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New Approaches for Monitoring Image Data
Yarema Okhrin , Wolfgang Schmid , and Ivan Semeniuk

Abstract— In this paper, we develop new techniques for mon-
itoring image processes under a fairly general setting with
spatially correlated pixels in the image. Monitoring and han-
dling the pixels directly is infeasible due to an extremely high
image resolution. To overcome this problem, we suggest control
charts that are based on regions of interest. The regions of
interest cover the original image which leads to a dimension
reduction. Nevertheless, the data are still high-dimensional.
We consider residual charts based on the generalized likelihood
ratio approach. Existing control statistics typically depend on the
inverse of the covariance matrix of the process, involving high
computing times and frequently generating instable results in a
high-dimensional setting. As a solution of this issue, we suggest
two further control charts that can be regarded as modifications
of the generalized likelihood ratio statistic. Within an extensive
simulation study, we compare the newly proposed control charts
using the median run length as a performance criterion.

Index Terms— Control chart, digital image processing,
high-dimensional data, median run length, regions of interest,
statistical process control.

I. INTRODUCTION

IMAGES play an increasingly important role not only in
social media but also in all phases of manufacturing,

particularly within Industry 4.0. The key objective when ana-
lyzing images is to extract meaningful and useful information
(mainly from digital images) with the aim of aggregating and
improving image data for further processing. This covers such
tasks as the storage, compression, and extraction of pictorial
information (cf. [1]), and is typically done by means of digital
image processing techniques. Since the resolution of digital
cameras has dramatically increased in recent years and the
possible applications of images are heterogeneous, a new
strand of research that tackles the analysis of image data with
statistical tools has evolved.

To build a statistical model for a sequence of images,
we assume that the pixels constituting the images can be
understood as a realization of a stochastic process. This is
attained by quantifying each pixel by its coordinates, color,
and intensity, and results in a time series of multivariate spatial
data. Numerous statistical approaches such as, e.g., Kalman
filtering, Markov random fields, hidden Markov processes,
and Bayesian approaches have recently been customized to
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model image processes. An excellent overview can be found
in, e.g., [2]. The objectives of the image analysis typically
involve the overcoming of issues with feature extraction,
image classification, image transformation, etc. Modern cam-
eras can produce images with high resolutions, involving
high-dimensional data sets. Thus, the statistical techniques to
be applied must be capable of handling and modelling large
and specifically structured data.

The key goal, both from theoretical and practical per-
spectives, is to monitor an image process over time and
detect changes, which may be indicative of faults, as soon as
possible after their occurrence. Such problems arise frequently
in many fields of application, e.g., production processes,
medicine, environmental science, etc. Nowadays, the quality
control procedures involved in production processes employ
new measurement methods that are aimed at detecting faulty
products, e.g., the sensors that take regular photos of the items
under production. Reference [3] considers the application of
quality control procedures in a 3D printing process. Issues
involving changes to the image process can also be observed
in the media and advertising industries, in which it is essential
to control the quality of printed materials, for example, their
brightness. To ensure quality, the cover of a magazine could,
for example, be checked for changes. There are also many
scenarios in medicine in which it is essential to swiftly detect
image changes, such as the early detection of tumors, vascular
changes, etc. In all these applications, those responsible for
monitoring the image process aim to detect any deviations
from what is expected to be normal as soon as possible after
their occurrence. High quality image processing results in less
defective products, prettier magazines, earlier diagnoses, etc.

An excellent overview of control charts for images is
given in [4]. Reference [5] was the first to apply control
charts to image data; their purpose was to improve the
productivity of web applications. In [6], illumination changes
through a transformation of the pixel values of the image
were taken into account. The authors constructed individual
moving-range control charts for each pixel. A disadvantage
of their approach, however, is that the correlation structure of
neighboring pixels is not taken into account. Reference [7]
combined control charts for variable data with the EWMA
control chart. Hotelling’s T 2 control chart has been widely
applied in image analysis, e.g., by [8]–[10]. References [11]
and [12] combined multivariate control charts and wavelets
to detect defects in electronic components. Reference [13]
compared a wavelet and Hotelling’s T 2 control chart with
a wavelet and a principal component approach to detect
defects in LED chips. Reference [14] utilized a spatially
exponentially weighted moving average chart to find defects in
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LCD monitors, while [15] employed a spatial x̄ chart for the
same application. In [16], a nonparametric regression method
using wavelet basis functions was developed to extract features
from grayscale image data. The extracted features were mon-
itored over time to detect out-of-control observations using a
generalized likelihood ratio control chart. In further studies,
methods of machine learning have been applied to monitor
image processes. For example, [17] applied the K-medoids
clustering algorithm for colored RGB images.

Recently, [18] proposed a deep belief network for fea-
ture extraction and timely fault detection in industrial image
processes. For the purposes of their studies, the authors built
sub-networks to extract local features from sub-images. In a
more classical setting, [19] proposed a data-driven in situ
monitoring method using a kernel density estimation-based
Hotelling’s T 2 control chart to detect unstable melting condi-
tions during the selective laser melting of zinc powder; their
method of detection was applied to thermal image streams
containing plume emission information. This approach was
further explored in [20]. Reference [21], meanwhile, presented
a profile monitoring method for image data in the context
of fused deposition modeling. A similar problem was tackled
in [22], where the authors relied on the generalized likelihood
ratio method.

This paper contributes to the current literature in many
directions. First, we assume that the pixels exhibit a spatial
dependence and that their corresponding characteristics are
not independent; this is contrary to the assumptions that are
typical in the literature. We quantify their dependency using a
spatial covariance matrix that can be flexibly set or estimated
from historical data. Second, since modern cameras produce
high-resolution images but it is not computationally feasible
to deal separately with every pixel of an image, we work with
regions of interest (ROIs), i.e., fixed geometric areas that cover
the whole image and significantly reduce the dimensionality.
The stochastic properties of the ROIs are derived, in this
paper, directly from the model for the pixels, while the shape
and size of the ROIs can be arbitrary. We go on to suggest
two alternative versions of settings with non-overlapping and
overlapping ROIs. Third, even with the implementation of
the ROIs, the final dimension of the monitored data is high
and it can be unstable and computationally demanding to
estimate the inverse covariance matrix using historical data.
Therefore, we offer three new control schemes that are based
on the generalized likelihood ratio test (GLR). The aim of the
schemes is to detect a location shift in the color of a grayscale
image. Two of the three suggested schemes are modified and
depend on the covariance matrix only, and not on its inverse.
This leads to great advantages in applications.

To summarize, this paper contributes to the field, since we:
• derive new control charts for monitoring changes in image

data;
• suggest methods that can be applied to high-resolution

images;
• take spatial correlation of pixels into account and suggest

methods for simulating such data;
• outperform the benchmark Hotelling’s T 2 control chart

using Median Run Length as a performance criterion.

The paper is structured as follows. In Section II, we provide
a brief introduction for image analysis and statistical image
analysis. We also explain the statistical model to be employed
in the rest of the paper. In Section III, we develop the control
charts and discuss the high-dimensional nature of the under-
lying problem in detail. Section IV provides a comparison
study of the procedures discussed in Section III, in which we
treat several out-of-control situations. The concluding notes
are given in Section V.

II. STATISTICAL IMAGE ANALYSIS

In this section, we briefly describe some basic concepts of
image analysis focusing on statistical image processing. More
details can be found in, e.g., [1], [2], [23], and [24].

