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Abstract
Metabolic diversity leads to differences in nutrient requirements and responses to diet and medication between individuals. Using the concept
of metabotyping – that is, grouping metabolically similar individuals – tailored and more efficient recommendations may be achieved. The aim
of this study was to review the current literature on metabotyping and to explore its potential for better targeted dietary intervention in subjects
with and without metabolic diseases. A comprehensive literature search was performed in PubMed, Google and Google Scholar to find
relevant articles on metabotyping in humans including healthy individuals, population-based samples and patients with chronic metabolic
diseases. A total of thirty-four research articles on human studies were identified, which established more homogeneous subgroups of
individuals using statistical methods for analysing metabolic data. Differences between studies were found with respect to the samples/
populations studied, the clustering variables used, the statistical methods applied and the metabotypes defined. According to the number and
type of the selected clustering variables, the definitions of metabotypes differed substantially; they ranged between general fasting
metabotypes, more specific fasting parameter subgroups like plasma lipoprotein or fatty acid clusters and response groups to defined meal
challenges or dietary interventions. This demonstrates that the term ‘metabotype’ has a subjective usage, calling for a formalised definition. In
conclusion, this literature review shows that metabotyping can help identify subgroups of individuals responding differently to defined
nutritional interventions. Targeted recommendations may be given at such metabotype group levels. Future studies should develop and
validate definitions of generally valid metabotypes by exploiting the increasingly available metabolomics data sets.
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The human metabolome is influenced by genetic, transcriptional
and post-transcriptional factors as well as by the gut microbiome
and environmental factors like diet and other lifestyle
determinants(1,2). It is well known that individuals show large
differences in their nutrient requirements and responses to diet
and medication according to their metabolic characteristics(2–5).
Specific dietary recommendations or drug treatments for disease
states should thus be tailored to optimise the benefit to the
individual. Equally important, specific treatments should not
be provided to individuals with only a minor response or a
lack of positive response to the intervention. The concept of
personalisation is supposed to be more effective with respect to

individual benefit:risk ratio and health-care costs than currently
used general dietary recommendations and standard treatments
for chronic disease(3–8).

Such efforts have led to the concept of metabotyping or
metabolic phenotyping, which describes the categorisation of
individuals based on their metabolic or phenotypic characteristics
into more homogeneous subgroups, the so-called metabotypes or
metabolic phenotypes. This concept implies that individuals
within a subgroup show a high metabolic similarity and those in
different subgroups show a high dissimilarity. Metabotyping could,
thus, allow the identification of subpopulations or specific patient
groups responding differently to a defined dietary or medical
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intervention, promising better nutritional and medical treatment at
the metabotype group level(6,9–13).
The metabotyping approach has been used widely in healthy

animals(14,15) as well as in rodent models of disease for testing
drug effects(16,17). On this basis, it was possible to separate
strain-specific metabolic phenotypes or strain subtypes based on
the plasma, urine or faecal metabolic profiles, thereby finding
diagnostic and prognostic biomarker differences between
groups(14–26). Strain subtypes could be established by sex(19,23–25),
age(22), diet(20,26) or diurnal time of sample collection(18,21,25).
Further, several human studies have been conducted to define

specific metabotypes, but these studies used a variety of methods
and inconsistent definitions, indicating that the term ‘metabotype’
is often used with quite a different meaning. In reviews on
personalised nutrition, O’Donovan et al.(6) and Brennan(13)

proposed the concept of metabotyping and provided examples
of articles using the metabotyping approach.
The aim of this paper was to review the existing literature on

metabotyping in human studies, to show its application in targeted
nutrition and, thus, to provide recommendations for future studies
in this field.

Methods

A comprehensive literature search was performed using PubMed,
Google and Google Scholar up to May 2016. However, this is not
a strictly systematic review as described, for example, by the
Cochrane Collaboration(27) because of many open questions.
The first search strategy addressed the definition of metabotypes
in healthy individuals or population-based samples to find
evidence for differences in metabolism and corresponding
subgroups. The second search was conducted on the definition
of metabotypes in patients with chronic diet-related metabolic
diseases (obesity, metabolic syndrome, diabetes, dyslipidaemia,
hyperlipidaemia, hyperuricemia, gout and hypertension) for
diagnosing or establishing metabolically homogeneous patient
subgroups.
Different combinations of the following keywords were used

to search for studies that performed metabotyping in healthy
subjects or in population-based samples: ‘metabotype’, ‘metabolic
phenotype’, ‘metabolomic phenotype’, ‘molecular phenotype’,
‘clinical phenotype’, ‘biochemical phenotype’, ‘metabolic profile’,
‘metabolomic profile’, ‘metabolic pattern’, ‘nutritional phenotype’,
‘nutritype’, ‘metabolome’, ‘metabolomics’, ‘metabolism’ or
‘metabolic response’ and ‘cluster’, ‘pattern’, ‘subgroup’, ‘subtype’,
‘cluster analysis’ or ‘principal component analysis’. In addition,
an extended search was conducted on this topic including
information on underlying causes for differences in metabolism
between individuals, namely with regard to genetics, epigenetics,
transcriptomics or the microbiome(5). To this end, the search terms
‘genetics’, ‘genotype’, ‘SNP’, ‘epigenetics’, ‘transcriptomics’, ‘gut
microbiota’ or ‘enterotype’ were added to the search strategy
mentioned above.
The literature search concerning the definition of metabo-

types in patients was restricted to frequent chronic metabolic
diseases with a strong relation to diet. This selection was based
on the worldwide growing prevalence of diet-related metabolic
diseases such as obesity and type 2 diabetes, on the one hand,

and on the fact that, besides tailored medical treatments,
targeted dietary intervention could also have an important effect
on diet-related diseases, on the other(28). Thus, in addition to
the keywords mentioned above concerning the definition
of metabotypes in healthy subjects or population-based
samples, the following search terms referring to common
metabolic diseases were included in the search strategy:
‘obesity’, ‘adiposity’, ‘metabolic syndrome’, ‘diabetes’, ‘dyslipi-
daemia’, ‘hyperlipidaemia’, ‘hyperuricemia’, ‘gout’ or ‘hyper-
tension’. Again, extended searches with keywords addressing
underlying causes of metabolic differences were performed.

Relevant articles were selected by first checking titles and
abstracts and subsequently the full text of the search results in
accordance with the inclusion criteria. Additional studies were
identified through supplementary screening of the reference
lists of all articles analysed.

The following inclusion and exclusion criteria were used in the
literature search: original research articles in English language
on human studies, which established homogeneous groups of
individuals using statistical analyses based on metabolic data from
the body fluids blood and urine. Studies using exclusively other
information like genetic, epigenetic, transcriptomic, microbiome,
anthropometric or lifestyle data for group establishment
were excluded, except in combination with metabolic and/or
metabolomics data. In addition, studies in which metabotyping
was based only on the combination of simple cut-off points of
metabolic variables instead of on statistical analyses, as in the
definition of the metabolic syndrome, were not included in this
review. In general, all types of study designs were accepted and
there were no restrictions on sample size. However, the study
populations were limited to healthy subjects or population-based
samples in the first search and – for the definition of patient
subgroups – to individuals affected by common chronic
metabolic diseases in the second search. Extreme or rare chronic
diet-related metabolic diseases were not included.

