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Abstract: The question what makes an allergen an allergen puzzled generations of researchers. Pollen grains of anemophilous plants are 
the most important allergen carriers in ambient air, and pollinosis is a highly prevalent multi-organ disease in civilized countries. In the 
past, research on the allergenicity of pollen has mainly focused on elucidating genetic predisposing factors and on defining certain struc-
tural characteristics of pollen derived allergens. Recently, studies extended to the analysis of non-allergenic, adjuvant mediators co-
released from pollen. Besides active proteases and oxidases, extracts of pollen contain low molecular weight molecules like pollen-
associated lipid mediators or adenosine exhibiting a potential to stimulate and modulate cultured human immune cells. This article re-
views our current knowledge on non-allergenic, protein and non-protein compounds from pollen and their in vitro and in vivo effects on 
the allergic immune response. To ultimately judge the physiological relevance of these compounds, a systematic approach will be needed 
comparing their releasability, content and activity in different, allergenic and non-allergenic, pollen species. System biology such as pro-
teome and metabolome analysis will be a useful future approach to better understand pollen biology. 
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INTRODUCTION 
Allergy to pollen, colloquially referred to as “hay fever”, has 

always been a scourge of humanity. Besides the well known respi-
ratory symptoms, rhino-conjunctivitis and asthma, pollen allergy 
can manifest itself in various other organs such as skin (atopic ec-
zema) and gastrointestinal tract (pollen-associated food allergy) 
and, in some cases, even cause life-threatening systemic conditions 
(anaphylaxis). Today, about one out of five Europeans suffer from 
allergic rhinitis [1], causing tremendous health care costs and a high 
socio-economic burden. Concurrently, anti-allergic drugs have 
become a more and more important market segment. 

At a first glance, the history of research on pollen allergy reads 
like a fulminant story of success. The term hay fever was first in-
troduced by the British physician John Bostock who mistakenly 
suspected the odor of fresh-mown hay as causative agent of sea-
sonal rhinitis in peasants. In 1869, Charles Blackley detected that 
indeed not hay but pollen was the culprit. In 1921, Charles Praus-
nitz & Heinz Kuestner demonstrated, in a heroic self-experiment, 
that a serum factor was responsible for the cutaneous reaction to 
allergens. A few years later, this ominous serum factor, termed 
atopic reagin, was identified as a member of the immunoglobulin 
family [2]. With the identification of IgE molecule in 1966 [3], the 
puzzle of the allergic immune response seemed solved at last. Ac-
cording to the paradigm, allergens induce the differentiation of IL-
4-secreting T helper type 2 (Th2) cells, which trigger the synthesis 
of IgE in B cells. IgE enters the circulation and can bind, with its 
Fc-tail, to the high-affinity receptor Fc RI on tissue-resident mast 
cells. When allergen binds to at least two different IgE molecules 
this will lead to crosslinking of Fc RI. This triggers the release of 
vasoactive, pro-inflammatory and chemotactic mediators such as 
histamine, mast cell proteases, leukotrienes and prostaglandins. The 
identification of the prime effector cells and molecules of the aller-
gic immune response gave birth to symptomatic anti-allergic ther-
apy based on anti-histamines, mast cell stabilizers and corticoster-
oids. The only causal therapy of allergic diseases is specific 
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immunotherapy (SIT), which is highly successful for some aller-
gens such as bee venom. Likewise, pollen-specific immunotherapy 
results in a marked reduction of symptoms and medication require-
ment (reviewed in [4]), but the treatment is time-consuming and 
expensive [5] and its efficacy usually decreases after a few years. 
Moreover, there are patients who do not respond to SIT. Thus, the 
challenge to develop more targeted therapy strategies for seasonal 
allergies remains. 

