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Abstract—In this paper, we introduce a novel framework to
augment raw audio data for machine learning classification
tasks. For the first part of our framework, we employ a
generative adversarial network (GAN) to create new variants
of the audio samples that are already existing in our source
dataset for the classification task. In the second step, we then
utilize an evolutionary algorithm to search the input domain
space of the previously trained GAN, with respect to predefined
characteristics of the generated audio. This way we are able to
generate audio in a controlled manner that contributes to an
improvement in classification performance of the original task.
To validate our approach, we chose to test it on the task of
soundscape classification. We show that our approach leads to a
substantial improvement in classification results when compared
to a training routine without data augmentation and training
with uncontrolled data augmentation with GANs.

Index Terms—sound generation, data augmentation, evolution-
ary computing, latent vector evolution, generative adversarial
networks

I. INTRODUCTION

Many current trends in the area of audio signal processing

are relying on data driven machine learning approaches to

achieve state of the art results [1]–[3]. However, the achieved

performance for a task is heavily dependent on the quantity

and the quality of available data. Depending on the specific

task, such data can often be hard to obtain and costly to

label particularly in the audio domain. As a consequence,

researchers often have to deal with datasets of insufficient

size or quality. A solution to this problem is posed by data

augmentation, a process that artificially creates new input data

from existing samples that are altered in a way that they

differ from the original sample while still maintaining the

information that is relevant for the respective task at hand.

However, the complex sequential structure of audio data makes
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this creation of artificial samples a challenging task by itself.

While common approaches to create augmented audio data

rely on altering the already existing data with techniques such

as pitch shifting, noise injection or time stretching [4], recent

research has shown the feasibility of Generative Adversarial

Networks (GANs) to create realistic new artificial data.

However, the drawback of conventional GANs is that the

output is predominantly generated randomly. This leads to an

uncontrolled enlargement of training data, which may not have

any impact on the training of a classifier, or even amplifying

its weaknesses when dealing with small datasets, as we will

show later in this work.

In this paper, we propose a novel two-step approach to

address this problem. In the first step, we utilize a GAN

framework to create highly realistic audio data. In the second

step, we then apply an evolutionary algorithm to search the

input-space of the generative model for vectors that result in

samples that have specific predefined characteristics. These

characteristics represent information that is lacking in the orig-

inal source data of the respective classes. The concrete feature

values that shall be exhibited by the new data are determined

by analyzing samples that were previously classified wrong.

This way, the GAN is employed to only generate training

samples that are useful for a specific classification task.

To evaluate our system, we tackle the problem of sound-

scape classification. Thus, we are building a system that is able

to create new audio samples of soundscapes in a controlled

way to improve the training of a Support Vector Machine

(SVM) whose task is to differentiate between different sound-

scapes.

II. RELATED WORK

Multiple variants of GANs have been used previously to

generate highly realistic audio data [5]–[7]. Further modi-

fications, such as, conditional GANs, enable the generation

of audio data that exhibits specific characteristics (e.g., [8]).

However, these systems require labelled training data for each

desired target characteristic of the generated data. In return,



Fig. 1. Overview of our approach. (1) A WaveGAN model is trained on
our dataset. (2) An evolutionary algorithm is used to find appropriate noise
vectors to create new audio samples that exhibit predefined characteristics.
(3) Those new audio samples are collected and taken as augmented data to
enhance the existing dataset.

this means that the network needs to be trained from scratch

each time a change in the target properties of the data is

required. Artificial data that was generated by GANs has

been used for data augmentation predominantly in the field of

image processing (e.g., [9]–[11]), but there is also recent work

that makes use of GAN-based data augmentation for acoustic

scene classification [12]–[14] as well as emotional speech [15],

[16]. Most of these approaches are not able to generate the

augmented data in a controlled manner, but rather use the

GANs to produce random new samples to enhance existing

datasets. As could be shown in the respective publications,

such GAN based augmentation techniques are a promising

approach. However, existing experiments in the audio domain

did only operate on rather big datasets and therefore leave

open the question of whether uncontrolled data augmentation

with GANs can also be applied to rather small datasets.