Results

In total, thirty-four articles met the inclusion criteria, of which
twenty-five articles were related to the definition of metabo-
types in healthy subjects or population-based samples, and nine
articles were related to the definition of patient subgroups with
common metabolic diseases revealed by metabotyping.

Definition of metabotypes in healthy subjects or
population-based samples

Tables 1 and 2 summarise the key features of the twenty-five
articles identified according to the definition of metabotypes in
healthy subjects or population-based samples. Table 1 gives an
overview of twenty articles defining metabotypes based on fasting
data. Table 2 shows an additional five articles defining metabo-
types on the basis of metabolic response data for different dietary
interventions. Both tables present the respective study objectives,
designs and samples, the variables for clustering and their pre-
processing, the clustering methods used and their validation as
well as the main findings. With the exception of four
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Table 1. Definition of metabotypes based on metabolic data in the fasting state

References Objective
Study design and
study sample Variables for clustering

Preprocessing of
variables Clustering method Validation of cluster solutions Main findings

Van Bochove
et al.(29)

Plasma lipoprotein
clusters

Genetics of Lipid-
Lowering Drugs and
Diet Network
(GOLDN) study
(n 775) in the USA

NMR plasma lipoprotein profiles of ten
particles: three VLDL (large, medium
and small), four LDL (IDL, large,
medium small and very small) and three
HDL (large, medium and small)
particles

Normalisation by
standard
deviation

k-Means cluster
analysis (squared
Euclidean distance)

Well-differentiated lipoprotein profiles
by discriminatory variables (t test)

Stability of cluster results (500
replications of clustering to select the
result with the lowest total sum of
distances)

Biologically meaningful groups (Particle
Profiler model)

Three distinct subgroups with
differences in lipid characteristics
(low, medium and high degree of
dyslipidaemia) and in Prevalence of
cardiovascular risk factors

Positive lipid response of two subgroups
(medium and high degree of
dyslipidaemia) to fenofibrate therapy;
the resulting group is larger than groups
based on standard cut-off points for TAG
and HDL

O’Sullivan
et al.(30)

Metabolic
phenotypes

Intervention study
(n 135 healthy
subjects) of
participants aged
18–63 years in
Ireland

Thirteen blood 1H NMR biochemical
markers of the metabolic syndrome
(leptin, resistin, adiponectin, IL-6, CRP,
TNF-α, insulin, C-peptide, cholesterol,
TAG, NEFA, glucose, HOMA) and 25
(OH)D concentrations

z-Standardisation k-Means cluster
analysis (Euclidean
distance)

Well-differentiated metabotypes by
discriminatory variables (ANOVA,
GLM analysis, Bonferroni post hoc
multiple comparison test, PLS-DA
with R2, Q2 and variable importance
in the projection value)

Stability of cluster results (ten
iterations, 5-fold cross-validation)

Biologically meaningful groups

Five subgroups with distinct biochemical
profiles

One subgroup with lower serum 25(OH)D
and higher levels of adipokines and
resistin (cluster 5) responsive to vitamin-
D supplementation concerning markers
of the metabolic syndrome

O’Donovan
et al.(31)

Metabolic
phenotypes

National Adult Nutrition
Survey (NANS)
(n 896 adults) aged
18–90 years in
Ireland

Four routinely measured and widely
applicable serum markers of metabolic
health (TAG, total cholesterol, direct
HDL-cholesterol and glucose)

z-Standardisation
Outlier exclusion

Two-step cluster
analysis with
k-means cluster
analysis

Well-differentiated groups by
discriminatory variables (GLM
analysis, Bonferroni post hoc test)

Stability of cluster results (two-step
cluster analysis)

Biologically meaningful groups

Three distinct subgroups
Identification of a risk cluster with high

fasting levels of TAG, total cholesterol
and glucose

Development and validation of a decision
tree based on biochemical
characteristics, anthropometry and BP
for personalised dietary advice per
cluster

Vázquez-
Fresno
et al.(32)

Clinical
phenotypes

Prospective,
randomised, cross-
over and controlled
study (n 57
cardiovascular risk
patients aged ≥55
years) in Spain

Sixty-nine biochemical (blood, urinary
1H NMR) and anthropometric
parameters

No preprocessing k-Means cluster
analysis (Euclidean
distance)

Well-differentiated groups by
discriminatory variables (ANOVA/
Kruskal–Wallis test, Tukey’s post hoc
multiple comparison test/Mann–
Whitney test, OSC-PLS-DA)

Internal coherence (Dunn analysis),
external homogeneity (Figure of Merit
analysis)

Stability of cluster results (1000 different
random initialisations of clustering,
100 iterations, 7-fold internal cross-
validation)

Biologically meaningful groups

Four distinct subgroups
Identification of the two most

discriminant clusters 3 and 4
Different responses to red wine

polyphenols of the two subgroups
(cluster 3 and 4)

Frazier-Wood
et al.(33)

Plasma lipoprotein
clusters

Genetics of Lipid-
Lowering Drugs and
Diet (GOLDN) study
(n 1036 aged 48·8
(SD 16·2) years) in
the USA

Plasma lipoprotein diameters (VLDL, LDL,
HDL) by NMR spectroscopy

Standardisation Latent class analysis Well-differentiated groups by
discriminatory variables (mixed
effects models)

Stability of cluster results (good
internal reliability)

Biologically meaningful groups

Eight distinct subgroups with different
plasma lipoprotein diameters

Association of the subgroups with the
metabolic syndrome

Zubair et al.(34) Cardiometabolic
risk patterns

Cebu Longitudinal
Health and Nutrition
Survey (CLHNS)
(n 1768 women aged
36–69 years) in the
Philippines

Eight cardiometabolic biomarkers (TAG,
HDL, LDL, CRP, systolic and diastolic
BP, HOMA-IR and glucose)

z-Standardisation k-means cluster
analysis (Euclidean
distance)

Well-differentiated groups by
discriminatory variables
(multinomial logistic regression)

Stability of cluster results (1000
iterations, different cluster numbers)

Biologically meaningful groups

Five distinct subgroups of
cardiometabolic risk: ‘healthy’, ‘high
BP’, ‘low HDL’, ‘insulin resistant’ and
‘high CRP’
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Table 1. Continued

References Objective
Study design and
study sample Variables for clustering

Preprocessing of
variables Clustering method Validation of cluster solutions Main findings

Zubair et al.(35) Cardiometabolic
risk patterns

Cebu Longitudinal
Health and Nutrition
Survey (CLHNS)
(n 1621 individuals
aged 21 (SE 0·0)
years) in the
Philippines

Eight cardiometabolic biomarkers (TAG,
HDL, LDL, CRP, systolic and diastolic
BP, HOMA-IR and glucose)

z-Standardisation k-Means cluster
analysis

Well-differentiated groups by
discriminatory variables
(multinomial logistic regression)

