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Structural Equation Modeling
Comparing Two Approaches
Reinhard Oldenburg

Structural equational modeling is a very popular statistical technique 
in the social sciences, as it is very flexible and includes factor 
analysis, path analysis and others as special cases. While usually 
done with specialized programs, the same can be achieved in 
Mathematica, which has the benefit of allowing control of any aspect 
of the calculation. Moreover, a second, more flexible, approach to 
calculating these models is described that is conceptually much 
easier yet potentially more powerful. This second approach is used 
to describe a solution of the attenuation problem of regression.

■ The SEM Method
Linear structural equation modeling (SEM) is a technique that has found widespread use in
many sciences in the last decades. An early foundational work is Bollen [1]; a more recent
overview  is  provided  by  Hoyle  [2].  The  basic  idea  is  to  model  the  linear  structure  of  k
observed  variables  x1, …, xk  of  n  cases  (observations,  subjects)  by  linear  equations  that
may involve  latent  variables.  These  variables  are  not  measured directly  but  inferred  from
the observed variables by their linear relation to the observed variables.

Many  commercial  programs  (including  LISREL,  Amos,  Mplus)  and  free  ones  (including
lavaan, sem, OpenMX) have been developed to carry out the estimation procedure. From my
perspective, the R package lavaan [3, 4] by Yves Rosseel is the most reliable and convenient
one among the free programs. I use it as the gold standard to judge results of my own code.

This article first gives a quick overview of the standard SEM theory, then shows how to per-
form the calculations in Mathematica. In the last section, a second approach is discussed.

□ The Standard Example

There  is  a  standard  example  due  to  Bollen  that  is  also  used  in  the  lavaan  manual.  The
dataset consists of observations of 11 manifest variables x1, x2, x3, y1, y2, y3, y4, y5, y6, y7,
y8. SEM models are usually depicted graphically. In the lavaan documentation, this is dis-
played as in Figure 1.
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▲ Figure 1. Bollen’s democracy model (image from lavaan documentation [4]). 

The variables x1, x2, x3  are observed variables that measure the construct of industrializa-
tion in 1960, which is described by the latent variable ind60. This means that the level of
industrialization is assumed to be representable by one number for each country, but this
number cannot be measured directly; it has to be inferred from its linear relation to gross
national product x1, energy consumption per capita x2  and share of industrial workers x3.
Next, dem60 and dem65 are the democracy levels in 1960 and 1965, measured by y1, y2,
y3,  y4  and y5,  y6,  y7,  y8  (these indicators are freedom of the press,  etc.).  The data matrix
consists of these 11 numbers for each of 75 countries (cases).  The data is  delivered with
the lavaan package for R. The aim of estimating the model is twofold. First, the weights of
the linear connections (represented in the picture by arrows) are estimated. These arrows
encode linear equations by the rule that all arrows that end in a variable indicate a linear
combination that yields the value of this variable plus some error term variable. To bring
this mysterious language down to earth, here are the equations represented in Figure 1:

xi = ci · ind60 + ei, i ∈ {1, 2, 3},
yi = di · dem60 + fi, i ∈ {1, 2, 3, 4},
yi = di · dem65 + fi, i ∈ {5, 6, 7, 8},
dem60 = b1 · ind60 + E1,
dem65 = b2 · ind60 + b3 · dem60 + E2.

The variable ind60 is called an exogenous latent variable because no arrow ends there. It
has no associated error variable. However, its manifest (measured) indicator variables x1,
x2, x3  have associated error variables ei  (they are called δi  in [1]). The indicator variables
y1,  y2,  y3,  y4  and y5,  y6,  y7,  y8  of  the two endogenous latent  variables  (those latent  vari-
ables where arrows end) have error variables fi  (called εi  in [1]). The equations that relate
latent  and  manifest  variables  define  the  measurement  part  of  the  model.  The  two  equa-
tions  (coming  from  three  arrows)  between  the  latent  variables  are  the  structure  model,
usually  of  most  interest.  Fitting  the  model  to  the  data  gives  estimates  for  the  weights  of
the arrows, b1, b2, b3, c1, c2, …. The second goal of SEM modeling is to check how well
the structure of the model fits the data; that is, SEM is also a hypothesis-testing method.
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The variable ind60 is called an exogenous latent variable because no arrow ends there. It
has no associated error variable. However, its manifest (measured) indicator variables x1,
x2, x3  have associated error variables ei  (they are called δi  in [1]). The indicator variables
y1,  y2,  y3,  y4  and y5,  y6,  y7,  y8  of  the two endogenous latent  variables  (those latent  vari-
ables where arrows end) have error variables fi  (called εi  in [1]). The equations that relate
latent  and  manifest  variables  define  the  measurement  part  of  the  model.  The  two  equa-
tions  (coming  from  three  arrows)  between  the  latent  variables  are  the  structure  model,
usually  of  most  interest.  Fitting  the  model  to  the  data  gives  estimates  for  the  weights  of
the arrows, b1, b2, b3, c1, c2, …. The second goal of SEM modeling is to check how well
the structure of the model fits the data; that is, SEM is also a hypothesis-testing method.