Each 2-dimensional image can be defined as a function
f : D → W , where D ⊂ IR2 and W ⊂ IRk . Typically, D is
a rectangle. The k dimension defines the technical complexity
of the image. For a black-white image, k = 1 and W consists
of only two values, 0 and 1 (usually with 0 standing for black
and 1 for white color). Larger values of k are required to
represent color images. If we adopt the RGB (red, green,
blue) convention, then k = 3 and f (x, y) is a vector of three
individual components. For an 8-bit image, these components
take integer values between 0 and 28 − 1 = 255 (cf. [24]).
If all elements are equal to zero, then we obtain a black
image; if all are equal to 255, then the resulting image is
white. Nowadays, most high-quality images are 24-bit or
32-bit, and, thus, they involve a much wider variety of colors,
i.e., 224 or 232, respectively. To standardize the operation of
image processing on different images, their values are typically
rescaled to [0, 1]. If all the components are set to be equal,
which is equivalent to downgrading the function to k = 1,
then we obtain a grayscale image. In the following sections,
we will exclusively deal with grayscale images, though the
methodology can be directly extended to the case with color
images.

A digital image, contrary to a non-digital one, consists of
a discrete set of pixels. Every pixel is not a single point
in R2 but is, in fact, a rectangular area. Thus, in order to
process an image, it must be represented by a discrete data
structure. Formally speaking, a digital image can be obtained
from an image by sampling and quantization (e.g., [1], [24]).
More precisely, an image is defined as f (i�x, j�y) for i =
1, . . . , l, j = 1, . . . , p, where �x and �y are the geometric
length and width of the area of interest, e.g., of a pixel.
The locally constant function, f , is known as the intensity
function and its values are the intensities of the corresponding
areas/pixels. To shorten the notation, we write fi j instead of
f (i�x, j�y) and refer to a digital image simply by using the
word, “image”. An image with l rows and p columns of pixels
can be written as an array,⎡

⎢⎢⎢⎢⎣
f11 . . . f1p

f21 . . . f2p

...
. . .

...

fl1 . . . flp

⎤
⎥⎥⎥⎥⎦ .
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In practice, the size of the array can be large. The resolution of
images taken by high-end smartphones can reach 4032×3024
pixels, leading to enormous arrays.

Images taken by a camera and discretized by the intensity
function can suffer from several sources of error. These are
caused, for instance, by pure light measurement errors, various
technical issues, changes in the lighting, particles in the air,
the instability of the object, etc. Furthermore, the use of
quantization as a smoothing technique introduces additional
noise into the image. Thus, an image could be treated as
a realization of a stochastic process, in a similar manner to
the measurement error models in statistics. In the following
sections, we consider a linear error model in which only
an additive noise influences the pixel intensities, fi j . The
latter is commonly referred to as the nominal image in the
literature. In practice, the nominal image serves as the target
value of the image and is contaminated by noise caused by
the peculiarities of the production process. This results in the
observed image, Ỹi j . More precisely,

Ỹi j = fi j + εi j , i = 1, . . . , l, j = 1, . . . , p. (1)

We assume that the nominal intensities { fi j } and the error
variables {εi j } are orthogonal. Regarding the distribution of
the error terms, the current literature appears to impose a
homogeneous assumption that the random variables εi j , i =
1, . . . , l, j = 1, . . . , p are spatially independent and normally
distributed with mean 0 and variance σ 2. This is the case,
usually, when the image has been pre-processed; the error
quantities explain the deviation between the observed pixel
intensities and the smoothed values. This is obviously not a
valid assumption in many applications and is often seen to be
restrictive. The authors of [1] describe several cases where this
approach does not work (e.g., quantum-limited imaging, such
as in X-ray, nuclear-medicine imaging, etc.).

In this paper, we consider a more general model and,
thus, relax the independence assumption. We utilize the
matrix-valued normal distribution assuming certain types of
covariance matrices, as is done in spatial statistics (cf. [25]).
Consequently, the pixel intensity process is spatially corre-
lated. This approach fosters a more realistic representation of
the true data–generating process for digital images.

III. MONITORING PROCEDURES FOR

IMAGE CHARACTERISTICS

In this research paper, we develop methods for the surveil-
lance of image processes over time. These types of problems
are common in practice and arise in many fields. Modern
production processes, for instance, frequently deploy cameras
as sensors to continuously monitor quality. The objects of
interest are either the items under production or, in a more
specific case, parts created from a 3D printing process (cf. [3]).
Similarly, one can consider the printing process of magazines,
books or flyers, during which the intensity and the color of the
cover might be monitored. In medicine, screening generates
sequences of spatial or temporal images, which are reviewed
for the early detection of tumors and vascular changes.
In another example, the airspace above us can be monitored by

the military for the detection of foreign aircrafts, while down
from above, the surveillance of satellite pictures can help in the
timely detection of forest fires. Thus, the number of possible
applications for the surveillance of image processes over time
are diverse, though related research is still at an early stage.

All time series data can be modelled and analyzed in the
domains of time or frequency, thus offering two method-
ological alternatives. In this work, we focus on monitoring
procedures in the time domain only. In the frequency domain,
the time series of image characteristics would first need to
be transformed by a suitable filter, for example, wavelets, etc.
This can lead, however, to difficulties in the interpretation of
changes, in the context of the original image, that result due to
transformational process. We will not discuss the topic further
here.

The aim of any monitoring procedure is to detect a shift
in the observed process as soon as possible after its occur-
rence. Such a problem is subject to statistical process control
(SPC, cf. [26]). The most important tools in SPC are control
charts, which have been widely employed in engineering,
as well as in other fields, such as production, economics,
medicine, etc. The process of interest is mostly assumed to
be univariate and independent over time. If there is a need
to monitor several characteristics of a process, the resulting
time series is then a multivariate time series. Control charts
for multivariate processes and those that are independent over
time have been studied by various authors. The first control
chart for independent and multivariate normally distributed
random vectors was suggested by [27]. Instead of monitoring
the vector of the observations, the author suggested to consider
the scalar Mahalanobis distance between the observations and
the target mean vector. References [28] and [29] extended the
exponentially weighted moving average (EWMA) chart to
multivariate data by developing a multivariate EWMA recur-
sion. Further generalizations of the EWMA chart were then
given by, e.g., [30] and [31]. The alternative family of control
charts stem from the sequential probability ratio test (SPRT)
and are referred to as cumulative sum (CUSUM) charts. The
extension of the univariate CUSUM scheme to multivariate
data is not unique; several alternative approaches have been
developed. The direct application of the SPRT to independent
multivariate normally distributed variables results in a control
chart that is not directionally invariant (cf. [32]). This implies
that the distribution of the run length in an out-of-control
state is dependent on the direction and on the magnitude
of the change. As a result, the application of the charts
becomes very problem-driven and computationally expensive.
Several authors have, therefore, proposed control schemes that
overcome this problem, e.g., [33], [34].

Unfortunately, these approaches cannot be applied to
monitor an image process directly. Despite being capable to
monitor multivariate time series data, these charts can handle
only small- and medium-dimensional data. As image data ren-
ders ultra-high-dimensional time series containing potentially
millions of dimensions, it is necessary either to modify these
approaches or to introduce new ones.

One potential method for reducing dimensionality of the
problem is to consider aggregated characteristics of the
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image-based processes such as, e.g., entropy, spatial entropy,
and means, rather than monitoring every pixel. The infor-
mation can be aggregated spatially over pixels or in a
pixel-specific way. The disadvantage of a pixel-to-pixel analy-
sis is that it creates dramatic theoretical and computational
problems. Particularly, since we assume there are correlated
pixels within an image, such an analysis can only be successful
if the underlying covariance matrix of the pixels has a specific
structure. Otherwise, the number of parameters with respect to
the available amount of data would be huge and the analysis
would suffer from the curse of dimensionality.

