
Cardiovascular Pathology 41 (2019) 29–37

Contents lists available at ScienceDirect

Cardiovascular Pathology
Original Article
The role of hemodynamics in bicuspid aortopathy: a
histopathologic study☆,☆☆,★,★★
Nimrat Grewal a,b,⁎, Evaldas Girdauskas c,d, Marco DeRuiter b, Marie-Jose Goumans e, Robert E Poelmann f,
Robert J.M. Klautz a, Adriana C. Gittenberger-de Groot b,f

a Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
b Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
c Department of Cardiovascular Surgery, University Heart Center Hamburg, Germany
d Department of Cardiac Surgery, Central Hospital Bad Berka, Bad Berka, Germany
e Department of Molecular Biology, Leiden University Medical Center, Leiden, The Netherlands
f Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
☆ Funding sources: This research did not receive an
agencies in the public, commercial, or not-for-profit secto
☆☆ Disclosures: none.
★ Conflict of interest: The authors declare that they hav

★★ Journal subject terms: basic science research, vascula
section, vascular disease

⁎ Corresponding author at: Department of Cardiothor
Medical Center, Postal zone: K-6-S; P.O. Box 9600, 230
Tel.: +31 52698022; fax: +31 71-526 6809.

E-mail address: n.grewal@lumc.nl (N. Grewal).

https://doi.org/10.1016/j.carpath.2019.03.002
1054-8807/© 2019 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 23 November 2018
Received in revised form 25 March 2019
Accepted 26 March 2019

Keywords:
Background:A bicuspid aortic valve (BAV) is themost common congenital cardiacmalformation and is associated
with ascending aortic dilation in 60%–80% of patients. In this study,we aimed to address the role of hemodynamic
influences on the development of aortopathy in BAV patients.
Patient and methods: BAV (n=36) and tricuspid aortic valve (TAV) patients (n=17) undergoing aortic valve re-
placement underwent preoperative flow magnetic resonance imaging (MRI) assessment to detect the area of
maximal flow-induced stress in the proximal aorta. Based on these MRI data, paired ascending aortic wall sam-
ples [i.e., area of maximal jet impact (jet sample) and the opposite aortic wall (nonjet sample)] were collected
during surgery. To study and describe the effects of jet stream on the complete vascular wall, a pathology
score was developed based on the recently published aortic consensus paper statement on surgical pathology
of the aorta using routine histologic stainings (resorcin fuchsin, hematoxylin–eosin, andMovat) and immunohis-
tochemistry (alpha smooth muscle actin, smooth muscle 22 alpha, platelet endothelial cell adhesion molecule).
Results: Comparing the jet and nonjet samples in both BAV and TAV, regions of maximal jet impact did not show
any difference in the pathology score in the adventitia and the middle and outer media. In the jet samples, the
innermedia however showed loss of actin expression in both BAV (Pb.0001) and the TAV (P=.0074), and the in-
timal thickness was significantly enlarged in both patient groups (BAV P=.0005, TAV P=.0041), which was not
accompanied by loss of elastic lamellae or vascular smooth muscle cell nuclei.
Conclusions: In our study population, we could not demonstrate a potential distinct role for hemodynamics in the
development of aortopathy in BAV patients even if corrected for aortic diameter, raphe position, or whether the
valve is stenotic or regurgitant. The intimal layer and inner media however showed alterations in all jet
specimens.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bicuspid aortic valve (BAV) is the most common congenital cardiac
malformation with a prevalence of 1%–2% in the general population.
Around 60%–80% of BAV patients develop aortic dilation (also called bi-
cuspid aortopathy), which is associated with an increased risk of life-
threatening complications [1]. Despite the great disease burden of
BAV, to date, the exact pathogenesis of bicuspid aortopathy is not yet
sufficiently understood. Studies which have focused on the aortic com-
plications in BAV patients have looked either for genetic causal factors
or for the influences of hemodynamics on the ascending aortic wall.

