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The question ‘‘What makes an allergen an allergen?’’ has
puzzled generations of researchers, and we still do not have a
conclusive answer. Despite increasing knowledge about the
molecular and functional characteristics of allergens that have
been identified, we still do not fully understand why some
proteins are clinically relevant allergens and most are not.
Different approaches have been taken to identify the structural
and functional features of allergens, aiming at developing
methods to predict allergenicity and thus to identify allergens.
However, none of these methods has allowed a reliable
discrimination between allergenic and nonallergenic
compounds on its own. This review sums up diverse
determinants that contribute to the phenomenon of allergenicity
and outlines that in addition to the structure and function of the
allergen, factors derived from allergen carriers, the
environment, and the susceptible individual are of importance.
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Allergies are immune-mediated hypersensitivity reactions
that can affect various organs, most commonly the skin,
airways, and gut (ie, the interface between organism and
environment). The prevalence rates of allergic conditions have
increased at an alarming rate throughout the world in the past
50 years.1 According to current concepts, TH2 responses consti-
tute a prerequisite for the development of type I hypersensitivity
reactions, which lead to IgE production and arming of mast
cells and basophils with specific IgE. Subsequent allergen en-
counter leads to IgE-mediated mast cell/basophil degranulation
and release of proinflammatory mediators, cytokines, and che-
mokines that ultimately are responsible for the inflammatory re-
sponse seen in type I hypersensitivity. Although the biology of
TH2 cells and their influence on B cells and immunoglobulin
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class-switch recombination are well understood, little is known
about the mechanisms that control the initial TH2 polarization
in response to allergens. Some studies put forward allergen-de-
pendent mechanisms determined at the dendritic cell (DC) level
because of particular attributes of the specific protein.2-4 Others
suggest T cell–dependent5,6 or individual7 factors leading to a
predominance of the TH2 response. In principle, all these fac-
tors together can add to the allergenicity of a given substance.
The complexity of allergen exposure conditions, however, ham-
pers efforts to understand why a given protein in an individual
at a certain time point induces an ‘‘allergic’’ immune response
and not a ‘‘healthy’’ or tolerogenic immune response. Here
we review the multidimensional determinants contributing to
the allergenicity of a protein that induces type I allergy, focus-
ing on the structure and function of the allergen and on the bi-
ogenic and anthropogenic adjuvants promoting proallergic
immune responses.

Type I hypersensitivity reactions, such as rhinitis allergica
and allergic asthma, are the most common allergic diseases,
with current prevalence rates ranging from 5% to 30% in
industrialized countries.8 Type I allergies are mediated by the
production of IgE specific for otherwise harmless environmen-
tal substances, most of which are proteins. According to the
World Health Organization/International Union of Immunolog-
ical Societies definition, a protein is listed as an allergen when
it causes a specific IgE antibody response in at least 5 individ-
uals.9 Most allergenic molecules that elicit IgE-mediated im-
mune responses are derived from plants, animals, and fungi.
Allergen nomenclature has been developed and is maintained
by the World Health Organization/International Union of Im-
munological Societies Allergen Nomenclature Subcommittee
(www.allergen.org).10 Allergens are named by using the first
3 letters of a genus, a single letter for the species, and a num-
ber according to priority of allergen discovery and purification;
for example, Phl p 1 is the group 1 major allergen from grass
pollen of Phleum pratense. Currently, more than 1000 protein
allergens have been sequenced, and the numbers of known al-
lergens are steadily increasing. However, only a very small per-
centage of the total number of proteins from environmental
sources that our immune system encounters elicits an allergic
reaction.