Spatial-aggregation relies on sub-images, the so-called
regions of interest (ROIs), as considered in [16], [35]. These
are obtained by splitting the whole image into small areas of a
given geometric form and of either a fixed or varying size. The
local characteristics of the ROIs usually comprise measures of
location and local measures of variation in colors or intensities.
Our aim, in this paper, is to monitor such local characteristics.
The introduction of sub-images reduces the dimensionality of
the data, though it can lead to new problems. Nevertheless,
we are still faced with a high-dimensional problem and the
classical control charts for multivariate processes cannot be
applied.

In order to develop efficient control charts, the methods
for multivariate process control must be combined with the
latest findings on high-dimensional data analysis and on
spatio-temporal statistics.

A. Model
Our aim is to detect whether there has been a change

within an image process over time. Let Ỹt,i j be the true
intensity of the pixel with coordinates (i, j) at time t ≥ 1.
Since the image process may be quite complicated, in this
paper we focus on a situation where the nominal image,
defined by the intensities fi j , is fixed and does not change
over time. For instance, the image could be the template
of a book cover, as modelled on a computer or taken by a
static camera as part of the printing process. The objective
of monitoring the process is then to detect changes in the
brightness of continuously printed book covers. This implies
that the intensity fi j is constant for the given pixel (i, j)
and independent of time t . The linear error model, therefore,
becomes as follows

Ỹt,i j = fi j + εt,i j , i = 1, . . . , l, j = 1, . . . , p, (2)

where the elements Ỹt,i j constitute a matrix Ỹt. A more
general case of a non-constant nominal image, and therefore
time dependent intensity functions, is discussed in an ongoing
separate project. The quantity εt,i j denotes a noise process that
is assumed to be independent over time but not over space,
i.e., Corr(εt,i j , εs,i ′ j ′) = 0 for t �= s, but Corr(εt,i j , εt,i ′ j ′) �=
0 in general. Thus, we are working under much weaker
assumptions than are usually held in the literature, whereby
independence over space is largely assumed.

Since we are considering a shift in the location, the change
point model is defined as

X̃t =
{

Ỹt for t < τ,

Ỹt + A for t ≥ τ
(3)

for t ≥ 1 with A �= 0 and τ ∈ IN ∪ {∞}. If τ = ∞,
we determine that the image process is in control and no
change has happened. If τ < ∞, then a shift has occurred
and the image process is out of control, starting from time
point τ . {X̃t } is frequently referred to as the observed process
and {Ỹt } as the target process. Note that f is assumed to be
known and we do not need a pre-run phase to estimate it.
Although in many applications there are no natural values for
the in-control characteristics, here we can assume that there
exists a template that can be utilized as the nominal image.
The impacts of parameter estimation will be discussed in a
forthcoming paper.

Monitoring all pixels individually is a very challenging task,
since a simple modern cell phone image consists of around
four million pixels, thus, we would have to monitor a process
with four million components over time, which is not feasible
from a computational perspective. In order to reduce the
complexity of the problem, the image is partitioned into ROIs
Ii j of size h1×h2, i = 1, . . . , r1, j = 1, . . . , r2. We distinguish
between the cases of non-overlapping and overlapping ROIs.
In the first case, one can assume that l = h1 r1 and p = h2 r2,
r1, r2 ∈ IN and Ii j ∩ Ii ′ j ′ = ∅, whereas, for the second case,
l < h1 · · · r1, p < h2 r2 and Ii j ∩ Ii ′ j ′ �= ∅. ROIs often set as
squares with h1 = h2. As suggested in [35], ROIs can instead
be considered not to be of a fixed size but to represent an
increasingly nested sequence of regions, i.e., I1 ⊂ I2 ⊂ . . ..
While the methodology discussed in this paper could easily
be extended to such a setting, to simplify the exposition,
we restrict the discussion to overlapping and non-overlapping
ROIs of a fixed size.

Every ROI consists of a set of pixels and the intensities of
the pixels must be aggregated to the local characteristics of the
ROIs. Most of the proposed charts are based on characteristics
T̃t,i j of the pixel intensities within a given ROI Ii j such as the
mean, weighted mean, standard deviation, etc. We follow the
same idea as [35] and [36], who have applied a control chart
to the residual process. In these studies, the authors monitored
the mean of the pixels within every ROI using a generalized
likelihood ratio chart. It must be noted that their approach
assumes spatial independence between the pixels, though, even
in the case of a multiple linear regression, the residual process
is not independent. A detailed comparison of residual charts
and so-called modified charts is given in [37].

B. Control Charts Based on the GLR Approach

In this part of the article, we introduce some new control
procedures for image characteristics. While in most published
papers, their analysis is restricted to the characteristics of
the spatially independent residual process for the indepen-
dent ROIs, we take into account the spatial structure (thus,
the dependence) of the pixels. Consequently, we are able to
monitor the characteristics of the original image, too.

The non-overlapping ROIs are built, as in the previous
subsection, resulting in a total of r1 ·r2 ROIs. Let T̃t,i j denote a
local characteristic of the image process for the region Ii j such
as, e.g., the local mean T̃i j = X̄ t,i j = 1

|Ii j |
∑

(v,u)∈Ii j
X̃ t,vu ,

the median, the entropy of the observations lying in Ii j , etc.
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To simplify the formulas and the notation, and taking
into account the fact that there are no further constraints on
the arrays, we define Xt as the vectorized version of the
l × p matrix X̃t . Thus, Xt = (

X̃ t,11, X̃ t,21, …, X̃ t,l1, …,
X̃ t,lp

)′ = vec(X̃t ). We assume that the observed intensities
in the in-control state follow an l · p-dimensional normal
distribution Xt ∼ Nl·p(μX ,�X ) with the mean vector μX and
the covariance matrix �X . Moreover, the characteristics of the
ROIs Tt = (T̃t,11, T̃t,21, …, T̃t,r11, …, T̃t,r1r2)

′ are assumed
to follow a multivariate normal distribution with mean μ and
covariance matrix G. Note that μ is an r1 · r2-dimensional
vector and G is an (r1 · r2) × (r1 · r2)–dimensional matrix.
If T̃t,i j are means of the pixel intensities, then we can state that
E(T̃i j ) = 1

|Ii j |e
′
i j μX and V ar(T̃t,i j ) = 1

|Ii j |2 e′
i j �Xei j , where

ei j is an l · p vector of zeros and ones made by vectorization
of the l × p matrix of zeros and ones with ones on positions
corresponding to Ii j . The covariance between T̃t,i j and T̃t,i ′ j ′
is Cov(T̃t,i j , T̃t,i ′ j ′) = 1

|Ii j |2 e′
i j �Xei ′ j ′ . Thus, the elements of

μ and G can be uniquely determined from μX and �X .
We wish to emphasize that in this work we do not

assume that, for a fixed time point t , the variables T̃t,i j , i =
1, . . . , r1, j = 1, . . . , r2 are spatially independent, as has been
done in previously mentioned papers. Thus, the matrix G is
not diagonal. Furthermore, we would like to emphasize how
our work with the ROIs substantially reduces the dimension-
ality of the problem in question. For instance, if choosing
non-overlapping sub-images of size h1 = h2 = 100, an orig-
inal image containing 2000 × 2000 pixels reduces to 400
ROIs and Tt is a 400-dimensional vector. Thus, Tt is still
a high-dimensional vector, but its dimension is dramatically
smaller than that of the vector without sub-images which has
4 · 106 components. It is also worth noting that, in this paper,
T1, T2, . . . are assumed to be independent random vectors.
Note that this assumption is not fulfilled if the subject changes
or moves over time, since the assumption of identically
distributed random vectors is no longer fulfilled.