Stability of cluster results (iterations,
different cluster numbers)

Biologically meaningful groups

Five distinct sex-specific subgroups of
cardiometabolic risk: ‘healthy/high
HDL’, ‘healthy/low BP’, ‘high BP’,
‘insulin resistant/high TAG’ and ‘high
CRP’

Prediction of clusters by diet, adiposity
and environment

Wilcox
et al.(36)

Metabolic
phenotypes

Framingham Heart
Study (FHS) cohort
(n 2885) in the USA

CVD risk factors Categorisation of
variables

Data reduction by
multiple-
correspondence
analysis

Two-staged clustering:
k-means cluster
analysis and
hierarchical cluster
analysis

Well-differentiated groups by
discriminatory variables (probability
of cluster membership by binary
logistic regression, genome-wide
linkage analyses)

Stability of cluster results (iterations,
two cluster analyses)

Biologically meaningful groups

Four distinct subgroups: one healthy
group, two groups with mild to
moderately elevated lipid levels, and
one group with strongly elevated lipid
levels

Assessment of heritability of traits

Wilcox
et al.(37)

Metabolic
phenotypes

Framingham Heart
Study (FHS)
offspring cohort
(n 2760) in the USA

CVD risk factors Categorisation of
variables

Data reduction by
multiple-
correspondence
analysis

Two-staged clustering:
k-means cluster
analysis and
hierarchical cluster
analysis

Well-differentiated groups by
discriminatory variables (probability
of cluster membership by binary
logistic regression, genome-wide
association analyses)

Stability of cluster results (iterations,
two cluster analyses)

Biologically meaningful groups

Five distinct subgroups: One group
dropped because of missing data, two
healthy groups, one group with
features of the metabolic syndrome
and one group with features of the
metabolic syndrome and obesity

Genetic associations, but loss of
significance after stratification/
adjustments

Tzeng et al.(38) Metabolic
phenotypes

Study (n 573 women of
reproductive age) in
Taiwan

Ten cardiovascular and metabolic risk factors
(systolic and diastolic BP, waist size,
fasting insulin, fasting glucose, 2-h
glucose, cholesterol, TAG, HDL and LDL)

No preprocessing Hierarchical cluster
analysis (Ward’s
method and within-
group linkage)

Well-differentiated groups by
discriminatory variables (χ2 test,
Fisher’s exact test, ANOVA, one-
way ANOVA post hoc range
(Dunnett’s) test)

Stability of cluster results (two cluster
analyses)

Biologically meaningful groups

Two distinct subgroups (low- and high-
risk group)

Association between endocrine
disturbances and increased risk for
metabolic diseases

Li et al.(39) Plasma fatty acid
patterns

Irish National Adult
Nutrition Survey
(NANS) (n 1052
aged 42·9 (SD 16·5)
years) in Ireland

Twenty-six plasma fatty acids Log-transformation
of skewed data

Exclusion of
outliers

Standardisation
(Subtraction of
minimum and
division by
range)

k-Means cluster
analysis (squared
Euclidean distance)

Well-differentiated groups by
discriminatory variables (GLM,
χ2 test, ANOVA, Bonferroni
correction)

Stability of cluster results (validation
analysis, scree plot examination,
two-step cluster analysis)

Biologically meaningful groups

Four subgroups with distinct fatty acid
profile

Relationship between plasma fatty acid
patterns, dietary intake and
biomarkers of metabolic health

The subgroup (cluster 3) higher in very-
long-chain SFA and lower in α-
linolenic acid was associated with
metabolic health

Bermúdez
et al.(40)

Selection of
metabolically
healthy and sick
individuals for
waist
circumference
cut-off point
selection

Maracaibo City
Metabolic Syndrome
Prevalence Study
(MMSPS) (n 1902
aged 38·70
(SD 15·06) years) in
Venezuela

Eleven metabolic variables (mean arterial
pressure, TAG, cholesterol, HDL,
HOMA2-IR, HOMA2-βcell, HOMA2-S,
fasting glucose, non-HDL-C cholesterol,
TAG/HDL-C index and
hs-CRP)

Log-transformation
of skewed data

Classification
according to BMI
before the two-
step cluster
analysis

Two-step cluster
analysis:
hierarchical
(centroid-based)
and k-means cluster
analysis (Euclidean
distance)

Well-differentiated groups by
discriminatory variables (t test,
ANOVA, cohesion, separation,
silhouette coefficient)

Stability of cluster results (training and
validation data set with Cohen’s
κ coefficient)

Biologically meaningful groups

Six subgroups with distinct
cardiometabolic profiles

Most predictive variables (HOMA2-IR,
HOMA2-βcell and TAG)

Selection of a cut-off point for waist
circumference (91 cm for women and
98 cm for men)

Micciolo(41) Metabolic
phenotypes

Patients of one general
practice in Castel
D’Azzano (n 458
aged 21–60 years) in
Italy

Seven metabolic variables (glucose, uric
acid, TAG, cholesterol, LDL and HDL
(both total and percentage)) and BP
levels or nine anthropometric
characteristics (six skinfolds and three
circumferences)

Log-transformation
of skewed data

Standardisation
(subtraction of
mean and
division by
standard
deviation)

k-Means cluster
analysis (separately
on anthropometric
and metabolic
variables for each
sex)

Well-differentiated groups by
discriminatory variables (hierarchical
algorithm for number of clusters, one-
way ANOVA, χ2 statistics)

Stability of cluster results (five iterations,
cross-classification of cluster results
using correspondence analysis, γ
coefficient and correlation coefficient)

Biologically meaningful groups

Seven distinct subgroups for men and
women, respectively

Solution with anthropometric variables
more stable than solution with
metabolic variables

Significantly different metabolic patterns
with anthropometric and metabolic
variables

Associations between anthropometric
characteristics and metabolic profiles
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Table 1. Continued

References Objective
Study design and
study sample Variables for clustering

Preprocessing of
variables Clustering method Validation of cluster solutions Main findings

Baumgartner
et al.(42)

Cardiovascular risk
factor groups

Cross-sectional study
(n 317 individuals
aged 18–88 years) in
the USA

Cardiovascular risk factors (BP, plasma
lipids, lipoprotein cholesterols and
serum glucose)

Log-transformation
of skewed data

Standardisation
(subtraction of
mean and
division by
standard
deviation)

k-Means cluster
analysis (Euclidean
distance)

Well-differentiated groups by
discriminatory variables (PCA for
number of clusters, one-way
ANOVA, χ2 test, discriminant
analysis)

Biologically meaningful groups

Four distinct subgroups for men and
women, respectively

Significant association of cluster
membership with indices of adiposity
but not with adipose tissue
distribution

Huang
et al.(43)

Metabolic
phenotypes

West Australian Cohort
(Raine) Study
(n 1094 adolescents
aged 14 years) in
Australia

The Metabolic syndrome components
(TAG, BMI, HOMA, systolic BP)

Log-transformation
of skewed data

Two-step cluster
analysis separately
by sex (log-
likelihood distance)

Well-differentiated groups by
discriminatory variables (one-way
ANOVA)