The  equations  given  do  not  yet  identify  all  variables.  Assume  we  have  a  solution  of
xi = ci · ind60 + ei; then for any number k, the numbers ci ' := ci · k and ind60' := ind60 / k
would be solutions, too. To avoid this problem, we either fix the variance of the latent vari-
ables to be 1 or we fix some of the weights to be 1. This is the default in lavaan and we
adopt it here, hence c1 = 1, d1 = 1, d5 = 1. 

■ The Standard Way of Estimating SEM
Ever since SEM’s invention, SEM models are estimated by calculating the model’s covari-
ance matrix. From the data, we get the empirical covariance matrix S. On the other hand,
from the model, we can calculate a theoretical covariance matrix Z  between the observed
variables. (Z depends on the model and thus on the parameters.) For example, one entry in
this  matrix  would  be  cov(x1, x2) = cov(c1 · ind60 + e1, c2 · ind60 + e2).  Using  linearity  and
other properties of the covariance, this boils down to a matrix with entries that are polyno-
mials in the model parameters and the covariances and variances between latent variables
and error variables. However, without further assumptions, this gives a lot of covariances
(e.g.  cov(e1, e2))  that  are  not  determined  by  the  model  and  hence  must  be  estimated.  As
this usually leads to too much freedom, the broad assumption is that most error variables
are uncorrelated. Only some covariances between error variables are not assumed to be 0;
those  are  marked  in  the  diagram by  two-headed  arrows  between  the  observed  variables.
For every pair of observed variables, we calculate the covariance by using the above given
model equation as replacement rules and applies linearity and independence assumptions.
In the end, we get a covariance matrix Z  that depends on the model parameters b1, b2, b3,
c1, c2, … and on the variances of the latent variables and the covariances of error variables
that are not assumed to be 0. Details can be found in Bollen [1].

To fit  the  empirical  and the  theoretical  covariance matrix,  we have to  choose these  param-
eters to minimize some distance function. The three most common are uniform least-square,

FULS = 1
2

tr(S - Z)2,  generalized  least-square,  FGLS = 1
2

trI - S-1 · Z2  (I  is  the  identity

matrix),  and  maximum  likelihood,  FML = log( Z ) + trS · Z-1 - log( S ) - k  (here  k  is  the
number of manifest variables).

Now we are in the position to define a Mathematica function that performs SEM. First, we
define  the  helper  function  getAllVariables  that  gets  all  variables  contained  in  an
expression in such a way that, for example,  x[1] counts as one variable.

In[1]:= headlist = {Or, And, Equal, Unequal, Less, LessEqual,
Greater, GreaterEqual, Inequality};
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In[2]:= getAllVariablesAux[f_?NumericQ] = {};

In[3]:= getAllVariablesAux[{}] = {};

In[4]:= getAllVariablesAux[a_ → b_] :=
Union[getAllVariablesAux[a], getAllVariablesAux[b]]

In[5]:= getAllVariablesAux[t_] /; MemberQ[headlist, t] = {};

In[6]:= getAllVariablesAux[l_List] :=
Union@Flatten@Union@Map[getAllVariablesAux[#] &, l]

In[7]:= getAllVariablesAux[Derivative[n_Integer][f_][arg__]] :=
getAllVariablesAux[{arg}]

In[8]:= getAllVariablesAux[f_Symbol[arg__]] :=
Union@{

If[
MemberQ[Attributes[f], NumericFunction] ||
MemberQ[headlist, f],

getAllVariablesAux[{arg}],
(*else*)
f[arg]

]
}

In[9]:= getAllVariablesAux[f_Symbol[arg__]] :=
Union[{

If[
MemberQ[

Attributes@f,
NumericFunction

] || MemberQ[headlist, f],
getAllVariablesAux@{arg},
(*else*)f@arg

]
}]

In[10]:= getAllVariablesAux[other_] := {other}

In[11]:= getAllVariables[a_] := Union@Flatten@getAllVariablesAux@a
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Here is an example.

In[12]:= getAllVariables[1 + c x[1]^2]

Out[12]= {c, x[1]}

The method will be explained with Bollen’s democracy dataset,  so first,  we need to load
this dataset. The file bollen.csv contains headers (the names of the variables are saved in
the list BollenObserved) and a first column numbering the cases, which is dropped.

In[13]:= BollenData0 =
Rest /@ Map[

ToExpression,
Import[
"http://myweb.rz.uni-augsburg.de/~oldenbre/sem/bollen.

csv"],
2

];
BollenData = Rest@BollenData0;
BollenObserved = First@BollenData0

Out[14]= {y1, y2, y3, y4, y5, y6, y7, y8, x1, x2, x3}

The data has 75 rows.

In[15]:= Dimensions@BollenData

Out[15]= {75, 11}

Here is the first row of 11 numbers.