In this paper, we assume that the pixel intensities and
the characteristics of ROIs follow a multivariate normal dis-
tribution. This restricts the choice of possible quantities of
interest that we wish to control. For this reason, we have
focused on monitoring the mean behavior of a sequence of
independent multivariate normally distributed random vectors
in our simulation study. Let r = r1 ·r2. Then, the change point
model (3) can be rewritten as

Tt ∼
{
N r (μ, G), t < τ

Nr (μ + �, G), t ≥ τ,
, t ≥ 1, (4)

where � �= 0 and τ ∈ IN ∪{∞}. If τ = ∞, we determine that
the image process is in control and no change has happened.
If τ < ∞, then a shift had occured and the image process
is out of control, starting from time point τ . Several control
charts have been introduced in the literature to deal with the
problem of how to monitor the mean behavior (cf. Section III).
However, small dimensions have previously been assumed,
e.g., values between 2 and 5. In the present case, the dimension
is much higher! Furthermore, most of the charts that have
been introduced have depended on certain design parameters

(e.g., a smoothing matrix, a reference matrix, etc.) which
must be determined in advance. This dramatically complicates
the application of these methods in a high-dimensional case.
For this reason, we prefer to work with a purely data-driven
control scheme. For the change point model (4), we derive a
generalized likelihood ratio chart (e.g., [36], [38], [39]) that
will not depend on any additional design parameters.

Applying the generalized likelihood ratio procedure,
we obtain the following control statistic at time point n ≥ 1

R∗
n = max

1≤η≤n
(n − η + 1)�̂′

η,nG−1�̂η,n

with

�̂η,n = 1

n − η + 1

n∑
t=η

Tt − μ.

The detailed derivation is given in the appendix.
Sometimes, it is useful to standardize R∗

n . Since the
moments of the maximum of non-independent variables are
difficult to determine, we standardize by the moments of the
statistic without taking the maximum into account, i.e., of (n−
η + 1)�̂′

η,nG−1�̂η,n . This procedure is useful for determining
the control limits, as the control limits without standardization
can be large and beyond the values of around 3 that are
frequently employed in SPC. Note, however, that this form of
standardization still does not guarantee that the distribution of
the control statistic is independent of the covariance matrix G.
Since in the in-control case �̂η,n ∼ Nr (0, 1

n−η+1 G), it holds

that (n − η + 1)�̂′
η,nG−1�̂η,n ∼ χ2

r , and, thus, its in-control
expectation is r and its in-control variance is 2r . The modified
version of the statistic R∗

n looks as follows

Rn = max1≤η≤n(n − η + 1)�̂′
η,nG−1�̂η,n − r√

2r
.

Now, the chart gives a signal at time n ≥ 1 if Rn > CR

with a suitable constant CR , the so-called control limit.
In practice, μ and G are both unknown and they have to

be estimated by a prerun. Let us assume that a prerun of
the observed process in the in-control state is given by X =
(X1−m, . . . , X0)

′. These values can be utilized to estimate μX

and �X , for example, employing the ML estimators

μ̂X = 1

m
X ′1m and �̂X = 1

m
(X ′(Im − 1m1′

m/m)X )

where 1m = (1, . . . , 1)′ is a vector of length m and Im is the
identity matrix of size m × m. These values can be used to
obtain estimators μ̂ and Ĝ for Tn as described at the beginning
of this subsection.

Note that, to compute Rn , it is necessary to invert the
(r1 · r2) × (r1 · r2) matrix G (or Ĝ). However, ML esti-
mators will only provide suitable results if m is larger
than r1 · · · r2. In practice, this is usually not the case and,
thus, the classical sample estimators fail in a high-dimensional
context (e.g., [40]). The shrinkage approach (see [41]) provides
another potential method of estimating the covariance matrix.
This is a nonparametric estimator that works well even in a
high-dimensional case. Thus, it can be applied in situations
where the dimension r1 · r2 is of moderate size with respect
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to m. However, this approach will also fail if m is small.
In such a case, a parametric or a semiparametric method seems
to be more successful, though it is necessary to impose some
assumptions on the structure of G. Intuitively, it is reasonable
to assume that more distant observations exhibit a weaker
correlation than observations lying closer together. In this
regard, we might even consider independence starting from a
certain distance. It is also possible to make use of an isotropic
covariance matrix with an exponential or a Matern covariance
function (see [25]). In this case, the estimation of G is easier
and much more robust, since only a few parameters need to be
estimated. A further possibility, as has already been mentioned,
is to assume a matrix-variate normal distribution in the form
T̃t ∼ Nr1,r2(μ̃, B, C), where μ̃ is the matrix of mean values,
B is the matrix which describes the covariances between the
rows, and C is the matrix which describes the covariances
between the columns of T̃t (see [42]).

C. Modifications of the GLR Approach

A disadvantage of the control statistic obtained by the
GLR approach is that it is necessary to determine the inverse
matrix of G. This is a computationally-demanding task for
high dimensions. In fact, the control statistic Rn consists
of a Mahalanobis distance. [40] and [43] consider a similar
problem. Following [40], we replace the quantity (n − η +
1)�̂′

η,nG−1�̂η,n with the quantity (n−η+1)�̂′
η,n�̂η,n−tr(G),

which must be suitably normalized.
Lemma 1: Let 1 ≤ η ≤ n. Then, in the in-control state,

it holds that

E((n − η + 1)�̂′
η,n�̂η,n) = tr(G),

V ar((n − η + 1)�̂′
η,n�̂η,n) = 2 tr(G2).

Proof: Without restriction, we suppose that μ = 0.

We utilize the fact that (Tη, . . . , Tn)
d= (T1, . . . , Tn−η+1).

In order to simplify the notation, let a = n − η + 1. Then

E(
1

a

a∑
i, j=1

T′
i T j ) = 1

a
tr(E(

a∑
i, j=1

Ti T′
j )) = tr(G),

V ar(
1

a

a∑
i, j=1

T′
i T j ) = 1

a2 E(

a∑
i, j,v,l=1

T′
i T j T′

vTl ) − (tr(G))2.

If there is one index which differs from the three others, then
the expectation is 0. Thus, a non-zero contribution only results
in the event that all indices are the same or if two pairs of
indices are the same. If i = j �= v = l, we get

E(T′
i T j T′

vTl) = E(T′
i Ti )E(T′

vTv ) = (tr(G))2

and this occurs a(a − 1) times. If i = v �= j = l, we obtain

E(T′
i T j T′

vTl ) = E(T′
i T j T′

i T j ) = E(T′
j Ti T′

i T j )
= tr(E(Ti T′

i T j T′
j )) = tr(E(Ti T′

i )

= E(T j T′
j )) = tr(G2),

and the number of times that this occurs is also the same. For
i = l �= j = v, it follows that

E(T′
i T j T′

vTl) = E(T′
i T j T′

j Ti )

= tr(E(T j T′
j Ti T′

i )) = tr(G2)

and this can be observed a(a − 1) times.
Moreover, employing [44, 3.2b.10], we have

E(T′
i Ti T′

i Ti ) = 2 tr(G2) + (tr(G))2.

Thus, we get that

V ar(
1

a

a∑
i, j=1

T′
i T j ) = a(2 tr(G2) + (tr(G))2)

a2

+ a(a− 1)(tr(G))2 + 2a(a− 1)tr(G2)

a2

− (tr(G))2

= 2 tr(G2).

This leads to the new control statistic,

Mn = max1≤η≤n(n − η + 1)�̂′
η,n�̂η,n − tr(G)√

2 tr(G2)
.

The control chart signals whether the control statistic Mn

exceeds some prespecified control limit CM .
[43] provided an improvement of the approach of [40].

Applying their procedure in the present case, the control
statistic is based on

n∑
t,v=η,

t �=v

(Tt − μ)′(Tv − μ).

