

Stereotactic radiotherapy combined with immunotherapy or targeted therapy for metastatic renal cell carcinoma

Stephanie G. C. Kroeze, Corinna Fritz, Jana Schaule, Shankar Siva, Klaus Henning Kahl, Nora Sundahl, Oliver Blanck, David Kaul, Sonja Adebahr, Joost J. C. Verhoeff, Georgios Skazikis, Falk Roeder, Michael Geier, Franziska Eckert, Matthias Guckenberger

Angaben zur Veröffentlichung / Publication details:

Kroeze, Stephanie G. C., Corinna Fritz, Jana Schaule, Shankar Siva, Klaus Henning Kahl, Nora Sundahl, Oliver Blanck, et al. 2020. "Stereotactic radiotherapy combined with immunotherapy or targeted therapy for metastatic renal cell carcinoma." *BJU International* 127 (6): 703–11. https://doi.org/10.1111/bju.15284.

Nutzungsbedingungen / Terms of use:

licgercopyright

Stereotactic radiotherapy combined with immunotherapy or targeted therapy for metastatic renal cell carcinoma

Stephanie G.C. Kroeze¹ D, Corinna Fritz¹, Jana Schaule¹, Shankar Siva², Klaus H. Kahl³, Nora Sundahl⁴, Oliver Blanck⁵, David Kaul⁶, Sonja Adebahr⁷, Joost J.C. Verhoeff⁸, Georgios Skazikis⁹, Falk Roeder¹⁰, Michael Geier¹¹, Franziska Eckert¹² and Matthias Guckenberger¹

¹Department of Radiation Oncology, University Hospital Zürich, University of Zurich, Zurich, Switzerland, ²Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia, ³Department of Radiation Oncology, University Hospital Augsburg, Augsburg, Germany, ⁴Department of Radiation Oncology, University Hospital Ghent, Belgium, ⁵Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, ⁶Department or Radiation Oncology, Charité-University Hospital Berlin, Berlin, ⁷Department of Radiation Oncology, Medical Center, Faculty of Medicine, German Cancer Consortium (DKTK), Partner Site Freiburg, University of Freiburg, Freiburg, Germany, ⁸Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands, ⁹Department of Radiation Oncology, Schwarzwald-Baar Klinikum, Villingen-Schwenningen, ¹⁰Department of Radiation Oncology, Ordensklinikum Linz, Linz, Austria, and ¹²Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany

Objectives

To evaluate the safety and efficacy of stereotactic radiotherapy (SRT) in patients with metastatic renal cell carcinoma (mRCC) concurrently receiving targeted therapy (TT) or immunotherapy.

Patients and Methods

Data on patients with mRCC were extracted from a retrospective international multicentre register study (TOaSTT), investigating SRT concurrent (≤30 days) with TT/immune checkpoint inhibitor (ICI) therapy. Overall survival (OS), progression-free survival (PFS), local metastasis control (LC) and time to systemic therapy switch were analysed using Kaplan–Meier curves and log-rank testing. Clinical and treatment factors influencing survival were analysed using multivariate Cox regression. Acute and late SRT-induced toxicity were defined according to the Common Terminology Criteria for Adverse Events v.4.03.

Results

Fifty-three patients who underwent 128 sessions of SRT were included, of whom 58% presented with oligometastatic disease (OMD). ICIs and TT were received by 32% and 68% of patients, respectively. Twenty patients (37%) paused TT for a median (range) of 14 (2–21) days. ICI therapy was not paused in any patient. A median (range) of 1 (1–5) metastatic tumour was treated per patient, with a median (range) SRT dose of 65 (40–129.4) Gy (biologically effective dose). The OS, LC and PFS rates at 1 year were 71%, 75% and 25%, respectively. The median OS and PFS were not significantly different among patients receiving TT vs those receiving ICIs (P = 0.329). New lesions were treated with a repeat radiotherapy course in 46% of patients. After 1 year, 62% of patients remained on the same systemic therapy as at the time of SRT; this was more frequent for ICI therapy compared to TT (83% vs 36%; P = 0.035). OMD was an independent prognostic factor for OS (P = 0.004, 95% confidence interval [CI] 0.035–0.528) and PFS (P = 0.004; 95% CI 0.165–0.717) in multivariate analysis. Eastern Cooperative Oncology Group performance status (ECOG-PS) was the other independent prognostic factor for OS (P = 0.001, 95% CI 0.001–0.351). Acute grade 3 toxicity was observed in two patients, and late grade 3 toxicity in one patient. No grade 4 or 5 toxicity was observed.

Conclusion

Combined treatment with TT or immunotherapy and concurrent SRT was safe, without signals of increased severe toxicity. As we observed no signal of excess toxicity, full-dose SRT should be considered to achieve optimal metastasis control in patients receiving TT or immunotherapy. Favourable PFS and OS were observed for patients with oligometastatic RCC with a good ECOG-PS, which should form the basis for prospective testing of this treatment strategy in properly designed clinical trials.

Keywords

stereotactic, immunotherapy, targeted therapy, concurrent, oligometastases, renal cell carcinoma, #KidneyCancer, #kcsm, #uroonc

Introduction

Approximately a third of patients with RCC have metastatic disease at first diagnosis and another third may develop metastatic disease [1]. Historically, patients with metastatic RCC (mRCC) were characterized by a poor prognosis, but, with the development of targeted therapy (TT) and immune checkpoint inhibitors (ICIs), patient outcomes have improved significantly [2,3]. Nevertheless, complete responses remain rare and failure of TT or ICI treatment is regularly observed. While second-line options unfortunately achieve mostly only low response rates, a multidisciplinary approach including localized metastasis-directed therapy (MDT) of mRCC is increasingly performed.