THE SENSITIZATION PUZZLE 
Whereas mechanisms, cells and effector molecules of the aller-

gic elicitation phase are well characterized, less is known about the 
allergic sensitization phase. According to a commonly accepted 
model, pollen grains deposited on the respiratory tract epithelium 
release certain proteins, the allergens, which are taken up by resi-
dent dendritic cells. As tissue sentinels, the antigen-loaded dendritic 
cells migrate to the regional lymph nodes to instruct specific T 
helper cells. In the case of pollen proteins, the default outcome of 
such interaction between DC and T cell is tolerance, consisting of 
the production of allergen-specific IgG1 or IgG4 antibodies and the 
differentiation of specific regulatory T cells (Tregs) [6]. In contrast, 
susceptible individuals, known as atopics, fail to mount this protec-
tive type of immune response. Instead, as yet unidentified signals 
trigger the differentiation of Th2 cells. Th2-derived IL-4 induces an 
immunoglobulin class switch in B cells, which eventually develop 
into long-lived, IgE-secreting plasma cells. The reason, however, 
why pollen proteins tend to trigger a Th2-driven immune response, 
remains enigmatic. Another question that continues to puzzle re-
searchers is why some people acquire a robust regulatory response 
to pollen proteins, while others develop Th2-dominated, IgE-
mediated allergy. The concept that only certain allergy-prone, 
atopic, individuals develop allergies is challenged by the fact that 
many people do not develop pollen allergies until late in life. 
Moreover, if atopy was simply a general tendency to develop aller-
gies, one should wonder why some atopic individuals do not de-
velop pollen-specific IgE while other environmental allergens, such 
as house-dust mite, do induce IgE in the same individual. Despite 
numerous attempts to find a clue to the mystery of allergenicity, the 
key questions remain unanswered to date. Sensitization to a protein 
seems to be a multi-factorial process depending on genetic and 
epigenetic factors, protein dose, exposure conditions, intrinsic char-
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acteristics of proteins, and co-exposure to adjuvant factors derived 
from the allergen carrier [7]. 

GENETICS AND EPIGENETICS 
There is clear evidence for a role of genetic predisposition for 

atopy [8]. Loci linked with susceptibility to allergies, eczema or 
asthma include members of the IL-4 gene cluster [9], the high-
affinity IgE receptor [10], MHC class II [11], innate immune recep-
tors [12], and genes involved in epidermal barrier function [13]. 
Particularly, development of an atopic phenotype can result from 
the interaction of allelic variants with specific environmental condi-
tions. Examples for this are CD14, the co-receptor for bacterial 
lipopolysaccharide, and toll-like receptors (TLR)-2 and -4, genetic 
variants of which confer protection against asthma or respiratory 
allergies, depending on the living-conditions of the populations 
studied (rural versus urban life-style) [14],[15]. Epigenetic regula-
tion is another proposed mechanism by which environmental fac-
tors can modulate the susceptibility to allergies. An example for this 
modified hygiene hypothesis is supplied by a recent murine study 
demonstrating that maternal exposure to farm-derived Acinetobac-
ter lwoffii leads to decreased histone H4 deacetylation in the IFN-  
promoter of the offspring´s CD4+ T cells, resulting in decreased 
susceptibility to experimental allergic asthma [16]. 

ALLERGEN DOSE AND ROUTE OF EXPOSURE 
Most respiratory allergies are caused by pollen of anemophilous 

plants. The maximum daily exposure to pollen allergens can be 
roughly estimated based on the volume of inhaled air, pollen counts 
per volume of air, the volume of nasal lining fluid per day and the 
amount of allergen released from a given amount of pollen. For the 
birch pollen allergen Bet v 1, the approximated daily exposure is in 
the low nanogram range [17, 18]. As a general rule, exposure to low 
doses of proteins via the airways tends to induce IgE-mediated 
responses, while exposure of high doses induces tolerance [19]. 
This is also the principle behind allergen-specific immunotherapy. 

ALLERGEN STRUCTURE 
It is well conceivable that to act as an allergen, a protein has to 

possess IgE epitopes. Also, spatial clustering of IgE epitopes can 
play a role in determining allergenicity of a protein [20]. Recent 
advances in designing a hypoallergenic variant of the major birch 
pollen allergen Bet v 1 emphasize the importance of structural ele-
ments for the allergenicity of proteins [21]. 