Note that for η = n the value of this statistic equals zero.
Lemma 2: Let 1 ≤ η ≤ n. Then, in the in-control state,

it holds that

E

⎛
⎜⎜⎝

n∑
t,v=η,

t �=v

(Tt − μ)′(Tv − μ)

⎞
⎟⎟⎠ = 0,

V ar

⎛
⎜⎜⎝

n∑
t,v=η,

t �=v

(Tt − μ)′(Tv − μ)

⎞
⎟⎟⎠

= 2(n − η + 1)(n − η) tr(G2).
Proof: Using the same argumentation as in the proof of

the former lemma, we find that

E

⎛
⎜⎜⎝

⎛
⎜⎜⎝

n∑
t,v=η,

t �=v

(Tt − μ)′(Tv − μ)

⎞
⎟⎟⎠

2⎞
⎟⎟⎠

=
n∑

t,v=η,
t �=v

n∑
j,l=η,

j �=l

E
(
(Tt − μ)′(Tv − μ)(T j − μ)′(Tl − μ)

)
.
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Now, we consider E((Tt − μ)′(Tv − μ)(T j − μ)′(Tl − μ)).
If t = j �= v = l and t = l �= v = j , then this expectation is
equal to tr(G2). This occurs 2(n − η + 1)(n − η) times. In all
other cases, the expectation is 0. Consequently,

E

⎛
⎜⎜⎝

⎛
⎜⎜⎝

n∑
t,v=η,

t �=v

(Tt − μ)′(Tv − μ)

⎞
⎟⎟⎠

2⎞
⎟⎟⎠

= 2(n − η + 1)(n − η)tr(G2).

The attempt of [43] motivates the use of the control statistic
Un = max{0,

max
1≤η≤n−1

1√
2(n − η + 1)(n − η)

∑n
t,v=η,

t �=v
(Tt − μ)′(Tv − μ)√

tr(G2)
}.

Note that in [40] and [43] the underlying statistics did not
contain a maximum as they do in our case. Thus, the results of
these authors cannot be applied to characterize the asymptotic
distribution of our control statistics.

For calculating the control statistics Mn and Un , only
O(r2

1 r2
2 ) operations are necessary, while for the determination

of Rn , an inverse matrix must be calculated, which is more
time intensive. The Gauss-Jordan elimination method requires
O(r3

1 r3
2 ) operations. Thus, these quantities can be determined

more qucikly and, consequently, they can be applied to smaller
sizes of ROIs and, therefore, to more ROIs.

A control chart gives a signal if the corresponding control
statistic exceeds a control limit, for example, Un > CU . The
run length of the chart, i.e., the number of periods until a
signal, is then defined as

RLU (CU ) = in f {n ∈ IN | Un > CU }.
The control limits are determined such that, in the in-control
state, the expectation or the median of the run length (ARL or
MRL, respectively) attains a prespecified value ξ . However,
the ARL is not a suitable choice if the distribution of the run
length is skewed or heavy-tailed. For this reason, we consider
the MRL which is robust against these features. The control
limit CU solves the equation

Median(RLU (CU )) = ξ.

We determine the control limits for the remaining two charts
similarly.

IV. SIMULATION STUDY

In order to compare the charts that are introduced, we con-
sider the in-control process to be a computer-generated image
that represents a primitive sketch of a front page of a book
or of a magazine, such as in Fig. 1. This figure defines the
nominal image in our study. The intensities of the pixels of the
further generated images are defined by the values of fi j +ai j ,
as in equations (2) and (3). We set the size of every image
to 300 × 180 pixels and every image consists of sub-images
that represent different parts of the front page, with different
color patterns. For example, a very dark stripe at the top of

Fig. 1. A computer-generated image (the actual size is 300 × 180 pixels).

the image in Fig. 1 consists of 3,420 (19 ×180) pixels and all
of these pixels in this part of the image have the same mean
intensity value fi j = 0.2. The dynamic intensities X̃ t,i j , i =
1, . . . , 300, j = 1, . . . , 180 of every pixel are assumed to
follow a normal distribution with parameters fi j and σ 2

i j .
Thus, the in-control mean values of the pixels are set as equal
to the intensity values of the nominal image. All in-control
variances σ 2

i j , i = 1, . . . , 300, j = 1, . . . , 180 equal 0.032.
Small variances and fi j within the interval [0.2; 0.8] guaran-
tee that the intensities simulated with these parameters stay
within the unit interval. We introduce the spatial correla-
tion of the pixel intensities by exploiting the Euclidean dis-
tance between the pixels and the exponential transformation.
More precisely, Corr(X̃ t,i j , X̃ t,i ′ j ′) = Corr(et,i j , et,i ′ j ′) =
0.9

√
(i ′−i)2+( j ′− j )2

for i, i ′ = 1, . . . , 300, j, j ′ = 1, . . . , 180
in the in-control situation. The constant, 0.9, was chosen due
to the aforementioned remark that neighboring pixels have a
strong positive spatial correlation.

We consider three different settings for the choice of ROIs:
a) ROIs of the size 10 × 10 pixels, resulting in 540 non-

overlapping ROIs (schematically shown in Fig. 2, top);
b) ROIs of the size 20 × 20 pixels, resulting in 135 non-

overlapping ROIs (schematically shown in Fig. 2, bottom);
c) ROIs of the size 20×20 pixels, resulting in 493 overlap-

ping ROIs (the behavior of the overlapping ROIs is sketched
in Fig. 3).

To distinguish between these three settings for the charts
based on the R control statistics, we employ superscripts,
for example, R(10), R(20), and R(20ov). The analysis can be
extended to other types of ROIs either of fixed or varying
sizes.

For every setting, we derive the mean and the covariance
matrix of the local mean T̃t,i j relying on the distributional
assumptions of the pixel intensities mentioned previously.
Next, without losing generality and to ease the computational
load, we simulate the values of T̃t,i j rather than the intensity
values X̃ t,i j of the pixels. Note that the exact distribution
of the control statistics Rn, Mn , and Un introduced in the
previous chapters is not a standard distribution. For that reason,
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Fig. 2. Top: Partitioning of the 300 × 180 pixel image in 10 × 10 ROIs.
Bottom: Partitioning of the 300 × 180 pixel image in 20 × 20 ROIs.

Fig. 3. Sketch of the overlapping for the 20 × 20 ROIs.

the control limits of the control charts are calculated using
simulations. As a calibration criterion, we set the in-control
median run length (MRL0) to equal ξ = 100. To verify
the robustness of the suggested monitoring technique for the
choice of ξ , we repeat the completed analysis for ξ = 200. The
results and the conclusions were almost identical to the find-
ings for ξ = 100; therefore, we will past them to save space.

In practice, the nonlinear equation Median(RL(C))−ξ = 0
for the control limit C is solved numerically. Here, we utilize a
adapted version of the bisection method, since this technique
does not require derivatives of the underlying function. For
each iteration of the bisection algorithm we estimate the
median using 25, 000 independent runs, i.e., 25, 000 times
we run the control chart with simulated data until there is
a signal, collecting data on the observed run lengths. The
resulting control limits are provided in Table I.