One established method for localized treatment of mRCC is metastasectomy [4]. However, a surgical approach is not possible for all patients or all metastases locations for technical or clinical reasons. Although RCC was historically thought to be radioresistant, with the development of stereotactic radiotherapy (SRT) which delivers a very high localized dose, very promising local response rates have been described [5,6], such that SRT has recently been included in the National Comprehensive Cancer Network guidelines for mRCC patients [7]. Although the role of SRT in mRCC is increasing, the evidence on using this local treatment option in patients receiving TT or immunotherapy is very limited. The aim of the present study was to analyse the safety and efficacy of SRT in mRCC patients treated with concurrent TT or immunotherapy.

Patients and Methods

An international multicentre registry study was established by the German Society for Radiation Oncology (DEGRO) working group for radiosurgery and SRT, to collect data retrospectively on patients receiving SRT concurrent to TT/ ICI (TOaSTT database). This study was approved by the ethics committees at all participating sites (BASEC-Nr. 2016-01807). For the present sub-analysis, all patients with a diagnosis of mRCC were extracted for the database. Patients were treated with SRT between April 2011 and March 2018. Inclusion criteria were: age ≥18 years; diagnosis of stage IV synchronous or metachronous metastatic disease; histological confirmation of RCC; SRT of any cranial or extracranial metastasis; and concurrent (≤30 days) treatment with TT or ICIs. Cranial SRT was defined as delivery of a maximum of

five radiotherapy fractions; for single-fraction radiosurgery, the minimum dose for inclusion was 16 Gy. Stereotactic body radiotherapy was defined as delivery of a maximum of 10 fractions with a minimum total dose of 50 Gy (2 Gy equivalent, α/β of 10 Gy). Oligometastatic disease (OMD) was defined as five or fewer synchronous or metachronous metastases and included oligoprogressive disease defined as five or fewer metastases while on TT or ICI therapy [8,9].

Endpoints were overall survival (OS), time to systemic therapy switch, progression-free survival (PFS), local metastases control (LC), and toxicity. OS was defined as time from SRT to time of death; living patients were censored at the date of last follow-up. PFS and LC were defined as time from SRT to time of cancer progression per SRT-treated lesion, and were determined by positron-emission tomography CT or MRI, MRI, CT, ultrasonography or X-ray imaging. PFS and LC were evaluated by censoring patients at their most recent imaging. Time to systemic therapy switch was defined as time from SRT to time of start of a new systemic therapy. Acute severe toxicity within the irradiated area certainly, probably or possibly related to SRT (<3 months after SRT, grade ≥3 events) was analysed using the Common Terminology Criteria for Adverse Events v.4.03. Late severe toxicity was evaluated in patients with a follow-up of ≥ 3 months.

Descriptive statistical analysis was performed with the SPSS v.25.0 statistics software package (IBM Corp., Armonk, NY, USA). Kaplan—Meier survival curves with log-rank analysis for comparison of subgroups were used to evaluate OS, PFS, TT and LC. Fisher's exact and chi-squared tests were used to compare differences between groups. Univariate and backward multivariate Cox regression analyses were performed to identify independent variables for OS, PFS, LC and TT. The Pearson correlation test was performed on the dose response histogram. A *P* value of <0.05 was taken to indicate statistical significance.

Results

Patient Characteristics

Data on 53 patients from 12 participating centres were included. Baseline patient characteristics are summarized in Table 1. The median (range) patient age was 61 (38–84) years, 89% of patients had an Eastern Cooperative Oncology

Table 1 Patient characteristics of metastatic RCC patients treated with stereotactic radiotherapy concurrent to targeted therapy/immune checkpoint inhibitors (N = 53).

Patient characteristics at time of SRT	
Age, years	61 (38–84)
Sex, n (%)	
Male	39 (76.5)
Female	12 (23.5)
ECOG-PS, n (%)	
0	26 (49)
1	20 (38)
2	5 (9)
3	1 (2)
Goal of SRT, n (%)	
Oligometastatic disease	31 (58)
Palliative	22 (42)
Involved organs	2 (1–6)
Status of primary tumour, n (%)	
Controlled	40 (76)
Progressive	9 (17)
Unknown	4 (7.5)
SRT-treated lesions, n	
Brain	77
Lymph nodes	3
Lung	23
Liver	3
Bone	20
Soft tissue	2
SRT-treated lesions per patient	
Cranial	2 (1–5)
Extracranial	1 (1–4)
Previous systemic treatment lines	1 (1–5)
Type of systemic therapy, n (%)	
TKIs	32 (60)
PD-(L)1 inhibitors	17 (32)
mTOR inhibitors	4 (8)
Prescribed BED ₁₀ , Gy	
Cranial	63.3 (45.1–125.4)
Extracranial	67.6 (40.8–129.4)
Total GTV volume, mL	
Cranial	0.84 (0.1–20.2)
Extracranial	13.2 (0.4–150.5)