We at least know that the BAV ascending aortic wall is intrinsically
different with less differentiated vascular smooth muscle cells
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Patient characteristics

Characteristic TAV (n=17) BAV (n=36)

Age (years) 60±8.9 55.8±8.8

Gender
Male n (%) 14 (82%) 26 (72%)
Female n (%) 3 (18%) 10 (28%)
Ascending aortic diameter (mm) 45.1±7.2 44.0±8.1

Aortic valve pathology
Aortic stenosis n= 7 28
Aortic regurgitation n= 10 8

Raphe position
RCC/LCC n= NA 28
RCC/NCC n= NA 8

RCC/LCC: raphe between right coronary cusp and left coronary cusp. RCC/NCC: raphe be-
tween right coronary cusp and non-coronary cusp.
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(VSMCs) as compared to the population with a tricuspid aortic valve
(TAV) [2–5]. The aorta in BAV is characterized not only by immaturity
of the VSMCs of the ascending aorta but also by less aging histopathol-
ogy features, such as inflammation, apoptosis, and cystic medial degen-
eration [6]. As not all BAV patients have an increased risk for aortopathy,
current studies are aiming at finding predictive markers for aortic com-
plications in BAV [3,7]. In our previous study, we identified a set of
markers expressed in the VSMCs of the ascending aorta, associated
with vascular remodeling, vascular differentiation, and VSMC relaxation
[3]. Thesefindingsmake it plausible that aortopathy in BAV is associated
with pathogenetic processes in the aortic media.

Besides histopathological differences between BAV and TAV, the role
of valve related hemodynamics in the development of aortic complica-
tions in BAV has also been studied [8–10]. Flow-sensitive cardiac mag-
netic resonance imaging (CMR) with full volumetric coverage of the
ascending aorta (four-dimensional flow CMR) can visualize and mea-
sure aortic three-dimensional blood flow patterns, such as flow jets,
vortices, and helical flow. It has been shown that nonstenotic or
regurgitant BAVs are associated with disturbed flow patterns in the as-
cending aorta, with regional increases in wall shear stress [11,12].

The question, however, remains whether the impact of jet on the as-
cending aorticwall is sufficient to explain the observed structural differ-
ences of the aortic wall between BAV and TAV. As jet streams hit the
endothelial cells and intimal layer initially, it is difficult to understand
how that would lead to aortic dilation and dissection which are mainly
characterized by pathogenetic features of the aortic media.

In this study, we therefore aimed to study the effects of hemody-
namics on the complete vascular wall in both TAV and BAV populations,
knowing that the jet stream affects the intimal layer primarily but could
reflect on the pathologic features in the aortic media. We measured the
area of maximal jet impact by flow magnetic resonance imaging (MRI)
and analyzed the histopathology characteristics in the intima andmedia
in paired jet and nonjet samples of aortic wall tissue.We further studied
whether the hemodynamic effects on the aortic wall can be related to
dilation of the ascending aorta, the raphe position in the valve cusps,
or stenosis or insufficiency of the aortic valve.

Earlier, we have reported the aortic wall histopathology in jet and
nonjet cases [13]. We were, however, unsatisfied by the lack of stan-
dardization we could achieve on the histological aspects, which ham-
pers comparison across studies. We have now applied a standardized
approach using the recently published aortic consensus paper state-
ment on surgical pathology of the aorta [14] and added a number of pa-
rameters based on immunohistochemistry resulting in a well-defined
pathology score.

The purpose of this study is to evaluate whether the thus developed
pathology score is functional in the description of the ascending aortic
wall in BAV patients and analyze a possible correlation between hemo-
dynamics and vessel wall structure in aortopathy in BAV patients as
compared to TAV patients.
2. Material and methods

2.1. Study population and preoperative cardiac phase-contrast cine MRI
examination

Over a period of 2 years, all consecutive patients with a BAV or a TAV
with stenosis or regurgitation undergoing aortic valve replacement
(AVR) with or without concomitant proximal aortic replacement were
evaluated prospectively at the Central Hospital, Bad Berka, Germany. A
total of 36 BAV patients (mean age 55.8±8.7 years, 72% male) and 17
TAV (mean age 60±8.9 years, 82% male) were included in the study.