Biologically meaningful groups

Two distinct subgroups (high-risk and
low-risk cluster of cardiovascular and
metabolic disorders)

Relationships between inflammatory
markers and components of a
metabolic syndrome cluster

Andreeva-
Gateva
et al.(44)

Metabolic
phenotypes

Cross-sectional study
(n 113 subjects aged
21–70 years with an
increased risk for
type 2 diabetes) in
Bulgaria

Components of the metabolic syndrome:
anthropomorphic measurements, lipid
and carbohydrate parameters (during
oral glucose-tolerance test), insulin,
C-peptide, creatinine, CRP, liver tests,
β-cell function assessment, insulin
sensitivity and insulin resistance

z-Standardisation Hierarchical cluster
analysis (squared
Euclidean distance,
Ward’s method)

Well-differentiated groups by
discriminatory variables (test
statistics)

Stability of cluster results (PCA with
Varimax-normalised rotation for
latent factor identification)

Biologically meaningful groups

Two distinct subgroups
Association of clusters with different

patterns and stages of cardiovascular
risk → diversity of metabolic
disorders in subjects with an
increased risk for type 2 diabetes

Ventura
et al.(45)

Risk profiles for the
metabolic
syndrome

Longitudinal study
(non-clinical sample
of n 154 adolescent
girls aged 13 years)
in the USA

Six metabolic syndrome factors (systolic
and diastolic BP, HDL, TAG, waist
circumference and blood glucose)

Standardisation Mixture model (or
latent profile
analysis)

Well-differentiated groups by
discriminatory variables (GLM,
ANOVA, Fisher’s least significant
difference comparison, χ2 test,
Fisher’s exact test)

Stability of cluster results (AIC, BIC,
multiple iterations, different cluster
numbers)

Biologically meaningful groups

Four distinct subgroups of risk profiles
for the metabolic syndrome

Differences in developmental, lifestyle
and family history variables between
the subgroups

Bucci et al.(46) Cardiovascular risk
phenotypes

Data sets from France
of the Pôle
Cardiovasculaire de
l’Hôpital Européen
Georges-Pompidou
(n 618) and from
Uruguay (n 123)

Five clinical variables (age, systolic and
diastolic BP, LDL and HDL)

No preprocessing k-Means cluster
analysis (Euclidean
distance)

Validation using Framingham index
Well-differentiated groups by

discriminatory variables (t test)
Stability of cluster results (iterations,

silhouette index)
Biologically meaningful groups

Two distinct subgroups in the data sets
of France and Uruguay, respectively

Association of clusters with
cardiovascular risk patterns

Moazzami
et al.(47)

Metabolic
phenotypes

Randomised, controlled,
cross-over meal study
(n 19 postmenopausal
women aged 61
(SD 4·8) years) in
Finland

189 metabolites from LC-MS
metabolomics analysis (twenty-one
amino acids, seventeen biogenic
amines, forty-seven acyl-carnitines,
thirty-eight phosphatidylcholines, thirty-
nine acyl-alkyl phosphatidylcholines,
fourteen lysophosphatidylcholines,
fifteen sphingomyelins and one hexose)

No preprocessing Hierarchical cluster
analysis, O-PLS
and PCA

Well-differentiated groups by
discriminatory variables (O-PLS-
DA, GLM, ANOVA)

Stability of cluster results (three cluster
analyses, cross-validated ANOVA,
constant over three different
sampling days)

Biologically meaningful groups

Two distinct subgroups
Different postprandial metabolic

responses to breads (refined wheat,
whole-meal rye and refined rye
breads) → identification of individuals
with reduced insulin sensitivity

Different metabolic responses after
consumption of different breads

Qureshi
et al.(48)

(only
abstract of a
presentation
available)

Metabolic
phenotypes

Insulin Resistance
Atherosclerosis
Study (n 500
individuals) in the
USA

Ninety-three serum metabolites from liquid
chromatography-MS analysis

– Hierarchical cluster
analysis and PCA

Well-differentiated groups by
discriminatory variables (test
statistics)

Stability of cluster results (different
cluster numbers)

Biologically meaningful groups

133 individuals developed incident
hypertension

Identification of a cluster (n 154) with
high risk for incident hypertension

Identification of metabolites associated
with a high risk for incident
hypertension

IDL, intermediate-density lipoprotein; hs-CRP, high-sensitivity C-reactive protein; GLM, general linear model; HOMA-IR, homoeostasis model assessment of insulin resistance; OSC-PLS-DA, orthogonal signal-correction partial least squares discriminant analysis; BP,
blood pressure; HOMA2-S, homoeostasis model assessment of insulin sensitivity; PCA, principal component analysis; AIC, Akaike information criterion; BIC, Bayesian information criterion.
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Table 2. Definition of metabotypes based on metabolic response data to interventions

References Objective
Study design and
study sample Variables for clustering Preprocessing of variables

Clustering
method Validation of cluster solutions Main findings

Morris
et al.(9)

Response groups to
an oGTT

Metabolic
Challenge
(MECHE) study
(n 116 healthy
adults aged
18–60 years) in
Ireland

Response curves of blood
glucose to oGTT (blood
glucose measured during the
oGTT at 0, 10, 20, 30, 60, 90
and 120min)

No preprocessing Mixed-model
clustering

Well-differentiated response groups by
discriminatory variables (ANOVA,
GLM, Bonferroni post hoc multiple
comparison test)

Stability of cluster results (oral lipid-
tolerance test)

Biologically meaningful groups

Four distinct subgroups with different
responses to oGTT

One subgroup (cluster 1) as ‘at risk’
phenotype having the highest BMI,
TAG, hs-CRP, C-peptide, insulin
and HOMA-IR score and lowest
VO2max

Krishnan
et al.(49)

Response groups to
meal challenges
with different
glycaemic indices

Cross-over study
(n 24 healthy
premenopausal
women aged
20–50 years) in
the USA

Blood glucose, insulin and leptin Range-scaling PCA Well-differentiated response groups by
discriminatory variables (ANOVA,
Tukey’s post hoc test, Bonferroni
post hoc multiple comparison test)

Biologically meaningful groups

Three distinct subgroups with different
responses to meal challenges

One subgroup with higher insulin
resistance and another subgroup
with higher leptin values

Wang
et al.(50)

Response groups to
dietary carotenoids
in watermelon juice
and tomato juice

Cross-over study
(n 23 healthy
subjects) in the
USA

Temporal response of individual
plasma carotenoids
(β-carotene, lycopene,
phytoene and phytofluene)

Normalisation to baseline values k-Means cluster
analysis

Well-differentiated response groups by
discriminatory variables (t test)

Biologically meaningful groups

Five distinct subgroups with different
plasma responses to dietary
carotenoids → Identification of
strong and weak responders

Response differences between
individual carotenoids and between
interventions

Association of response with genetic
variants of carotenoid-metabolising
enzyme

Bouwman
et al.(51)

Response groups to
a 5-week dietary
intervention with
anti-inflammatory
ingredients