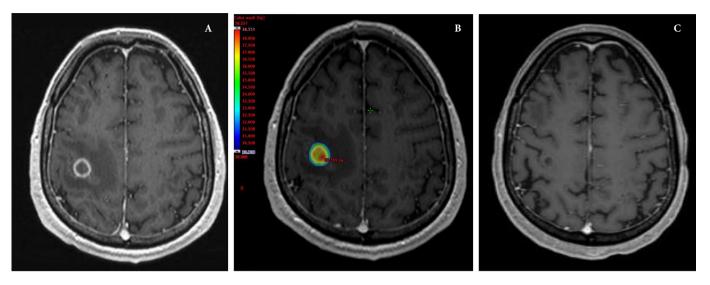
 BED_{10} , biologically effective dose; ECOG-PS, Eastern Cooperative Oncology Group performance status; SRT, stereotactic radiotherapy; TKI, tyrosine kinase inhibitor; GTV, gross tumor volume. Data are median (range), unless otherwise indicated.

Group performance score (ECOG-PS) of ≤ 1 , 72% had minimal comorbidities (age-adjusted Charlson Comorbidity Index ≤ 3). At the time of SRT, multi-organ metastatic disease was present in 65% of patients, with a median (range) of 2 (1–6) involved organs per patient. In terms of metastatic status, 31 patients (58%) had OMD, defined as five or fewer new or progressive lesions present and treated with MDT. In 42% of patients (22/53), SRT was performed with palliative intent at the discretion of the local treating physician.

Systemic Therapy

Overall, 77.4% of patients were receiving first-line systemic therapy, while 22.6% were receiving at least second-line therapy (Table 1). Of all patients, 32% received ICIs, consisting of nivolumab, pembrolizumab or avelumab. All

other patients (68%) received TT, consisting of sunitinib, sorafenib, axitinib, erlotinib, pazopanib, temsirolimus or everolimus. ICI/TT were started before SRT in 76% of patients, with a median (range) start of 126 (5–1480) days before SRT. The remaining 24% of patients started their ICI/TT during SRT or at a median (range) of 5 (range 1–29) days after SRT. In 37% of cases, TT was paused during SRT, for a median (range) of 14 (2–21) days. ICI therapy was paused in none of the included patients during SRT.

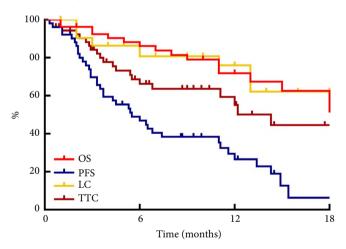

Stereotactic Radiotherapy

In total, 128 lesions were treated with SRT in 71 SRT sessions. Brain metastases were the most frequent location (52%), with a median (range) of 2 (1-5) brain metastases treated per patient (example shown in Fig. 1). The median (range) gross tumor volume (GTV) of brain metastases was 0.84 (0.07-20.2) mL. The median (range) prescribed physical dose and biologically effective dose (BED₁₀) for brain metastases was 20 (18-30) Gy and 63.3 (45-125) Gy in a median (range) of 1 (1-6) fraction. SRT of extracranial lesions was performed in 48% of patients. Treated lesions were located in lymph nodes (n = 3), lung (n = 23), liver (n = 23)= 3), bone (n = 20) or soft tissue (n = 2). In patients receiving ICIs specifically, SRT-treated lesions were located in the lymph nodes (n = 2), lung (n = 8), liver (n = 1), bones (n = 1)= 4) and brain (n = 11). A median (range) of 1 (1-4)extracranial lesion was treated per patient, with a median (range) prescribed physical dose of 24 (20-54) Gy and a BED₁₀ of 67.6 (40.8-129.4) Gy in a median (range) of 3 (1-10) fractions. The median (range) GTV volume of stereotactic body radiotherapy was 13.2 (0.42-150.50) cc. The reported reasons for SRT were palliation of symptoms (38%), prevention of future complications (54%), attempt to prolong treatment with current systemic therapy (31%) and to induce a possible immunomodulation effect (17%).

Effectivity and Factors Influencing Survival

The median (range) follow-up was 12 (1–37) months. Local metastasis control of SRT-treated lesions after 1 year was 75% (Fig. 2). A higher radiation dose resulted in a better LC rate (Pearson correlation, P=0.0110; Fig. 3). Patients receiving a BED₁₀ of <60 Gy had worse LC rates after 1 year. No abscopal effects were observed. Overall, PFS after 1 year was 25%. The presence of OMD treated with SRT resulted in a significantly better PFS than presence of more than five lesions (P=0.003; hazard ratio 0.34, 95% CI 0.165–0.708), with a median (range) of 11.6 (0.3–18) months compared to 3.3 (1.1–12.2) months. There was a trend towards better PFS for patients receiving ICI therapy compared to TT (median 11.6 vs 5.4 months; P=0.10). This was not the case for LC (20.1 vs 14.5 months; P=0.476) or OS (median 19.5 vs 18.3 months; P=0.329). When progression developed,

Fig 1 Example of stereotactic radiotherapy (SRT)-treated metastases of the brain. **A**, Brain metastases of the left hemisphere with surrounding cerebral edema (T1 contrast-enhanced MRI). **B**, Delivered SRT to the cerebral metastases. **C**, T1 contrast-enhanced MRI 6 months after SRT showing tumour response as well as complete recovery of the cerebral oedema.