For this study sample, collection and handling were carried out ac-
cording to the official guidelines of the Medical Ethical Committee of
the Central Hospital Bad Berka. All patients gave written informed
consent.
In all patients, morphology and function of the aortic valve were
assessed preoperatively by echocardiography and cardiac phase-
contrast cine MRI. An aortic valve was considered bicuspid if two-
dimensional short-axis imagingof the aortic valve demonstrated the ex-
istence of only two commissures delimiting two aortic valve cusps. The
surgeon howevermade the final decision regarding the bicuspidy of the
aortic valve based on the intraoperative description of valve anatomy,
i.e., the existence of three normal commissures for TAV and two normal
commissures for BAV. Aortic valve stenosis and regurgitation were de-
fined according to the valvular guidelines [15]. The diameter of the
proximal aorta was measured preoperatively bymeans of transthoracic
echocardiography andMRI. Dilationwas defined by reaching an ascend-
ing aortic wall diameter of 45 mm or more [16]. Patient characteristics
are summarized in Table 1.

All patients underwent cardiac phase-contrast cine MRI examina-
tion preoperatively to detect the area ofmaximal jet impact in the prox-
imal ascending aorta. A single noncontrast cardiac MRI (Avanto 1.5-T
scanner; Siemens, Erlangen, Germany) which included structural, func-
tional, and phase-velocity-encoded imaging of the left ventricular out-
flow tract and the proximal aorta was performed as has earlier been
described [17]. Fig. 1 shows the location of the jet and the angle at
which the flow jet hits the aortic wall in the flow velocity-encoded
window.
2.2. Sample processing and routine histology

Based on preoperativeMRI analysis, two aorticwall sampleswere col-
lected from the aortotomy incision in patients who underwent isolated
AVR only and from intraoperatively excised aortic tissue in the patients
who required simultaneous ascending aortic replacement. The first aortic
specimen (the so-called jet sample)was obtained from the area of contact
between the systolic transvalvular flow jet and the aortic wall, as deter-
mined by preoperativeMRI analysis (i.e., the segment of aortic circumfer-
ence in direct contact with the flow jet). The second sample (i.e., nonjet
sample) was collected from the opposite aortic wall. Aortic samples
were obtained from the aortotomy incision; the remaining tissue was
not used for research purposes. In patients with replacement of the as-
cending aorta, the samples were approximately 1.0–1.5 cm2. In cases of
an isolated aortic valve surgery, the specimen was approximately 0.3–
0.5 cm2. The height of aortotomy incision was tailored individually in
order to correspond with the preoperative MRI data.

Both samples were fixed in 4.5% pH buffered formalin and embed-
ded in paraffin in the Institute of Pathology, University Hospital Jena,
Germany. In the Leiden University Medical Center, transverse sections
were mounted on precoated Starfrost slides (Klinipath BV, Duiven, the
Netherlands).



Fig. 1. CMR image. Angle between systolic peak velocityflow jet and the aortic area indirect contactwith theflow jet as identifiedbyCMR (flowvelocity-encoded phase-contrast imaging).
(A) Cross-sectional line across the proximal aorta at the point where the systolic flow jet contacts on the aortic wall; (B) tangential line, perpendicular to line A;α=angle between line B
and vector of transvalvular flow (i.e., jet/aorta angle). Figure adapted from Girdauskas et al. [47].
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2.3. Histopathologic parameters and analysis

Transverse sections (5 μm) were stained with hematoxylin–eosin
(HE), resorcin fuchsin (RF), alpha smooth muscle actin (αSMA), and
smoothmuscle 22 alpha (SM22α). The staining protocols have been de-
scribed in detail in a previous paper [2] of our group. Movat
pentachrome staining was further performed on 4-μm sections; the
staining protocol used was as described before [18]. Immunofluores-
cence staining was performed with platelet endothelial cell adhesion
molecule (PECAM)-1 antibody (M-20, sc-1506) to visualize the endo-
thelial cells.

Sections were studied with a Leica BM500microscope equipped with
plan achromatic objectives (Leica Microsystems, Wetzlar, Germany).