In[16]:= BollenData0[[2]]

Out[16]= {2.5, 0, 3.33333, 0, 1.25, 0,
3.72636, 3.33333, 4.44265, 3.63759, 2.55762}

The  model  itself  has  to  be  specified  as  a  list  of  replacement  rules  that  mirror  the  model
equations discussed.

In[17]:= BollenRules = {
x1 → c1 ind60 + e1,
x2 → c2 ind60 + e2,
x3 → c3 ind60 + e3,
y1 → d1 dem60 + f1,
y2 → d2 dem60 + f2,
y3 → d3 dem60 + f3,
y4 → d4 dem60 + f4,
y5 → d5 dem65 + f5,

,

Structural Equation Modeling 5

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.



In[17]:=

y6 → d6 dem65 + f6,
y7 → d7 dem65 + f7,
y8 → d8 dem65 + f8,
dem60 → b1 ind60 + E1,
dem65 → b2 ind60 + b3 dem60 + E2,
c1 → 1,
d1 → 1,
d5 → 1};

In[18]:= BollenParameters = {c1, c2, c3, d1, d2, d3, d4, d5, d6,
d7, d8, b1, b2, b3};

The code for the estimation function SEM includes some utilities. For example, it defines its
own covariance and variance functions that take into account which variables are assumed to
be uncorrelated. The input of SEM is the data matrix data, a matrix of numerical values, one
row per case. The structural equations modelRules are given in the format detailed in the
previous section, “The Standard Example.” Moreover, the function needs:

• the lists of free parameters, parameters (e.g. path weights)

• endogenous latent variables, endogenousLatentVariables

• exogenous latent variables, exogenousLatentVariables

• the list of error variables of latent variables, errorVariablesOfLatentVariables

• errors of exogenous manifest variables errorsOfExogenousManifestVariables

• errors of endogenous manifest variables errorsOfEndogenousManifestVariables

• a list correlated of pairs of error variables specifying which error variables are allowed
to be correlated

The code  after  defining  Z  can  be  omitted  on  a  first  reading;  it  is  only  needed to  calculate
some fit indices (if required by the option doFI, which asks to do the fit index (FI) calcula-
tion;  similarly,  doML  asks  to  do  the  maximum  likelihood  estimation).  The  estimation  is
done at the end of the function.

The  goal  of  the  first  half  of  the  SEM  program is  the  definition  of  the  covariance  function
Cov that takes into account the SEM assumptions: that most error variables are uncorrelated
(except  those  specified  to  be  correlated),  leaving  variances  of  latent  variables  as  symbolic
entities to be estimated. 

This function is then used to calculate the model implied covariance matrix Z.  Applying the
model equation rules repeatedly gives a matrix that depends only on parameters, variances of
latent variables and error variables and some allowed covariances of error variables. The code
from  the  line  defining  df  (the  degree  of  freedom)  onward  is  only  important  for  getting  fit
indices. If we are only interested in estimating the model parameters, the next interesting lines
are where FindMinimum  is applied to estimate the model. As described in the introduction,
there are several strategies to measure deviation of covariance matrices; for example, the defi-

nition of uls is a straightforward coding for minimizing FGLS = 1
2
· trI - S-1 · Z2.
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In[19]:= Options[SEM] = {doML → False, doFI → False, startValue → 1.0};
Needs["HypothesisTesting`"];

In[21]:= SEM[data_, observed_, modelRules_, parameters_,
exogenousLatentVariables_, endogenousLatentVariables_,
errorVariablesOfLatentVariables_,
errorsOfExogenousManifestVariables_,
errorsOfEndogenousManifestVariables_, correlated_,
OptionsPattern[]] :=

Module[
{n = Length@data, S = Covariance@data, Cov, Var, Z,
i, j, ScalarQ, res = {}, Tr2, df, T, RMSEA, varr, est,
gls, nullmodel, Znull, dfnull, Tnull, glsnull, solm,
errorvars, errorvarsE},

errorvarsE = Join[errorVariablesOfLatentVariables,
errorsOfExogenousManifestVariables];

errorvars = Join[errorvarsE,
errorsOfEndogenousManifestVariables];

Tr2[A_] := Tr[A.A];

ScalarQ[a_] := True /; NumberQ[a] || MemberQ[parameters, a];
ScalarQ[a_ + b_] := ScalarQ[a] && ScalarQ[b];
ScalarQ[a_ b_] := ScalarQ[a] && ScalarQ[b];

Var[a_ + b_] := Var[a] + Var[b] + 2 Cov[a, b];
Var[s_ a_] := s^2 Var[a] /; ScalarQ[s];

Cov[a_ + b_, c_] := Cov[a, c] + Cov[b, c];
Cov[c_, a_ + b_] := Cov[a, c] + Cov[b, c];
Cov[s_, b_] := 0 /; ScalarQ[s];
Cov[b_, s_] := 0 /; ScalarQ[s];
Cov[s_ a_, b_] := s Cov[a, b] /; ScalarQ[s];
Cov[a_, s_ b_] := s Cov[a, b] /; ScalarQ[s];
Cov[a_, b_] := Cov[b, a] /; Order[a, b] < 0;
Cov[a_, a_] := Var[a];
Cov[a_, b_] :=
0 /; MemberQ[errorvars, a] && MemberQ[errorvars, b] &&