approximately half of patients (54%) progressed with five or fewer new lesions, mostly in more than one organ (59%). Progressing patients were treated with a second course of radiotherapy in 46% of cases and with surgical resection in 5.7% of new lesions. After 1 year, 62% of patients were still being treated with the same systemic therapy as at the time of SRT. This was significantly more common for ICI therapy compared to TT (83% vs 36%; P = 0.035). A median (range) time to systemic therapy switch of 14 (1-32) months for OMD and 8.1 (1-22 months) for palliative cases was observed (P = 0.685). When patients switched systemic treatment, the next line of treatment was most frequently another TT: 36% (14/39). Patients receiving TT switched to another TT (14%) or chemotherapy (10%), patients receiving ICI most commonly switched to TT (20%). After 1 year, the OS rate was 52% for palliative SRT (median [range] 13.1 [0.7-22] months) and 84% for patients with OMD (median [range] 23.3 [3-32] months). The cause of death was tumourrelated in 94% of patients and never therapy-related.

The results of the univariate analysis are presented in Table 2. Independently prognostic variables for longer OS were OMD and an ECOG-PS of 0 at time of SRT (Fig. 4). Only OMD treated with SRT remained an independent prognostic variable for longer PFS. The time to systemic therapy switch was longer in the scenario of metastases confined to only one organ, and when the primary tumour was controlled at time of SRT.

Toxicity

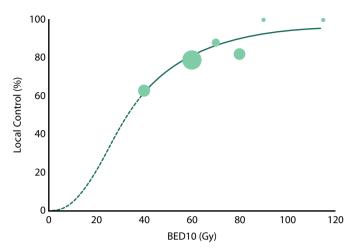

Acute severe toxicity possibly or probably caused or worsened by SRT was observed in two patients during the total of 71

Fig 2 Kaplan–Meier curve. LC, local metastasis control; OS, overall survival; PFS, progression-free survival; TTS, time to systemic therapy switch.

SRT sessions (2.8%). Both toxicities developed after SRT of brain metastases and consisted of grade 3 dysarthria and grade 3 incomplete paresis of both arms in one patient and grade 3 headache as well as grade 3 vertigo in another patient. Both were caused by cerebral oedema after SRT, as evaluated with MRI. The cerebral edema was regression after steroid treatment. One patient received SRT of three brain metastases with 21 Gy in 1 fraction while receiving therapy with sunitinib. The second patient received SRT of five brain metastases after whole-brain irradiation 4 years earlier. This patient was receiving everolimus, which was paused for 4 days during SRT with 20 Gy in 1 fraction. Late grade 3 toxicity was observed in one patient receiving SRT of a single brain metastases in the left frontal lobe while receiving

Fig 3 Dose volume histogram of local control rates after stereotactic radiotherapy of RCC metastases.

therapy with temsirolimus, and consisted of dysphasia caused by radiation necrosis, with no complete recovery after steroid treatment. Temsirolimus was not paused during treatment, and the applied radiation dose was 20 Gy in 1 fraction. No grade 4 or 5 toxicity was observed.

Discussion

Although SRT is now included as an option for local ablative treatment of mRCC lesions in international guidelines, there is only little evidence on the effects of SRT in patients who are simultaneously being treated with modern systemic therapy options such as TT or ICIs [6,10–20]. The limited available literature on this topic is disproportionate to the numerous mRCC patients receiving TT or ICIs that are increasingly treated with SRT in a multimodality approach, and is despite the observation that pausing these systemic therapies during SRT might pose a risk of disease flare [21].

The present study therefore focused on the safety and efficacy of metastasis-directed SRT concurrent with TT or ICI treatment in mRCC patients. Our data showed that concurrent treatment was characterized by a favourable safety profile, with a low risk of additional severe toxicity caused by SRT. Simultaneously, LC 1 year after SRT-treated lesions was promising. Patients with OMD, defined as a maximum of five metastases, all treated with SRT, had a significantly longer OS and PFS compared to patients with polymetastatic disease, defined as more than five metastases.

Although several retrospective studies have evaluated MDT in patients with oligometastatic RCC, the role of MDT in patients receiving simultaneous TT or ICI treatment is currently less well investigated. Over the last years, a few small retrospective studies proposed a benefit in tumour control of performing metastasectomy in patients receiving TT [22-25]. For SRT concurrent with TT, eight retrospective studies and one prospective study have been published since 2011 (Table 3). Most focused on brain metastases [5,10,12,16,19,26,27], but some also included extracranial lesions [5,13,14,17,19]. The combination of ICIs with SRT is a new approach in mRCC. In addition to our data, the currently available data consist of four retrospective studies [11,14,16,18] with small patient numbers published in the last 2 years, and the recently published first prospective study on concurrent SRT and ICI that included five patients [13] (Table 3). All available data, including the present study, describe a limited risk of severe toxicity by MDT, ranging from 0% to 3%, as well as 1-year LC ranging between 74% and 98%.

The major aim of MDT is to improve patient outcome by achieving durable LC or ablation of all metastatic lesions. MDT as monotherapy without concurrent TT or ICI has been reported to achieve local metastases control rates of approximately 90% in mRCC, especially for patients with

Table 2 Univariate Cox regression analysis.