The developed pathology score is based on the recently published
aortic consensus paper statement on surgical pathology of the aorta
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Fig. 2.Histopathologic features. Transverse histologic sections stained with HE (5 μm), RF (5 μm
dilated tricuspid aortic valve. (A) An HE-stained overview of the intima (i), media (m), and adv
(asterisk) in anRF-stained section. (C) A detail of themedial layerwithMEMA (asterisk) in aMo
an αSMA-stained section. Magnification: A, 10×; B–D, 40×.
[14] using the routine histologic stainings with HE, RF, and Movat for
statement features 1–3with additional parameters using immunohisto-
chemistry (features 4–7). The features were studied on three
predetermined locations (left, middle, and right) of every section,
which we refer to as “microscopic fields,” maintained in evaluation of
all stainings on sister sections. Different from the consensus statement,
all features were indexed from 0 (none), 2 (mild), 4 (moderate) to 6
(severe) on the three predetermined locations as we have performed
this in a previous study [19]. As the study mainly used surgical biopsy
material, we could not evaluate six different sites of the aortic wall as
proposed in the consensus pathology statement. The following features
were studied:

1. Medial elastic fiber degradation (EFD) indexed from 0 (none), 2
(mild), 4 (moderate) to 6 (severe);
10x
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), Movat pentachrome staining (4 μm), andαSMA (5 μm) in the ascending aortic wall in a
entitia (a), with medial degeneration (asterisk). (B) A detail of the medial layer with EFD
vat-pentachrome-stained section. (D) A detail of themedial layerwith SMCNL (asterisk) in
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Fig. 3. The normal ascending aortic wall. Transverse histologic sections (5 μm) stainedwith HE, RF, andαSMA of a nondilated ascending aortic specimen in a tricuspid aortic valve patient.
(A) The ascending aortic wall consists of three layers: the intima (i); media, further subdivided into an inner media (im), middle media (mm), and outer media (om); and adventitia (a).
(B) The intima consists of an endothelial cell layer (arrows) lining the aortic luminal surface and a subendothelial layer of loosely organized elasticfibers and VSMCs. (C) RF-stained section
showing the elastic fibers themedia consists of. (D)αSMA-stained section showing the VSMCs in themedia. (E) HE-stained section; the adventitia predominantly consists of loose fibrous
tissue containing nerve fibers, fibroblasts, adipocytes, and vasa vasorum lined by endothelium and VSMCs. Magnification: A, 10×; B, 100×; C and D, 40×; E, 80×.
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2. Medial mucoid extracellular matrix accumulation (MEMA)
indexed from 0 (none), 2 (mild), 4 (moderate) to 6 (severe);

3. Smoothmuscle cell nuclei loss (SMCNL) indexed from0 (none), 2
(mild), 4 (moderate) to 6 (severe).

An example of the scored pathologic features EFD (2A, B), MEMA
(2A, C), and SMCNL (2A, D) is presented in Fig. 2.

Additional (immuno)histopathological features turned out to be
needed to provide amore in-depth insight into the differences between
TAV and BAV aortopathy.

1. Medial VSMC differentiation, based on the expression of the dif-
ferentiated VSMC marker SM22α [20], indexed from 0 (no ex-
pression in VSMCs), 2 (expression in less than one third of all
VSMCs), 4 (expression in two thirds of all VSMCs) to 6 (expres-
sion in more than two thirds of all VSMCs).

2. An extra analysis on the expression of αSMA in the inner media
indexed from 0 (expression in less than one third of all VSMCs)
to 6 (expression in more than two thirds of all VSMCs).

3. Intimal architecture, including endothelial cell (PECAM) and
subendothelial layer structure and the absolute intimal thickness
in μm. The intima is defined as the area between the inner surface
of the aortic wall, sometimes lined by still present endothelial
cells and the well-structured elastic lamellae of the media (ex-
cluding atherosclerotic areas).

4. Intimal atherosclerosis indexed from 0 (none), 2 (mild), 4 (mod-
erate) to 6 (severe).

All specimenswere evaluated by two independent researchers, who
were blinded to the collection site of aortic specimens (i.e., jet sample
versus nonjet sample).
2.4. Statistical analysis

Standarddefinitionswere used for patient variables and outcomes. A
statistician from the LeidenUniversityMedical Centerwas consulted for
the analysis. Categorical variables are expressed as percentages, and
continuous variables are expressed as mean ± SD with range. All anal-
yses were performed with the IBM SPSS 19.0 software (IBM Corp., New
York, NY, USA). For the effect of the nonjet vs. jet, we calculated odds ra-
tios between the two conditions. To accommodate the repeated,within-
patient (nonjet vs. jet), four-category, ordered outcomes, we used gen-
eralized estimating equations to apply repeated-measures ordinal logis-
tic regression to calculate the odds ratios of the nonjet vs. the jet
condition adjusting for possible other predictors. An additional analysis
was performed to correct for factors such as raphe position for BAV, aor-
tic dilation, and aortic valve dysfunction (i.e., stenosis or regurgitation).
3. Results