Not[MemberQ[correlated, {a, b}] ||
MemberQ[correlated, {b, a}]];

Cov[a_, b_] :=
0 /; MemberQ[errorsOfEndogenousManifestVariables, a] &&

MemberQ[endogenousLatentVariables, b];
Cov[b_, a_] :=
0 /; MemberQ[errorsOfEndogenousManifestVariables, a] &&

MemberQ[endogenousLatentVariables, b];
Cov[a_, b_] :=
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In[21]:=

0 /; MemberQ[errorvars, a] &&
MemberQ[exogenousLatentVariables, b];

Cov[b_, a_] :=
0 /; MemberQ[errorvars, a] &&

MemberQ[exogenousLatentVariables, b];
(* Now calculate the model based symbolic covariance
matrix Z *)

Z =
Table[Table[Cov[observed[[i]], observed[[j]]] //.

modelRules, {i, Length@observed}],
{j, Length@observed}];

df = Length@observed (Length@observed + 1) / 2 -
Length@getAllVariables@Z; (* degreees of freedom *)

est[{f_, s_}] :=
{{"df", df, "T", (n - 1) f, "ChiSq p",

ChiSquarePValue[(n - 1) f, df], "RMSEA",
N@Sqrt[((n - 1) f - df) / (df (n - 1))]}, s};

If[
OptionValue@doFI,
Znull = Table[Table[If[i ⩵ j, varr[i], 0],

{i, Length@observed}], {j, Length@observed}];
dfnull = Length@observed (Length@observed + 1) / 2 -

Length@getAllVariables@Znull;
glsnull = FindMinimum[

1 / 2 Tr2@IdentityMatrix[Length@S - Inverse[S].Znull],
Map[{#, OptionValue@startValue} &,
getAllVariables@Znull], MaxIterations → 10 000];

nullmodel =
FindMinimum[
{Log@Det@Znull + Tr[S.Inverse[Znull]] - Log@Det@S -

Length@observed, Det@Znull > 0.0},
Map[{#[[1]], #[[2]]} &, glsnull[[2]]],
MaxIterations → 10 000];

Tnull = (n - 1) nullmodel[[1]];
];
(* First estimation by the unweighted least square
approach *)

AppendTo[res,
ULS →
est@FindMinimum[1 / 2 Total@Map[#^2 &, Flatten[S - Z]],

Map[{#, OptionValue@startValue} &, getAllVariables@Z],
MaxIterations → 10 000]

];
(* now estimation by the generalized least square
approach *)

gls = FindMinimum[
1 / 2 Tr2[IdentityMatrix@Length@S - Inverse[S].Z],
Map[{#, OptionValue@startValue} &, getAllVariables@Z],

];
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In[21]:=

MaxIterations → 10 000];
AppendTo[res, GLS → est@gls];
If[OptionValue@doML || OptionValue@doFI,
(* now estimation my maximum likelihood *)
solm = FindMinimum[Log@Det@Z + Tr[S.Inverse[Z]] -

Log@Det@S - Length@observed,
Map[{#[[1]], #[[2]]} &, gls[[2]]],
MaxIterations → 2000];

AppendTo[res, ML → est@solm];
If[
OptionValue@doFI,
res = {"df", df, "dfnull", dfnull, "T",

(ML /. res)[[1, 4]], "Tnull", Tnull, "CFI",
((Tnull - dfnull) - ((ML /. res)[[1, 4]] - df)) /
(Tnull - dfnull),

"TLI", (Tnull / dfnull - (ML /. res)[[1, 4]] / df) /
(Tnull / dfnull - 1),

"NFI", (Tnull - (ML /. res)[[1, 4]]) / Tnull, res}
]

];
res

]

Let us run the code on Bollen's model in a simplified version where no correlation of error
variables is assumed. This may take several minutes.

In[22]:= sol1 =
Quiet@SEM[BollenData, BollenObserved, BollenRules,

BollenParameters, {ind60}, {dem60, dem65}, {E1, E2},
{e1, e2, e3}, {f1, f2, f3, f4, f5, f6, f7, f8}, {},
doFI → True, startValue → 0.5]

Out[22]= df, 41, dfnull, 55, T, 71.4955, Tnull,
720.912, CFI, 0.954205, TLI, 0.938568, NFI,
0.900826, ULS → df, 41, T, 844.881, ChiSq p,

