
The Mathematica® Journal

Structural Equation Modeling
Comparing Two Approaches
Reinhard Oldenburg

Structural equational modeling is a very popular statistical technique
in the social sciences, as it is very flexible and includes factor
analysis, path analysis and others as special cases. While usually
done with specialized programs, the same can be achieved in
Mathematica, which has the benefit of allowing control of any aspect
of the calculation. Moreover, a second, more flexible, approach to
calculating these models is described that is conceptually much
easier yet potentially more powerful. This second approach is used
to describe a solution of the attenuation problem of regression.

■ The SEM Method
Linear structural equation modeling (SEM) is a technique that has found widespread use in
many sciences in the last decades. An early foundational work is Bollen [1]; a more recent
overview is provided by Hoyle [2]. The basic idea is to model the linear structure of k
observed variables x1, …, xk of n cases (observations, subjects) by linear equations that
may involve latent variables. These variables are not measured directly but inferred from
the observed variables by their linear relation to the observed variables.

Many commercial programs (including LISREL, Amos, Mplus) and free ones (including
lavaan, sem, OpenMX) have been developed to carry out the estimation procedure. From my
perspective, the R package lavaan [3, 4] by Yves Rosseel is the most reliable and convenient
one among the free programs. I use it as the gold standard to judge results of my own code.

This article first gives a quick overview of the standard SEM theory, then shows how to per-
form the calculations in Mathematica. In the last section, a second approach is discussed.

□ The Standard Example

There is a standard example due to Bollen that is also used in the lavaan manual. The
dataset consists of observations of 11 manifest variables x1, x2, x3, y1, y2, y3, y4, y5, y6, y7,
y8. SEM models are usually depicted graphically. In the lavaan documentation, this is dis-
played as in Figure 1.

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

▲ Figure 1. Bollen’s democracy model (image from lavaan documentation [4]).

The variables x1, x2, x3 are observed variables that measure the construct of industrializa-
tion in 1960, which is described by the latent variable ind60. This means that the level of
industrialization is assumed to be representable by one number for each country, but this
number cannot be measured directly; it has to be inferred from its linear relation to gross
national product x1, energy consumption per capita x2 and share of industrial workers x3.
Next, dem60 and dem65 are the democracy levels in 1960 and 1965, measured by y1, y2,
y3, y4 and y5, y6, y7, y8 (these indicators are freedom of the press, etc.). The data matrix
consists of these 11 numbers for each of 75 countries (cases). The data is delivered with
the lavaan package for R. The aim of estimating the model is twofold. First, the weights of
the linear connections (represented in the picture by arrows) are estimated. These arrows
encode linear equations by the rule that all arrows that end in a variable indicate a linear
combination that yields the value of this variable plus some error term variable. To bring
this mysterious language down to earth, here are the equations represented in Figure 1:

xi = ci · ind60 + ei, i ∈ {1, 2, 3},
yi = di · dem60 + fi, i ∈ {1, 2, 3, 4},
yi = di · dem65 + fi, i ∈ {5, 6, 7, 8},
dem60 = b1 · ind60 + E1,
dem65 = b2 · ind60 + b3 · dem60 + E2.

The variable ind60 is called an exogenous latent variable because no arrow ends there. It
has no associated error variable. However, its manifest (measured) indicator variables x1,
x2, x3 have associated error variables ei (they are called δi in [1]). The indicator variables
y1, y2, y3, y4 and y5, y6, y7, y8 of the two endogenous latent variables (those latent vari-
ables where arrows end) have error variables fi (called εi in [1]). The equations that relate
latent and manifest variables define the measurement part of the model. The two equa-
tions (coming from three arrows) between the latent variables are the structure model,
usually of most interest. Fitting the model to the data gives estimates for the weights of
the arrows, b1, b2, b3, c1, c2, …. The second goal of SEM modeling is to check how well
the structure of the model fits the data; that is, SEM is also a hypothesis-testing method.

2 Reinhard Oldenburg

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

The variable ind60 is called an exogenous latent variable because no arrow ends there. It
has no associated error variable. However, its manifest (measured) indicator variables x1,
x2, x3 have associated error variables ei (they are called δi in [1]). The indicator variables
y1, y2, y3, y4 and y5, y6, y7, y8 of the two endogenous latent variables (those latent vari-
ables where arrows end) have error variables fi (called εi in [1]). The equations that relate
latent and manifest variables define the measurement part of the model. The two equa-
tions (coming from three arrows) between the latent variables are the structure model,
usually of most interest. Fitting the model to the data gives estimates for the weights of
the arrows, b1, b2, b3, c1, c2, …. The second goal of SEM modeling is to check how well
the structure of the model fits the data; that is, SEM is also a hypothesis-testing method.

The equations given do not yet identify all variables. Assume we have a solution of
xi = ci · ind60 + ei; then for any number k, the numbers ci ' := ci · k and ind60' := ind60 / k
would be solutions, too. To avoid this problem, we either fix the variance of the latent vari-
ables to be 1 or we fix some of the weights to be 1. This is the default in lavaan and we
adopt it here, hence c1 = 1, d1 = 1, d5 = 1.