Systematic in silico screenings of allergenic molecule databases 
have highlighted several characteristics linked to the allergenic 
potential of proteins [22-25]. “Typical” allergens cluster into only a 
few protein families and share certain structural and biochemical 
properties. In general, they are low molecular weight, hydrophilic 
proteins with a net negative charge, and many of them bear post-
translational modifications such as glycosyl residues or disulfide 
bonds, possibly enhancing their stability in vivo. Some allergens 
form higher order complexes, which are thought to add to their IgE 
cross-linking potential. About 70% of all known allergens are en-
zymes. Furthermore, many allergens lack bacterial homologues 
[26], pointing out a role of co-evolution between host and bacteria 
in the decision-making process between tolerance and immune 
response. Finally, it has been proposed that cross-reactivity of envi-
ronmental allergens with self-antigens may facilitate allergic sensi-
tization by a molecular mimicry-related mechanism [27]. 

Structural features might be important in determining the out-
come of an immune response. They cannot explain, however, why 
some individuals mount an IgE response to a given protein and 
others do not. Moreover, attempts to de novo predict allergenicity 
of proteins by computational models based on protein structure 
have been unsuccessful to date [28]. 

INTRINSIC ADJUVANT PROPERTIES OF ALLERGENS 
Enzymatic function, especially protease activity, has been 

linked to allergenic potential of proteins. The most prominent aller-
gens displaying intrinsic protease activity and immune-modulatory 
potential are the group I allergens of the house dust mite Dermato-
phagoides pteronyssinus, Der p 1, and of the storage mite Der-
matophagoides farina, Der f 1. Both allergens belong to the family 
of papain-like cysteine proteases, and disruption of the protease 
activity of Der p 1 results in reduced allergenicity of mite extracts 
in an animal model of allergic sensitization [29, 30]. Der p 1 can 
degrade proteins involved in epithelial barrier integrity like protease 
inhibitors, tight-junction constituents and surfactant proteins [31, 
32]. This might account for increased bioavailability of allergens in 
subepithelial layers and thus facilitate sensitization. Moreover, Der 
p 1 can cleave several surface immune receptors such as CD23 on 
B cells, CD25 on T cells and DC-SIGN (CD209) on dendritic cells. 
These activities of Der p 1 are thought to enhance IgE synthesis, to 
inhibit Th1 and Treg differentiation and to skew immune responses 
towards Th2 [33, 34]. 

The major allergen of birch pollen, Bet v 1, belongs to the 
pathogen related (PR)-10 family of proteins, and, due to its capacity 
to bind phospholipids it is capable to permeabilize cell membranes. 
This might facilitate allergen passage through the epithelium and 
uptake by antigen presenting cells [35]. Group I allergens from 
grass species (e.g. Phl p 1 of Phleum pretense, Lol p 1 of Lolium 
perenne and Zea m 1 of Zea mays) constitute a subgroup of the -
expansin family of proteins. These proteins, which display se-
quence homology to the Cathepsin family of cysteine proteases, 
catalyze the cell wall extension and cell wall loosening necessary 
for longitudinal plant cell growth. While Cathepsin B-like protease 
activity of Phl p 1 has been reported [36], this finding could not be 
confirmed by another study [37]. There is some evidence that Cyn d 
1, a group I allergen of Bermuda grass cross-reactive to Phl p 1, 
exhibits protease activity [38]. A more recent study shows aspartic 
protease activity of a newly identified allergen from Japanese cedar 
pollen [39]. Group 13 allergens from grass pollen like Phl p 13 
belong to the pectin-degrading polygalacturonases [40]. In sum-
mary, although there are examples of pollen allergens displaying 
enzymatic function, evidence for intrinsic adjuvant effects of pollen 
allergens is rare. 

POLLEN: MORE THAN ALLERGEN CARRIERS 
When we are exposed to pollen, it is not only the allergenic 

proteins that we inhale. Rather, epithelia, phagocytes and antigen-
presenting cells of the upper respiratory tract encounter biochemi-
cally complex particles like whole pollen grains or sub-micronic 
pollen particles [40, 41]. These particles, of course, are loaded with 
and release allergenic proteins. Along with the allergens, however, 
myriads of other bioactive compounds such as lipids, sugars, hor-
mones and secondary metabolites are liberated from pollen. 