Abbreviations used

DC: Dendritic cell

DC-SIGN: Dendritic cell–specific intercellular adhesion molecule

3–grabbing nonintegrin

DEP: Diesel exhaust particle

PALM: Pollen-associated lipid mediator

TCR: T-cell receptor

TLR: Toll-like receptor

Treg: Regulatory T
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FROM T-CELL RESPONSE TO IgE PRODUCTION

AND ALLERGIC DISEASE
Type I reactions and symptoms can be explained by molecular-

molecular interactions between the antigen and its corresponding
IgE antibody. This aspect is situated at the end of a cascade of
events leading to allergy. A precondition for this cascade to start is
specific recognition of the allergen on antigen-presenting cells,
which, in the case of T-cell responses, is accomplished by the
antigen-specific T-cell receptor (TCR). However, the TCR-trans-
mitted signal alone is insufficient to induce T-cell responses; it
requires additional modulation by costimulatory molecules with
positive or negative regulatory function. A third signal derives
from antigen-presenting cell–originated cytokines that codecide
the ensuing T-cell subtype (TH1, TH2, TH17, and regulatory T
[Treg] cells). IL-12, for example, is the key cytokine to induce
TH1 responses. A necessary and sufficient DC-derived TH2-skew-
ing signal is not described to date, perhaps because it does not
exist. This gap was filled with the default TH2 hypothesis, claim-
ing that the TH2 pathway represents a default mechanism that can
be in certain cases disturbed by other polarizing cytokines, such as
IL-12 (skewing to TH1), IL-6, IL-23, IL-1b (skewing to TH17),
and IL-10 (skewing to a regulatory type).

The fourth signal derives from the microenvironment. Here
so-called adjuvant factors of extrinsic and intrinsic nature are the
decision makers. Classic TH1 adjuvants are bacterially derived
molecules, such as LPS, and were identified to act through pat-
tern-recognition receptors, including Toll-like receptors (TLRs),
nucleotide-binding oligomerization domain containing proteins
(NODs), Dectin, and dendritic cell–specific intercellular adhesion
molecule 3–grabbing nonintegrin (DC-SIGN/CD209).11,12 Con-
cerning exogenous TH2 adjuvants,13 first evidence was given
from helminth-derived molecules to skew the immune system
toward TH2.14 However, recent data suggest that also allergen
carriers can release TH2-promoting factors (see below).15,16

Together these mechanisms suggest that fine-tuning T-cell
functions is not only accomplished by the orchestrated interaction
of TCRs, costimulatory molecules, and cytokines but also by
adjuvant factors present in the local microenvironment.17

Depending on the susceptibility of the individual, either a
healthy or an allergic immune response to the allergen arises. In
the case of a healthy immune response, the production of IgG4 or
IgG1 allergen-specific antibodies prevails. On the T-cell side, the
healthy response is characterized by the presence of allergen-
specific Treg cells,18 whereas in allergic individuals reduced
frequencies of allergen-specific Treg cells are reported19 and suc-
cessful immunotherapy is accompanied by a normalization of the
Treg cell compartment.20 In susceptible individuals TH2-domi-
nated immune responses lead to production of allergen-specific
IgE. TH2-derived IL-4 adds to the development of IgE-switched
B cells, which in turn undergo transformation to IgE-producing
plasma cells, some of which are long lived and thus responsible
for a long-lasting sensitization status.21 Aalberse22 suggested 2
routes that lead to IgE production: (1) the atopic route (relevant
for allergens from pollen and mites) in which a direct switch
from m to e is common and (2) the ‘‘modified TH2’’ route (used
by allergens from pets) in which the class switch to IgE is often
preceded by a switch to IgG4. According to Aalberse and
Platts-Mills,23 the choice between these 2 routes is determined
at the level of the germinal center activity .
With the formation of allergen-specific IgE, the final step of the
allergy cascade is attained. Every subsequent encounter with
theallergen leads to cross-linking of FceRI-bound IgE on effector
cells, such as mast cells and basophils, by using multivalent
allergen, resulting in cellular activation and release of proin-
flammatory mediators responsible for the symptoms of allergic
diseases. Recent observations suggest that this response is not
only dependent on the presence of 2 epitopes within the allergenic
protein but is also profoundly influenced by other factors that
reduce the threshold mast cell activation. In this context it has
been shown that cell-surface receptors, such as specific G
protein–coupled receptors and KIT (stem cell receptor, c-KIT/
CD117), synergistically enhance FceRI-mediated mast cell de-
granulation. Activating mutations in critical signaling molecules
might also contribute to such responses, underlying the impor-
tance of individual susceptibility to allergic responses.24

