an effect especially observed at the PSPI onsets (cf. Fig. 8(b)). For multiple models with receptive fields 

Table 4 
Statistics relating to UNBC McMaster Shoulder Pain Archive data splits used. 

Split Num. Subjects Num. Sequences Num. Frames = Num. Feature vectors (Sequence length) 

Total Valid Total Mean Median Std.Dev. Min Max 

Training 9  71  47 17,353 244.41 217.0  114.73 75 683 
Validation 7  68  45 14,809 217.78 202.5  90.51 68 518 
Testing 9  61  29 16,236 266.16 240.0  105.94 48 495 
Total 25  200  121 48,398 241.99 225.0  106.12 48 683 

Fig. 8. (a) Wf trained using UNBC-McMaster Shoulder Pain Archive. We observe the high weights assigned to mostly the relevant activations (AU 4, 
6, 7, 10, 43) at the relevant time-step even though the receptive field (= 24) is far larger than 1. (b) The non-zero tiny contributions from other FAU 
activations (e. g. AU 25, 26) at a non-central time-step becoming the most relevant in predicting low PSPSI value. Notice the resulting low pass filter 
effect at the PSPI onset. 
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other than 24 time-steps, we witness, in principle, very similar assignment of filter weights. 

We are able to achieve CCC greater than 0.8, irrespective of the receptive field we use for the intermediate Conv1D layer. 
However, such a high performance means a little, and needs to be looked at carefully – especially when many of the entire output 
sequences are constantly zero-valued. We find that for the database contained 121 sequences in total. For the data-splits we made, 
these were divided into training, validation and testing split as 47 (out of 71), 45 (out of 68), and 29 (out of 61) zero-valued 
sequences respectively. To more stringently and more meaningfully evaluate the trained models, we get rid of all of the zero-valued 
input matrices, and test using the rest of the test split. Still, the CCC consistently turned out to be greater than to 0.8 with enough 
epochs of training. 

7.2. BioVid database: Experiments and insights 

Likewise, we train and test our models on part A of the BioVid Database featuring 8 700 video recordings (87 subjects  ×  5 pain 
levels  ×  20 stimuli) as discussed in Section 4.1 (Walter et al., 2013; Werner, Al-Hamadi, & Walter, 2017). Only 435 out of 8700 have 
been manually annotated with FAU activations, and two novel sequence-level pain annotations as a measure of ‘expressiveness’ of the 
subject (Werner et al., 2017). They compute first the frame-level PSPI values for the 435 videos (87 subjects  ×  5 pain levels  ×  1 
chosen stimulus out of 20). They then extract maximum PSPI in each of the five video sequences for every subject, as the re-
presentative PSPI of that sequence. The normalised standard deviation of the five maximum PSPI values (PSPI_SD) per subject, and 
the maximum PSPI for the sequence with the maximum pain stimulus (PSPI_PA4) are considered to be measure of ‘expressiveness’ of 
the subject in response to the pain stimulus (Werner et al., 2017) The PSPI_SD and PSPI_PA4 are reported to be highly correlated 
(Pearson correlation coefficient  > .63) with the subjective annotations coming from human observers. This expressiveness measure 
has been proven to be useful to meaningfully split the data, improving performance of the pain stimulus prediction (Werner et al., 
2017). In other words, late fusion of the two models – one for more expressive, and the other for less expressive subjects, based on 
individual expressiveness measure – has been shown to perform better in predicting the pain stimulus (e. g. pain threshold: BLN, 
tolerance threshold: PA4, intermediate stimuli: PA2, PA3) they were subjected to. 

In our experiments, we extract FAU activations for all of the 8700 videos using OpenFACE toolkit, and consequently the frame- 
level PSPI values. The OpenFACE toolkit does not extract AU43 (eyes closed), but AU45 (blink) instead. In total we have 41 feautures, 
namely the 17 FAU intensities, 18 binary values depicting FAU presence, and 6 pose related features. We generate the PSPI labels 
with the following equation. 

= + + +PSPI AU max AU AU max AU AU AU04 ( 06 , 07 ) ( 09 , 10 ) 45 .r r r r r c (15) 

Each video sequence is 5.5 seconds in duration, featuring 138 frames. The standard deviation of the maximum PSPIs (PSPI_SD) 
represents extent of variations in expressions in response to the pain. This measure takes into account subject’s responses to all of the 
pain stimuli, and is not based on just one stimuli of PA4. We compute PSPI_SD_New using the newly extracted 435 × 138 frame-level 
FAU activations and PSPI labels. We note that this newly obtained subject-level PSPI_SD_New is highly correlated with PSPI_SD metric 
( = .6542), with PSPI_PA4 metric ( = .6463), and the human annotator rating ( = .7056)3. Thus, the newly computed PSPI se-
quences can be considered to be consistent with the labels in the original dataset. While the database originally featured manually 
annotated PSPI labels for only 435 videos, we now extend the database to 8700 videos, i. e. 8 700  ×  5.5  ×  25=1 196 250 feature- 

Fig. 9. Violinplot of the predictive performances of the models with different TF. 