■ The Standard Way of Estimating SEM
Ever since SEM’s invention, SEM models are estimated by calculating the model’s covari-
ance matrix. From the data, we get the empirical covariance matrix S. On the other hand,
from the model, we can calculate a theoretical covariance matrix Z between the observed
variables. (Z depends on the model and thus on the parameters.) For example, one entry in
this matrix would be cov(x1, x2) = cov(c1 · ind60 + e1, c2 · ind60 + e2). Using linearity and
other properties of the covariance, this boils down to a matrix with entries that are polyno-
mials in the model parameters and the covariances and variances between latent variables
and error variables. However, without further assumptions, this gives a lot of covariances
(e.g. cov(e1, e2)) that are not determined by the model and hence must be estimated. As
this usually leads to too much freedom, the broad assumption is that most error variables
are uncorrelated. Only some covariances between error variables are not assumed to be 0;
those are marked in the diagram by two-headed arrows between the observed variables.
For every pair of observed variables, we calculate the covariance by using the above given
model equation as replacement rules and applies linearity and independence assumptions.
In the end, we get a covariance matrix Z that depends on the model parameters b1, b2, b3,
c1, c2, … and on the variances of the latent variables and the covariances of error variables
that are not assumed to be 0. Details can be found in Bollen [1].

To fit the empirical and the theoretical covariance matrix, we have to choose these param-
eters to minimize some distance function. The three most common are uniform least-square,

FULS = 1
2

tr(S - Z)2, generalized least-square, FGLS = 1
2

trI - S-1 · Z2 (I is the identity

matrix), and maximum likelihood, FML = log(Z) + trS · Z-1 - log(S) - k (here k is the
number of manifest variables).

Now we are in the position to define a Mathematica function that performs SEM. First, we
define the helper function getAllVariables that gets all variables contained in an
expression in such a way that, for example, x[1] counts as one variable.

In[1]:= headlist = {Or, And, Equal, Unequal, Less, LessEqual,
Greater, GreaterEqual, Inequality};

Structural Equation Modeling 3

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

In[2]:= getAllVariablesAux[f_?NumericQ] = {};

In[3]:= getAllVariablesAux[{}] = {};

In[4]:= getAllVariablesAux[a_ → b_] :=
Union[getAllVariablesAux[a], getAllVariablesAux[b]]

In[5]:= getAllVariablesAux[t_] /; MemberQ[headlist, t] = {};

In[6]:= getAllVariablesAux[l_List] :=
Union@Flatten@Union@Map[getAllVariablesAux[#] &, l]

In[7]:= getAllVariablesAux[Derivative[n_Integer][f_][arg__]] :=
getAllVariablesAux[{arg}]

In[8]:= getAllVariablesAux[f_Symbol[arg__]] :=
Union@{

If[
MemberQ[Attributes[f], NumericFunction] ||
MemberQ[headlist, f],

getAllVariablesAux[{arg}],
(*else*)
f[arg]

]
}

In[9]:= getAllVariablesAux[f_Symbol[arg__]] :=
Union[{

If[
MemberQ[

Attributes@f,
NumericFunction

] || MemberQ[headlist, f],
getAllVariablesAux@{arg},
(*else*)f@arg

]
}]

In[10]:= getAllVariablesAux[other_] := {other}

In[11]:= getAllVariables[a_] := Union@Flatten@getAllVariablesAux@a

4 Reinhard Oldenburg

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

Here is an example.

In[12]:= getAllVariables[1 + c x[1]^2]

Out[12]= {c, x[1]}

The method will be explained with Bollen’s democracy dataset, so first, we need to load
this dataset. The file bollen.csv contains headers (the names of the variables are saved in
the list BollenObserved) and a first column numbering the cases, which is dropped.

In[13]:= BollenData0 =
Rest /@ Map[

ToExpression,
Import[
"http://myweb.rz.uni-augsburg.de/~oldenbre/sem/bollen.

csv"],
2

];
BollenData = Rest@BollenData0;
BollenObserved = First@BollenData0

Out[14]= {y1, y2, y3, y4, y5, y6, y7, y8, x1, x2, x3}

The data has 75 rows.

In[15]:= Dimensions@BollenData

Out[15]= {75, 11}

Here is the first row of 11 numbers.

In[16]:= BollenData0[[2]]

Out[16]= {2.5, 0, 3.33333, 0, 1.25, 0,
3.72636, 3.33333, 4.44265, 3.63759, 2.55762}

The model itself has to be specified as a list of replacement rules that mirror the model
equations discussed.