A recent approach to address the controllability of GANs

relies on the application of evolutionary algorithms to search

through the solution space of GANs and find appropriate

samples that match the required characteristics, i.e., predefined

feature values that shall be exhibited. Thus, the randomness

of the generated samples can be overcome. This so called

Latent Vector Evolution (LVE) has been successfully employed

for tasks like fingerprint-based biometric systems, creation of

video games or facial composite generation [17]–[21]. The

ability to generate samples in a targeted way makes LVE

a promising approach to enhance datasets with data that is

actually meaningful for the respective classification task. To

the best of our knowledge, there is no prior work that uses

the principles of LVE for either raw audio or even the task of

data augmentation.

III. APPROACH

Our proposed approach deals with the problem of augment-

ing raw audio datasets in a controlled manner, using generative

adversarial networks in two steps. To this end, we generate

artificial data samples which exhibit characteristics that are

underrepresented in the original dataset. In the first step, we

train a WaveGAN architecture to produce new samples of

a certain class using random noise vectors as input. In the

second step, we use an evolutionary algorithm to search the

input space of the WaveGAN for vectors that result in samples

that show the desired feature values. An overview of the

system is shown in Fig. 1. This section describes both the used

WaveGAN architecture as well as the evolutionary algorithm.

A. GAN

The basic idea of GANs is to combine two competing

networks, that improve each other. One network, the generator

learns to transform any vector that follows a given distribution

function, e.g., a uniform distribution, to an output sample that

follows the distribution of a given training domain. The second

network, the discriminator learns to distinguish between real

training data and the samples produced by the generator [22].

During the training stage, the generator tries to fool the

discriminator. Therefore, both networks compete against each

other, hence, the adversarial part in the name.

The WaveGAN architecture was first introduced by Donahue

et al. [5]. The authors showed that the system is capable

of generating realistic sounding audio data for tasks that are

related to nature soundscapes, such as bird sounds. Its main

concepts follow the basic idea of Deep Convolutional GANs

(DCGANs), that are a modification to the initial GANs which

enable the modelling of data with even higher complexity by

including convolutional layers to both the generator and the

discriminator network [23]. As DCGAN was developed for

image generation, multiple parts of it are slightly modified by

WaveGAN to enable the handling of audio data. For example,

the two-dimensional up- and downsampling filters are replaced

by its one-dimensional equivalent (i.e., kernels of size n times
n become kernels with size n ∗ n). For details, please refer

to the original work about WaveGAN [5] and its official

repository1.

It is worth mentioning that our further approach is independent

from the chosen GAN architecture. As a result, the underlying

GAN architecture of the first step that is responsible for

generating new audio files, can be replaced for any other

model, depending on the scope of the respective application.

B. Evolutionary Algorithm

After training a WaveGAN model on a specific domain that

model is able to transform random noise vectors to audio

samples that follow the distribution of the training dataset.

Thus, new audio samples can be generated that never had

been heard before but sound as if they originated from the

learnt domain. To find audio samples that show certain feature

characteristics that we want to control, we follow the idea of

Latent Vector Evolution to search through the solution space

of the trained WaveGAN model. First, we initialize a starting

population of random noise vectors and feed them to the

trained WaveGAN. Subsequently, we evaluate the resulting

audio data by using a predefined fitness function that measures

1https://github.com/chrisdonahue/wavegan



how appropriate the samples are with respect to the feature

values that we want to have, i.e., feature values that add

information to our training dataset for the classification stage,

as is described in more detail in section IV. The noise vectors

that performed best are then slightly mutated and recombined,

whilst the other noise vectors are being discarded. The new

noise vectors that originate by the mutation of the best prior

noise vectors can then be fed to the trained WaveGAN again.

This process is repeated until audio samples are found that

show the desired feature value. The procedure is described

more formally in the following.