Controlled cross-
over study
(n 33 men) in
the Netherlands

145 metabolites, seventy-nine
proteins and 10 812
transcripts

Selection of significantly
changed plasma parameters
due to the intervention

Normalisation (subtraction of the
mean and division by the
distance between mean
scores of intervention and
placebo group)

Hierarchical
cluster analysis
(Euclidean
distance, group
average
linkage)

Well-differentiated groups by
discriminatory variables (PLS-DA,
ANOVA)

Stability of cluster results (double cross-
validation of PLS-DA)

Biologically meaningful groups

Two distinct subgroups of inter-
individual responses to intervention
→ Difference in metabolic stress
profile, inflammatory and oxidative
response

Effects of the nutritional intervention
on oxidative stress, inflammation,
and metabolism → Differentiation
between treated and untreated
individuals

Chua
et al.(52)

Circadian metabolic
phenotypes

Study (n 20 ethnic-
Chinese male
aged 21–28
years) in
Singapore

Time course of 263 plasma
lipids

Iterative feature selection
Elimination of linear trends of

time courses
z-Standardisation

k-Means cluster
analysis and
hierarchical
cluster analysis

Well-differentiated groups by
discriminatory variables (ANOVA,
Kruskal–Wallis test, Bayes method)

Stability of cluster results (consensus
clustering: 1000 iterations of k-means
cluster analysis, two cluster methods)

Biologically meaningful groups

Three distinct subgroups
13% of lipids showed circadian

variation
Diversity in circadian regulation of

plasma lipids, (glucose and insulin)

oGTT, oral glucose-tolerance test; GLM, general linear model; hs-CRP, high-sensitivity C-reactive protein; HOMA-IR, homoeostasis model assessment of insulin resistance; PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis.
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articles(36,41,42,45), the studies were published within the past
decade. The studies were conducted mainly, but not exclusively,
in Europe and the USA, either with population-based samples or
random samples of healthy individuals. The sample size of the
studies varied considerably from twenty to up to 3000 partici-
pants. Also, the age range of the study populations differed across
the studies with a main focus on adults. Regarding sex, two
studies investigated only men(51,52), five studies only
women(34,38,45,47,49) and all other studies included both sexes.
For the identification of metabotypes, different numbers of

clustering variables were used. Besides the use of full 1H NMR
spectra or metabolomics data in some studies(32,47,48,51,52), all other
studies used selected metabolites for clustering similar components
of the metabolic syndrome(43,45) or cardiovascular risk fac-
tors(36,37,42). The type of the cluster variables differed between the
studies using blood or urine metabolites, diverse metabolite classes
or specifically selected individual metabolite subclasses like lipo-
proteins or fatty acids and those using fasting metabolites (Table 1)
or metabolic responses to dietary interventions (Table 2).
According to the number and type of the selected clustering vari-
ables, the definitions of metabotypes differed considerably; they
ranged between general fasting metabotypes, more specific fasting
parameter subgroups like plasma lipoprotein(29,33) or fatty acid
clusters(39) and response groups to defined meal challenges or
dietary interventions. However, in most studies, at least some
standard clinical markers such as glucose, TAG and cholesterol
were included. Besides metabolic data, the inclusion of additional
phenotypic factors for the definition of metabotypes was imple-
mented in some studies: for example, the consideration of
anthropometric parameters like BMI or waist cir-
cumference(32,36–38,41,43–45) and blood pressure(34–38,40–43,45,46).
However, only the study by Bouwman et al.(51) also assessed some
underlying causes for differences in metabolism between sub-
populations in the clustering process using transcriptomics data.
Before grouping individuals into metabotypes, diverse

preprocessing steps were applied in the studies analysed to the
cluster variables such as outlier exclusion, log-transformation
of skewed data, dimension reduction (e.g. by multiple-
correspondence analysis) and standardisation (e.g. range-scaling
or z-standardisation). Different unsupervised learning methods
were used in the studies to define relatively homogeneous
metabolic groups of individuals. These included k-means cluster
analysis, hierarchical clustering and combinations of the two,
principal component analysis (PCA), latent class analysis(33) and
mixed-model clustering(9,45). Then, supervised learning methods,
such as partial least squares regression as well as statistical tests
like the t test and ANOVA, were used to find discriminatory
variables between the established groups. Clustering indices,
cross-validation procedures, repetitions with different cluster
seeds and cluster numbers as well as different clustering methods
were applied to validate the clustering results. Biologically
meaningful metabotypes, which were differentiated using
discriminatory variables, also confirmed the clustering results.
Using the clustering methods, different numbers of metabotypes
were found, ranging between two and eight groups. Some studies
identified subgroups of individuals with differential response to
nutritional interventions; others only described differences
between the subgroups, mainly in the fasting state.

The following two studies are examples for the establishment
of metabotypes using metabolite profiles obtained in the fasting
state and the subsequent investigation of differences in
response to dietary interventions between the subgroups.
O’Sullivan et al.(30) described metabotypes in an Irish inter-
vention study with 135 healthy individuals aged 18–63 years.
After z-standardisation, thirteen blood 1H NMR biochemical
markers of the metabolic syndrome and serum vitamin-D levels
were used in a k-means cluster analysis. Five distinct biologi-
cally meaningful clusters were found. Among these, one
group with lower serum vitamin-D levels and higher levels
of adipokines showed a positive response to vitamin-D
supplementation on parameters of the metabolic syndrome.
The stability of the cluster result was verified using a 5-fold
cross-validation method. Second, Vázquez-Fresno et al.(32)

investigated fifty-seven subjects at a high cardiovascular risk
aged ≥55 years in a randomised and controlled cross-over
study. k-Means cluster analysis revealed four well-differentiated
and biologically meaningful clusters using sixty-nine blood
and urine 1H NMR biochemical markers and anthropometric
variables identifying red wine polyphenol-responsive
metabotypes. In addition to cross-validation, cluster indices
like Dunn analysis and Figure of Merit analysis were used.

An example for the definition of metabotypes based on
metabolic response data to a dietary intervention is the Irish
Metabolic Challenge (MECHE) study, which included 116
participants aged 18–60 years(9). Mixed-model clustering of
blood glucose curves revealed four distinct metabotypes with
different responses to an oral glucose-tolerance test, of which
one group was identified as a high-risk phenotype. The stability
of the differentiated clusters was confirmed by another inter-
vention, an oral lipid-tolerance test. Wang et al.(50) described
metabotypes in a dietary intervention with carotenoid-rich
beverages in a cross-over design based on twenty-three healthy
subjects in the USA. In each carotenoid arm, the responses to all
plasma carotenoids were analysed individually. k-Means cluster
analysis revealed five distinct subgroups with different temporal
responses. Subsequently, strong and weak responders to
individual dietary carotenoids were identified. The different
responses were induced by genetic variants of the carotenoid-
metabolising enzyme β-carotene 15,15’-monooxygenase 1.