3.1. Differences between the nonjet TAV and BAV specimen

Paired aortic wall samples were collected from the jet and nonjet
side from all BAV and TAV patients included in this study. From these
samples, the nonjet samples were studied first and used to describe
the general histopathologic features in the TAV (n=17) and BAV (n=
36) without influences of a maximal jet stream. The studied samples
consisted of both dilated (TAV n=10, BAV n=14) and nondilated
(TAV n=7, BAV n=22) aorta.

The ascending aortic wall consists of three layers: the intima, media,
and adventitia (Fig. 3A). The media can further be subdivided in the ap-
proximately equally thick inner, middle, and outer media (Fig. 3A). The
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intima consists of an endothelial cell layer lining the aortic luminal sur-
face and a subendothelial layer of loosely organized elastic fibers and
VSMCs (Fig. 3B). The media contains VSMCs, elastic fibers, collagen,
and interposed glycosaminoglycans of the extracellular matrix, which
are arranged in lamellar units (Fig. 3C, D). The adventitia predominantly
consists of loose fibrous tissue containing nerve fibers, fibroblasts, adi-
pocytes, and vasa vasorum lined by endothelium and VSMCs (Fig. 3E).

Comparing the TAV and BAV specimen, we found that in all (non-
and dilated) TAVs, the intima was significantly thicker (P=.004) as
compared to all (non- and dilated) BAVs. Intimal atherosclerosis was
significantly more prominent in the dilated TAVs as compared to the
nondilated TAVs and all BAVs (non- and dilated) (Pb.05).

All (non- and dilated) TAVs had significantly more differentiated
VSMCs in the media as compared to all (non- and dilated) BAVs (P=
.001). EFD, MEMA, and SMCNL were significantly greater in the dilated
TAV specimen as compared to the dilated BAV specimen (P=.018, P=
.001, and P=.001, respectively).

3.2. Differences between the jet and nonjet ascending aortic wall in the TAV
and BAV population

After studying the nonjet samples of the TAV and BAV population,
the jet samples were compared to the nonjet side. Even though jet
Table 2
Pathology score

Features Score TAV jet
n (%)

TAV no
n (%)

Atherosclerosis 0 8 (57) 11 (69
2 4 (29) 4 (25)
4 1 (7) 1 (6)
6 1 (7) 0 (0)

SMC differentiation 0 1 (7) 0 (0)
2 1 (7) 2 (13)
4 5 (33) 6 (40)
6 8 (53) 7 (47)

EFD 0 7 (44) 6 (38)
2 4 (25) 6 (38)
4 4 (25) 3 (19)
6 1 (6) 1 (6)

MEMA 0 1 (8) 1 (7)
2 5 (39) 8 (53)
4 7 (54) 6 (40)
6 0 (0) 0 (0)

SMCNL 0 6 (40) 5 (33)
2 3 (20) 5 (33)
4 4 (27) 3 (20)
6 2 (13) 2 (13)

Features Score BAV jet
n (%)

BAV no
n (%)

Atherosclerosis 0 33 (91) 30 (9
2 1 (3) 1 (3
4 1 (3) 2 (6
6 1 (3) 0 (0

SMC differentiation 0 3 (9) 0 (0
2 28 (80) 29 (8
4 4 (11) 5 (1
6 0 (0) 0 (0

EFD 0 31 (86) 29 (8
2 4 (11) 3 (9
4 1 (3) 1 (3
6 0 (0) 0 (0

MEMA 0 7 (20) 5 (1
2 26 (74) 27 (8
4 2 (6) 1 (3
6 0 (0) 0 (0

SMCNL 0 29 (81) 32 (9
2 7 (19) 2(6
4 0 (0) 0 (0
6 0 (0) 0 (0

CI, confidence interval.
streams hit the endothelial cells and intimal layer primarily, we first
studied the aortic medial changes on the jet side as compared to the
nonjet side in, as the aortic consensus statement which forms the base
of our pathology score focuses on medial pathology. The findings of
the paired comparisons of the pathology score between the jet and
nonjet sides within the TAV and BAV study population are summarized
in Table 2.