In[17]:= BollenRules = {
x1 → c1 ind60 + e1,
x2 → c2 ind60 + e2,
x3 → c3 ind60 + e3,
y1 → d1 dem60 + f1,
y2 → d2 dem60 + f2,
y3 → d3 dem60 + f3,
y4 → d4 dem60 + f4,
y5 → d5 dem65 + f5,

,

Structural Equation Modeling 5

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

In[17]:=

y6 → d6 dem65 + f6,
y7 → d7 dem65 + f7,
y8 → d8 dem65 + f8,
dem60 → b1 ind60 + E1,
dem65 → b2 ind60 + b3 dem60 + E2,
c1 → 1,
d1 → 1,
d5 → 1};

In[18]:= BollenParameters = {c1, c2, c3, d1, d2, d3, d4, d5, d6,
d7, d8, b1, b2, b3};

The code for the estimation function SEM includes some utilities. For example, it defines its
own covariance and variance functions that take into account which variables are assumed to
be uncorrelated. The input of SEM is the data matrix data, a matrix of numerical values, one
row per case. The structural equations modelRules are given in the format detailed in the
previous section, “The Standard Example.” Moreover, the function needs:

• the lists of free parameters, parameters (e.g. path weights)

• endogenous latent variables, endogenousLatentVariables

• exogenous latent variables, exogenousLatentVariables

• the list of error variables of latent variables, errorVariablesOfLatentVariables

• errors of exogenous manifest variables errorsOfExogenousManifestVariables

• errors of endogenous manifest variables errorsOfEndogenousManifestVariables

• a list correlated of pairs of error variables specifying which error variables are allowed
to be correlated

The code after defining Z can be omitted on a first reading; it is only needed to calculate
some fit indices (if required by the option doFI, which asks to do the fit index (FI) calcula-
tion; similarly, doML asks to do the maximum likelihood estimation). The estimation is
done at the end of the function.

The goal of the first half of the SEM program is the definition of the covariance function
Cov that takes into account the SEM assumptions: that most error variables are uncorrelated
(except those specified to be correlated), leaving variances of latent variables as symbolic
entities to be estimated.

This function is then used to calculate the model implied covariance matrix Z. Applying the
model equation rules repeatedly gives a matrix that depends only on parameters, variances of
latent variables and error variables and some allowed covariances of error variables. The code
from the line defining df (the degree of freedom) onward is only important for getting fit
indices. If we are only interested in estimating the model parameters, the next interesting lines
are where FindMinimum is applied to estimate the model. As described in the introduction,
there are several strategies to measure deviation of covariance matrices; for example, the defi-

nition of uls is a straightforward coding for minimizing FGLS = 1
2
· trI - S-1 · Z2.

6 Reinhard Oldenburg

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

In[19]:= Options[SEM] = {doML → False, doFI → False, startValue → 1.0};
Needs["HypothesisTesting`"];

In[21]:= SEM[data_, observed_, modelRules_, parameters_,
exogenousLatentVariables_, endogenousLatentVariables_,
errorVariablesOfLatentVariables_,
errorsOfExogenousManifestVariables_,
errorsOfEndogenousManifestVariables_, correlated_,
OptionsPattern[]] :=

Module[
{n = Length@data, S = Covariance@data, Cov, Var, Z,
i, j, ScalarQ, res = {}, Tr2, df, T, RMSEA, varr, est,
gls, nullmodel, Znull, dfnull, Tnull, glsnull, solm,
errorvars, errorvarsE},

errorvarsE = Join[errorVariablesOfLatentVariables,
errorsOfExogenousManifestVariables];

errorvars = Join[errorvarsE,
errorsOfEndogenousManifestVariables];

Tr2[A_] := Tr[A.A];

ScalarQ[a_] := True /; NumberQ[a] || MemberQ[parameters, a];
ScalarQ[a_ + b_] := ScalarQ[a] && ScalarQ[b];
ScalarQ[a_ b_] := ScalarQ[a] && ScalarQ[b];

Var[a_ + b_] := Var[a] + Var[b] + 2 Cov[a, b];
Var[s_ a_] := s^2 Var[a] /; ScalarQ[s];

Cov[a_ + b_, c_] := Cov[a, c] + Cov[b, c];
Cov[c_, a_ + b_] := Cov[a, c] + Cov[b, c];
Cov[s_, b_] := 0 /; ScalarQ[s];
Cov[b_, s_] := 0 /; ScalarQ[s];
Cov[s_ a_, b_] := s Cov[a, b] /; ScalarQ[s];
Cov[a_, s_ b_] := s Cov[a, b] /; ScalarQ[s];
Cov[a_, b_] := Cov[b, a] /; Order[a, b] < 0;
Cov[a_, a_] := Var[a];
Cov[a_, b_] :=
0 /; MemberQ[errorvars, a] && MemberQ[errorvars, b] &&

Not[MemberQ[correlated, {a, b}] ||
MemberQ[correlated, {b, a}]];

Cov[a_, b_] :=
0 /; MemberQ[errorsOfEndogenousManifestVariables, a] &&

MemberQ[endogenousLatentVariables, b];
Cov[b_, a_] :=
0 /; MemberQ[errorsOfEndogenousManifestVariables, a] &&