3 Reproducible using scripts available at https://github.com/vedhasua/tiny_emotionet . 
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label pairs. 
With the workflow mostly remaining identical to the one described in Section 7.1, we evaluate the proposed model on the BioVid 

dataset as well, with one exception that relates to scaling of the input features. We standardise the input features, using the scaling 
and offset factors learnt from the training split. This is because the ranges for the individual features (AU activations and head-pose) 
are drastically different. We also check if the model decisionss continue to remain interpretable, and are consistent to with our human 
understanding, the known mapping. Just as we saw in the case of UNBC-McMaster Shoulder Pain database, we get high predictive 
performance with model’s dependence on mostly the most relevant features at many of the time-steps (cf. AU45 in Fig. 10(a)). 
However, contrary to the expectations we otherwise would have from the filter weights (cf. Fig. 10(c)), the model was also seen to 
make creative use of non-relevant activations at certain time-steps (cf. Fig. 10(b)) for predicting low target values. Analysing oc-
currences of such ‘spurious’ or unexpected feature attribution scores (e. g. Figs. 8(b) and 10(c)), we note that these occur usually for 
predicting relatively small target outputs. Therefore, it is likely that these less influential weights assigned to the less relevant inputs 
are used to drive the output to a general bare minimum output, that is typically obtained in the absence of the most relevant 
activations. Because the FAU activations are strictly non-negative, an absence of the more relevant FAUs such as AU 4, 6, 7, 9, 10 (i. e. 
zero-valued input) translates to corresponding re-scaled inputs becoming negative input upon standardisation of the input matrix. 
This explains the negative contributions from AU 4, 6, 7, 9, 10 in predicting a small-valued label close to 1.0 in Fig. 10(c). The 
presented models are largely transparent; i. e. the inner workings are typically well-understood. 

8. Conclusions 

Towards explainable, robust, value- and time-continuous, real-time affect prediction on social media-based, web-assisted ‘in-the- 
wild’ video chat sessions, we presented a shallow CNN-based model consisting of a single one dimensional convolutional layer. 
Through statistical analysis of the input features, we investigated as to how and why the model assigns the filter weights the way it 
does. Because we used linear activation, we computed the feature attribution scores of the individual features for every model (i. e. 
the arousal and valence predicting models, consuming 37, 19 or 7-dimensional input feature vectors) and derived the most relevant 
FAU features. Thus, we effectively applied the computed feature attribution scores for feature selection and annotator delay com-
pensation, from which new models evolved. Because there are currently only a few hyperparameters, namely the delay compen-
sation, receptive field, and feature indices), in our planned future work, we intend to use genetic algorithms to automate the process 
of model learning, and arrive at even more computationally inexpensive and better performing affect-predicting models. To account 
for the ambiguity and simultaneous existence of multiple emotions (Gibaja & Ventura, 2015), the models could be retrained by 
incorporating ambiguity-aware emotion labels Sethu et al.. 

In spite of the observation that all of the models end up utilising primarily 7 out of 37 features, one can not definitively claim that 
the remaining 30 features are not informative enough in general. The reason for under-utilisation of 30 features is the inherent skew 
in the entropy across different features, that could be specific to the SEWA database. Also, because only 7 features were utilised at this 
point, we would refrain from making any strong claims in regards to consistency of the model with respect to human utilisation of 
these features to predict affective behaviours. The 7 emphasised features were all derived from different eye and eyebrow activity- 
related FAUs, which is consistent with the human emotion expression (Cavé et al., 1996). Because we have modelled the input to an 
output relationship using only the linear activations, methods utilising non-negative or sparse matrix factorisation are very likely 
directly relevant (Trigeorgis, Bousmalis, Zafeiriou, & Schuller, 2017). 

As we have shown through statistical analysis, the 30 derived features were not informative enough, but this is likely specific to 
the AVEC 2019 challenge dataset. Different FAUs span over different timescales (Valstar & Pantic, 2006), and 1 second moving 
window-average and -standard deviation features might not capture the sporadic, sparse, yet certain highly informative facial muscle 
activations (e. g. eye-roll) that effectively reduce down to the zero-valued utility functions thanks to the considered 1 second moving 
window. A possible scope for a future study is to train models on the raw FAU features without any moving window-based statistics. 
The correlation analysis for the individual FAUs, similar to Sargin, Yemez, Erzin, and Tekalp (2007), is likely to help shed light on 
how decoupled these individual features are. Also, it should be noted that a one-dimensional convolution operation is inherently a 
statistical summarisation over a moving window, and the weights of the model offer more degrees of freedom for this implicit feature 
extraction compared to the plain moving average. As a result, the feature attribution scores for the raw FAU features will help 
establish better understanding of human perception of emotion expression – similar to our previous study on textual features. 

We devised and trained the shallow models that achieved good predictive performance on German, Hungarian, and Chinese- 
speaking subjects, comparable to that of the state of the art models. Further, we demonstrated the versatility of the proposed 
approach through a set of experiments on two pain prediction corpora. The inherent transparency of the models allowed us to verify 
the model assigned high weights to FAU’s relevant for pain detection. In future work relating to these expirements, we plan to test the 
approach on across other modalities, and explore it’s usefulness as an adaptive, explainable feature fusion methodology. 

Finally, our proposed network architecture uses the features that can be computed in real-time, and is computationally very 
inexpensive due to its size and small number of learnable parameters. The proposed models, therefore, can be easily integrated into 
devices such as smartglasses, or CCTV cameras. The study marks likely the first attempt at real-time, explainable AI for purely video- 
based time- and value- continuous affect prediction, pushing the frontiers of the research in advanced surveillance and healthcare 
monitoring systems. 
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