Variables		Univario	ate analysis
	OS P	PFS P	Time to systemic therapy switch P
Goal of MDT (OMD, palliative SRT)	0.006	0.058	0.338
Metastatic development (synchronous vs metachronous)	0.966	0.432	0.981
Previous lines of systemic treatment (1 vs >1)	0.087	0.26	0.343
Metastatic burden (≤5, >5 lesions)	0.004	0.003	0.041
Involved sites (1 vs >1)	0.026	0.166	0.064
Location of metastases (cranial vs extracranial)	0.29	0.267	0.751
ECOG-PS (0-3)	< 0.001	0.627	0.133
Status of primary tumour (controlled vs progressive)	0.275	0.146	0.184
Systemic therapy (TT, ICIs)	0.329	0.1	0.157
SRT location (cranial, extracranial)	0.25	0.11	0.496
Start TT (before, during, after SRT)	0.279	0.131	0.176
TT paused during SRT (yes vs no)	0.852	0.409	0.339

P < 0.05 is significant. ECOG-PS, Eastern Cooperative Oncology Group performance status; ICI, immune checkpoint inhibitor; MDT, metastasis-directed therapy; OMD, oligometastatic disease; OS, overall survival; PFS, progression-free survival; SRT, stereotactic radiotherapy; TT, targeted therapy.

Fig 4 Multivariate Cox regression analysis. P < 0.05 is significant. ECOG-PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; OMD, oligometastatic disease; SRT, stereotactic radiotherapy.

Variable	HR (95% CI)	P value						
Overall survival								
SRT of OMD (≤5 vs >5 metastases)	0.013 (0.035-0.528)	0.004		•		_		
ECOG-PS (0,1,2,3)	0.002 (0.000-0.052)	<0.001	-					
Progression-free survival								
SRT of OMD (≤5 vs >5 metastases)	0.342 (0.165-0.708)	0.004			=		_	
Time to therapy switch								
Involved sites 1 vs >1	0.159 (0.031-0.817)	0.028		-				
Status of primary tumor (controlled, not-			_					
controlled)	0.083 (0.012-0.546)	0.010						
			.00	.20	.40	.60	.80	1.00

oligometastatic disease [20,28]. In the present study, LC of SRT-treated lesions after 1 year was lower, at approximately 75%. This finding needs to be interpreted in the context of our retrospective multi-institutional study, where lower SRT doses were used, potentially because of concerns regarding unexpected toxicity due to concurrent treatment with TT or ICIs. In the present study, we did not observe a signal of increased rates of severe toxicity after combined treatment methods. Concurrent treatment with TT or ICI also did not compensate for the lower SRT doses, indicating that full-dose and not reduced-dose SRT is required for such combined modality treatment concepts in order to achieve optimal LC rates [14,29,30].

Patients with OMD, defined as maximum of five metastases, all treated with SRT, had favourable survival rates in the present study. This was the case for patients receiving TT or ICIs. Completeness of MDT appears to be an important factor influencing survival in mRCC [14,24,25,28]. Although the biological background of local therapy in OMD is largely unknown, the first prospective studies in other tumour types have shown that MDT does play an important role in delaying disease progression and improving survival in the oligometastatic setting [31,32]. This lack of prospective data on MDT for oligometastatic mRCC was one motivation for the present study, where we have observed promising PFS and OS rates for OMD patients. This is in accordance with the retrospective study by Meyer et al. [5], where a PFS of 7.6 vs 8.6 months and an OS of 23.2 vs 33.9 months was obtained after SRT of OMD and oligoprogressive disease,

respectively. In the present study, the median PFS and OS were 11.6 and 23.3 months, respectively, for OMD patients. These favourable survival data indicate that OMD patients do benefit from optimal local MDT and optimal systemic therapy, which was concurrent TT or ICI treatment in all patients in the present study. A further observation was that a good ECOG-PS influenced OS in these patients, which is known from other studies [26,32]. Therefore, based on the current retrospective data, patients with OMD with a good ECOG-PS appear to be most promising candidates for MDT.

Both TT and ICIs have become standard treatment options in mRCC and have significantly improved PFS and OS [33]. However, when resistance occurs, patients face limited systemic treatment options and the prognosis is poor. We showed that local SRT of oligoprogressive metastases, in some cases even repeat irradiations, could postpone time to systemic therapy switch by approximately 1 year, with a low risk of toxicity by local radiotherapy. In the study by Meyer et al. [5], a similar time to systemic therapy switch, a median of 10.5 months, was observed. These results indicate the potential of a multidisciplinary approach in these challenging patients.

Limitations of the present study include a possible selection bias attributable to the retrospective nature of the study and the inclusion of patients who might have had a favourable prognosis due to an initial good response to TT and ICIs, good ECOG-PS and a slow tumour progression. Furthermore,

Table 3 Overview of currently published literature on metastatic RCC concurrent to targeted therapy (tyrosine kinase inhibitors, mTOR inhibitors or immune checkpoint inhibitors).