OneSidedPValue → 1.06285 × 10-150, RMSEA, 0.51474,
{b1 → 1.28932, b2 → 0.414362, b3 → 0.846741,
c2 → 2.06722, c3 → 1.6326, d2 → 1.36095, d3 → 1.00928,
d4 → 1.33757, d6 → 1.32026, d7 → 1.31953, d8 → 1.34769,
Var$2877[e1] → 0.0195517, Var$2877[E1] → 4.01019,
Var$2877[e2] → 0.0702004, Var$2877[E2] → 0.136539,
Var$2877[e3] → 0.596427, Var$2877[f1] → 2.00796,
Var$2877[f2] → 6.55861, Var$2877[f3] → 5.80287,
Var$2877[f4] → 2.50496, Var$2877[f5] → 2.63991,
Var$2877[f6] → 4.07917, Var$2877[f7] → 3.51127,
Var$2877[f8] → 2.93143, Var$2877[ind60] → 0.517597},

GLS → {{df, 41, T, 53.6555, ChiSq p,
, , 0.0645849},
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Out[22]=

GLS → {{df, 41, T, 53.6555, ChiSq p,
OneSidedPValue → 0.0889695, RMSEA, 0.0645849},

{b1 → 1.5478, b2 → 0.725271, b3 → 0.779033,
c2 → 2.33574, c3 → 2.0104, d2 → 1.60797, d3 → 1.03095,
d4 → 1.39164, d6 → 1.52055, d7 → 1.40677, d8 → 1.44845,
Var$2877[e1] → 0.0582072, Var$2877[E1] → 3.46104,
Var$2877[e2] → 0.138906, Var$2877[E2] → 0.274183,
Var$2877[e3] → 0.407624, Var$2877[f1] → 1.22166,
Var$2877[f2] → 3.57903, Var$2877[f3] → 3.78616,
Var$2877[f4] → 1.90577, Var$2877[f5] → 1.54902,
Var$2877[f6] → 2.22567, Var$2877[f7] → 2.74435,
Var$2877[f8] → 2.06181, Var$2877[ind60] → 0.306766}},

ML → {{df, 41, T, 71.4955, ChiSq p,
OneSidedPValue → 0.00222553, RMSEA, 0.100256},

{b1 → 1.47374, b2 → 0.453254, b3 → 0.864394,
c2 → 2.18175, c3 → 1.81877, d2 → 1.35401, d3 → 1.04401,
d4 → 1.29954, d6 → 1.25848, d7 → 1.28249, d8 → 1.30977,
Var$2877[e1] → 0.0829343, Var$2877[E1] → 3.92392,
Var$2877[e2] → 0.120038, Var$2877[E2] → 0.116466,
Var$2877[e3] → 0.473522, Var$2877[f1] → 1.96813,
Var$2877[f2] → 6.57733, Var$2877[f3] → 5.41208,
Var$2877[f4] → 2.92618, Var$2877[f5] → 2.42242,
Var$2877[f6] → 4.40157, Var$2877[f7] → 3.557,
Var$2877[f8] → 2.98006, Var$2877[ind60] → 0.454214}}

The  result  combines  parameter,  variance  and  covariance  estimations  according  to  the
various estimating strategies.  To judge how well  the model  fits  the data,  you can set  the
option doFI to some fit indices:

• RMSEA is the root square mean error

• CFI is the comparable fit index

• TLI is the Tucker–Lewis fit index

• NFI is the normed fit index

RMSEA should be less than 0.1 or better,  less than 0.05, and the last three should all  be
greater than 0.9 or 0.95 for good model fit.

The  results  of  estimating  using  the  three  different  methods  differ  somewhat.  This  is  not  a
bug  of  our  program;  lavaan  determines  the  same  numbers  up  to  several  decimal  places.
There  are  results  in  the  literature  about  which  methods  are  equivalent  under  which  condi-
tions. For these fit indices to be interpretable, we need to assume that the data is multivariate
normally distributed. If this assumption is violated, then we should judge model fit by other
indices, which is beyond the scope of this article; however, they could be calculated based
on the current approach as well.  The book edited by Hoyle [2] gives some information on
these methods.
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For the original model that allows some covariances between error variables, the runtime
gets worse, especially for maximum likelihood estimation. Hence, this is turned off in the
following code.

In[23]:= sol2 =
Quiet@SEM[BollenData, BollenObserved, BollenRules,

BollenParameters, {ind60}, {dem60, dem65}, {E1, E2},
{e1, e2, e3}, {f1, f2, f3, f4, f5, f6, f7, f8},
{{f1, f5}, {f2, f4}, {f2, f6}, {f3, f7}, {f4, f8},
{f6, f8}}, doML → False]

Out[23]= ULS → df, 35, T, 269.722, ChiSq p,

OneSidedPValue → 4.98046 × 10-38, RMSEA, 0.301042,
{b1 → 1.34706, b2 → 0.434015, b3 → 0.842094,
c2 → 2.06404, c3 → 1.62794, d2 → 1.2413, d3 → 0.993572,
d4 → 1.29367, d6 → 1.18893, d7 → 1.30967, d8 → 1.30114,
Cov$3674[f1, f5] → 0.508461, Cov$3674[f2, f4] → 1.40076,
Cov$3674[f2, f6] → 2.66342, Cov$3674[f3, f7] → 1.07878,
Cov$3674[f4, f8] → 0.344901, Cov$3674[f6, f8] → 1.55098,
Var$3674[e1] → 0.0177617, Var$3674[E1] → 4.10648,
Var$3674[e2] → 0.0693836, Var$3674[E2] → 0.138832,
Var$3674[e3] → 0.59955, Var$3674[f1] → 1.82961,
Var$3674[f2] → 7.80021, Var$3674[f3] → 5.78,
Var$3674[f4] → 2.76911, Var$3674[f5] → 2.49728,
Var$3674[f6] → 5.25693, Var$3674[f7] → 3.37514,
Var$3674[f8] → 3.20606, Var$3674[ind60] → 0.519387},