Let x be the output of the generator, denoted as x = G(z),
where the function G represents the transformation learnt by

the generator that takes a latent space vector z as input.

Further, we define a measurement function f(x) that calculates

the value of the feature that we want to control. Thus, f(G(z))
corresponds to the feature value that is achieved by feeding z
to the generator. We denote the value that we want the feature

to be as t and call this the target value. Thus, a perfect noise

vector z for target value t would fulfill f(G(z)) = t.
As described above, we chose the best noise vectors to be

mutated and recombined further by a fitness function. We can

find such a fitness function fitness(z) easily by constructing

the reciprocal of the distance between the shown feature value

and the target value:

fitness(z) =
1

|f(G(z))− t|

We use this fitness function to train an Evolutionary Al-

gorithm. The term Evolutionary Algorithms denotes a class

of optimization methods that are inspired by the evolution

of natural living beings. In general, they work by iteratively

generating a new set of data samples (individuals), a so

called population, and choosing the best out of these samples

(selection) regarding a predefined fitness function, and alter

those samples in various ways to get a new population that

is (hoped to be) better than the previous one (Mutation and

Recombination). Evolution Strategies (ES) are a group of

evolutionary algorithms that are mainly used for multidimen-

sional, continuous problems [24]. This property makes them

an ideal fit to operate on the latent vector that is used as

input for the GAN. Specifically, we chose a (µ/p + λ)-
ES. This means, that the best µ individuals of the parent

population generate λ new individuals, whereas the parent

individuals are also included into the following generation of

individuals. p represents the group size of the recombination,

i.e., p individuals of the parent population are responsible

for the creation of a new individual simultaneously. For our

evaluation, we choose the following, empirically determined,

parameters: µ = 50, p = 2, λ = 150.

Thus, we used a population size of µ + λ = 200. We

configured our algorithm to create 50 new individuals by

recombination and 100 new individuals by mutation, as this

led to the best results in our experiments.

We chose Uniform Crossover as recombination method. This

means, that for the generation of a new individual out of two

parent individuals, there is a stochastic decision process for

every element of the new vector to determine if the element

is taken from either the one or the other parent. To formalize

this, let z1 and z2 be the n-dimensional parent latent vectors

with z1 = (z1
1
, z1

2
, ..., z1n)

T and z2 = (z2
1
, z2

2
, ..., z2n)

T . Also,

let o = (o1, o2, ..., on)
T be the offspring individual that shall

be derived from z1 and z2. Then, for every i ∈ {1, 2, ..., n},

it is randomly decided if either oi = z1i or oi = z2i .

For the mutation operations, we made use of a Gaussian muta-

tion operator. Given a parent vector z3 = (z3
1
, z3

2
, ..., z3n)

T that

shall be mutated to an offspring mo = (mo1,mo2, ...,mon)
T ,

then mo is determined as follows:

∀i∈{1,...,n} : moi = z3i +N (0, σ2)

Here, N (0, σ2) is the mutation value that is randomly

sampled from a Gaussian Distribution, where the variance σ2

is chosen according to the 1/5 Success Rule [24].

IV. EXPERIMENTS

To test the validity of our approach, we chose to evaluate it

on the task of soundscape classification. Due to the complex

nature of soundscapes, which consist of a large variety of

individual sounds, this task is very challenging.

To assess the impact of our data augmentation approach

on the performance of a soundscape classification system, we

perform multiple experiments in which we augment existing

datasets with respect to specific, underrepresented characteris-

tics, from which we expect that they contribute to improve the

performance of a classification model. The following section

describes our experimental setup as well as the methodology

that we applied.

A. Methodology

As described in the previous section, our approach is

able to generate new audio samples that exhibit predefined

characteristics. We use this method to augment data in a

controlled way to improve an SVM based soundscape classifier

that predicts if a sample belongs to either of the two classes

mechanical or nature. To this end, we train the classification

system on three different datasets and compare the results.