Two recent studies strikingly showed that pollen exposure im-
pacts on the local immune response not only in sensitized patients 
but also in healthy individuals. During the onset of birch pollen 
season, members of the caveolin family of protein-transporters are 
up-regulated in nasal epithelium of birch pollen-sensitized patients, 
accounting for an increased transport of birch pollen allergens 
through the epithelium [42]. In contrast, a fundamentally different 
change was observed in nasal epithelium of non-allergic subjects. 
Here, a successive up-regulation of factors involved in granulocyte 
chemotaxis and activation, such as serglycin, FMLP receptor-1, 
CXCL6, CXCL10, CXCR2, IL-8 and IL1-  occurred [43]. This 
suggests that in unsensitized individuals, pollen grains cause a non-
specific, pro-inflammatory response, and it is conceivable that such 
a non-specific response precedes and even, eventually, paves the 
way for allergic sensitization. 
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The notion that pollen grains are more than just vehicles for 
allergens is relatively new but might supply valuable contributions 
to resolving the puzzle of pollen allergenicity. In the last part of this 
article we will therefore confine ourselves to reviewing current 
knowledge on non-allergenic, adjuvant substances from pollen and 
their effects on the human and murine immune system. 

CHEWING THEIR WAY THROUGH THE TISSUE: POL-
LEN PROTEASES 

Unlike the class I allergens from mite, most major allergens 
from pollen lack intrinsic protease activity. However, as early as in 
the 1990s, ragweed pollen extracts were identified as a source of 
trypsin- and chymotrypsin-like serine proteases shown to hydrolyze 
neuropeptides relevant bronchomotor tone, mucus production, mi-
cro vascular endothelial integrity and the function of immune cells 
[44]. Among the substrates of ragweed pollen proteases were atrial 
natriuretic peptide (ANP), vasoactive intestinal peptide (VIP), sub-
stance P and angiotensin 1 and -2 [45]. Similar results were ob-
tained with aqueous extracts from various grass pollen species [38], 
as well as with pollen extracts from Parietaria judaica, a common 
cause of allergic rhinitis in Mediterranean countries [46]. The latter 
study also demonstrated that P. judaica pollen proteases induced 
the detachment of pulmonary epithelial cells by degrading the tight-
junction protein occludin. Tight junction degradation via targeting 
of occludin, claudin-1 and ZO-1 was later shown for extracts of 
different pollen species such as Giant Ragweed, grass, birch and 
Easter Lily [47]. Japanese Cedar, a highly allergenic pollen species 
in Japan, was also shown to contain serine proteases [48]. In sum-
mary, all allergenic pollen species examined are a source of serine 
proteases with a broad substrate spectrum. A systematic comparison 
of protease activities in allergenic and non-allergenic pollen species 
could help to evaluate the relevance of these findings. 

OXIDANT STRESS: NAPH OXIDASES 
In 2005, two seminal studies were published describing that 

ragweed pollen extracts contain reduced nicotinamide adenine 
dinucleotide phosphate (NAD(P)H) oxidases [49, 50]. Not until 
several years later, a physiological role was attributed to extracellu-
lar, NADPH oxidase-generated reactive oxygen species in the proc-
ess of pollen-tube growth [51]. 