A guide for a practitioner on how to estimate the control
limit could consist of the next steps:

TABLE I

CONTROL LIMITS CALIBRATED TO ATTAIN THE MEDIAN
IN-CONTROL RUN LENGTH OF ξ = 100

a) Choose two starting values A1, A2 ∈ R in a way that
Median(RL(A1))−ξ < 0 and Median(RL(A2))−ξ > 0 with
a small number of replications (for example, 400−500). Keep
in mind that the number or replications could be different in
another type of the in-control settings (i.e., different size of
the image, size of the ROI, etc.);

b) Check the sign of Median(RL( A1+A2
2 )) − ξ . If it is > 0,

put A2 := A1+A2
2 , otherwise put A1 := A1+A2

2 ;
c) Keep performing the step b) till Median(RL( A1+A2

2 ))−ξ
equals to one of the next values −5,−4,−3, . . . , 4, 5. Simul-
taneously, increase the number of replications (for example,
to 3000−5000) to obtain a more precise result;

d) If the computed Median(RL( A1+A2
2 )) equals ξ ± 2 for

the chosen number of replications, then adopt A1+A2
2 as the

control limit.
To check the ability of the charts to signal in the out-of-

control state, we consider the following five scenarios for a
change in the mean value of the image areas:

a) The second horizontal stripe, sized 23 × 180 pixels,
becomes brighter. All pixels in this stripe are fully cov-
ered by 72 non-overlapping ROIs of the size 10 × 10
pixels. The mean value of the affected pixels changes
from fi j = 0.4, i = 1, . . . 300, j = 1, . . . 180 to
fi j + δ with δ ∈ {0.005, 0.01, . . . , 0.05}. Fig. 4 contains
the image with δ = 0.15 in its upper middle part. Based
on a purely visual inspection, this shift is the only one
that can be identified clearly, while the identification of
smaller shifts is hardly possible. In Fig. 5, the histogram
of the distribution of the out-of-control RL for the shift
δ = 0.02 is plotted to give the reader a feeling how
long it could take before the chart detected this change.
The histogram demonstrates that less than 23 observations
would be required.

b) The background area of the word “TEXT” in the
computer-generated image, sized 61 × 180 pixels,
becomes darker. The mean value of those pixels is 0.8.
The values for the intensity shifts in the mean are δ ∈
{−0.005,−0.01, . . . ,−0.05}.

c) The word “TEXT” (in which all 2, 550 pixel intensities
equal 0.2) becomes brighter. The intensity values are
shifted by δ ∈ {0.005, 0.01, . . . , 0.05}.

d) The fourth horizontal stripe in the image, sized 23 × 180
pixels, becomes darker. The intensity values are shifted
by δ ∈ {−0.005, −0.01, . . . ,−0.05}. Compared with
scenario 1, all pixels in this stripe are fully covered by
54 non-overlapping ROIs of the size 10 × 10 pixels.

e) The left half of the image gets darker. The intensity values
are shifted by δ ∈ {−0.005, −0.01, . . . ,−0.025}.

Fig. 4 illustrates the changes in scenarios a) – e). These
images visualize the shifted mean intensities fi j + ai j without
the noise component. The corresponding out-of-control MRLs,
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Fig. 4. The computer-generated images. Top: left – without change; middle
– change, type a); right – change, type b). Bottom: left – change, type c);
middle – change, type d); right – change, type e). The shifts are δ = 0.15 for
changes a) — d) and δ = 0.025 for change e).

Fig. 5. Histogram of the out-of-control RL for the R10
n chart. Case a),

δ = 0.02, 104 repetitions. The red line indicates the corresponding out-of-
control MRL.

based on the 104 repetitions, can be found in Table II and
Fig. 6. The charts are then calibrated to attain the MRL0 = 100
in the in-control state; therefore, all curves start at (0, 100).
The MRLs rapidly decrease for most types of changes and
the MRL of 20 is attained for the shift δ = 0.01. Note that a
change in intensity by 0.01 is, in fact, almost invisible to the
human eye, yet the chart manages to detect the change quickly
after the shift occurs.

While none of the charts have shown the best performance
in all scenarios, Un with the non-overlapping ROIs of the size
20 × 20 pixels has delivered the best results in three out of
five of the out-of-control scenarios. In the third out-of-control

TABLE II

OUT-OF-CONTROL MRLS OF THE CONTROL CHARTS Rn , Mn ,
AND Un FOR THE SCENARIOS DESCRIBED IN A) – E)

scenario, the Rn chart appears to be the best. In the third
scenario, the smallest number of pixels were changed when
compared with the others, which could be a possible reason
for the better performance of the Rn chart in this case. The dis-
advantage of Rn is that, contrary to Mn and Un , it depends on
the inverse of the covariance matrix. This quantity is difficult
to determine in a high-dimensional situation. Moreover, in this
paper, we do not discuss the influence of parameter estimation
on the charts; the determination of the inverse would be even
more complicated taking into account the estimation risk.
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Fig. 6. Out-of-control MRLs of the control charts Rn , Mn , and Un for the
scenarios described in a) – e).

To assess the advantages of the proposed monitoring
schemes, we choose the Hotelling’s T 2 multivariate control

TABLE III

CONTROL LIMITS OF THE HOTELLING’S T 2
n CHART WITH

THE MEDIAN IN-CONTROL RUN LENGTH OF ξ = 100

TABLE IV

OUT-OF-CONTROL MRLS OF THE HOTELLING’S T 2
n

CHART FOR THE SCENARIOS A) – E)

chart as a benchmark. We again assume that the mean vector
and the covariance matrix are known, to guarantee a fair
comparison. The standardized version of the control statistic
at time n is given by

T 2
n = (Tn − μ)′ G−1 (Tn − μ) − r√

2r
.

Note that, in the in-control case, the non-standardized control
statistic follows a χ2-square distribution with r degrees of
freedom, where r is the dimension of the vector Ti . Since
we employ the MRL as the performance measure, we cannot
utilize our knowledge of the distribution of the control statistic
T 2

n to determine the control limits and, thereby, determine
them numerically as above. The control limits for the chosen
sizes of the ROIs CH (10) , CH (20) , CH (20ov) with MRL0 = 100
are estimated using 25, 000 independent repetitions; they can
be found in Table III. The out-of-control MRLs for the
scenarios a) — e) are given in Table IV. According to the
out-of-control MRLs, our new charts perform better than the
Hotelling’s T 2 in general.

Intuitively, the ability of the charts to signal (whether the
control limit has been exceeded) depends on the choice of the
minimal size of the ROI. As is analyzed in [35], the size of
the ROI should be chosen similar to the size of the area of
the expected defect. If the size of the ROI is smaller than the
expected area of the defect, then the chart would supposedly
signal faster than in the case where the size of the ROI is larger.
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TABLE V

OUT-OF-CONTROL MRLS, MEANS AND STANDARD DEVIATIONS

FOR THE R(20) CHART IN SCENARIO A)

Fig. 7. Indexed ROIs and the corresponding in-control and estimated
mean intensities for the R(20) chart in scenario a), δ = 0.05, shifts are
in ROIs 10–18.

We believe that a similar statement could be made concerning
the number of changed pixels when the changes in the area are
no longer convex, as in the third scenario. The advantage of
overlapping ROIs is also seen in the third scenario, in which
the chart with overlapping ROIs sized 20×20 pixels performed
better than its non-overlapping same-sized counterpart.

There are many additional methods that benefit a prac-
titioner when employing monitoring techniques with image
data. Some of these are typical for monitoring in general,
i.e., change point detection, while others are more specific,
since they are used only for monitoring image processes.
We demonstrate some of these methods, applying the perfor-
mance of the control chart R(20) in the first out-of-control
situation a).

To gain more information about the distribution of the
run lengths, one could also compute its mean and standard
deviation in addition to its median, as in Table V. As can be
seen in the table, we find that for larger shifts the mean and
the median are similar while using R(20). The values of the
standard deviation, meanwhile, are large for small shifts and
become smaller with larger δ.

After the chart signals, an additional plot can be generated,
as in Fig. 7, to estimate the size of the shift in the mean
intensities of the ROIs. To this end, we ordered the ROIs from
left to right and, top to bottom, utilizing the partitioning in the
bottom of Fig. 2, and plotted their index on the horizontal
axis. The corresponding mean intensities were plotted on
the vertical axis. Black circles illustrate the in-control mean
intensities, while transparent squares indicate the estimated
mean intensities after the signal. In scenario a), the faulty area
is mostly covered by the ROIs 10 − 18 and the large resulting
changes can be seen in the plot.