The first dataset (dataset orig) contains only original data,

while the second (dataset aug) was enhanced with data that

was randomly generated by feeding arbitrary noise vectors to a

WaveGAN that was trained on the original data.2 For the third

dataset (dataset aug ctrl), we apply our approach on the same

model that was used for dataset aug. All of the three datasets

were partitioned into train, development and test, where the

development and test partitions remain the same, and the

train partition of dataset orig was enhanced with different

augmentation data for dataset aug and dataset aug ctrl. We

did not use traditional data augmentation techniques for any

of the datasets, as this work focuses the advantages of targeted

2Example output of the trained WaveGAN can be found at
https://tinyurl.com/y83rhjbb



TABLE I
SPECTRAL LIBROSA FEATURES AND RESPECTIVE MEAN AND STANDARD

DEVIATION VALUES THAT WERE USED FOR THE EVOLUTIONARY

ALGORITHM.

Wrongly classified Wrongly classified
as mechanical as nature

Feature name Mean Std. Deviation Mean Std. Deviation

Spectral Centroid 1555.69 484.31 2828.69 143.44

RMS 0.08 0.11 0.01 5.91*10−3

Spectral Bandwidth 1828.53 323.13 2169.40 89.97
Spectral Contrast 21.65 0.76 21.10 0.21

Spectral Flatness 0.002 2.15*10−2 0.005 2.76*10−3

Spectral Rolloff 3512.36 1321.68 5469.17 351.83

augmented data over random GAN-based augmented data. The

three datasets are discussed in detail in the following sections.

1) Original Dataset (dataset orig): For evaluation pur-

poses, we chose to perform our experiments on a subset

of the Emotional Soundscapes database [25]. The dataset

contains audio files of certain soundscapes which are sorted

by environment. We decided to consider only the two classes

of mechanical and natural environments, as the samples of

these classes, despite their fundamental differences, generally

have a very noisy appearance, which makes them often hard to

distinguish even for humans. For example, it can be very hard

to differentiate between a waterfall and the background noise

of a room full of different kinds of machines, since both sounds

are similar in terms of their low frequency range and regular

noisiness. The nature class has many samples that contain

large parts of silence. As these samples would complicate

the feature extraction as well as the WaveGAN training, we

removed them from the dataset, resulting in an increase in

mean RMS energy level of the nature class from 2.18 ∗ 10−2

to 2.64 ∗ 10−2. We split all audio files into samples of 1

second length as our WaveGAN architecture produces outputs

of a fixed size. Our final first dataset contains 600 samples

(10 minutes) for the mechanical class and 300 samples (5

minutes) for the nature class. As mentioned above, the dataset

was split into train, development and test partitions. The train

partition for this dataset contains 420 samples (7 minutes)

for mechanical and 210 samples (3.5 minutes) for natural.

The development partition contains 60 samples (1 minute) for

mechanical and 30 samples (0.5 minutes) for natural, while the

test partition contains 120 samples (2 minutes) for mechanical

and 60 samples (1 minute) for natural. Data augmentation, as

described below, is only applied to the train partition.

2) Untargeted Augmentation (dataset aug): For our second

dataset, we train WaveGAN models as described in section

III-A for both the mechanical as well as the natural class. As

training sets for the WaveGAN, we take the respective classes

of both the train and development partitions of our original

dataset dataset orig. The WaveGAN models were trained for

200,000 iterations before we used them to generate random

new data of both classes. 420 data samples (7 minutes) are

generated per class. Our complete training set contains both

the original data as well as the randomly generated samples.

Fig. 2. Illustration of the Augmentation Process. (1) The SVM is trained
on the training partition of the original data using Deep Spectrum (DS)
features. (2) The trained SVM is used to predict samples from the development
partition. (3) The misclassified samples are analyzed regarding six standard
spectral features extracted with the Librosa library. The mean and standard
deviation per class and feature is calculated. (4) Augmentation samples are
generated by the use of the Evolutionary Algorithm and the WaveGAN, using
the calculated feature range as target values. (5) The final SVM is trained on
the augmented data and the train and development partitions of the original
data.