Definition of patient subgroups with metabolic diseases
by metabotyping

Table 3 presents nine publications that were selected during the
literature search on the definition of metabotypes in patients
with chronic diet-related metabolic diseases for diagnosing or
establishing metabolically homogeneous patient subgroups. All
articles were published within the last 10 years and, again, a
majority of the studies were performed in Europe and the USA
with differences in study design, sample size (between fifty and
50 000 participants) and the age range of adults. Both sexes were
considered in all studies. The articles describe the diagnosis
and subgrouping of patients affected by diabetes, obesity, the
metabolic syndrome or dyslipidaemia. Here, again, the definitions
of patient subgroups varied according to the use of different
numbers of metabolic clustering variables. In addition, the types
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Table 3. Definition of patient subgroups with metabolic diseases by metabotyping

References Objective
Study design and
study sample Variables for clustering

Preprocessing of
variables Clustering method Validation of cluster solutions Main findings

Zák et al.(53) Diagnosis and
identification of
distinct
phenotypes of
the metabolic
syndrome

Study (n 354 individuals
(166 patients with the
metabolic syndrome
and 188 controls)) in
the Czech Republic

Initially twenty-two but
reduced to six plasma fatty
acids in plasma
phosphatidylcholine
(dihomo-γ-linolenic,
stearic, myristic, DHA,
DPA and linoleic acids)

Examination of extreme
values

Power transformation
for symmetry and
constant variance

Variable reduction by
linear discriminant
analysis with forward
variable selection
using Wilk’s λ
criterion

Hierarchical cluster
analysis (Ward’s
method with
Euclidean
distance)

Well-differentiated individuals
by discriminatory
metabolites (t test,
Wilcoxon’s test, Benjamin–
Hochberg correction,
ANCOVA adjustments)

Biologically meaningful
groups

Diagnosis of the metabolic
syndrome

Two distinct subgroups of the
metabolic syndrome with
differences in
concentrations of glucose,
NEFA, HOMA-IR and
conjugated dienes in LDL

Schader(54) Subtypes of type 2
diabetes

GWAS (Framingham Heart
Study (FRAM), MESA
SHARe Study (MESA),
Atherosclerosis Risk in
Communities study
(ARIC)) (13459 study
participants aged 30–84
years (832 cases during
follow-up for clustering
and 12066 controls) in
the USA

Ten metabolic and
anthropometric
characteristics before
diagnosis of type 2
diabetes (sex, BMI, waist:
hip ratio, TAG, HDL,
glucose, insulin,
cholesterol, systolic BP
and diastolic BP)

Standardisation k-Means cluster
analysis
(Euclidean
distance)

Well-differentiated individuals
by discriminatory
metabolites (t test, Cox
proportional hazards
model)

Stability of cluster results
(Calinski method, twenty-
five iterations)

Biologically meaningful
groups

Two distinct subtypes
No statistical significant

differences in genetic risk
factors between the
subtypes

Li et al.(55) Subtypes of type 2
diabetes

Mount Sinai BioMe
Biobank Program
(n 11 210 individuals
mean aged 55·5 years,
of whom 2551 were
patients with type 2
diabetes) in the USA

Seventy-three clinical data
from high-dimensional
electronic medical records

Feature selection
(>50% of patients
with non-missing
values)

Topological analysis
(cosine distance)

Well-differentiated individuals
by discriminatory
metabolites (t test,
ANOVA, χ2 test)

Stability of cluster results
(random training and test
sets, stability and
robustness statistics)

Biologically meaningful
groups

Three distinct subtypes
characterised by
increased diabetic
nephropathy and
retinopathy in subtype 1,
cancer malignancy and
CVD in subtype 2 and
CVD, neurological
diseases, allergies and
HIV infections in subtype 3

Association of subtypes with
specific SNP

Amato et al.(56) Subtypes of type 2
diabetes

Cross-sectional study
(n 96 patients with type
2 diabetes aged 62·40
(SD 6·36) years
(range=51–75 years))
in Italy

Three fasting serum incretins
(GLP-1, GIP and ghrelin)

Log-transformation of
skewed data

Two-step cluster
analysis
(preclustering
and hierarchical
methods, log-
likelihood
distance)

Well-differentiated individuals
by discriminatory
metabolites (t test, χ2 test,
Fisher’s exact test)

Stability of cluster results
(silhouette coefficient)

Biologically meaningful
groups

Two distinct subgroups with
higher levels of glycated
Hb, glucagon, fasting
glucose and lower levels of
C-peptide in subgroup 1

Frei et al.(57) Subtypes of obesity Study (n 50 patients aged
21–61 years) in Brazil

Blood parameters before and
after the surgery (BMI,
LDL, HDL, VLDL, Hb,
platelets, leucocytes, TAG,
glucose and bilirubin)

z-standardisation Hierarchical cluster
analysis
(Euclidean
distance)

Well-differentiated individuals
by discriminatory
metabolites (ANOVA,
Bonferroni test)

Stability of cluster results
(Calinski–Harabasz,
silhouette index, different
cluster algorithms
(complete linkage,
average linkage, Ward’s
method))

Biologically meaningful
groups

Two distinct subtypes with
differences in indicators of
the metabolic syndrome
(glucose, LDL, VLDL and
TAG)

Identification of patterns that
hinder recovery after the
bariatric surgery
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Table 3. Continued

References Objective
Study design and
study sample Variables for clustering

Preprocessing of
variables Clustering method Validation of cluster solutions Main findings

Arguelles
et al.(58)

Subtypes of the
metabolic
syndrome

Hispanic Community
Health Study/Study of
Latinos (HCHS/SOL)
(n 15 825 Hispanics/
Latinos aged 18–74
years) in the USA

Metabolic syndrome
components (waist
circumference, systolic
and diastolic BP, HDL,
TAG, glucose, medication
use)

Log-transformation and
multiplication by 100
were used for
skewed variables

Latent class
analysis
separately by sex

Well-differentiated individuals
by discriminatory
metabolites (logistic
regression)

Stability of cluster results
(different cluster numbers,
AIC, BIC, ABIC, entropy
and posterior probabilities)

Biologically meaningful
groups

Two distinct subgroups for
men and women,
respectively (‘metabolic
syndrome’ cluster and
‘non-metabolic syndrome’
cluster)

Association of subgroups
with covariates and CVD

No identification of additional
subtypes of the metabolic
syndrome

Kim et al.(59) Subtypes of
prediabetes

Large Cohort (n 52 139
adult Mayo Clinic
patients) in the USA

Diagnoses (obesity,
hyperlipidaemia,
hypertension, renal failure,
various cardiovascular
conditions), vital signs (BP,
pulse), laboratory results
(glucose, lipids), use of
medication (aspirin,
medication for
hypertension and
hypercholesterolaemia)

Binary transformation
of variables

Bisecting divisive
hierarchical
cluster analysis

Well-differentiated individuals
by discriminatory
metabolites

Biologically meaningful
groups

A subgroup with higher and
another subgroup with
lower risk for diabetes than
the general population

Identification of twelve
highest-risk groups (out of
twenty-six clusters) and
their relevant risk factors

Use of clustering as a
diabetes index
outperforming the
Framingham risk score

Mäkinen
et al.(60)