Loci and susceptibility genes for allergic sensitization and
disease have been described.25,26 Among others, these include
genes involved in IgE regulation (eg, gene encoding signal trans-
ducer and activator of transcription 6, IL-4 receptor a, IL-4, and
IL-13),27,28 regulation of alveolar macrophage function (eg, the
neuropeptide S receptor gene GPR154),29 or genes that code for
microbial pattern-recognition receptors (eg, CD14 and TLRs).30

Polymorphisms in pattern-recognition receptors are discussed
as a possible molecular mechanism of the hygiene hypothe-
sis,31-33 which postulates that exposure to microbial components
early in childhood protects against the development of allergy and
asthma.34,35 In addition, common loss-of-function variants within
the gene encoding filaggrin, a protein that is essential for epider-
mal barrier function, have been identified as predisposing factors
for atopic eczema36 and allergic sensitization in patients with
atopic eczema.37-39 Therefore interactions between genetic fac-
tors (eg, MHC class II haplotype and polymorphisms of genes
controlling epithelial integrity or pattern-recognition receptors)
and environmental factors (eg, allergen dose and exposure to
adjuvants or microbial stimuli) can influence the outcome of the
immune response and with that the susceptibility to allergic
sensitization and disease (Fig 1).25,40

ALLERGEN SOURCE AND INDIVIDUAL EXPOSURE
The most important sources of allergens are wind-dispersed

pollen grains from trees, grasses, and weeds, followed by
excretions of house dust mites and cockroaches, fungal spores,
and animal dander and insect venoms.

The route of exposure, dose, and function of the allergen are
crucial to mount an allergic sensitization. Sensitization occurs at
the site of allergen exposure, such as the airways and skin, but can
also occur through the gastrointestinal tract. In general terms,
exposure to low allergen concentrations induces IgE production
and allergy, whereas exposure to high allergen doses induces
tolerance through Treg cells, a modified TH2 cell response with
the production of high levels of allergen-specific IgG4 antibodies,
or both that can block the binding of IgE-allergen complexes to
effector cells of the allergic immune response.41-44

But what is considered ‘‘high’’ and ‘‘low’’ dose when it comes to
allergen exposure? Individual allergen exposure is still difficult
to measure and can only be estimated. The inhalation of indoor
allergens from cats and dogs has been calculated to be in the range
of less than 1 ng to 300 ng per day depending on the presence of the
animal in the house.45 Concentrations of house dust mite allergens
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FIG 1. Determinants of allergic diseases. Allergy is the result of an orchestrated interplay of genetic

predisposition and exposure to allergens and adjuvant environmental cofactors that leads to allergic

sensitization, skin and airway hyperreactivity, and allergic disease. NADPH, Reduced nicotinamide adenine

dinucleotide phosphate; VOC, volatile organic compound; ETS, environmental tobacco smoke; MW, molec-

ular weight.
in indoor air are too low to be quantified reliably. Concentrations in
dust samples are high enough to be detected and show that the major
allergen Der p 1 is up to 400-fold lower than concentrations of ma-
jor cat and dog allergens.46 Exposure to outdoor allergens, such as
the birch pollen major allergen Bet v 1, during the pollen season can
be approximated based on pollen flight and allergen release data ob-
tained in vitro47,48 to be on the order of 0.03 to 1 ng/d. Therefore
nanogram quantities or less of indoor or outdoor allergens seem
be sufficient for the induction of allergic sensitization and disease.

However, not everybody who is exposed will become sensi-
tized and have allergies. Aside from the individual exposure
conditions, there is a high variability in the individual respon-
siveness to a given allergen dose. The development of an allergic
(TH2 cell and IgE-dominated) immune response crucially de-
pends not only on the concentration of available antigen but
also on the strength of the T cell–activating signal. Here MHC
haplotype variability between individuals determines the binding
affinity of antigenic peptides to individual MHC class II mole-
cules and their presentation to TCRs.42,49 In other words, what
might be a high allergen dose for some individuals could be a
low dose for others if the allergenic peptide has a lower affinity
for that individual’s MHC molecules.