MemberQ[endogenousLatentVariables, b];
Cov[a_, b_] :=

Structural Equation Modeling 7

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

In[21]:=

0 /; MemberQ[errorvars, a] &&
MemberQ[exogenousLatentVariables, b];

Cov[b_, a_] :=
0 /; MemberQ[errorvars, a] &&

MemberQ[exogenousLatentVariables, b];
(* Now calculate the model based symbolic covariance
matrix Z *)

Z =
Table[Table[Cov[observed[[i]], observed[[j]]] //.

modelRules, {i, Length@observed}],
{j, Length@observed}];

df = Length@observed (Length@observed + 1) / 2 -
Length@getAllVariables@Z; (* degreees of freedom *)

est[{f_, s_}] :=
{{"df", df, "T", (n - 1) f, "ChiSq p",

ChiSquarePValue[(n - 1) f, df], "RMSEA",
N@Sqrt[((n - 1) f - df) / (df (n - 1))]}, s};

If[
OptionValue@doFI,
Znull = Table[Table[If[i ⩵ j, varr[i], 0],

{i, Length@observed}], {j, Length@observed}];
dfnull = Length@observed (Length@observed + 1) / 2 -

Length@getAllVariables@Znull;
glsnull = FindMinimum[

1 / 2 Tr2@IdentityMatrix[Length@S - Inverse[S].Znull],
Map[{#, OptionValue@startValue} &,
getAllVariables@Znull], MaxIterations → 10 000];

nullmodel =
FindMinimum[
{Log@Det@Znull + Tr[S.Inverse[Znull]] - Log@Det@S -

Length@observed, Det@Znull > 0.0},
Map[{#[[1]], #[[2]]} &, glsnull[[2]]],
MaxIterations → 10 000];

Tnull = (n - 1) nullmodel[[1]];
];
(* First estimation by the unweighted least square
approach *)

AppendTo[res,
ULS →
est@FindMinimum[1 / 2 Total@Map[#^2 &, Flatten[S - Z]],

Map[{#, OptionValue@startValue} &, getAllVariables@Z],
MaxIterations → 10 000]

];
(* now estimation by the generalized least square
approach *)

gls = FindMinimum[
1 / 2 Tr2[IdentityMatrix@Length@S - Inverse[S].Z],
Map[{#, OptionValue@startValue} &, getAllVariables@Z],

];

8 Reinhard Oldenburg

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

In[21]:=

MaxIterations → 10 000];
AppendTo[res, GLS → est@gls];
If[OptionValue@doML || OptionValue@doFI,
(* now estimation my maximum likelihood *)
solm = FindMinimum[Log@Det@Z + Tr[S.Inverse[Z]] -

Log@Det@S - Length@observed,
Map[{#[[1]], #[[2]]} &, gls[[2]]],
MaxIterations → 2000];

AppendTo[res, ML → est@solm];
If[
OptionValue@doFI,
res = {"df", df, "dfnull", dfnull, "T",

(ML /. res)[[1, 4]], "Tnull", Tnull, "CFI",
((Tnull - dfnull) - ((ML /. res)[[1, 4]] - df)) /
(Tnull - dfnull),

"TLI", (Tnull / dfnull - (ML /. res)[[1, 4]] / df) /
(Tnull / dfnull - 1),

"NFI", (Tnull - (ML /. res)[[1, 4]]) / Tnull, res}
]

];
res

]

Let us run the code on Bollen's model in a simplified version where no correlation of error
variables is assumed. This may take several minutes.

In[22]:= sol1 =
Quiet@SEM[BollenData, BollenObserved, BollenRules,

BollenParameters, {ind60}, {dem60, dem65}, {E1, E2},
{e1, e2, e3}, {f1, f2, f3, f4, f5, f6, f7, f8}, {},
doFI → True, startValue → 0.5]

Out[22]= df, 41, dfnull, 55, T, 71.4955, Tnull,
720.912, CFI, 0.954205, TLI, 0.938568, NFI,
0.900826, ULS → df, 41, T, 844.881, ChiSq p,

OneSidedPValue → 1.06285 × 10-150, RMSEA, 0.51474,
{b1 → 1.28932, b2 → 0.414362, b3 → 0.846741,
c2 → 2.06722, c3 → 1.6326, d2 → 1.36095, d3 → 1.00928,
d4 → 1.33757, d6 → 1.32026, d7 → 1.31953, d8 → 1.34769,
Var$2877[e1] → 0.0195517, Var$2877[E1] → 4.01019,
Var$2877[e2] → 0.0702004, Var$2877[E2] → 0.136539,
Var$2877[e3] → 0.596427, Var$2877[f1] → 2.00796,
Var$2877[f2] → 6.55861, Var$2877[f3] → 5.80287,
Var$2877[f4] → 2.50496, Var$2877[f5] → 2.63991,
Var$2877[f6] → 4.07917, Var$2877[f7] → 3.51127,
Var$2877[f8] → 2.93143, Var$2877[ind60] → 0.517597},