Subtypes of type 1
diabetes

Finnish Diabetic
Nephropathy
(FinnDiane) Study
(n 613 patients with
type 1 diabetes) in
Finland

Blood serum 1H NMR
spectrum

Several preprocessing
steps of 1H NMR
spectra

Adjustment of intensity
units to equal
variance

Self-organising map
(9 × 9 hexagonal
sheet of map
units, Gaussian
neighbourhood
function))

Well-differentiated individuals
by discriminatory
metabolites

Stability of cluster results
(non-NMR measurements
of a number of
metabolites)

Biologically meaningful
groups

Six subgroups
Different diabetic

complications, clinical and
metabolic characteristics
between subgroups

Botelho
et al.(61)

Subgroups of
dyslipidaemia

Patient data bank at the
Dante Pazzanese
Institute of Cardiology
(n 57 individuals aged
30–80 years with
dyslipidaemia
controlled by statins) in
Brazil

Four plasma biomarkers of
oxidative stress
(malondialdehyde, ferric
reducing ability power, 2,2-
diphenyl-1-picrylhydrazyl
radical and oxidised-LDL)

Dimension reduction by
PCA

Hierarchical cluster
analysis (Ward’s
method,
Euclidean
distance)

Well-differentiated individuals
by discriminatory
metabolites (ANOVA,
Tukey’s post hoc test)

Biologically meaningful
groups

Five distinct subgroups
No difference in dietary

pattern between the
subgroups

HOMA-IR, homoeostasis model assessment of insulin resistance; GWAS, genome-wide association study; MESA, Multi-Ethnic Study of Atherosclerosis; SHARe, SNP Health Association Resource; BP, blood pressure; GLP-1, glucagon-like peptide-1; GIP,
glucose-dependent insulinotropic polypeptide; AIC, Akaike information criterion; BIC, Bayesian information criterion; ABIC, sample size-adjusted BIC; PCA, principal component analysis.
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of clustering variables differed, often depending on the particular
disease investigated. For example, Mäkinen et al.(60) used a full
blood serum 1H NMR spectrum for the subgrouping of patients
with type 1 diabetes. In contrast, Arguelles et al.(58) tried
to identify subgroups of the metabolic syndrome using only
components of this syndrome (waist circumference, systolic
and diastolic blood pressure, HDL, TAG, fasting glucose and
medication use) for the clustering procedure. Few studies used
additional variables such as anthropometry(54,57,58) or medication
use(58,59) along with the metabolic information in the clustering
process. As a result, the studies identified different patient
subgroups depending on the metabolic data assessed. After the
application of various preprocessing steps to the cluster variables
as described above, clustering methods like k-means cluster
analysis, hierarchical clustering and combinations of the two,
topological analysis(55), latent class analysis(58) and self-organising
maps(60) were applied. Discriminatory variables between the
resulting disease subgroups were again identified using test
statistics. Moreover, biological meaning, clustering indices,
cross-validation procedures, repetitions with different cluster seeds
and cluster numbers as well as different clustering algorithms were
applied to validate the clustering results. Different numbers of
disease subgroups were formed, mainly two to four groups.
An example for the establishment of type 2 diabetes subgroups

is the study by Schader(54) using three studies in the USA with a
total of 832 patients with type 2 diabetes aged 30–84 years.
Applying k-means cluster analysis with ten standardised metabolic
and anthropometric characteristics assessed before the diagnosis of
type 2 diabetes, two subgroups of the disease were found. Despite
the stability of the clustering results, measured using the Calinski
method and twenty-five repetitions of the clustering method,
and strong differentiation of individuals based on discriminatory
variables, no statistically significant difference was found between
the genetic risk factors among the subgroups. In a smaller sample
size of ninety-six patients with type 2 diabetes, Amato et al.(56) used
three fasting incretins in a two-step cluster analysis to identify two
subgroups of this disease.

Discussion

This review analysed the literature on metabotyping of
individuals in metabolic and nutrition research. In total,
thirty-four studies were included in this analysis covering a wide
range of populations and using various clustering variables and
statistical methods to identify different numbers of metabotypes.
Consequently, it is difficult to draw meaningful conclusions
regarding the establishment of metabotypes based on these
rather heterogeneous studies using different approaches in
metabotyping. However, this paper includes all available human
studies using metabotyping in healthy subjects, population-based
samples and patients with chronic metabolic diseases, and
thereby represents the current state of knowledge.

Differences in study populations

We found a considerable variation in metabotypes across the
countries in which the studies were performed, and this could
be due to different genetic characteristics, environmental

influences (like dietary and cultural behaviour), risk factors and
disease rates(5,62–64). This variation was seen to be particularly
large between Western countries and East Asian countries,
whereas metabotypes across different Western countries
displayed substantial overlapping(62,64). As most studies we
review here were conducted in Western populations in Europe
and the USA, the defined metabotypes seem to be transferable
and comparable between these studies. However, there is a
lack of data as to whether these metabotypes can be transferred
to other ethnic populations.

Comparing metabotypes between different age ranges may
be hampered by the physiological ageing process itself, which
is characterised by marked changes in metabolism or metabolic
flexibility(65). However, it was shown in some studies that the
plasma metabotypes (metabolite profiles) of individuals remain
relatively stable over a few years(66,67) and only large differ-
ences in age seem to be relevant. As many metabolites differ
between men and women – for example, steroid hormones or
branched chain amino acids(62,68,69) – studies need to consider
sex differences. This could be achieved by the exclusion of
these sex-specific variables from the clustering process or by
separate analyses for men and women.

Differences in variables used for clustering

The use of diverse types and numbers of clustering variables
does not allow a reasonable comparison of the metabotypes
identified in different studies. At present, the debate on the
most important criteria and variables to be used for the
definition of a biologically meaningful metabotype remains
open. Equally important, the aim of metabotype definition has
to be defined a priori. In 2000, Gavaghan et al.(15) defined a
metabotype as ‘a probabilistic multiparametric description
of an organism in a given physiological state based on analysis
of its cell types, biofluids or tissues’. Later, metabotyping
was described in several studies as the ‘process of grouping
similar individuals based on their metabolic or phenotypic
characteristics(6,9–13). These wide and general definitions of
metabotypes allow the inclusion of all studies establishing
subgroups based on (1) healthy or sick people (thus also
in the diagnosis or subgrouping of patients), (2) the fasting
state or response to interventions, (3) a few or a variety of
metabolites and (4) specifically selected single metabolite
subclasses like lipoproteins, diverse metabolite subclasses or
the addition of other variables like underlying causes for
differences in metabolism – for example, genetic, epigenetic or
gut microbiome information.