GLS → {{df, 35, T, 35.9469, ChiSq p,
OneSidedPValue → 0.423958, RMSEA, 0.0191202},

{b1 → 1.75509, b2 → 0.666841, b3 → 0.809661,
c2 → 2.30078, c3 → 1.97669, d2 → 1.37207, d3 → 1.074,
d4 → 1.27946, d6 → 1.29919, d7 → 1.38062, d8 → 1.31194,
Cov$3674[f1, f5] → 0.419365, Cov$3674[f2, f4] → 1.43263,
Cov$3674[f2, f6] → 1.27986, Cov$3674[f3, f7] → 0.707215,
Cov$3674[f4, f8] → 0.296529, Cov$3674[f6, f8] → 0.970228,
Var$3674[e1] → 0.0531497, Var$3674[E1] → 3.57272,
Var$3674[e2] → 0.149173, Var$3674[E2] → 0.189575,
Var$3674[e3] → 0.404741, Var$3674[f1] → 1.41245,
Var$3674[f2] → 6.14362, Var$3674[f3] → 4.07991,
Var$3674[f4] → 2.78536, Var$3674[f5] → 1.88536,
Var$3674[f6] → 3.71518, Var$3674[f7] → 2.92723,
Var$3674[f8] → 2.82744, Var$3674[ind60] → 0.321791}}

The results of both models are exactly the same as calculated with lavaan.
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■ An Alternative Approach: Case-based Estimation
When  I  first  learned  about  SEM,  I  was  puzzled  by  the  many  notions  (e.g.  exogenous,
endogenous) and the assumptions needed. For example, I felt that correlation of error variables
should  be  calculated  by  the  estimation  algorithm and not  be  set  at  will  when specifying the
model.  However,  these difficulties seem to play no large role in practice and there are thou-
sands  of  research  papers  (mainly)  in  the  social  sciences  that  use  these  methods  with  great
success.  Yet,  there  are  some  reasons  why  the  standard  approach  to  SEM  via  covariance
matrices can be criticized (a more detailed discussion is given in [5]). Traditional SEM: 

• is well suited only for linear models (there are some nonlinear extensions, but they have
not yet become mainstream)

• does not give estimates of the values of latent variables for each case (Bayesian variants
can do this)

• requires the covariance matrix of observed data to be nonsingular; however, improving mea-
surement  methods  in  x1,  x2,  x3,  for  example,  may  result  in  highly  correlated  measures  of
ind60 (in the extreme case with identical vectors of measured values) and hence their covari-
ance matrix will be almost singular

• has resulting estimations for parameters that depend a lot on the estimation method used

•  forbids  certain  linear  models  that  are  not  identified  in  this  approach,  even  though  the
model itself is sensible and well defined (e.g. the number of covariances of error variables
allowed to be nonzero is limited, although in practice there may be correlations)

You may then wonder why the covariance matrix–based approach is so popular. I suppose
that more than 40 years ago, computers were not powerful enough to deal with a full dataset,
so that  the information reduction by calculating the correlation matrix was essential.  Since
then, many powerful programs have been developed and research has been carried out that
gave a good understanding of conditions under which the method works well. Moreover, the
psychometric community reached a consensus on how model fit should be judged and thus
studies using this method faced no problem being published.

After this discussion of pros and cons, it is time to present the following case-based approach
to SEM estimation that is very easy (one may even call it naive) to implement but is also very
flexible and with today's computing power, it is feasible in many real-world situations.

Hence, I propose to do SEM case-based by least-square optimization of the defects of the
equations.  Assume  we  have  n  observations  (cases)  of  k  variables  xi ∈ ℝn,  1 ≤ i ≤ k.  A
general  equational  model  consists  of  m  equations  gk({xi}, {Li}, {ci}) = 0,  1 ≤ k ≤ m,  which
involve  the  data,  latent  variables  Li,  i = 1, …, l,  and  parameters  ci.  Then  the  latent  vari-

ables and the parameters are estimated by minimizing ∑k=1
m ∑j=1

n gkxi, j, Li, j, {ci}
2.