GLS → {{df, 41, T, 53.6555, ChiSq p,
, , 0.0645849},

Structural Equation Modeling 9

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

Out[22]=

GLS → {{df, 41, T, 53.6555, ChiSq p,
OneSidedPValue → 0.0889695, RMSEA, 0.0645849},

{b1 → 1.5478, b2 → 0.725271, b3 → 0.779033,
c2 → 2.33574, c3 → 2.0104, d2 → 1.60797, d3 → 1.03095,
d4 → 1.39164, d6 → 1.52055, d7 → 1.40677, d8 → 1.44845,
Var$2877[e1] → 0.0582072, Var$2877[E1] → 3.46104,
Var$2877[e2] → 0.138906, Var$2877[E2] → 0.274183,
Var$2877[e3] → 0.407624, Var$2877[f1] → 1.22166,
Var$2877[f2] → 3.57903, Var$2877[f3] → 3.78616,
Var$2877[f4] → 1.90577, Var$2877[f5] → 1.54902,
Var$2877[f6] → 2.22567, Var$2877[f7] → 2.74435,
Var$2877[f8] → 2.06181, Var$2877[ind60] → 0.306766}},

ML → {{df, 41, T, 71.4955, ChiSq p,
OneSidedPValue → 0.00222553, RMSEA, 0.100256},

{b1 → 1.47374, b2 → 0.453254, b3 → 0.864394,
c2 → 2.18175, c3 → 1.81877, d2 → 1.35401, d3 → 1.04401,
d4 → 1.29954, d6 → 1.25848, d7 → 1.28249, d8 → 1.30977,
Var$2877[e1] → 0.0829343, Var$2877[E1] → 3.92392,
Var$2877[e2] → 0.120038, Var$2877[E2] → 0.116466,
Var$2877[e3] → 0.473522, Var$2877[f1] → 1.96813,
Var$2877[f2] → 6.57733, Var$2877[f3] → 5.41208,
Var$2877[f4] → 2.92618, Var$2877[f5] → 2.42242,
Var$2877[f6] → 4.40157, Var$2877[f7] → 3.557,
Var$2877[f8] → 2.98006, Var$2877[ind60] → 0.454214}}

The result combines parameter, variance and covariance estimations according to the
various estimating strategies. To judge how well the model fits the data, you can set the
option doFI to some fit indices:

• RMSEA is the root square mean error

• CFI is the comparable fit index

• TLI is the Tucker–Lewis fit index

• NFI is the normed fit index

RMSEA should be less than 0.1 or better, less than 0.05, and the last three should all be
greater than 0.9 or 0.95 for good model fit.

The results of estimating using the three different methods differ somewhat. This is not a
bug of our program; lavaan determines the same numbers up to several decimal places.
There are results in the literature about which methods are equivalent under which condi-
tions. For these fit indices to be interpretable, we need to assume that the data is multivariate
normally distributed. If this assumption is violated, then we should judge model fit by other
indices, which is beyond the scope of this article; however, they could be calculated based
on the current approach as well. The book edited by Hoyle [2] gives some information on
these methods.

10 Reinhard Oldenburg

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

For the original model that allows some covariances between error variables, the runtime
gets worse, especially for maximum likelihood estimation. Hence, this is turned off in the
following code.

In[23]:= sol2 =
Quiet@SEM[BollenData, BollenObserved, BollenRules,

BollenParameters, {ind60}, {dem60, dem65}, {E1, E2},
{e1, e2, e3}, {f1, f2, f3, f4, f5, f6, f7, f8},
{{f1, f5}, {f2, f4}, {f2, f6}, {f3, f7}, {f4, f8},
{f6, f8}}, doML → False]

Out[23]= ULS → df, 35, T, 269.722, ChiSq p,

OneSidedPValue → 4.98046 × 10-38, RMSEA, 0.301042,
{b1 → 1.34706, b2 → 0.434015, b3 → 0.842094,
c2 → 2.06404, c3 → 1.62794, d2 → 1.2413, d3 → 0.993572,
d4 → 1.29367, d6 → 1.18893, d7 → 1.30967, d8 → 1.30114,
Cov$3674[f1, f5] → 0.508461, Cov$3674[f2, f4] → 1.40076,
Cov$3674[f2, f6] → 2.66342, Cov$3674[f3, f7] → 1.07878,
Cov$3674[f4, f8] → 0.344901, Cov$3674[f6, f8] → 1.55098,
Var$3674[e1] → 0.0177617, Var$3674[E1] → 4.10648,
Var$3674[e2] → 0.0693836, Var$3674[E2] → 0.138832,
Var$3674[e3] → 0.59955, Var$3674[f1] → 1.82961,
Var$3674[f2] → 7.80021, Var$3674[f3] → 5.78,
Var$3674[f4] → 2.76911, Var$3674[f5] → 2.49728,
Var$3674[f6] → 5.25693, Var$3674[f7] → 3.37514,
Var$3674[f8] → 3.20606, Var$3674[ind60] → 0.519387},