Reference [35] advise that the Dice similarity coeffi-
cient (DSC) could be employed to determine how well a chart

estimates the size of the change. Since we use ROIs of a fixed
size, we compute the DSC as an assessment tool to associate
the ROIs and the area where the shift occurred. Let F denote
the area of the change. Then the DSC for the i th ROI is defined
as

DSCi = 2|F ∩ Ii |
|F | + |Ii | .

In our setting, we focus on the maximum of DSCi ’s, i.e., the
DSCmax = maxi DSCi , and, thus, the largest fraction of the
fault area covered by a single ROI. DSC equal to one implies
that the fault area is completely covered by a single ROI.
Small values of DSCi indicate that the i th ROI covers only
a small fraction of the faulty area. For the statistic R(20) and
scenario a), the maximal possible DSCmax = 2×(20×20)

23×180+20×20 =
40
227 ≈ 0.176. This motivates further research on the optimal
or dynamical choice of ROIs.

V. CONCLUSION

In this paper, we have discussed the problem of monitoring
an image process over time. Since the number of pixels
is huge, we face a high-dimensional problem and, for that
reason, methods for high-dimensional data should be applied
in particular. While many authors assume an independent
residual process, we have taken the spatial correlation structure
of the pixels into account. In order to reduce the dimensionality
of the data, we built ROIs for every image and utilized the local
statistical characteristics of those ROIs. We considered three
possible control statistics and motivated them. In an extensive
simulation study, we compare these three control designs with
each other in various out-of-control situations. The chart Un

demonstrated results that were moderately better than those
for the other two charts. The two control charts, Mn and Un ,
employ simpler control statistics that are much easier to handle
in a high-dimensional setting than Rn .

APPENDIX

DERIVATION OF THE GLR CHART

Proof: Assuming a change at position 1 ≤ η ≤ n,
the density of T1, . . . Tn is given by

fη(T1, . . . , Tn) = 1

(2π)
rn
2 (det G)

n
2

× exp

⎛
⎝−1

2

η−1∑
t=1

(Tt − μ)′G−1(Tt − μ)

− 1

2

n∑
t=η

(Tt − μ−�)′G−1(Tt − μ−�)

⎞
⎠ .

Thus,

−2 log fη(T1, . . . , Tn) = 2 log((2π)
rn
2 (det G)

n
2 )

+
η−1∑
t=1

(Tt − μ)′G−1(Tt − μ)

+
n∑

t=η

(Tt −μ−�)′G−1(Tt −μ−�).
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Setting

δ

δ�
(−2 log fη(T1, . . . , Tn))

= 2(n − η + 1)G−1� − 2
n∑

t=η

G−1(Tt − μ) = 0

leads to

�̂η,n = 1

n − η + 1

n∑
t=η

(Tt − μ) = 1

n − η + 1

n∑
t=η

Tt − μ.

Let f0 denote the density of f under the null hypothesis, e.g.,
H0 : � = 0. Consequently,

−2 log f0(T1, . . . , Tn) + 2 log max
0≤η≤n

max
�

fη(T1 . . . , Tn)

= max

{
0, max

1≤η≤n

(
n∑

t=η

(Tt − μ)′G−1(Tt − μ)

)

−
n∑

t=η

(Tt − μ − �̂η,n)
′G−1(Tt − μ − �̂η,n)

}

= max

{
0, max

1≤η≤n

(
2�̂′

η,nG−1
n∑

t=η

(Tt − μ)

− (n − η + 1)�̂′
η,nG−1�̂η,n

)}

= max
1≤η≤n

(n − η + 1)�̂′
η,nG−1�̂η,n.

Thus, the control statistic is given by

Rn = max
1≤η≤n

(n − η + 1)�̂′
η,nG−1�̂η,n.

REFERENCES

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing.
Upper Saddle River, NJ, USA: Prentice-Hall, 2018.

[2] P. Fieguth, Statistical Image Processing and Multidimensional Modeling.
New York, NY, USA: Springer, 2010.

[3] B. M. Colosimo, “Modeling and monitoring methods for spatial and
image data,” Qual. Eng., vol. 30, no. 1, pp. 94–111, Jan. 2018.

[4] F. M. Megahed, W. H. Woodall, and J. A. Camelio, “A review and
perspective on control charting with image data,” J. Qual. Technol.,
vol. 43, no. 2, pp. 83–98, Apr. 2011.

[5] R. L. Horst and M. Negin, “Vision system for high-resolution dimen-
sional measurements and on-line SPC: Web process application,” IEEE
Trans. Ind. Appl., vol. 28, no. 4, pp. 993–997, 1992.

[6] J. M. Armingol, J. Otamendi, A. De La Escalera, J. M. Pastor, and
F. J. Rodriguez, “Statistical pattern modeling in vision-based quality
control systems,” J. Intell. Robot. Syst., vol. 37, no. 3, pp. 321–336,
2003.

[7] H. B. Nembhard, N. J. Ferrier, T. A. Osswald, and J. R. Sanz-Uribe,
“An integrated model for statistical and vision monitoring in manufac-
turing transitions,” Qual. Rel. Eng. Int., vol. 19, no. 6, pp. 461–476,
2003.

[8] R. L. Mason, N. D. Tracy, and J. C. Young, “A practical approach
for interpreting multivariate t2 control chart signals,” J. Qual. Technol.,
vol. 29, no. 4, pp. 396–406, Oct. 1997.

[9] L.-I. Tong, C.-H. Wang, and C.-L. Huang, “Monitoring defects in IC
fabrication using a hotelling T 2 control chart,” IEEE Trans. Semicond.
Manuf., vol. 18, no. 1, pp. 140–147, Feb. 2005.

[10] J. J. Liu and J. F. MacGregor, “Estimation and monitoring of prod-
uct aesthetics: Application to manufacturing of ‘engineered stone-
countertops,”’ Mach. Vis. Appl., vol. 16, no. 6, p. 374, 2006.

[11] H.-D. Lin, “Automated visual inspection of ripple defects using wavelet
characteristic based multivariate statistical approach,” Image Vis. Com-
put., vol. 25, no. 11, pp. 1785–1801, Nov. 2007.

[12] H.-D. Lin, “Computer-aided visual inspection of surface defects in
ceramic capacitor chips,” J. Mater. Process. Technol., vol. 189, nos. 1–3,
pp. 19–25, Jul. 2007.

[13] H.-D. Lin, C.-Y. Chung, and W.-T. Lin, “Principal component analysis
based on wavelet characteristics applied to automated surface defect
inspection,” WSEAS Trans. Comput. Res., vol. 3, no. 4, pp. 193–202,
2008.

[14] B. C. Jiang, C.-C. Wang, and H.-C. Liu, “Liquid crystal display surface
uniformity defect inspection using analysis of variance and exponentially
weighted moving average techniques,” Int. J. Prod. Res., vol. 43, no. 1,
pp. 67–80, Jan. 2005.

[15] C.-J. Lu and D.-M. Tsai, “Automatic defect inspection for LCDs using
singular value decomposition,” Int. J. Adv. Manuf. Technol., vol. 25,
nos. 1–2, pp. 53–61, Jan. 2005.

[16] M. Koosha, R. Noorossana, and F. Megahed, “Statistical process mon-
itoring via image data using wavelets,” Qual. Rel. Eng. Int., vol. 33,
no. 8, pp. 2059–2073, Dec. 2017.

[17] E. Rafajłowicz and W. Rafajłowicz, “Image-driven decision making with
application to control gas burners,” in Proc. IFIP Int. Conf. Comput. Inf.
Syst. Ind. Manage. Cham, Switzerland: Springer, 2017, pp. 436–446.