In the TAV population, the pathology score features were not differ-
ent between jet and the nonjet site for intimal atherosclerosis (P=.569),
VSMC differentiation (P=.586), EFD (P=.672), MEMA (P=.514), and
SMCNL (P=.987). Differences in pathology score features remained
nonsignificant between the jet and nonjet side when studied in the dif-
ferent medial layers (inner, middle, and outer) and after correcting for
the aortic diameter, the raphe position, and whether the aortic valve
was stenotic or regurgitant.

In the BAV population, the pathology score features were also not
different between the jet and nonjet side for intimal atherosclerosis
(P=.371), VSMC (P=.395), EFD (P=.744), MEMA (P=.453), and
SMCNL (P=.051). Differences in pathology score features remained
nonsignificant between the jet and nonjet side when studied in the dif-
ferent medial layers (inner, middle, and outer) and after correcting for
the aortic diameter, the raphe position, and whether the aortic valve
was stenotic or regurgitant.
njet P value Odds ratio 95% CI

) .569 0.828 0.433–1.585

.586 1.007 0.982–1.034

.672 1.190 0.532–2.660

.514 0.715 0.262–1.957

.987 0.994 0.467–2.113

njet P value Odds ratio 95% CI

1) .371 1.729 0.521–5.733
)
)
)
) .395 1.517 0.581–3.962
5)
5)
)
8) .744 0.920 0.558–1.517
)
)
)
5) .453 1.246 0.702–2.210
2)
)
)
4) .051 0.235 0.059–1.041
)
)
)
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Fig. 4. Transverse histologic sections (5 μm) stained with PECAM of a nondilated ascending aortic specimen in a bicuspid aortic valve patient. (A) Nonjet ascending aortic wall in bicuspid
aortic valve, with positive squamous PECAM-stained endothelial cells (indicated with an arrow). (B) Jet ascending aortic wall in bicuspid aortic valve. A change in morphological
appearance of part of the endothelial cells is seen from squamous to cuboidal (indicated with an arrow). Magnification: A and B, 30×.
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3.3. Additional histopathologic features between the jet and nonjet ascend-
ing aortic wall in the TAV and BAV population

Describing the ascending aortic wall in a standardizedway using the
pathology score thus did not show any significant differences between
the jet and nonjet ascending aorta in BAV and TAV, as is indicated
above. After studying the intimal layer, we observed a number of addi-
tional histopathologic features that were different between the jet and
nonjet aorta in both patient groups.

We found that the intima was significantly thicker in all nonjet TAV
samples as compared to the nonjet BAV samples. Comparing the jet and
nonjet side, we observed a significant increase in intimal thickness on
the jet side in both TAV (P=.0041) and BAV (P=.0005) patients. In a
subset of the patients inwhich an intact endothelial layer (PECAMstain-
ing for confirmation) was still present and not mechanically torn off
(BAV n=17 and TAV n=8), we found morphological differences. In
the nonjet specimen, the endothelial cells mostly had a flat elongated
morphological appearance. In the jet specimen in both TAV and BAV,
the morphological appearance of part of the endothelial cells had
changed and showed a cobble shape (Fig. 4 A, B).

Although the number of specimen with intact endotheliumwas too
low for statistical analysis, we observed that the variation in presence of
flat elongated and cobble shaped cells was not related to the aortic di-
ameter, the raphe position, or whether the aortic valve was stenotic or
regurgitant. Aswepostulate that thefixation and dilation state of all col-
lected specimenwas identical, we did not connect the presence of either
elongated or cobble shape morphology to a fixation variety.