Another  twist  is  needed  to  get  the  best  results,  however.  The  above  objective  function
gives all equations the same weight. However, it turned out (by working with simulated
data  where  it  is  clear  which  parameters  should  be  found)  that  we  get  better  results
by  multiplying  by  a  factor  that  gives  the  equations  different  weights,  that  is,

∑k=1
m ∑j=1

n sk gkxi, j, Li, j, {ci}
2. The factor sk  can be modified by an option in the code

that follows. Best results are obtained for sk = n-q, where q is the number of latent vari-
ables in gk. The idea behind this choice is that an equation that involves only one latent
variable  links  this  variable  directly  to  the  manifest  data  and  thus  should  have  a  high
weight. In contrast, equations with many latent variables are not so close to the manifest
observations and are thus are more hypothetical, so they should have a lower weight.
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Another  twist  is  needed  to  get  the  best  results,  however.  The  above  objective  function
gives all equations the same weight. However, it turned out (by working with simulated
data  where  it  is  clear  which  parameters  should  be  found)  that  we  get  better  results
by  multiplying  by  a  factor  that  gives  the  equations  different  weights,  that  is,

∑k=1
m ∑j=1

n sk gkxi, j, Li, j, {ci}
2. The factor sk  can be modified by an option in the code

that follows. Best results are obtained for sk = n-q, where q is the number of latent vari-
ables in gk. The idea behind this choice is that an equation that involves only one latent
variable  links  this  variable  directly  to  the  manifest  data  and  thus  should  have  a  high
weight. In contrast, equations with many latent variables are not so close to the manifest
observations and are thus are more hypothetical, so they should have a lower weight.

The  model  equations  are  not  formulated  as  rules  as  for  the  first  SEM,  but  as  equations
with the name of the error variable attached to each equation. Moreover, the dataset is not
normalized,  so  there  are  nonzero  intercepts  in  the  linear  equations.  In  the  first  approach
this had no consequences, because such additive values are eliminated by calculating the
covariance matrix, but in the SEM2 approach, intercepts must be modeled explicitly (and
we have the benefit of getting estimates for them as well).

In[24]:= BollenEQ = {
{dem60 ⩵ b1 ind60 + u1, e01},
{dem65 ⩵ b2 ind60 + b3 dem60 + u2, e02},
{x1 ⩵ 1 ind60 + t1, ee1},
{x2 ⩵ c2 ind60 + t2, ee2},
{x3 ⩵ c3 ind60 + t3, ee3},
{y1 ⩵ 1 dem60 + s1, e1},
{y2 ⩵ d2 dem60 + s2, e2},
{y3 ⩵ d3 dem60 + s3, e3},
{y4 ⩵ d4 dem60 + s4, e4},
{y5 ⩵ 1 dem65 + s5, e5},
{y6 ⩵ d6 dem65 + s6, e6},
{y7 ⩵ d7 dem65 + s7, e7},
{y8 ⩵ d8 dem65 + s8, e8}

};

The  function  SEM2  that  carries  out  the  model  estimation  takes  as  input  data  and  the
names  of  the  manifest  (observed)  and latent  variables  (latentVariables).  At  the
technical  heart  of  the  function  is  the  subroutine  EQ.  This  function  takes  an  equation
involving  latent  variables  (e.g.  dem60 ⩵ b1  ind60 + u1)  and  adds  to  the  objective
function targetFunction the appropriate term for each case (i.e. with values from the
data replacing the names of manifest variables): 

(dem60[1] - (b1 ind60[1] + u1[1]))2 +
(dem60[2] - (b1 ind60[2] + u1[2]))2 +
… +
(dem60[n] - (b1 ind60[n] + u1[n]))2

There is one option.

In[25]:= Options[SEM2] = {latentWeightFactor → 1};

In[26]:= SEM2[data_, observed_, latentVariables_, equations_,
OptionsPattern[]] :=

Module[
{EQ, i, j, constraints = {}, targetFunction = 0},
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In[26]:=

{EQ, i, j, constraints = {}, targetFunction = 0},

EQ[{eq_, err_}] := Module[
{EEs, n = Length@data, manifest, i0, j0, weightFactor},
vars = getAllVariables@eq;
manifest = Intersection[observed,

Flatten@Complement[vars, latentVariables]];
EEs = Table[

First@eq - Last@eq /. Union[
Table[manifest[[j0]] →

data[[i0]][[Position[observed, manifest[[j0]] ][[
1, 1]] ]], {j0, Length@manifest}],

Table[latentVariables[[j0]] →
latentVariables[[j0]][i0],

{j0, Length@latentVariables}]
],

{i0, Length@data}
];

weightFactor = OptionValue[latentWeightFactor]^
Min[0,
1 - Length@Intersection[vars, latentVariables]];

targetFunction = targetFunction +
Total@Map[#^2 &, EEs] weightFactor

];

Map[EQ, equations];
constraints = Join[constraints,

Map[Total@Table[#[i], {i, Length@data}] ⩵ 0 &,
latentVariables]];

FindMinimum[
Join[{targetFunction}, constraints],
Map[{#, RandomReal[{0.1, 0.5}]} &,
getAllVariables@Join[{targetFunction}, constraints]],

MaxIterations → 10 000
]

]

This code estimates Bollen’s model.