In a pilot study by Instvan Boldogh and coworkers, pollen-
derived NADPH oxidases were shown to induce oxidant stress in 
cultured airway epithelium and in lungs of ragweed pollen-
challenged mice, leading to mucin production and eosinophil re-
cruitment. Allergic airway inflammation to the major ragweed al-
lergen Amb a 1 was boosted by addition of oxidant stress markers 
such as oxidized glutathione (GSSG) and 4-hydroxy-nonenal (4-
HNE). In contrast, challenge with ragweed extracts stripped of 
NADPH oxidase activity resulted in reduced allergic lung inflam-
mation [50]. A paper from the same group published only a few 
months later demonstrated adjuvant effects of ragweed pollen-
derived NADPH oxidases in a murine model of allergic conjuncti-
vitis [49]. Lactoferrin, an iron-binding protein that prevents the 
formation of other reactive oxygen species from NADPH oxidase-
generated superoxide, was demonstrated to decrease allergic airway 
inflammation to ragweed pollen extract [52]. Intrapulmonary ad-
ministration of antioxidants such as N-acetyl cysteine (NAC), 
ascorbic acid and tocopherol attenuated ragweed pollen-induced 
allergic airway inflammation [53]. A more recent study investigated 
the presence of NADPH oxidases in different allergenic pollen 
species. NADPH oxidase activity was demonstrated for all aller-
genic pollen species examined, with highest activity in ragweed 
pollen, followed by grasses, birch, Japanese cypress and Japanese 
cedar. In hydrated pollen, the enzymatic activity was restricted to 
the insoluble fraction, and hardly any activity was detectable in the 
aqueous supernatant. Localization of NADPH oxidases differed 
between pollen species. Notably, NADPH oxidase activity was 

detected in subpollen particles released from ragweed pollen [54], 
possibly accounting for the high asthma-inducing potential of this 
pollen species. 

CHEMOTAXIS AND IMMUNE MODULATION: POLLEN-
ASSOCIATED LIPID MEDIATORS 

When analyzing supernatants of cells stimulated with aqueous 
birch pollen extracts on commercial LTB4 and PGE2 ELISAs, the 
pollen extracts showed cross-reactivity. This chance finding lead to 
the discovery of the pollen-associated lipid mediators (PALMs), 
bioactive lipids structurally and functionally homologous to mam-
malian eicosanoids. The release of PALMs from hydrated birch 
pollen grains is a rapid process completed within 30 minutes and 
even precedes the release of allergens [55], arguing for a true co-
exposure of human tissues to pollen allergens and PALMs. PALMs 
are not restricted to aqueous birch pollen extracts but were identi-
fied in diffusates of different allergenic pollen species such as 
grasses, ragweed, rocky mountain juniper, Japanese cedar and 
Japanese cypress [56]. 

According to structural criteria, PALMs can be divided into two 
groups. The first group consists of the LTB4-like PALMs, monohy-
droxylated derivatives of linoleic and -linolenic acid. Members of 
this group are 13-hydroxy-octadecadienoic acid and 13-hydroxy-
octadecatrienoic acid. The second group of PALMs is the plant 
isoprostanes (phytoprostanes), which are formed in a non-
enzymatic, oxygen radical catalyzed reaction from -Linolenic acid 
[57]. In aqueous birch pollen extracts, phytoprostanes of the iso-
forms A1/B1-, E1 and F1 have been identified, the E1-phytoprostanes 
being the most abundant isoform [58]. F1-phytoprostanes accumu-
late in plant tissues in response to oxidative damage [59], suggest-
ing that phytoprostanes might generally be involved in stress re-
sponse mechanisms. In pollen, long chain unsaturated lipids are 
known to be involved in signaling during pollen-stigma interaction 
[60]. The role of phytoprostanes in this process, however, is not 
clear. Whatever their physiological functions may be, both types of 
PALMs act in multiple ways on cells of the human immune system. 
First, PALMs of the LTB4-like class were shown to induce chemo-
taxis and activation of human neutrophils and eosinophils [61, 62]. 
This finding was followed by the discovery that pollen-derived E1-
phytoprostanes inhibit the production of IL-12 p70 in human den-
dritic cells, licensing them to induce a Th2-skewed response in 
naïve T cells [58]. This was the first report demonstrating immune 
modulation by pollen-derived, non-allergenic molecules. In a fol-
low-up study, the inhibition of the dendritic cell IL-12 response by 
E1-phytoprostanes was shown to occur via blocking of NF B 
nuclear translocation and by a mechanism involving the nuclear 
receptor peroxisome proliferator-activated receptor-  (PPAR- ) 
[63]. Eventually, however, evidence accumulated for the presence 
of other immune modulatory substances in aqueous birch pollen 
extracts (APE). The first hint was supplied by a study on the effects 
of APE in a murine sensitization model. Mice were sensitized to the 
allergen ovalbumin (OVA) by intraperitonal injection and subse-
quently challenged by intranasal instillation of OVA, OVA plus 
APE or OVA plus E1-phytoprostanes (PPE1). The T helper cells 
isolated from draining lymph nodes of OVA/APE-challenged mice 
showed a Th2-skewed cytokine profile, while T cells from 
OVA/PPE1-challenged mice failed to produce either, Th1 and Th2 
cytokines [64]. The second line of evidence came from a human in 
vitro study on the modulation of chemokine receptors on monocyte-
derived dendritic cells by APE [65]. This study showed that den-
dritic cells exposed to APE acquire migratory properties resembling 
that of dendritic cells exposed to PGE2, an effect that depended on 
adenylyl cyclase and intracellular cyclic AMP induction. However, 
in contrast to APE, PPE1 failed to induce a cyclic AMP signal in 
dendritic cells. The third hint that modulation of dendritic cell func-
tion by APE cannot solely be attributed to PPE1 came from investi-
gating the effects of APE on maturation, cytokine production and T 
cell differentiating potential of primary dendritic cells from human 