[18] Y. Lyu, J. Chen, Junghui and Z. Song, “Image-based process monitor-
ing using deep learning framework,” Chemometrics Intell. Lab. Syst.,
vol. 189, pp. 8–17, Jun. 2019.

[19] M. Grasso, A. G. Demir, B. Previtali, and B. M. Colosimo, “In
situ monitoring of selective laser melting of zinc powder via infrared
imaging of the process plume,” Robot. Comput.-Integr. Manuf., vol. 49,
pp. 229–239, Feb. 2018.

[20] M. Grasso and B. M. Colosimo, “A statistical learning method for image-
based monitoring of the plume signature in laser powder bed fusion,”
Robot. Comput.-Integr. Manuf., vol. 57, pp. 103–115, Jun. 2019.

[21] K. He, Q. Zhang, and Y. Hong, “Profile monitoring based quality control
method for fused deposition modeling process,” J. Intell. Manuf., vol. 30,
no. 2, pp. 947–958, Feb. 2019.

[22] T. Huang, S. Wang, S. Yang, and W. Dai, “Statistical process monitoring
in a specified period for the image data of fused deposition modeling
parts with consistent layers,” J. Intell. Manuf., pp. 1–16, Jul. 2020.

[23] P. Réfrégier and F. Goudail, Statistical Image Processing Techniques
for Noisy Images: An Application-Oriented Approach. New York, NY,
USA: Springer, 2013.

[24] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and
Machine Vision. Boston, MA, USA: Cengage Learning, 2014.

[25] N. Cressie and C. K. Wikle, Statistics for Spatio-Temporal Data.
Hoboken, NJ, USA: Wiley, 2015.

[26] D. C. Montgomery, Statistical Quality Control. New York, NY,
USA: Wiley, 2009.

[27] H. Hotelling, “Multivariate quality control illustrated by the air testing
of sample bombsights,” in Techniques of Statistical Analysis. New York,
NY, USA: McGraw-Hill, 1947.

[28] C. A. Lowry, W. H. Woodall, C. W. Champ, and S. E. Rigdon,
“A multivariate exponentially weighted moving average control chart,”
Technometrics, vol. 34, no. 1, pp. 46–53, 1992.

[29] R. S. Sparks, “Quality control with multivariate data,” Austral. J. Statist.,
vol. 34, no. 3, pp. 375–390, Sep. 1992.

[30] A. Fassó, “One-sided MEWMA control charts,” Commun. Statist.-Simul.
Comput., vol. 28, no. 2, pp. 381–401, 1999.

[31] D. M. Hawkins, S. Choi, and S. Lee, “A general multivariate exponen-
tially weighted moving-average control chart,” J. Qual. Technol., vol. 39,
no. 2, pp. 118–125, Apr. 2007.

[32] J. D. Healy, “A note on multivariate CUSUM procedures,” Technomet-
rics, vol. 29, no. 4, pp. 409–412, Nov. 1987.

[33] R. B. Crosier, “Multivariate generalizations of cumulative sum
quality-control schemes,” Technometrics, vol. 30, no. 3, pp. 291–303,
Aug. 1988.

[34] J. J. Pignatiello, Jr., and G. C. Runger, “Comparisons of multivariate
CUSUM charts,” J. Qual. Technol., vol. 22, pp. 173–186, Jul. 1990.

[35] F. M. Megahed, L. J. Wells, J. A. Camelio, and W. H. Woodall,
“A spatiotemporal method for the monitoring of image data,” Qual. Rel.
Eng. Int., vol. 28, no. 8, pp. 967–980, Dec. 2012.

[36] Z. He, L. Zuo, M. Zhang, and F. M. Megahed, “An image-based
multivariate generalized likelihood ratio control chart for detecting and
diagnosing multiple faults in manufactured products,” Int. J. Prod. Res.,
vol. 54, no. 6, pp. 1771–1784, Mar. 2016.

                                                                                                                                           



                                               933

[37] S. Knoth and W. Schmid, “Control charts for time series: A review,”
in Frontiers in Statistical Quality Control, vol. 7. Heidelberg, Germany:
Springer, 2004.

[38] M. R. Reynolds and J. Lou, “An evaluation of a GLR control chart
for monitoring the process mean,” J. Qual. Technol., vol. 42, no. 3,
pp. 287–310, Jul. 2010.

[39] O. Bodnar and W. Schmid, “CUSUM charts for monitoring the mean of
a multivariate Gaussian process,” J. Stat. Planning Inference, vol. 141,
no. 6, pp. 2055–2070, Jun. 2011.

[40] Z. Bai and H. Saranadasa, “Effect of high dimension: By an example of
a two sample problem,” Statist. Sinica, vol. 6, pp. 311–329, Apr. 1996.

[41] O. Ledoit and M. Wolf, “A well-conditioned estimator for large-
dimensional covariance matrices,” J. Multivariate Anal., vol. 88, no. 2,
pp. 365–411, Feb. 2004.

[42] E. Rafajłowicz, “Classifiers for matrix normal images: Derivation
and testing,” in Proc. Int. Conf. Artif. Intell. Soft Comput. Cham,
Switzerland: Springer, 2018, pp. 668–679.

[43] S. X. Chen and Y.-L. Qin, “A two-sample test for high-dimensional
data with applications to gene-set testing,” Ann. Statist., vol. 38, no. 2,
pp. 808–835, Apr. 2010.

[44] A. M. Mathai and S. B. Provost, Quadratic Forms in Random Variables:
Theory and Applications. New York, NY, USA: Dekker, 1992.

Yarema Okhrin received the M.S. degree (Hons.)
in mathematics from the Ivan Franko National Uni-
versity of Lviv, Ukraine, in 1999, and the Ph.D.
degree in economics and statistics (summa cum
laude) from European University Viadrina, Frankfurt
(Oder), Germany. He is currently a Professor of
Statistics with the Faculty of Business and Eco-
nomics, University of Augsburg, Germany. From
April 2008 to September 2009, he was an Assis-
tant Professor of Econometrics with the Univer-
sity of Bern, Switzerland. From March 2000 to

March 2008, he was a Research Associate with the Department of Statistics,
European University Viadrina, Frankfurt (Oder). His current research interests
include financial econometrics, dependence modeling, analysis of image,
networks, and environmental data. He is the Editor-in-Chief of “Advances
in Statistical Analysis” and was the Vice-President of the German Statistical
Society from 2012–2020.

Wolfgang Schmid received the M.S., Ph.D., and
Habilitation degrees in mathematics from the Uni-
versity of Ulm, Germany, in 1982, 1984, and 1991,
respectively. Since 1995, he has been a Full Profes-
sor of Statistics with European University Viadrina,
Frankfurt (Oder), Germany. His main research activ-
ities include statistical analysis of financial markets,
statistical process control, and statistical analysis of
environmental processes. He is author of more than
150 publications, joint editor of the books “Frontiers
in Statistical Quality Control” (Vol. 9–Vol. 12) and

a primary supervisor of 25 dissertations. He is a member of the Editorial
Board of “AStA—Advances in Statistical Analysis” and of the “Journal of
Multivariate Analysis” and an Associate Editor of the journal “Sequential
Analysis.” He is an Elected Member of the International Statistical Institute,
and he was the President of the German Statistical Society from 2012–2020.

Ivan Semeniuk received the B.S. and M.S. degrees
in mathematics from the Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine, in 2014 and 2016,
respectively. He is currently pursuing the Ph.D.
degree with the Department of Statistics, European
University Viadrina, Frankfurt (Oder), Germany. His
current research interests include statistical process
control for image processes, neural networks in sta-
tistical process control, and statistical approximation
theory.

                                                                                                                                           



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