GLS → {{df, 35, T, 35.9469, ChiSq p,
OneSidedPValue → 0.423958, RMSEA, 0.0191202},

{b1 → 1.75509, b2 → 0.666841, b3 → 0.809661,
c2 → 2.30078, c3 → 1.97669, d2 → 1.37207, d3 → 1.074,
d4 → 1.27946, d6 → 1.29919, d7 → 1.38062, d8 → 1.31194,
Cov$3674[f1, f5] → 0.419365, Cov$3674[f2, f4] → 1.43263,
Cov$3674[f2, f6] → 1.27986, Cov$3674[f3, f7] → 0.707215,
Cov$3674[f4, f8] → 0.296529, Cov$3674[f6, f8] → 0.970228,
Var$3674[e1] → 0.0531497, Var$3674[E1] → 3.57272,
Var$3674[e2] → 0.149173, Var$3674[E2] → 0.189575,
Var$3674[e3] → 0.404741, Var$3674[f1] → 1.41245,
Var$3674[f2] → 6.14362, Var$3674[f3] → 4.07991,
Var$3674[f4] → 2.78536, Var$3674[f5] → 1.88536,
Var$3674[f6] → 3.71518, Var$3674[f7] → 2.92723,
Var$3674[f8] → 2.82744, Var$3674[ind60] → 0.321791}}

The results of both models are exactly the same as calculated with lavaan.

Structural Equation Modeling 11

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

■ An Alternative Approach: Case-based Estimation
When I first learned about SEM, I was puzzled by the many notions (e.g. exogenous,
endogenous) and the assumptions needed. For example, I felt that correlation of error variables
should be calculated by the estimation algorithm and not be set at will when specifying the
model. However, these difficulties seem to play no large role in practice and there are thou-
sands of research papers (mainly) in the social sciences that use these methods with great
success. Yet, there are some reasons why the standard approach to SEM via covariance
matrices can be criticized (a more detailed discussion is given in [5]). Traditional SEM:

• is well suited only for linear models (there are some nonlinear extensions, but they have
not yet become mainstream)

• does not give estimates of the values of latent variables for each case (Bayesian variants
can do this)

• requires the covariance matrix of observed data to be nonsingular; however, improving mea-
surement methods in x1, x2, x3, for example, may result in highly correlated measures of
ind60 (in the extreme case with identical vectors of measured values) and hence their covari-
ance matrix will be almost singular

• has resulting estimations for parameters that depend a lot on the estimation method used

• forbids certain linear models that are not identified in this approach, even though the
model itself is sensible and well defined (e.g. the number of covariances of error variables
allowed to be nonzero is limited, although in practice there may be correlations)

You may then wonder why the covariance matrix–based approach is so popular. I suppose
that more than 40 years ago, computers were not powerful enough to deal with a full dataset,
so that the information reduction by calculating the correlation matrix was essential. Since
then, many powerful programs have been developed and research has been carried out that
gave a good understanding of conditions under which the method works well. Moreover, the
psychometric community reached a consensus on how model fit should be judged and thus
studies using this method faced no problem being published.

After this discussion of pros and cons, it is time to present the following case-based approach
to SEM estimation that is very easy (one may even call it naive) to implement but is also very
flexible and with today's computing power, it is feasible in many real-world situations.

Hence, I propose to do SEM case-based by least-square optimization of the defects of the
equations. Assume we have n observations (cases) of k variables xi ∈ ℝn, 1 ≤ i ≤ k. A
general equational model consists of m equations gk({xi}, {Li}, {ci}) = 0, 1 ≤ k ≤ m, which
involve the data, latent variables Li, i = 1, …, l, and parameters ci. Then the latent vari-

ables and the parameters are estimated by minimizing ∑k=1
m ∑j=1

n gkxi, j, Li, j, {ci}
2.

Another twist is needed to get the best results, however. The above objective function
gives all equations the same weight. However, it turned out (by working with simulated
data where it is clear which parameters should be found) that we get better results
by multiplying by a factor that gives the equations different weights, that is,

∑k=1
m ∑j=1

n sk gkxi, j, Li, j, {ci}
2. The factor sk can be modified by an option in the code

that follows. Best results are obtained for sk = n-q, where q is the number of latent vari-
ables in gk. The idea behind this choice is that an equation that involves only one latent
variable links this variable directly to the manifest data and thus should have a high
weight. In contrast, equations with many latent variables are not so close to the manifest
observations and are thus are more hypothetical, so they should have a lower weight.

12 Reinhard Oldenburg

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

Another twist is needed to get the best results, however. The above objective function
gives all equations the same weight. However, it turned out (by working with simulated
data where it is clear which parameters should be found) that we get better results
by multiplying by a factor that gives the equations different weights, that is,

∑k=1
m ∑j=1

n sk gkxi, j, Li, j, {ci}
2. The factor sk can be modified by an option in the code

that follows. Best results are obtained for sk = n-q, where q is the number of latent vari-
ables in gk. The idea behind this choice is that an equation that involves only one latent
variable links this variable directly to the manifest data and thus should have a high
weight. In contrast, equations with many latent variables are not so close to the manifest
observations and are thus are more hypothetical, so they should have a lower weight.