Standburg 2012 Retrospecie Companients Companien	Author	Year	Study type	Cohort	Patients receiving concurrent SRT + TT, n	Number treated lesions, median (range)	SRT region	F	Start of TT	Median KPS	LC at 1 year, %	OS at 1 year, %	Acute severe (<g3) %<="" th="" toxicity,=""><th>Late severe (<g3) toxicity, %</g3) </th></g3)>	Late severe (<g3) toxicity, %</g3)
2012 Retrospective Objgometatatase, 24 NR Brain TKL inTOR NR	Staehler et al. [19]	2011	Retrospective	NR	106	1.2 (1–2)	Brain, body	TKI	Concurrent	>70	86	NR	0	0
2013 Retrospective NR	Cochran et al. [12]	2012	Retrospective	Oligometastases, extensive metastatic disease	24	NR	Brain	TKI, mTORi, bevacizumab	NR	80	74	38	0	0
2013 Retrospective NR 63 1(1-NR) Rain TKL inTOR NR 280 1 (1-10) Inhibitor, inhibitor, inhibitor, increase, catanaive 20 1(1-12) Rain TKL inTOR Concurrent 290 200 Concurrent 290 200 Concurrent 290 20	Verma et al. [26]	2013	Retrospective	NR	40	1 (1–19)	Brain	TKI, mTOR inhibitor	NR	NR	75		NR	2.5
2015 Retrospective NR 2 1(1-12) Banin TKI Concurrent 290 1(1-24) Concurrent 290 Co	Vickers et al. [27]	2013	Retrospective	NR	63	1 (1–NR)	Brain	TKI, mTOR inhibitor,	NR	08	NR R	N.	NR	N N
2016 Retrospective Oligometastases, 70 1 (1-23) Body TK1 (n = 15) NR Actorospective Coligometastases, 20 1 (1-7) Body TK1 (n = 15) NR Actorospective Coligometastases, 22 1 (1-7) Brain TK1 mTOR Paraed during NR Actorospective Oligometastases, 22 1 (1-5) Brain TK1 mTOR Paraed during NR Actorospective Oligometastases, 22 NR Body TK1 mTOR Paraed during NR Actorospective Oligometastases, 22 NR Body TK1 mTOR Swedss Swedss Actorospective NR Actorospective Actorospective NR Actorospective NR Actorospective Actorospective NR Actorospective Actorospect	Bates et al. [10]	2015	Retrospective	NR	2	1 (1–17)	Brain	TKI	Concurrent	06/	NR	NR	NR	NR
Retrospective Oligometastases, original metastases, original metastatic 20 (1-1.3) Body in TKI (n = 15) TKI (n = 15) NR 90 10 Mark original metastases, original metastase, orig	Miller et al. [17]	2016	Retrospective	Oligometastases, extensive metastatic disease	20	1 (1->3)	Body (Spine)	TKI	Concurrent	80	96	NR	0	0
1 2018 Retrospective NR 3 2 (1-13) Brain ICI Within 2 weeks 280 2018 Retrospective Oligometastases, 124 1 (1-5) Brain TKI, mTOR Paused during NR 2018 Retrospective Oligometastases, 27 NR Body ICI During or 280 2019 Retrospective NR 231 1 (1-23) Brain TKI, mTOR Within 30 days 80 2019 Prospective NR 231 1 (1-23) Brain TKI, mTOR Within 30 days 80 2019 Prospective Oligometastases 17 NR Body TKI (n = 12) 24 TKI, mTOR Within 30 days 80 2019 Prospective Oligometastases 17 NR Body TKI (n = 12) 24 24 25 2019 Prospective Oligometastases 17 NR Body TKI (n = 12) 24 25 2019 Prospective Oligometastases 17 NR Body TKI (n = 12) 24 25 2019 Prospective Oligometastases 17 NR Body TKI (n = 12) 25 25 2019 Prospective Oligometastases 17 NR Body TKI (n = 12) 25 25 2019 Prospective Oligometastases 17 NR Body TKI (n = 12) 25 25 2019 Prospective Oligometastases 2010	Hoerner-Rieber et al. [14]	2017	Retrospective	Oligometastases, extensive metastatic	20	1 (1–7)	Body (lung)	TKI $(n = 15)$, ICI $(n = 5)$	NR	06	86	84	0	0
2018 Retrospective oligometastases, oligometastases 124 1 (1-5) Brain, others oligometastases, others oligometastases, oligometastases 124 1 (1-5) Brain, others oligometastases TKI, mTOR Paused during or short oligometastases, others oligometastases 37 NR Brain TKI, mTOR Within or short oligometastases NR 1 2019 Prospective oligometastases NR 231 1 (1-23) Brain oligimitor, or oligometastases Brain oligimitor, or oligimitor, or oligimitor, or oligimitor, or oligimitor, or oligimitor, or oli	Chen et al. [11]	2018	Retrospective	NR	က	2 (1–13)	Brain	ICI	Within 2 weeks before/after SRT	08	88	NR	m	1
2018 Retrospective Oligometastases, 27 NR Body ICI During or 280	Meyer et al. [5]	2018	Retrospective	Oligometastases, oligoprogression, residual tumor	124	1 (1–5)	Brain, body	TKI, mTOR inhibitor,	Paused during SRT	N R	83	NR	2.6	2.6
2019 Retrospective NR 35 1 (1—23) Brain TKI, mTOR Within NR half-lives before SRT, not paused and phase 1B an	Mohamad et al. [18]	2018	Retrospective	Oligometastases, extensive metastatic disease	27	NR	Body	ICI	During or 8 weeks before/after SRT	08	NR	NR	5.4	Ä
2019 Retrospective NR 231 $1(1-23)$ Brain TKI, mTOR Within 30 days 80 inhibitor, before/after cytokine SRS therapy 2019 Prospective Oligometastases 17 NR Body TKI $(n=12)$, ≥ 4 months NR SRT, int	Klausner et al. [16]	2019	Retrospective	NR	35	1 (1->3)	Brain	TKI, mTOR inhibitor, ICI	Within 5 biological half-lives before SRT, not naused	Z K	94	52	NR	ğ
2019 Prospective Oligometastases 17 NR Body TKI ($n=12$), ≥ 4 months NR SI ICI ($n=5$) before SI SBRT, not	Juloori et al. [15]	2019	Retrospective	N N	231	1 (1–≥3)	Brain	TKI, mTOR inhibitor, cytokine therapy	Within 30 days before/after SRS	08	87	09	N R	N.
pansed	Dengina et al. [13]	2019	Prospective phase 1B	Oligometastases	17	N N	Body	TKI $(n = 12)$, ICI $(n = 5)$	≥4 months before SBRT, not paused	N N	NR	NR	0	K K