In[27]:= estimate1 = SEM2[BollenData, BollenObserved,
{ind60, dem60, dem65}, BollenEQ];

{estimate1[[1]], Take[estimate1[[2]], 25]}

Out[28]= 1880.71, b1 → 0.995703, b2 → 0.577854, b3 → 1.0518,
c2 → 2.1902, c3 → 1.96527, d2 → 2.82293, d3 → 2.00049,
d4 → 2.46247, d6 → 1.71956, d7 → 1.6727, d8 → 1.73107,
s1 → 5.46467, s2 → 4.25644, s3 → 6.56311, s4 → 4.45253,
s5 → 5.13625, s6 → 2.97807, s7 → 6.19626, s8 → 4.04339,
t1 → 5.05438, t2 → 4.79219, t3 → 3.55769, u1 → -1.10653 × 10-16,

u2 → 1.96852 × 10-17, dem60[1] → -1.61987
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As mentioned, there is a version that weights equations according to the number of latent
variables they have.

In[29]:= estimate2 = SEM2[BollenData, BollenObserved,
{ind60, dem60, dem65}, BollenEQ,
latentWeightFactor → Length@BollenData];

{estimate2[[1]], Take[estimate2[[2]], 25]}

Out[30]= 1678.3, b1 → 1.21904, b2 → 0.585325, b3 → 0.744532,
c2 → 2.20543, c3 → 2.00439, d2 → 1.61306, d3 → 1.1638,
d4 → 1.4081, d6 → 1.42969, d7 → 1.3938, d8 → 1.44193,
s1 → 5.46467, s2 → 4.25644, s3 → 6.56311, s4 → 4.45253,
s5 → 5.13625, s6 → 2.97807, s7 → 6.19626, s8 → 4.04339,
t1 → 5.05438, t2 → 4.79219, t3 → 3.55769, u1 → -1.8441 × 10-16,

u2 → 6.51838 × 10-17, dem60[1] → -2.85761

The  results  for  the  estimates  differ  from  what  is  calculated  in  the  traditional  covariance
matrix–based  approach  given  for  SEM.  A  simulation  study  that  compares  the  two
approaches  [5]  showed  that  in  many  situations  the  case-based  approach  gives  better
results,  especially  when  the  assumption  of  independent  errors  is  violated.  Moreover,  the
case-based  approach  is  easily  applied  to  nonlinear  equations.  However,  in  certain  situa-
tions it may be necessary to perform the minimization with higher accuracy than provided
by standard hardware floating-point numbers. 

□ Application to Measurement Error

In standard linear regression y~x, one assumes that the independent variables are measured
exactly, while the dependent variable has an error that is ideally normally distributed. If the
independent  variables  are  measured  with  error  too,  standard  linear  regression  underesti-
mates  the  regression  coefficient.  This  is  the  famous  attenuation  problem and  I  will  show
how to solve it. Let us first simulate a dataset with error on both variables.

In[31]:= {X, Y, sx, sy} = Module[
{
n = 1000,
A = 0.5, X0, Y0},

X0 = RandomVariate[NormalDistribution[0, 1], n];
Y0 = A X0;
{
X0 + RandomVariate[NormalDistribution[0, 0.3], n],
Y0 + RandomVariate[NormalDistribution[0, 0.1], n],
StandardDeviation[X],
StandardDeviation[Y]

}
];
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Then linear regression underestimates the slope, which should be 0.5.

In[32]:= LinearModelFit[Transpose@{X, Y}, {1, x}, x]

Out[32]= FittedModel 0.00730558 + 0.460737 x 

When using case-based modeling, several strategies are possible. We may use one or two
latent  variables  for  the  true  values.  As  the  true  dependent  variable  is  just  y0 = a x0,  the
following code uses just one latent variable. Another twist is that the equations are divided
by the empirical standard deviations to put them on an equal footing.

In[33]:= a /. SEM2[
Transpose@{X, Y}, {x, y}, {x0},
{
{x / sx ⩵ x0 / sx, e1},
{y / sy ⩵ a x0 / sy, e2}

},
{}

][[2]]

Out[33]= 0.489653

This example shows both the power of this method and the responsibility of the modeler
to  set  up  sensible  equations.  If  we are  sure  that  the  errors  are  uncorrelated,  we may add
Sum[e1[i] × e2[i], {i, n}] ⩵ 0  as another constraint to further improve the esti-
mate. This may also be done automatically with an extended version of SEM2, which will
be published when its development is completed.

■ Summary
Two methods for the estimation of structural equational models are presented. One uses the
traditional covariance matrix–based approach and is therefore restricted to linear equations,
while the other approach is more general but not yet established in practice. Estimating the
models  is  rather  easy  in  Mathematica,  but  the  numerical  problems  that  arise  can  be
demanding.  The  new  case-based  approach  is  very  flexible  and  promising  in  certain  situa-
tions where the standard approach shows limitations.

■ Conclusion
Case-based calculation of SEM looks very promising given the numerical power of today’s
computers  and  might  give  insight  in  situations  where  the  restrictions  of  the  traditional
approach urge researchers into making assumptions that may not be warranted. 
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