This leads also to the issue of thresholds for the effects of
allergen exposure on sensitization and development of disease.
The relationships between allergen exposure in childhood and
atopic sensitization or asthma are both complex and controver-
sial. Most intensively discussed in this field are the correlation of
exposure, sensitization to house dust mite and cat,50 and the
possible development of asthma. Sporik et al51 suggested in
1990 that in addition to genetic factors, exposure in early child-
hood to house dust mite allergens is an important determinant of
the subsequent development of asthma and opened a nonended
discussion. Of note, although exposure to high levels of Der p
1 antigen in infancy did influence asthma at 11 years in these
subjects,51 this effect was not statistically significant at 22
years.52 In addition, stringent environmental control, leading to
a drastic reduction of house dust mites, resulted in an increased
rather than decreased risk of atopy; however, there were surpris-
ingly better results for some measurements of lung function in
high-risk children at the age of 3 years.53 The dose-related
immune response to allergens derived from cat exposure appears
to be even less straightforward. In countries in which the preva-
lence of cat ownership is low or rare (<5%), positive associa-
tions between either pet allergen in house dust54 or pet
ownership and sensitization have been reported.55,56 However,
studies in areas with a greater frequency of pet ownership dem-
onstrated that despite a positive association with sensitization,
cat ownership was inversely associated with wheeze, potentially
suggesting an IgE-independent protective mechanism in this
community.57

MOLECULAR FEATURES OF ALLERGENS
The allergens that elicit type I allergies are mostly proteins or

glycoproteins and cluster in less than 2% of all (9318) known
protein families (AllFam database: www.meduniwien.ac.at/
allergens/allfam).58,59 This would seem to imply that structural
and biochemical similarities between allergenic proteins and
the comparison of allergenic and nonallergenic members of the
same protein family could explain what determines allergenicity.
The primary structure (amino acid sequence) of a protein allows
its physicochemical properties, such as molecular weight, isoe-
lectric point (charge), hydrophobicity, and stability, to be pre-
dicted. Computational analysis of the major allergens has
shown that most are relatively small (<70 kd) negatively charged
proteins with low hydrophobicity and high stability.10 In addition,
posttranslational modifications, such as glycosylation or the pres-
ence of disulfide bonds, can increase the stability and bioavaila-
bilty of allergens.60,61 Although this approach allows us to
define common molecular features of allergens, none of the above
parameters or combinations thereof allows a reliable discrimina-
tion of allergens and nonallergens.

http://www.meduniwien.ac.at/allergens/allfam
http://www.meduniwien.ac.at/allergens/allfam
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It has been proposed recently that a common denominator for
allergens could be the lack of protein sequences found in bacterial
proteins.62 Homology searches showed that most common aller-
gens have no bacterial homologues, whereas nonallergenic pro-
teins from the same species have large numbers thereof.
However, there were several exceptions to this rule, and bacterial
proteins themselves can act as type I allergens inducing IgE
responses.63

Progress in structural biology and bioinformatics has provided
detailed information about the secondary and tertiary structures of
more than 200 allergens (see the RCSB protein Data Bank:
www.rcsb.org/pdb/).10 Most allergens can be grouped into 4 struc-
tural families when classified according to their protein folds: (1)
antiparallel b-strands; (2) antiparallel b-strands closely associated
with one or more a-helices; (3) a- and b-structures not closely as-
sociated; and (4) a-helical structure. Again, though, none of the
structural features allows a reliable discrimination between aller-
genic and nonallergenic proteins.64 However, determination of
the 3-dimensional structures of allergens allowed explanation
(and possibly prediction) of cross-reactivity between homologous
molecules from different sources. Allergenicity related to the abil-
ity of a protein to induce symptoms based on cross-reactivity is the
cause of pollen-food syndromes, such as birch and apple. Cross-
reactivity of environmental allergens to human antigen based on
molecular mimicry is discussed to play an important pathogenic
role (eg, in atopic dermatitis).65