In both TAV and BAV, the internal elastic lamella on the borderline
with the innermedia wasmore fragmented in the jet specimen as com-
pared to the nonjet specimen. It fanned out, making the borderline be-
tween intima and inner media fuzzy. Thus, the distance between the
endothelial layer and the first marked internal elastic lamellae appears
larger on the jet side in all studied specimen (Fig. 5A–L; graph 5M). Be-
sides an enlargement of the distance between the endothelial layer and
the internal elastic lamellae, the structure of the intimal layer was also
changed. The intima in the nonjet of all BAV and TAV showed less ex-
pression ofαSMA (Fig. 5E, K), whereas in the jet samples, there is an ob-
vious increase in expression mostly in the outer intima (Fig. 5F, L)
(Table 3). These αSMA-expressing cells were more rounded as
compared to themore elongated contractilemedia VSMCs, thus indicat-
ing a possibly synthetic phenotype. In the innermedia, as opposed to an
increase ofαSMA in the outer intima, a significant decrease inαSMAex-
pression was seen on the jet side in both BAV (Pb.0001) and TAV (P=
.0074) (Fig. 5F, L; graph 5N) (Table 3). The decrease inαSMA expression
in the inner media was not accompanied by loss of elastic fibers or loss
of nuclei in this area (Fig. 5 compare B, D, F for BAV and H, J, L for TAV).

4. Discussion

A BAV is the most common congenital cardiac malformation, with a
population prevalence of 1%–2%. In the BAV population, aortic dissections
are eight times more likely as compared to patients with a TAV, and ap-
proximately half of the BAV population undergoes cardiac surgery in
their lifetime due to aortopathy [1]. As currently used diameter-based
aortopathy treatment guidelines are inadequate to predict the increased
risk of aortic events in BAV patients, recent studies are focusing on iden-
tifying potential aortopathy predicting factors [3,21].

In our earlier studies, we have shown that the ascending aortic wall
in BAVpatients is characterized by amaturation defect of the VSMCs [2].
But as the lack of differentiation of the aorticwallwas seen in all BAVpa-
tients, it could not differentiate those patients with an increased risk for
aortopathy. In the past few years, several studies have searched for sero-
logical and immunohistochemical biomarkers predictive of aortopathy
[22–30]. But overall, therewas amarked heterogeneity in the biomarker
expression patterns reported in the different studies; however, these
studies conclude that pathological processes in the aortic media lead
to aortic complications in the BAV population.

Besides genetic differences between BAV and TAV patients, growing
evidence suggests that the BAV ascending aortic wall is also subject to
different hemodynamic influences. The role of hemodynamics on the
ascending aorticwall can be studied byMRI and computationalfluid dy-
namics. Several studies have revealed helical blood flow in BAV patients
as compared to TAV patients, with eccentric outflow jet patterns
disrupting laminar flow and flow impingement zones along the greater
curvature of the ascending aorta [31,32]. It is believed that the helical
flow is the result of a combination of ventricular twist and torsion dur-
ing the systole, the fluid mechanics of the aortic valve and root, and the
curved geometry of the thoracic aorta [33]. The question however
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Table 3
αSMA expression in BAV and TAV

Patient group
Characteristic

TAV nonjet
(n=17)

TAV jet
(n=17)

BAV nonjet
(n=36)

BAV jet
(n=36)

Expression in inner media
0 0 6 0 10
2 1 6 4 21
4 12 3 22 5
6 4 2 10 0

Expression in intima
0 4 1 9 0
2 8 1 23 3
4 4 11 4 22
6 1 4 0 11
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remains whether the observed differences in hemodynamics in BAV
and TAV, which initially affect the intimal layer, can explain the in-
creased risk for aortopathy in the BAV population, which seems to be
an aortic media problem.

Therefore, in this study, we aimed to correlate the maximal jet im-
pact on the ascending aortic wall to histopathological features in the
BAV and TAV population observed in the complete vascular wall.

Describing vascular pathology is complex, and most studies lack a
standardization in the methods and description of the vessel wall.
Moreover, obtaining a wide range of tissue biopsies of the aorta during
surgery is nearly impossible. The lack of standardization and the sam-
pling limitation therefore make it important to have a standard way of
analyzing and describing the aorta which would aid in understanding
the complex pathogenesis of aortopathy in BAV. In this study, we there-
fore aimed to describe the aorta in BAV and TAV in a standardized way
using a pathology score based on the grading system described in the
recently published Cardiovascular Pathology/Association for European
Cardiovascular Pathology consensus paper statement on surgical pa-
thology of the aorta [14] with addition of a number of immunohisto-
chemical-based features.

By comparing the nonjet specimen, as identified by MRI, we could
confirm differences of our pathology score features between the BAV
and TAV which we have earlier described in other patient populations
[2,3,34]. When comparing the pathology score features between the
jet and nonjet in the BAV and TAV population, we did not observe any
difference between both sides.