3) Targeted Augmentation (dataset aug ctrl): The third

dataset contains the original data from dataset orig as well

as audio samples that were generated in a targeted way by

the use of our approach. As described in section III-B, we

make use of an evolutionary algorithm to find the samples that

show the feature values that we want to have. Our assumption

is the following: if a classifier is not able to classify certain

samples in a correct way, then it might lack training data that

shows similar feature values as the ones that were classified

wrongly. We therefore aim to generate new training data that

exhibits feature characteristics of the previously wrong classi-

fied data. To find appropriate target values for the evolutionary

algorithm, we analyze the samples of the development set that

were classified wrongly by the use of the SVM that was trained

only on dataset orig. Specifically, we look at six standard

spectral features (Spectral Centroid, RMS, Spectral Bandwidth,

Spectral Contrast, Spectral Flatness and Spectral Rolloff ). It

is noteworthy that this feature set is only used to select the

specific audio samples, but not for the classification itself. To

this end, we rely on the DEEP SPECTRUM feature set described

in section IV-A4.

We calculate the mean m and standard deviation s of these

features over all samples of one class, as shown in Table 1.

Based on those values, we determine a range [m−s,m+s] for

each feature and class that we want to generate new data for.

We decided to generate five samples of audio for each of the

six features per class, resulting in 30 augmented audio samples

per class. As can be noted, we generated much less augmented

data for this experiment than we did for dataset aug. By doing

so, we want to verify our assumption that small amounts of

targeted augmented data are adding more information to the

classification task than comparably high amounts of untargeted

augmentation data. To get the five target values that we need

for our evolutionary algorithm, we tried to cover the range that

we found by analyzing the false classified samples. Let mi,c



be the mean and si,c the standard deviation of the feature i
for class c. We calculated our target values t1i,c, t

2

i,c, ...t
5

i,c for

the respective feature and class as follows:

• t1i,c = mi,c − si,c
• t2i,c = mi,c − 0.5 ∗ si,c
• t3i,c = mi,c

• t4i,c = mi,c + 0.5 ∗ si,c
• t5i,c = mi,c + si,c

With these target values, we are able to cover a big range

of the feature values that were missing in the initially wrong

classified data samples. We trained the evolutionary algorithm

with the respective target function for each of the 30 samples

per class, resulting in 60 runs of the evolutionary algorithm.

The feature values of all individuals were calculated with the

librosa [26] library during training. Every training run was

stopped after 100 iterations.

4) Deep Spectrum Features: As the nature of soundscapes

is complex, we choose a spectrogram based approach for

extracting features that are used as input for the classifica-

tion stage. We assume that this would inherently capture a

larger portion of temporal information as compared to other

conventional acoustic features. For this, we extract a 4 096

dimensional feature set of deep data-representations using the

DEEP SPECTRUM toolkit [27]3. DEEP SPECTRUM has shown

success for similar audio tasks [16], and extracts features from

the audio data using pretrained convolutional neural networks.

For this study, we extract spectrograms using the default DEEP

SPECTRUM settings including a VGG16 pretrained network,

extracting one feature vector per audio sample.

5) Support Vector Machine: For all machine learning ex-

periments, we use a Support Vector Machine with a linear

kernel. During the development phase, we trained a series

of SVM models, optimizing the complexity parameters (C ∈
10−4, 10−3, 10−2, 10−1, 1) and evaluating their performance

on the development partitions. We then re-train the model with

the concatenated train and development partitions and evaluate

the performance on the test partition. This whole procedure is

made for each of the three datasets. As a measure of accuracy

we report Unweighted Average Recall (UAR) as this considers

the class imbalance that is present in the data.