A more recent approach indicates that allergen-specific motifs
can be identified by means of in silico mapping of molecular surface
features. The analysis of conservation patterns of surface residues in
4 allergen families and their nonallergen homologues showed the
presence of allergen-specific patches with a high proportion of sur-
face-exposed hydrophobic residues.66 Whether this holds true for
other allergen families and the nature of the functional relevance
of allergen-specific surface motifs remain to be determined.

Finally, the quaternary structures of allergen oligomers influ-
ence allergenicity by facilitating IgE receptor cross-linking,
increasing allergen stability (protection from proteolytic degra-
dation) and resulting in the formation of additional IgE-binding
epitopes localized in regions of monomer-monomer contact.67

Therefore even though we can describe common features of
allergens, structural biology has failed thus far to provide reliable
discriminators that allow the identification of allergens.64,68,69

Still, the fact that an allergen induces a switch to monoclonal,
oligoclonal, or polyclonal responses of the IgE isotype to this
specific structure (which might well be cross-reactive with ho-
mologous structures) strongly indicates that structural elements
related to the specific allergens must be involved in the process.
However, we have to expand the picture of factors inducing
switch (TH2 and IgE) processes with a variety of patient-specific
(genetic background) issues and intrinsic function of the allergen
but also with a large variety of environmental factors, both anthro-
pogenic and biogenic, occurring with allergen exposure.

INTRINSIC FUNCTION OF ALLERGENS
A large number of allergens have intrinsic biologic functions.

They act as proteases, pectate lyases, trypsin inhibitors, calcium-
binding proteins, lipid transfer proteins, actin-binding proteins,
and others. Some of these biologic activities can contribute to
allergenicity by increasing the tissue distribution of the allergen
through digestion of extracellular matrix (eg, hyaluronidase),
degradation of cellular adhesion molecules (eg, house dust mite
major allergen Der p 1 or the Penicillium allergen Pen ch 1370,71),
or direct toxic effects (eg, melitin and phospholipases) on cells of
the microenvironment.72 Others, such as the major birch pollen
allergen Bet v 1, act as membrane-binding proteins by binding
to membrane phospholipids, which might help them to cross
the mucosal barrier and facilitate access of the allergen to anti-
gen-presenting cells.73

The most extensively studied allergens with intrinsic enzy-
matic activity are the house dust mite group 1 allergens Der p
1 from Dermatophagoides pteronyssinus and Der f 1 from Der-
matophagoides farinae, which belong to the papain-like cysteine
protease family.74,75 These provide a clear example of how the
biologic functions of allergens can influence allergenicity: Der
p 1 can cleave several cell-surface molecules, such as CD23
from B cells.76 On B cells, membrane-bound CD23 and its soluble
fragments have been shown to be involved in IgE regulation. Un-
der physiologic conditions, the binding of IgE to CD23 delivers a
negative IgE regulatory signal to B cells. When CD23 is not
occupied by IgE, it undergoes proteolytic cleavage, releasing
soluble CD23. Depending on the size, these fragments either
upregulate (<25-kd fragment) or downregulate (16-kd fragment)
IgE synthesis.77 Schulz et al78 demonstrate that Der p 1 cleaves a
25-kd fragment of CD23, suggesting that Der p 1 might upregu-
late IgE synthesis by virtue of its ability to cleave CD23.79,80

Der p 1 can also cleave CD25, CD40, DC-SIGN (CD209), and
DC-SIGN receptor, which can bias the capacity to induce TH2
cell responses.3,81 Der p 1–mediated cleavage of CD25 on T cells
interrupts an autocrine positive feedback of IL-2 expression
required for TH1 differentiation.82 In addition, cleavage of
CD25 on Treg cells is likely to interfere with their capacity to
suppress T-effector cells through cytokine consumption.83 A
lack of regulation can in turn facilitate the development of TH2-
dominated allergic immune responses.