The model equations are not formulated as rules as for the first SEM, but as equations
with the name of the error variable attached to each equation. Moreover, the dataset is not
normalized, so there are nonzero intercepts in the linear equations. In the first approach
this had no consequences, because such additive values are eliminated by calculating the
covariance matrix, but in the SEM2 approach, intercepts must be modeled explicitly (and
we have the benefit of getting estimates for them as well).

In[24]:= BollenEQ = {
{dem60 ⩵ b1 ind60 + u1, e01},
{dem65 ⩵ b2 ind60 + b3 dem60 + u2, e02},
{x1 ⩵ 1 ind60 + t1, ee1},
{x2 ⩵ c2 ind60 + t2, ee2},
{x3 ⩵ c3 ind60 + t3, ee3},
{y1 ⩵ 1 dem60 + s1, e1},
{y2 ⩵ d2 dem60 + s2, e2},
{y3 ⩵ d3 dem60 + s3, e3},
{y4 ⩵ d4 dem60 + s4, e4},
{y5 ⩵ 1 dem65 + s5, e5},
{y6 ⩵ d6 dem65 + s6, e6},
{y7 ⩵ d7 dem65 + s7, e7},
{y8 ⩵ d8 dem65 + s8, e8}

};

The function SEM2 that carries out the model estimation takes as input data and the
names of the manifest (observed) and latent variables (latentVariables). At the
technical heart of the function is the subroutine EQ. This function takes an equation
involving latent variables (e.g. dem60 ⩵ b1 ind60 + u1) and adds to the objective
function targetFunction the appropriate term for each case (i.e. with values from the
data replacing the names of manifest variables):

(dem60[1] - (b1 ind60[1] + u1[1]))2 +
(dem60[2] - (b1 ind60[2] + u1[2]))2 +
… +
(dem60[n] - (b1 ind60[n] + u1[n]))2

There is one option.

In[25]:= Options[SEM2] = {latentWeightFactor → 1};

In[26]:= SEM2[data_, observed_, latentVariables_, equations_,
OptionsPattern[]] :=

Module[
{EQ, i, j, constraints = {}, targetFunction = 0},

Structural Equation Modeling 13

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

In[26]:=

{EQ, i, j, constraints = {}, targetFunction = 0},

EQ[{eq_, err_}] := Module[
{EEs, n = Length@data, manifest, i0, j0, weightFactor},
vars = getAllVariables@eq;
manifest = Intersection[observed,

Flatten@Complement[vars, latentVariables]];
EEs = Table[

First@eq - Last@eq /. Union[
Table[manifest[[j0]] →

data[[i0]][[Position[observed, manifest[[j0]]][[
1, 1]]]], {j0, Length@manifest}],

Table[latentVariables[[j0]] →
latentVariables[[j0]][i0],

{j0, Length@latentVariables}]
],

{i0, Length@data}
];

weightFactor = OptionValue[latentWeightFactor]^
Min[0,
1 - Length@Intersection[vars, latentVariables]];

targetFunction = targetFunction +
Total@Map[#^2 &, EEs] weightFactor

];

Map[EQ, equations];
constraints = Join[constraints,

Map[Total@Table[#[i], {i, Length@data}] ⩵ 0 &,
latentVariables]];

FindMinimum[
Join[{targetFunction}, constraints],
Map[{#, RandomReal[{0.1, 0.5}]} &,
getAllVariables@Join[{targetFunction}, constraints]],

MaxIterations → 10 000
]

]

This code estimates Bollen’s model.

In[27]:= estimate1 = SEM2[BollenData, BollenObserved,
{ind60, dem60, dem65}, BollenEQ];

{estimate1[[1]], Take[estimate1[[2]], 25]}

Out[28]= 1880.71, b1 → 0.995703, b2 → 0.577854, b3 → 1.0518,
c2 → 2.1902, c3 → 1.96527, d2 → 2.82293, d3 → 2.00049,
d4 → 2.46247, d6 → 1.71956, d7 → 1.6727, d8 → 1.73107,
s1 → 5.46467, s2 → 4.25644, s3 → 6.56311, s4 → 4.45253,
s5 → 5.13625, s6 → 2.97807, s7 → 6.19626, s8 → 4.04339,
t1 → 5.05438, t2 → 4.79219, t3 → 3.55769, u1 → -1.10653 × 10-16,

u2 → 1.96852 × 10-17, dem60[1] → -1.61987

14 Reinhard Oldenburg

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

As mentioned, there is a version that weights equations according to the number of latent
variables they have.