ICI, immune checkpoint inhibitor; LC, local metastasis control; NR, xxx;OS, overall survival; SBRT, stereotactic body radiotherapy SRT, stereotactic radiotherapy; TKI, tyrosine kinase inhibitor; TT, targeted therapy; NR, not reported.

as all patients received combined modality treatment, this study does not allow the definitive influence of SRT on outcome to be evaluated. However, the available studies examining local therapy of metastases in RCC patients have consistently shown a positive effect on PFS, OS and time to systemic therapy. Prospective trials are under way (NCT03575611, NCT03256981). We decided to include both patients receiving ICI treatment and those receiving TT. Although we realize that the biology and tumour response differ for these different systemic therapies, it is of paramount importance to increase our knowledge on SRT in the metastatic setting for patients receiving modern targeted agents. Other limitations could be the small number of included patients and the heterogeneity in SRT treatment characteristics. However, the variations in applied radiation dose allowed us to evaluate the effectiveness with regard to LC and highlighted the importance of administration of higher SRT doses to obtain good LC.

In conclusion, combined treatment with TT or immunotherapy and concurrent SRT was safe, without signals of increased severe toxicity. As we observed no signal of excess toxicity, full-dose SRT should be considered to achieve optimal metastasis control in patients receiving TT or immunotherapy. Favourable PFS and OS was observed for patients with oligometastatic RCC, which should form the basis for prospective testing of this treatment strategy in properly designed clinical trials.

Conflicts of Interest

N. Sundahl reports non-financial support from Bayer, MSD, Bristol-Myers Squibb and Astellas, outside the submitted work. S. Siva reports personal fees from the National Health and Medical Research Council and Cancer Council Victoria Colebatch Fellowship outside the submitted work. G. Skazikis reports grants from the University of Zurich, during the conduct of the study. M. Geier reports personal fees from Roche and Bristol-Myers Squibb outside the submitted work. D. Kaul reports personal fees from Novocure outside the submitted work. S. Adebahr reports personal fees from the German Consortium of Translational Cancer Research (DKTK), during the conduct of the study. K. H. Kahl reports personal fees from Bristol Myers Squibb, MSD, Merck, AstraZeneca, Varian, Elekta and Zeiss Meditec, outside the submitted work. J. J. C. Verhoeff, O. Blanck, M. Guckenberger, J. Schaule, F. Roeder, F. Eckert and C. Fritz declare no conflicts of

This work was financially supported by Varian Medical Systems. Varian Medical Systems was not involved in the study design, collection, analysis and interpretation of data, the writing of the report or in the decision to submit the article for publication.

References

- 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68: 7–30
- 2 Motzer RJ, Hutson TE, Tomczak P et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 2009; 27: 3584–90
- 3 Motzer RJ, Tannir NM, McDermott DF et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018; 378: 1277–90
- 4 Capitanio U, Montorsi F. Renal cancer. Lancet 2016; 387: 894-906
- 5 Meyer E, Pasquier D, Bernadou G et al. Stereotactic radiation therapy in the strategy of treatment of metastatic renal cell carcinoma: a study of the Getug group. Eur J Cancer 2018; 98: 38–47
- 6 Siva S, Kothari G, Muacevic A et al. Radiotherapy for renal cell carcinoma: renaissance of an overlooked approach. *Nat Rev Urol* 2017; 14: 549–63
- 7 NCCN. Kidney Cancer Version 2, 2020 25/09/2020.
- 8 Guckenberger M, Lievens Y, Bouma AB et al. Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. *Lancet Oncol* 2020; 21: e18–28
- 9 Lievens Y, Guckenberger M, Gomez D et al. Defining oligometastatic disease from a radiation oncology perspective: an ESTRO-ASTRO consensus document. *Radiother Oncol* 2020; 148: 157–66
- 10 Bates JE, Youn P, Peterson CR 3rd et al. Radiotherapy for brain metastases from renal cell carcinoma in the targeted therapy era: the University of Rochester experience. Am J Clin Oncol 2017; 40: 439–43
- 11 Chen L, Douglass J, Kleinberg L et al. Concurrent immune checkpoint inhibitors and stereotactic radiosurgery for brain metastases in non-small cell lung cancer, melanoma, and renal cell carcinoma. *Int J Radiat Oncol Biol Phys* 2018; 100: 916–25
- 12 Cochran DC, Chan MD, Aklilu M et al. The effect of targeted agents on outcomes in patients with brain metastases from renal cell carcinoma treated with Gamma Knife surgery. J Neurosurg 2012; 116: 978–83
- 13 Dengina N, Mitin T, Gamayunov S, Safina S, Kreinina Y, Tsimafeyeu I. Stereotactic body radiation therapy in combination with systemic therapy for metastatic renal cell carcinoma: a prospective multicentre study. ESMO Open 2019; 4: e000535
- 14 Hoerner-Rieber J, Duma M, Blanck O et al. Stereotactic body radiotherapy (SBRT) for pulmonary metastases from renal cell carcinomaa multicenter analysis of the German working group "Stereotactic Radiotherapy". J Thorac Dis 2017; 9: 4512–22
- 15 **Juloori A**, **Miller JA**, **Parsai S et al.** Overall survival and response to radiation and targeted therapies among patients with renal cell carcinoma brain metastases. *J Neurosurg* 2019; 132: 1–9
- 16 Klausner G, Troussier I, Biau J et al. Stereotactic radiation therapy for renal cell carcinoma brain metastases in the tyrosine kinase inhibitors era: outcomes of 120 patients. Clin Genitourin Cancer 2019; 17: 191–200
- 17 Miller JA, Balagamwala EH, Angelov L et al. Spine stereotactic radiosurgery with concurrent tyrosine kinase inhibitors for metastatic renal cell carcinoma. *J Neurosurg Spine* 2016; 25: 766–74
- 18 Mohamad O, Diaz de Leon A, Schroeder S et al. Safety and efficacy of concurrent immune checkpoint inhibitors and hypofractionated body radiotherapy. Oncoimmunology 2018; 7: e1440168.
- 19 Staehler M, Haseke N, Nuhn P et al. Simultaneous anti-angiogenic therapy and single-fraction radiosurgery in clinically relevant metastases from renal cell carcinoma. BJU Int 2011; 108: 673–8
- 20 Zaorsky NG, Lehrer EJ, Kothari G, Louie AV, Siva S. Stereotactic ablative radiation therapy for oligometastatic renal cell carcinoma (SABR ORCA): a meta-analysis of 28 studies. Eur Urol Oncol 2019; 2: 515–23