Immunization experiments in mice using active and inactive
Der p 1 demonstrate that proteolytic activity is crucial for allergic
sensitization and can even facilitate sensitization to bystander
antigens.84,85 In addition, Zhang et al86 proposed that Der p 1 dif-
fers from other C1 cysteine peptidases because the presumably
regulatory prodomain ends in competitive proteolysis and degra-
dation of the propiece by Der p 1 itself. This contrasts with the
well-established behavior of other C1 family cysteine peptidases
in which untethered propieces control unchecked proteolysis by
the mature enzyme because they are persistent nondegradable
inhibitors.86

The enzymatic activity of allergens can also act by changing
the microenvironment in which allergens are encountered. Tissue
homeostasis and epithelial barrier function depend on the pres-
ence of inhibitors that counterbalance endogenous protease
activities. This delicate balance can be disrupted by the group
1 allergens, which degrade antiproteases, such as a1-proteinase
inhibitor, elafin, or secretory leukocyte protease inhibitor.87 This
results in enhanced endogenous protease activity that can weaken
the epithelial barrier and facilitate allergen access to DCs in sub-
epithelial tissue. In addition, Der p 1 and Der f 1 can inactivate
lung surfactant proteins A and D, which are known to inhibit
the binding of inhaled allergens to cell-sequestered IgE88 and
can degrade tight-junction proteins in airway epithelium, which
results in increased availability of allergens to DCs beneath the
epithelial barrier.89 Immunization experiments in mice using ac-
tive and inactive Der p 1 show that the proteolytic activity of Der p

http://www.rcsb.org/pdb/
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1 is crucial for allergic sensitization and can even facilitate sensi-
tization to bystander antigens.85,90

Among the allergens currently listed in public-domain data-
bases (eg, Allergome or the Structural Database of Allergenic
Proteins), more than 80 different allergens are listed as proteases.
For many of these, we are just beginning to understand how the
biologic activity can influence allergenicity. An excellent exam-
ple is the recent observation91 that the proteolytic activity of
papain is crucial for the development of allergic immune re-
sponses by inducing the recruitment of basophils to T-cell areas
of draining lymph nodes during the priming phase of the response.
The recruited basophils produce TH2 cell–promoting cytokines
(IL-4 and thymic stromal lymphopoietin) in response to the (pro-
tease) allergen and are required for the subsequent TH2 cell differ-
entiation in vivo. The results indicate a novel model for the innate
initiation of TH2 cell responses by basophils based on sensing the
protease activity of allergens, a mechanism that might also be
effective in sensing proteases during helminth infections.

Despite good evidence for a role of protease function in
allergenicity, many other allergens, such as Fel d 1, Der p 2, and
Der p 5, have no protease activity,92,93 and some even function as
cysteine protease inhibitors (eg, Fel d 3).94 Either we still have to
discover the relevant activity of these allergens, or more likely, the
allergenicity of these proteins is independent of their biologic
function. Furthermore, we have to take into account that not all
proteases are allergenic. Taken together, specific intrinsic activi-
ties can contribute to the allergenicity of certain proteins, but
they are not an obligatory prerequisite for an allergen. In addition,
thus far no single biologic function has been identified as a reli-
able discriminator of allergenic proteins.

BIOGENIC COFACTORS CONTRIBUTING TO

ALLERGENICITY
Allergen research has mainly focused on identifying single

allergens and characterizing their biochemical, structural, and
functional properties. Little attention has been paid to the natural
context under which these allergens are encountered by the
organism. Except for testing in clinical settings, individuals will
never be exposed to isolated allergens but are usually exposed to
their carriers. This implies that other factors being liberated from
the allergen carrier or exposed together with the allergen might
influence the host’s response to the allergen.