The selection of variables plays an important role in the
identification and separation of metabotypes. Grouping of indivi-
duals based on a few variables or single specific metabolite classes
provides a restricted definition of metabotypes, as only a small part
of human metabolism is taken into account. However, for the
establishment of plasma lipoprotein clusters in the studies by
van Bochove et al.(29) and Frazier-Wood et al.(33), or of plasma
fatty acid patterns in the study by Li et al.(39), restriction to the
respective lipid variables seemed to be sufficient for
subclassification. Likewise, Wang et al.(50) considered only the
plasma carotenoid levels after a dietary intervention with
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carotenoids. The same was the case in the study by Morris et al.(9)

considering only blood glucose levels, measured at several points
in time, to identify groups with differential glucose responses to an
oral glucose-tolerance test. This is of course in accordance with the
current clinical practice for classification of type 2 diabetes based
on the plasma kinetics of glucose. In diagnosing or subgrouping
patients, the restriction of variables to disease-related parameters
could also be sufficient for subclassification. For example,
Arguelles et al.(58) established subgroups of the metabolic
syndrome patients based on the standard criteria for disease
description, namely waist circumference, systolic and diastolic
blood pressure, HDL, TAG, fasting glucose and medication use.
The grouping in other studies using plasma fatty acids for the
description of the metabolic syndrome(53) and fasting incretins for
the subgrouping of diabetes(56) could be probably refined by the
consideration of additional disease-related variables.
There is no consensus yet on a uniform use of the term

‘metabotype’, thus it is subjectively applied, usually based on
the respective study objectives. In this review, the definitions of
metabotypes differed considerably; they ranged between
general fasting metabotypes, more specific fasting parameter
subgroups like plasma lipoprotein(29,33) or fatty acid clusters(39)

and response groups to defined meal challenges or dietary
interventions according to the number and type of the selected
clustering variables. Although an accepted definition of
metabotype seems attractive, there is also the view that there is
no need for a strict metabotype definition. On the one hand,
it may be argued that a metabotype has by its nature a wide
definition and should not be restricted. On the other hand, a
better comparability of studies could be achieved using a
stricter definition. Even if a strict general definition appears
implausible or unrealistic, more precise sub-definitions of
metabotypes could be developed, for example for lipid and
carbohydrate (glucose) metabolism. Thus, metabolic variables
restricted to specific metabolic pathways like to those of
lipoproteins may be sufficient depending on the respective
study objective.
However, it is assumed that the inclusion of various metabolites

originating from different pathways as well as additional infor-
mation from anthropometry or that obtained by including genetics,
epigenetics or the gut microbiome in the process of metabotyping
provides a more precise characterisation of individuals and, thus,
the establishment of more refined and generally valid metabo-
types(70). This can be achieved through the use of ‘-omics’ data
such as metabolomics, genomics and epigenomics, where
research is growing rapidly(2,71,72). Thus, it may be wise to suggest
a stricter definition of generally valid metabotypes in healthy
subjects or population-based samples by at least the use of vari-
ables originating from different metabolic pathways, preferably the
use of targeted or untargeted metabolomics data.
Further, there is no agreement as to whether the definition of

metabotypes should be based on fasting data (see Table 1) or
rather on metabolic response data to interventions (see
Table 2), for which we identified only five studies that met the
inclusion criteria. An argument for the use of metabolic
response data to interventions is the increase of variation
between individuals as some metabolic differences are only
visible through challenges and would remain undetected

using fasting blood values(73). However, the establishment
of metabotypes by means of fasting data allows extensive
measurements of larger study populations and is thus more
feasible in the general population. It is important to note that
intra-individual variations of metabolite concentrations may
also occur because of diurnal time, stress, latent diseases as
well as by measurement and storage conditions of the
samples(5,64,74,75). However, these differences were shown to
be smaller than inter-individual differences, suggesting that
individual metabotypes are relatively robust(76).

Differences in statistical analyses

As a variety of statistical methods are available for the estab-
lishment of metabotypes(70), there is an on-going discussion on
which statistical methods should be used to obtain the best
spread between subgroups. The preprocessing of variables is
especially dependent on the structure of the variables and the
requirements of the subsequent clustering methods. Thus, the
implementation of outlier exclusion and data transformation has
to be decided individually. If the number of clustering variables
exceeds one per ten observations, application of data-reduction
analyses like PCA or multiple-correspondence analysis must be
considered to avoid over adjustment(77). In many studies
included in this review, standardisation has been applied to the
cluster variables to avoid bias from different scales and units in
the grouping analysis(78,79). The most commonly used method
is z-standardisation z = X�mean

SD

� �
:

Concerning the different clustering methods(78–82), k-means
cluster analysis and hierarchical cluster analysis were applied
most commonly. Each clustering method has its own advan-
tages and disadvantages and must be selected depending on
the characteristics of the respective data set (e.g. depending on
the scale level or the sample size). k-Means cluster analysis
seems to be more suitable for large data sets than hierarchical
clustering. However, the number of clusters has to be specified
in advance for k-means cluster analysis, whereas hierarchical
clustering does not need the number of clusters to be
determined(82). In addition, there are novel clustering
techniques available in the field of bioinformatics, for example
the so-called machine learning methods(83).

The selection of validation criteria like statistical tests
and clustering indices is also dependent on the structure of the
data. The reproducibility of metabotypes should be tested in a
validation data set to confirm the results and to prove their
generalisability.

Differences in the main findings

The aim of most studies was to examine metabolic differences
between the established metabotypes and to test associations
with certain diseases. However, the application of metabotypes,
especially the development of targeted interventions for
responsive subgroups, is rather limited in the literature. In
addition, intervention by supplementation may increase serum
levels in all subgroups but with possibly either larger effects in
some subgroups or attainment of a threshold concentration
considered to be within the normal range. Thus, responsiveness
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to an intervention does not necessarily mean benefit and,
therefore, outcome parameters also need to be properly defined
to evaluate the benefit of interventions, which so far
has been rare in previous studies. Only few studies investigated
the responsiveness of the established metabotypes to dietary
interventions with regard to a specific disease. O’Sullivan et al.(30)

identified a subgroup with a positive response to vitamin D
supplementation concerning the metabolic syndrome; Vázquez-
Fresno et al.(32) detected a subgroup of patients at cardiovascular
risk responsive to red wine polyphenols; and Moazzami et al.(47)

identified individuals with reduced insulin sensitivity after
consumption of bread. There is only one study that developed
tailored dietary recommendations for subgroups using a
decision-tree approach(31). Until now, the established metabo-
types have not been transferred to larger populations for specific,
tailored interventions.

Conclusion

In conclusion, this literature review shows that metabotyping can
help identify metabolically similar subpopulations or patient
subgroups responding differently to defined nutritional inter-
ventions. Consequently, better tailored and, thus, more precise
dietary recommendations than generalised advice may be
provided to whole populations at a metabotype group level. The
aim of future studies should be the refinement of the definition of
generally valid metabotypes in large samples, especially with a
possibly more precise phenotype description of individuals
based on different ‘-omics’ data, particularly metabolomics data.
Another aim should be the development of stricter definitions of
specific metabotypes for metabolic pathways. The metabotypes
should then be tested for differential reactions to diverse dietary
factors with regard to properly defined outcome parameters.
On the basis of such results, populations can be better stratified
in order to provide effective tailored prevention and intervention
programs. The implementation of these recommendations in
populations may become a future task. Finally, individual health
benefits may be improved and the rising costs in the health-care
system originating from obesity and other diet-related metabolic
diseases may be better controlled.
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