                                                                                                                              2317 

peripheral blood. Whereas an APE fraction depleted of proteins 
potently inhibited the LPS-induced maturation of this blood den-
dritic cell subset, E1- and F1-phytoprostanes did not [66]. In a more 
recent study, Metz and coworkers demonstrated that a non-allergen 
containing fraction of birch APE, when injected intradermally into 
the ears of mice, induced a local ear-swelling response. This re-
sponse was accompanied by extensive degranulation of resident 
mast cells. Moreover, this allergen-independent inflammation was 
shown to be dependent on mast cells as it was not inducible in 
mast-cell deficient KitW/W-v mice and could be reconstituted by in-
jection of bone-marrow-derived mast cells. These pro-inflammatory 
effects of non-protein components from pollen might account for 
seasonal allergy-like symptoms described by some patients with 
low or non-detectable levels of specific IgE [67]. Acknowledging 
the fact that the immune systems of mice and humans differ signifi-
cantly in some respects, the observation of adjuvant or aggravating 
effects of APE in both systems – human in vitro and murine in vivo 
–, emphasizes their potential importance. However, only controlled 
human trials will be able to ultimately answer the question of clini-
cal relevance. 

FRIEND OR FOE: POLLEN-DERIVED ADENOSINE 
Non-allergic individuals, as well as pollen allergic patients who 