In[29]:= estimate2 = SEM2[BollenData, BollenObserved,
{ind60, dem60, dem65}, BollenEQ,
latentWeightFactor → Length@BollenData];

{estimate2[[1]], Take[estimate2[[2]], 25]}

Out[30]= 1678.3, b1 → 1.21904, b2 → 0.585325, b3 → 0.744532,
c2 → 2.20543, c3 → 2.00439, d2 → 1.61306, d3 → 1.1638,
d4 → 1.4081, d6 → 1.42969, d7 → 1.3938, d8 → 1.44193,
s1 → 5.46467, s2 → 4.25644, s3 → 6.56311, s4 → 4.45253,
s5 → 5.13625, s6 → 2.97807, s7 → 6.19626, s8 → 4.04339,
t1 → 5.05438, t2 → 4.79219, t3 → 3.55769, u1 → -1.8441 × 10-16,

u2 → 6.51838 × 10-17, dem60[1] → -2.85761

The results for the estimates differ from what is calculated in the traditional covariance
matrix–based approach given for SEM. A simulation study that compares the two
approaches [5] showed that in many situations the case-based approach gives better
results, especially when the assumption of independent errors is violated. Moreover, the
case-based approach is easily applied to nonlinear equations. However, in certain situa-
tions it may be necessary to perform the minimization with higher accuracy than provided
by standard hardware floating-point numbers.

□ Application to Measurement Error

In standard linear regression y~x, one assumes that the independent variables are measured
exactly, while the dependent variable has an error that is ideally normally distributed. If the
independent variables are measured with error too, standard linear regression underesti-
mates the regression coefficient. This is the famous attenuation problem and I will show
how to solve it. Let us first simulate a dataset with error on both variables.

In[31]:= {X, Y, sx, sy} = Module[
{
n = 1000,
A = 0.5, X0, Y0},

X0 = RandomVariate[NormalDistribution[0, 1], n];
Y0 = A X0;
{
X0 + RandomVariate[NormalDistribution[0, 0.3], n],
Y0 + RandomVariate[NormalDistribution[0, 0.1], n],
StandardDeviation[X],
StandardDeviation[Y]

}
];

Structural Equation Modeling 15

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

Then linear regression underestimates the slope, which should be 0.5.

In[32]:= LinearModelFit[Transpose@{X, Y}, {1, x}, x]

Out[32]= FittedModel 0.00730558 + 0.460737 x

When using case-based modeling, several strategies are possible. We may use one or two
latent variables for the true values. As the true dependent variable is just y0 = a x0, the
following code uses just one latent variable. Another twist is that the equations are divided
by the empirical standard deviations to put them on an equal footing.

In[33]:= a /. SEM2[
Transpose@{X, Y}, {x, y}, {x0},
{
{x / sx ⩵ x0 / sx, e1},
{y / sy ⩵ a x0 / sy, e2}

},
{}

][[2]]

Out[33]= 0.489653

This example shows both the power of this method and the responsibility of the modeler
to set up sensible equations. If we are sure that the errors are uncorrelated, we may add
Sum[e1[i] × e2[i], {i, n}] ⩵ 0 as another constraint to further improve the esti-
mate. This may also be done automatically with an extended version of SEM2, which will
be published when its development is completed.

■ Summary
Two methods for the estimation of structural equational models are presented. One uses the
traditional covariance matrix–based approach and is therefore restricted to linear equations,
while the other approach is more general but not yet established in practice. Estimating the
models is rather easy in Mathematica, but the numerical problems that arise can be
demanding. The new case-based approach is very flexible and promising in certain situa-
tions where the standard approach shows limitations.

■ Conclusion
Case-based calculation of SEM looks very promising given the numerical power of today’s
computers and might give insight in situations where the restrictions of the traditional
approach urge researchers into making assumptions that may not be warranted.

16 Reinhard Oldenburg

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

■ Acknowledgments
It is my pleasure to thank Ed Merkle and Yves Rosseel for many explanations of SEM.

■ References
[1] K. A. Bollen, Structural Equations with Latent Variables, New York: Wiley, 1989.

[2] R. H. Hoyle (ed.), Handbook of Structural Equation Modeling, New York: Guilford Press, 2012.

[3] K. Gana and G. Broc, Structural Equation Modeling with lavaan, Hoboken: John Wiley & Sons, 2019.

[4] Y. Rosseel. “lavaan.” (Aug 25, 2019) https://lavaan.ugent.be.

[5] R. Oldenburg, “Case-based vs. Covariance-based SEM,” forthcoming.

R. Oldenburg, “Structural Equation Modeling,” The Mathematica Journal, 2020.
https://doi.org/10.3888/tmj.22–5.

About the Author

Reinhard Oldenburg has studied physics and mathematics and received a PhD in algebra.
He has been a high-school teacher and now holds a professorship in Mathematics Education
at Augsburg University. His research interests are computer algebra, the logic of elementary
algebra and real-world applications.
Reinhard Oldenburg
Augsburg University
Mathematics Department
Universitätsstraße 14
86159 Augsburg, Germany
reinhard.oldenburg@math.uni-augsburg.de

Structural Equation Modeling 17

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.