V. RESULTS

After we trained the SVM on the three datasets, we evalu-

ated all models on the test partition. In this section, we report

our results for each dataset. As mentioned above, we report

the UAR that each of our SVM models achieved with the

respective optimal complexity parameter. As the task is to

perform a binary classification, the chance level is represented

by a UAR of 50.0. Our baseline model that was trained on

the original data (dataset orig) achieves an accuracy of 75.8%

UAR. Dataset aug, that contains randomly generated samples

among the original data, results in a UAR of 71.2%. As can be

seen, this value is remarkably below the first model. This leads

to the deduction that the data that was generated by feeding

3https://github.com/DeepSpectrum/DeepSpectrum

Fig. 3. Confusion matrices for test partition of the SVMs that were trained
on the different datasets. (1) Trained on original data only. (2) Trained on
original data and randomly generated data. (3) Trained on original data and
targeted augmented data, our approach. (4) Trained on targeted augmented
data only.

random noise vectors to the GAN does not add meaningful

information to the SVM during the training process, even

making the training set worse. This shows the need for the

generation in a controlled way, as applied in dataset aug ctrl.

The model that was trained on the targeted augmented data

achieves a UAR of 78.8%, thus outperforming both the clas-

sifiers that were trained on dataset orig and dataset aug. To

evaluate this effect further, we trained a fourth model only on

the targeted augmented data without the original data. This

model achieves a UAR of 74.2%, thus being slightly below

the baseline model. This is reasonable since the target values

for the Evolutionary Algorithm were derived by analyzing the

false classified samples from the classifier that was trained

on dataset orig, thus trying to specifically add information

for value ranges that are not yet modelled in that dataset, but

not claiming to be able to model the whole possible range of

the features of the original data. The corresponding confusion

matrices for each model are shown in Fig. 3.

VI. DISCUSSION

When comparing the results of dataset orig that only con-

tains the original audio samples, with dataset aug that adds

randomly generated data to the training process, it can be seen

that the performance of the trained SVM model considerably

drops. This shows, that there is in fact a need for augmentation

in a somewhat targeted way, although recent works could also

achieve performance boosts while working with a random

generation process [12]. It is conceivable that the random

generation in our problem domain is not sufficient due to the

fact that our original dataset is very small compared to the

datasets that were used in those previous works. However,

the results that could be achieved with dataset aug ctrl out-

perform both the models from dataset orig and dataset aug.

As dataset aug ctrl makes use of our controlled generation

process, it is capable of adding augmentation data that is

actually helping the classification task. Although the solution

space that was learnt by the WaveGAN has to be rather

small as we used only small amounts of data to train it, the

Evolutionary Algorithm was able to find meaningful samples

in that solution space. It is noteworthy that even considerably

less training samples were generated for dataset aug ctrl

than for dataset aug. This shows that even small amounts of

targeted augmentation data are better for the classification task

than high amounts of randomly generated data.



VII. CONCLUSIONS AND OUTLOOK

In this paper, we presented a new approach for augmenting

training data for an audio classification problem in a targeted

way. We showed that our approach has substantial advantages

for our problem domain when comparing it to adversarial

augmentation techniques that rely on a random class-wise

augmentation.

In the future, we plan to investigate the applicability of our ap-

proach to other datasets and problem domains to draw further

conclusions about the generality of our approach. Furthermore,

it would be interesting to see the performance of the approach

in a multi-class problem. It is also worth to mention that this

work focused on the comparison between random augmented

data and targeted augmented data. For future work, it could be

interesting to also compare the performance of traditional aug-

mentation techniques and other state-of-the art augmentation

techniques to our approach. Thus, we plan to do a bigger study

that also takes other augmentation methods, bigger datasets

and even different classifiers like neural networks into account.

Another topic that has to be investigated is the possibility

of iteratively repeating the proposed approach by using the

results of the targeted augmented training set as input for

further evolutionary algorithm steps. Besides that, future work

should examine the optimal amount of targeted augmented

data. We can summarize that in our chosen problem domain,

the approach works reasonably well and shows potential to

improve a broad range of classification problems that are

existent in the current research community.
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