underwent successful immunotherapy, react to pollen allergens 
predominantly by producing IgG1 and IgG4 antibodies [68, 69]. 
This “healthy” response to allergen is presumably orchestrated by 
allergen-specific T helper cells secreting IFN-  and IL-10 and 
resembles a Th1/Treg response [70, 71]. In our own studies, we 
consistently observed a profound Th1-inhibitory effect of aqueous 
pollen extracts (APE). One class of substances, the above-
mentioned E1-phytoprostanes, was identified as mediator of such 
effects. However, some of the immune modulatory effects of APE 
could not be explained by the presence of the E1-phyotprostanes. 
Consequently, a screening was set up to identify other substances 
with the potential to modulate the T helper cell-priming capacity of 
dendritic cells. First, a protein-free, low molecular weight fraction 
of APE was gained by ultra-filtration. Ultra high-resolution mass 
spectrometry performed with the extracts revealed over 12,000 
discrete mass signals that were translated into 900 annotated com-
pounds, representing the birch pollen metabolome. Subsequent 
pathway analysis of the annotated compounds confirmed that the 
low molecular weight fraction of APE contained numerous linoleic 
and linolenic acid derivatives, among them the previously described 
phytoprostanes. Additionally, various constituents of the purine and 
pyrimidine metabolism were discovered, among them the nucleo-
side adenosine. Since adenosine is a molecule known to modulate 
dendritic cell function and is implicated in the differentiation and 
function of Tregs, we sought to further analyze this finding. The 
presence of adenosine in aqueous pollen extracts of different pollen 
species was confirmed by ultra performance liquid chromatography 
and mass spectrometry, and concentrations of adenosine in different 
birch pollen extracts were found to range from 0.5-10 M. Pollen 
derived adenosine was then shown to contribute to the inhibition of 
the IL12 response of dendritic cells to LPS. Furthermore, dendritic 
cells exposed to pollen-derived adenosine had a compromised ca-
pacity to prime Th1 and Th2 responses in naïve CD4+ T cells. In-
stead, they induced the regulatory cytokine IL10 in the co-cultured 
T cells and promoted the differentiation of CD4+CD25+Foxp3+ 
regulatory T cells. This suggested that pollen-derived adenosine, 
rather than signaling danger to the immune system, represents a 
tolerogenic molecule. Most intriguingly, dendritic cells cultured 
from monocytes of pollen-allergic donors were compromised in 
their response to pollen-derived adenosine: they induced lower 
numbers of Tregs and lower levels of IL10 in the same naïve CD4+ 
T cells than dendritic cells cultured from healthy donor monocytes 
[72]. In the past, several independent studies had demonstrated that 
pollen-allergic patients fail to develop a functional, specific Treg 
response to pollen allergens during the pollen season [73-75]. The 

discovery that sensing of tolerogenic signals like adenosine is com-
promised in dendritic cells of allergics might be a clue to this fail-
ure of tolerance induction. Notably, aqueous extracts of pine pollen, 
a species hardly inducing allergies, contained high concentrations 
of adenosine, while no adenosine was measurable in an extract 
prepared from commercial ragweed pollen. In the future, systematic 
studies will be needed which compare molecules of the adenosine-
signaling pathway in myeloid cells of healthy and atopic individu-
als. Apart from this, adenosine receptors are also expressed on ba-
sophils and mast cells. On maturing dendritic cells, adenosine me-
diates its anti-inflammatory effects via receptors of the isoforms 
A2a and A2b [76, 77]. In mast cells and basophils, adenosine has 
been shown to differentially modulate mediator release, depending 
on adenosine concentration and receptor isoform expression [78-
80]. Consequently, pollen-derived adenosine might turn out to 
modulate not only allergic sensitization but also the allergic elicita-
tion phase. 

THE FUTURE: POLLEN SYSTEM BIOLOGY 
In recent years, the recognition of the fact that pollen grains are 

more than just allergen carriers has lead to the discovery of several 
immune stimulatory and immune modulatory compounds such as 
proteases, NADPH oxidases, PALMs and adenosine. While all of 
these molecules have been identified in various different allergenic 
pollen species, none of the studies investigated these compounds in 
non-allergenic pollen or supplied comprehensive comparisons be-
tween allergenic and non-allergenic pollen species. Systematic 
comparative studies on non-allergenic, adjuvant substances in dif-
ferent pollens might help to deduce the relevance of these sub-
stances for pollen allergenicity. A promising future approach will 
be to collect proteome and metabolome data of different pollen 
species and use these data to perform differential pathway analyses 
in order to identify molecular patterns relevant to allergenicity. 
Comparing the molecular signatures of pollen from different, aller-
genic and less allergenic, species will identify potentially relevant 
compounds for further in vitro screenings and ultimate clinical tri-
als. The challenge of such an approach, of course, will be to obtain 
not only qualitative but also quantitative metabolomic data. If suc-
cessful, it will enable us to specifically target the relevant receptors 
in susceptible individuals, paving the way for new anti-allergic 
medication or improved extracts for SIT. It might even lead to the 
development of prophylactic drugs that can be topically applied 
during pollen season to prevent sensitization in not yet atopic indi-
viduals. Apart from this, a system biology approach to tackle pollen 
biology will further our understanding of how environmental fac-
tors, e.g. traffic-related air pollution, ozone content and soil heavy 
metal composition, influence the allergenicity of pollen. 
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