Recent literature has particularly focused on the hemodynamic in-
fluences for the different raphe positions in the BAV population.
Mahadevia et al. and Raghav et al. have shown that the normalized
flow displacement is a reliable quantification of flow eccentricity as
compared to systolic flow angle [35,36]. In their studies, flow displace-
ment was found to be greater in BAV as compared to TAV patients
matched for aortic diameter and valvular function [35,36]. They ob-
served a correlation of the distal ascending aorta diameter in BAV pa-
tients with fusion of the right and noncoronary cusps (RN-BAV) but
not in BAV patients with fusion of the right and left coronary cusps
(RL-BAV) [36,37]. Flow displacement has also been identified as a po-
tential marker for BAV aortopathy phenotype, showing that both type
1 aortopathy (involvement of the aortic root) and type 3 (the distal as-
cending aorta) aortopathy are more common in RN-BAV, whereas type
2 aortopathy (themidascending aorta) is more common in RL-BAV [35,
38,39]. Recent data on development of BAV in mouse mutant models
show that, for the RN-BAV, there is an absence of development of the
noncoronary cusp. This is either by nonseparation of the septal endocar-
dial cushion in the future aortic orifice as seen in the eNOS mutant
mouse [40] or by absence of the development of this valve cusp [41].
Neural crest cells and second heart field cells have a distinct contribu-
tion to the ascending aorta as well as to the aortic root and semilunar
valves and commissures. The balance between the contribution of neu-
ral crest cells and second heart field cells is disturbed in both above de-
scribed models. For the RL-BAV, which in human is the most common
raphe position, a proper developmental explanation is still lacking.
On the basis of these literature findings, we also took the aortic di-
ameter, the raphe position, and whether the valve was stenotic or
regurgitant into account in the present study;, however, we found that
even after correcting for the aortic diameter, the raphe position, and
whether the valvewas stenotic or regurgitant, therewere nodifferences
in the pathology score features between the jet and nonjet in the BAV
and TAV population.

After studying the medial layer, we focused on the effects of jet
stream on the intimal layer.

In our study population, all TAV patients had a significantly thicker
intimal layer as compared to all BAV patients. On the jet side of both pa-
tient groups, a significant increase in intimal thickness is seen as com-
pared to the paired nonjet samples, probably as a result of the jet
stream. An obvious increase in αSMA-positive VSMC is seen in the
outer intima, whereas the inner media shows a significant decrease in
expression of αSMA of the VSMCs. In our previous work, we observed
loss of αSMA in the middle media in TAV patients with a dilated aorta
[2]. The loss of αSMA was in those cases accompanied by loss of elastic
fibers and loss of VSMCnuclei in themiddlemedia, characteristic for the
pathologic feature cytolytic necrosis (in the consensus statement paper
referred to as medial degeneration) and part of cardiovascular aging
processes. In this study, the observed loss of αSMA in the inner media
in the jet samples of BAV and TAV patients is not accompanied by loss
of elastic fibers or loss of VSMC nuclei as can be seen in Fig. 5. Therefore,
this observed phenomenon of loss ofαSMA is different from the patho-
logic feature of medial degeneration It is however not clearwhat causes
the difference ofαSMA in the jet samples. A possible explanation for the
difference in expression on the jet side could be due to migration of
VSMCs from the inner media to the outer intima.

We further observed a trend inwhichmore cobble-shaped endothe-
lial cells lined the aorta in the jet specimen as compared to the elon-
gated flat endothelial cells that were observed in the nonjet specimen
of all BAV and TAV patients. Endothelial cells do show a heterogenic
morphology across vascular beds [42–44]. We postulate that the ob-
served increase in cobble morphology might be related to the develop-
ment of intimal thickening [45] in the jet specimen.

This study was not designed to explore endothelial to mesenchymal
transition [46]; therefore, more research is needed focusing on the pos-
sibility of an endothelial transition aspect in BAV and TAV specimen.

In conclusion, we aimed to address the role of hemodynamic influ-
ences on the development of aortopathy in BAV patients. In our study
population, we could not demonstrate a potential role of hemodynam-
ics in the development of aortopathy leading to dilation in BAV patients
even if corrected for aortic diameter, raphe position, or whether the
valve is stenotic or regurgitant.
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