For example, microbial molecules are ubiquitous in ambient air
and dust. Consequently, individuals are exposed to the allergen
together with these microbial molecules that directly activate
receptors expressed on cellular constituents of the innate immune
system.95 These pathogen-associated molecular patterns include
TLR ligands, which can dramatically influence antigen-specific
immunity. For example, mice and human subjects immunized
with antigen and immunostimulatory sequence oligodeoxynu-
cleotide (TLR9), have robust TH1-biased adaptive responses
and are protected from TH2-biased airway hypersensitivities.96

However, the nature,97 dose,98,99 and exposure frequency17 of
TLR ligand seem to be of central importance for the outcome
of the ensuing T-cell response, which perhaps is one reason for
conflicting results concerning the immunologic basis of the
hygiene hypothesis.100,101

Chitin, a biopolymer of N-acetyl-b-D-glucosamine that is
present in insects, mites, fungal spores, helminths, and crusta-
ceans, has previously shown to induce TH1 responses or even the
prevent allergy.102,103 A recent report of Reese et al,104 however,
demonstrates that chitin, even though not recognized as an aller-
gen in itself, can act as a potent inducer of IL-4–producing eosin-
ophils and basophils, which might then facilitate the development
of IgE-dominated immune responses. Chitin-induced eosinophil
and basophil recruitment is independent of TLRs and involves
BLT1 receptor–dependent accumulation of alternatively acti-
vated macrophages.104

Along the same lines, pollen grains not only release allergens
but also nonallergenic, bioactive, pollen-associated lipid media-
tors (PALMs),105 which have proinflammatory and immunomod-
ulatory effects on the cells of the allergic immune response.
Proinflammatory PALMs (eg, oxylipins) attract and activate eo-
sinophils and neutrophils independently of the sensitization status
of the donor (ie, from allergic and nonallergic donors),106,107 sug-
gesting that they act primarily as an adjuvant that can enhance in-
flammatory processes, such as during the elicitation phase of the
allergic response. Immunomodulatory PALMs, such as E1 phyto-
prostanes, inhibit DC production of IL-12 and TH1-type chemo-
kines and increase the capacity of DCs to induce TH2 cell
differentiation and recruitment, which indicates that they support
the generation of a TH2 cell–dominated allergic immune re-
sponse.16,108,109 Finally, pollens release nonallergenic reduced
nicotinamide adenine dinucleotide phosphate oxidases, which
have detrimental effects on airway epithelial cells through the
generation of reactive oxygen species.110,111

Also, house dust mites were shown to harbor adjuvant activity,
first of all because of the above-described proteolytic activity of
the major house mite allergen Der p 1. In addition, Krishnamoor-
thy et al112 demonstrate that house dust mite whole-body extracts
promote cell-surface expression of KIT and its ligand, stem cell
factor, on mouse DCs, resulting in sustained signaling down-
stream of KIT, upregulation of the Notch ligand Jagged-2, and
finally IL-6 secretion. The authors hypothesize that IL-6 upregu-
lation could limit the TH1 response while promoting the TH2 and
TH17 pathways.

Collectively, allergen carriers, such as pollen grains and house
dust mites, represent packages of danger signals that can influence
the outcomes of immune responses in many ways (Fig 2). For a
better understanding of allergenicity, we will have to address
and integrate in more detail the role of nonallergenic cofactors
present during allergen exposure that favor the development of
allergic sensitization and disease.

ENVIRONMENTAL POLLUTANTS AS

CONTRIBUTING FACTORS
The same holds true for environmental pollutants, which can

facilitate the development of type I allergies through several
different mechanisms. The best-studied particulate pollutants are
diesel exhaust particles (DEPs), which were shown to turn a
harmless neoantigen into an allergen capable of inducing high
levels of allergen-specific IgE.44,113 Susceptibility genes for the
adjuvant effect of DEPs have been identified (eg, glutathione-
S-transferase and Nrf2) and suggest that DEP-induced oxidative
stress play a central role in this process.114-117 In addition, partic-
ulate matter can act directly on local antigen-presenting cells,
such as mucosal DCs, and modulate their function by changing
their surface phenotype and cytokine profile (reduced IL-12 pro-
duction), resulting in a proallergic pattern of innate immune acti-
vation.118 Because allergic sensitization and the elicitation of
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FIG 2. Interplay between the allergen source, environmental cofactors, and cells of the allergic immune

response during exposure to pollen grains. In the context of type I allergy, pollens have generally been

regarded as allergen carriers. Aside from allergens, pollens release many other substances with

proinflammatory and immunomodulatory effects on cells of the allergic immune response. In addition,

pollens can carry biogenic and anthropogenic factors that influence allergen release, generate novel

allergenic epitopes, and modulate the epithelial microenvironment of an allergen encounter. NADPH,