- 21 Chaft JE, Oxnard GR, Sima CS, Kris MG, Miller VA, Riely GJ. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. *Clin Cancer Res* 2011; 17: 6298–303
- 22 Karam JA, Rini BI, Varella L et al. Metastasectomy after targeted therapy in patients with advanced renal cell carcinoma. J Urol 2011; 185: 439–44
- 23 Park YH, Jung JW, Lee BK et al. Targeted therapy after complete resection of metastatic lesions in metastatic renal cell carcinoma. *Int J Urol* 2015: 22: 153–7
- 24 You D, Lee C, Jeong IG et al. Impact of metastasectomy on prognosis in patients treated with targeted therapy for metastatic renal cell carcinoma. J Cancer Res Clin Oncol 2016; 142: 2331–8
- 25 Yu X, Wang B, Li X et al. The Significance of metastasectomy in patients with metastatic renal cell carcinoma in the era of targeted therapy. *Biomed Res Int* 2015; 2015: 176373
- 26 Verma J, Jonasch E, Allen PK et al. The impact of tyrosine kinase inhibitors on the multimodality treatment of brain metastases from renal cell carcinoma. *Am J Clin Oncol* 2013; 36: 620–4
- 27 Vickers MM, Al-Harbi H, Choueiri TK et al. Prognostic factors of survival for patients with metastatic renal cell carcinoma with brain metastases treated with targeted therapy: results from the international metastatic renal cell carcinoma database consortium. Clin Genitourin Cancer 2013; 11: 311–5
- 28 Dabestani S, Marconi L, Hofmann F et al. Local treatments for metastases of renal cell carcinoma: a systematic review. *Lancet Oncol* 2014; 15: e549–61
- 29 Kano H, Iyer A, Kondziolka D, Niranjan A, Flickinger JC, Lunsford LD. Outcome predictors of gamma knife radiosurgery for renal cell carcinoma metastases. *Neurosurgery* 2011; 69: 1232–9

- 30 Ruhle A, Andratschke N, Siva S, Guckenberger M. Is there a role for stereotactic radiotherapy in the treatment of renal cell carcinoma? Clin Transl Radiat Oncol 2019; 18: 104–12
- 31 Palma DA, Olson R, Harrow S et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, openlabel trial. *Lancet* 2019; 393: 2051–8
- 32 Stenman M, Sinclair G, Paavola P, Wersall P, Harmenberg U, Lindskog M. Overall survival after stereotactic radiotherapy or surgical metastasectomy in oligometastatic renal cell carcinoma patients treated at two Swedish centres 2005–2014. *Radiother Oncol* 2018; 127: 501–6
- 33 Albiges L, Powles T, Staehler M et al. Updated European Association of Urology guidelines on renal cell carcinoma: immune checkpoint inhibition is the new backbone in first-line treatment of metastatic clearcell renal cell carcinoma. Eur Urol 2019; 76: 151–6

Correspondence: Stephanie G.C. Kroeze, Department of Radiotherapy, University Hospital Zurich, Rämistrasse 100, CH 8091 Zürich, Switzerland.

e-mail: Stephanie.kroeze@usz.ch

Abbreviations: ECOG-PS, Eastern Cooperative Oncology Group performance status; ICI, immune checkpoint inhibitor; LC, local metastasis control; MDT, metastasis-directed therapy; mRCC, metastatic RCC; OMD, oligometastatic disease; OS, overall survival; PFS, progression-free survival; SRT, stereotactic radiotherapy; TT, targeted therapy.