Reduced nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species; ECP, eosinophil

cationic protein; MPO, myeloperoxidase.
symptoms are dose-dependent phenomena, factors that modulate
the bioavailability of allergens can influence allergenicity.119 This
can occur at the site of allergen exposure in the body, where pol-
lutants (eg, O3, NO2, and volatile organic compounds) act as irri-
tants and induce pulmonary inflammation and disruption of
epithelial barrier homeostasis, which facilitates the access of al-
lergens to effector cells of the allergic immune response. It can
also occur at the level of the allergen carriers, such as pollen
grains, where exposure to gaseous pollutants can alter the release
of allergens.119 In addition, traffic-related pollutants, such as NO2

and O3, facilitate the release of allergen-rich cytoplasmic granules
from pollen and therefore increase the quantity of allergens in the
respirable submicronic fraction.120 Finally, pollutants such as
NO2 and O3 at relevant atmospheric concentrations can lead to
the nitration of airborne allergens, such as Bet v 1.121 The detec-
tion of IgE specific for nitrated Bet v 1a, which does not bind un-
modified Bet v 1 or nitrated unrelated proteins, implies that
nitration generates novel allergenic epitopes.122 Interestingly,
functional IgE specific for nitrated Bet v 1a is detected in serum
samples of patients who are allergic to birch pollen,122 which in-
dicates that allergen nitration is relevant in vivo and can contribute
to allergenicity in polluted environments.

SUMMARY AND FUTURE PERSPECTIVES
Rapid progress in molecular and clinical allergy research has

advanced our understanding of the structural and functional
nature of allergens and has led to improved classifications
according to taxonomy and protein families. This knowledge
has resulted in better characterization and standardization of
allergen extracts, the design of novel hypoallergenic mutants for
safer allergen-specific immunotherapy, and the development of
novel strategies for advanced diagnostics and patient-tailored
therapies in the management of allergic diseases.123

Despite this advancement, we still struggle when it comes to
the following questions: ‘‘What makes an allergen an allergen?’’
or, the other way round, ‘‘Why are all the other proteins derived
from allergen carriers nonallergenic?’’ Clearly, allergenicity
cannot be determined based on structural features alone, be
they sequential or conformational. A list of additional determi-
nants needs to be integrated to understand the complex phenom-
enon of allergenicity. Several important questions remain
unanswered: What determines the ‘‘major’’ or ‘‘minor’’ nature
of an allergen? Which factors are responsible for turning immu-
nologic sensitization at the IgE level into clinically relevant
allergic immune responses/inflammation? What are the relevant
gene–environment interactions that influence the outcome of
allergic responses? The genetic makeup of an individual (specif-
ically polymorphisms in genes involved in immune and barrier
function) is an important predisposing determinant for the
development of TH2 cell–dominated allergic immune responses.
Biogenic and anthropogenic environmental cofactors released
from or associated with allergen carriers might be equally impor-
tant as contributors to allergic sensitization and disease manifes-
tation. Even though this has been conclusively shown for various
single components, the questions that remain concern which of
the many components in what combination in which patients
with what kind of genetic background act as decisive elements
leading to allergic disease.
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Future research should not only try to elucidate the structural
basis of allergenicity but should focus with equal intensity on the
many additional factors from the environment and the host that
determine the outcome of the response to allergens. This might
finally result in new concepts of diagnosis, therapy, and preven-
tion and might enable interventions at a regulatory level in public
health.
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